
Time	
 Issues	
 in	
 Programs	
 	

Vulnerabilities	
 for	
 Programming	
 Languages	
 or	
 Systems	

	

Stephen	
 Michell,	

Maurya	
 Software	
 Inc,	
 Canada	

stephen.michell@maurya.on.ca	

	

Abstract	

	

ISO	
 IEC	
 JTC	
 1	
 SC	
 22	
 WG	
 23	
 Vulnerabilities	
 Working	
 Group	
 is	
 documenting	
 new	
 vulnerabilities	
 in	

preparation	
 for	
 the	
 release	
 of	
 TR	
 24772	
 edition	
 3.	
 An	
 identified	
 area	
 is	
 in	
 the	
 accounting	
 and	

management	
 of	
 time	
 in	
 normal	
 systems	
 and	
 realtime	
 systems.	
 Various	
 vulnerabilities	
 related	
 to	
 time	
 are	

documented,	
 as	
 well	
 as	
 avoidance	
 and	
 mitigations	
 of	
 the	
 issues	
 raised.	

	

1. Introduction	

	

The Programming Language Vulnerabilities Working Group (ISO IEC JTC 1 SC 22 WG 23) has been
identifying and documenting weaknesses in programming languages since 2006, and documenting its
findings in ISO IEC TR 24772 “Guidance to avoiding programming language vulnerabilities”[1]. The first
edition of TR 24772 was published in 2010 and described a set of vulnerabilities that were described in a
language-neutral way. It also included a set of vulnerabilities that are more related to the environment in
which an application may reside, such as related to filing systems, OS traits, and communication protocols.
At the time of publication, WG 23 acknowledged that there were a number of weaknesses not yet
documented, such as concurrency issues, and that the document required a description of how typical
languages deal with the vulnerabilities identified.

A major part of the first edition, and all following editions, is sub-subclause 6 of each vulnerability
description which gives developers specific guidance on ways to avoid the vulnerability described.

WG 23 has relied on the Common Weakness Enumeration (CWE)[8], the JSF C++ coding guidelines[7],
MITRE C[4] and MITRE C++[5] guidelines, and Guidance in the use of Ada for High Integrity Systems[6]
for base material for its document.

The second edition was published in 2012 and added language-specific annexes that show how each
language documented exhibits, avoids or mitigates the vulnerabilities identified. Annexes for Ada, C, PHP,
Python, Spark, and Ruby were added. Edition two also added some vulnerabilities associated with
concurrency, but the format of the document was relatively unchanged.

WG 23 is now working on edition three of TR 24772[1]. TR 24772 is being subdivided into multiple
documents, called “Parts”, with the original “main” document being TR 24772-1, The Ada specific annex
becoming TR 24772-2, and so on. New language-specific parts will be added for Fortran, COBOL, and
likely C++, C# and Java. Wording of the “avoidance” subclause was tightened up to be more directive and
usable in coding standards. New vulnerabilities are being added to document vulnerabilities associated with
object-oriented programming, such as deep-copy and polymorphism. The floating-point vulnerability was
enhanced with the help of floating point experts. Also, the avoidance mechanisms from all the “avoidance”
subclauses are aggregated to provide a summary of guidance, becoming effectively the top-N avoidance
rules.

In analysing missing vulnerabilities from Edition 2, WG 23 decided that a set of vulnerabilities for “Time”
are required for Edition three. To that end, the issues identified so far are presented in this paper, with a
request that they be discussed and confirmed as vulnerabilities, and mitigations discussed. In addition, any
missing time-related vulnerabilities will be noted and returned to WG 23 for documentation. Liberal use
was made of [3] which enumerated a number of concurrency and time vulnerabilities.	

	

2. Time	
 Usage	
 Based	
 Vulnerabilities	

	

2.1. External	
 Visibility	
 of	
 Usage	
 parameters	
 vulnerability	

This vulnerability is characterized by the measurement of external parameters of an application, and using
those measurements to make determinations that allow information about algorithms used or information
about the data being processed. A typical example is that a smart card is inserted into a card reader and
exchanges encrypted messages with a remote system. A listener is placed into the reader where it can
capture the encrypted message as well as measure the time taken to encrypt/decrypt messages and/or the
power drawn to do the processing.

Many low power devices must use the smallest possible encryption keys in order that they can encrypt data
in a limited time. If an attacker can determine how much time was taken for the encryption and knows the
message size, then the algorithm can be determined and brute-force decryptions become possible. The same
attack using the power drawn by the victim is possible.

Mitigations include:

• write the sensitive algorithm so that, no matter what algorithm it uses, it uses them same amount
of time, consumes the same amount of space and consumes the same amount of power.	

	

3. 	
 Differing	
 Time	
 Bases	
 Vulnerability	

All processors and operating systems maintain multiple representations of time internal to the system. In a
typical system there are the following notions of time, and potentially identifiable clocks:	
 	

• CPU time
• Process/task/thread execution time
• Calendar clock time, local and/or GMT
• Elapsed time - i.e. time since system inception in seconds, or in fixed portions thereof
• Network time	

These times have different representations, different scaling, and different semantics. For example, a time-
of-day clock must account for leap years, leap seconds and standard/daylight saving times. A process or
processor clock must maintain time used by a task / thread / process in a granularity appropriate to CPU
speed - possibly sub-nanosecond. A real time clock must manage and represent time to a granularity and
representation needed to correctly manage the algorithms of the system.

There is a requirement in every system to convert time from one format to another to support calculations
done. Conversion errors, rounding errors or cumulative errors can develop:

• If the conversion is not done from the most precise time formats to less precise time formats, 	

• If conversions are done from one format to another and then back for comparison, or 	

• If iterative calculations are done using less than the most precise time base possible.	

This can lead to missed deadlines or wrong calculations that depended on accurate time representation and
can result in catastrophic loss of the application or the parent system. A classic example of this is the
common (wrong) paradigm to use the calendar clock to derive values to be programmed into the monotonic
clock.	

	

Mitigations:	

• Always convert time from the most precise and stable time base to less precise time bases.
• Never convert from calendar clocks or network clocks to real time clocks.

4. 	
 Clock	
 rollover	
 vulnerability	

All computer systems, by their nature, have a fixed internal representation of time. The most basic
representation is usually that time is stored in a word (16, 32 or 64 bits) of fixed length. The clock is updated
periodically by incrementing the timer word by one or more for each clock tick, such as every nanosecond,
or every microsecond. Eventually, if the system is long-enough lived, the time representation will
completely fill the storage and will roll-over and return to zero, or the initial time.	
 	

	

Code that relies upon the time-base constantly increasing will fail if/when a rollover occurs, leading to
failure of the computational system and possible catastrophic loss of the parent system.	

Most systems create a real-time time base such that the system will never roll over within the expected
operational time of the system. Modifications to the system, however, such as speeding up the clock that
feeds the time base or dramatically increasing the expected operational lifetime of the system can make
such errors happen.	

	

Mitigation:	

Always protect any code that uses real-time time bases from potential rollover. This is done by assuming
that a rollover can occur and if it is expected that always T1<T2, but is found that T1 is nearing
Time_Base'Last, then T2<<T1 will be accepted.
	

5. Virtualization	

Many systems have moved to a virtualization approach to fielding systems. Sometimes the virtual system
is only an OS change, such as running Windows and Linux on the same hardware. Sometimes the virtual
system is hardware and software. Sometimes hardware is dedicated, such as 2 cores from an 8 core system,
while in others the virtual system under consideration only executes when needed. When we discuss
virtualization, we include the common notions, such as VMWare™, but we also include systems as diverse
as satisfying ARINC 653[ARINC 653], which uses a time-based partition approach to schedule mixed
criticality systems on a single cpu.

In any case, when a system is virtual, its connection with the real world (i.e. hardware and virtualizer)
clocks is indirect. Clocks for the virtualized system are updated when the system resumes, and time may
“jump” or may advance much faster than normal until the clocks are synchronized with the real world. This
can result in processes being mis-synchronized or missing deadlines if time jumps or progresses too quickly
for the task to get its work completed.

If an attacker is aware that an application is virtualized, and can determine what other virtualized
applications share the same resource, they may be able to generate load for the other virtualized applications
so that the one in question can not retain enough resources to function correctly.

See also section 7.2 for related issues in non-virtual systems.	

	

Mitigations:

• If a critical application is virtualized, take steps to guarantee that processors, memory and time
resources are locked to the application and not shared with other virtual services.

• Do not virtualize critical applications.
	

6. Synchronicity	
 Vulnerability	

When code is written for an application, the developer usually assumes that there is a common time base
for all portions of the application that are in communication with each other. When the system is spread
over multiple processors, it is likely that the time base used by each processor will either drift. As time
refinement uses smaller granularity, even processors that are only centimeters apart may not have exactly
the same time base. In such cases, tests for equality of time could lead to application failures. Another
variation is that a request to fetch a time may be routed to another processor where the time base is
maintained, resulting in incorrect values being read.	

	

Mitigations:	

• Allow	
 some	
 variability	
 or	
 error	
 margin	
 in	
 the	
 reading	
 of	
 time	
 and	
 the	
 scheduling	
 of	
 time	

based	
 on	
 the	
 read.	

• Use	
 only	
 clocks	
 that	
 have	
 known	
 synchronization	
 properties.	
 	

	

	

7. Real	
 Time	
 scheduling	
 vulnerabilities	

When the application is a real time application, then the correct execution of the application depends not
only on the correctness of the calculations done by the application, but also on the timeliness of the
calculations. In order to function correctly, such real time applications are constrained the execution time
of critical code segments, by the execution load of code that executes at higher priority such as interrupts,
or by overheads from the runtime kernel or garbage collection.

A characteristic of real time applications is that they are embedded into larger systems, and are used to
control important aspects of the enclosing systems. The failure of a real time application can lead to
catastrophic outcomes for the enclosing system. The design of such real time programs must therefore take
into account the importance of correct execution of the application. Static verification of the correctness
and timeliness of the application is a hallmark of such applications.	

	

7.1. Missed	
 Deadline	

Many real time systems are characterized by time-locked loops, scheduled by a hard real time timer. Simple
periodic activities and pieces of more compute-intensive work are allocated to specific loop iterations to
balance the load of all cycles. In such a system if an individual iteration exceeds its time bound and
overflows into the next iteration’s start time, then the deadline has been exceeded and the application cannot
recover. It may have checkpoints and may restart, or the failure could be catastrophic, resulting in damage
to the parent system up to and including loss of the parent system.

	

Mitigations:

• Program in a more flexible – priority/task –based way
• Improve the analysis to detect potential deadline overruns.

7.2. Scheduling	
 the	
 next	
 iteration	

	

Many real time systems are characterized by collections of jobs (tasks in Ada) waiting for a start-time for
a time-based iteration, or an event for sporadic activities. A common mistake in programming such systems
is to base the start time of the next iteration upon either a non-monotonic or a non-real time clock, or to
base it upon an offset from the start time or completion time of the last iteration. In the first case, conversion
errors and possible drift of the real time clock can cause the next iteration to be wrongly programmed. In
the second case, higher priority work may have delayed the actual start or completion of the task in an
individual iteration, resulting again in time drift.
	

With enough drift, an iterative task will begin missing its deadlines, and will either produce the wrong
results, or will fail completely, resulting in arbitrary failures up to catastrophic loss of the enclosing system.

This vulnerability has some characteristics of section 5, Virtualization, in that clock jumps or regressions
can happen if the time of day clock is used and is reset to match GPS time, network time or time from a
different processor. In such scenarios, some clocks can progress slower than expected or may even regress
due to synchronization issues.

Mitigations:

• Always set the next (absolute) start time for the iteration from the the start time of the
previous programmed iteration.

• Only use the real-time clock in scheduling tasks or events.

7.3. Reading	
 or	
 setting	
 a	
 real	
 time	
 clock,	
 interrupts	
 and	
 events?	

Real time systems are characterized by tasks interacting with interrupt hardware, runtime events, and the
various clocks in the system, either reading, writing or being scheduled by them. Errors can develop if
either the actual calls to manipulate these system-level services are not protected against concurrent access,
or if the most precise bases for calculating the next set of services is not used. This can result in jitter in the
system, or in missed notifications, which can result in catastrophic loss of the parent system.

Mitigations:

• Ensure that all access to system-level service is protected from concurrent access.
• Ensure that the task is in the correct state to receive system-level notifications so that it can act

upon them in a timely manner.
	

	

7.4. Time	
 accounting	

Computer systems provide mechanisms to determine how much time a given process / task consumes,
either in terms of a passage of time or a time usage mechanism. Some systems provide a time budget which
aborts the portion of the application or the application itself if the budget is exceeded. Tasks or applications
are often permitted to have the budget reset as needed.
	

There are a few challenges with the time budget approach to application management. One challenge is that
system-level work, such as interrupt handling or garbage collection is often charged to the task / application
that is currently scheduled, even though the work is not part of the task / application. Another is that the
time accounting may have been created for a single-cpu system and the presence of multiple cores or
virtualization changes the way that accounting is done.

Mitigations:

• Validate all interactions with the time accounting subsystems to ensure that assumptions made hold
true. 	

	

8. Conclusions	
 and	
 future	
 work	

SC 22/WG 23 is still identifying vulnerabilities that need documentation. Vulnerabilities that have resulted
in known attacks or known failures are the highest priority. In addition to the vulnerabilities themselves,
WG 23 requires that we identify real-world mitigations so that such vulnerabilities can be eliminated or
neutralized.
	

	

Bibliography	

[1]	
 	
 ISO	
 IEC	
 TR	
 15942:2012,	
 “Information	
 Technology	
 –	
 Programming	
 Languages	
 –	
 Guidance	
 on	

Avoiding	
 Programming	
 Language	
 Vulnerabilities”,	
 International	
 Standards	
 Organization,	
 Geneva,	

Switzerland,	
 2012	

	

[2]	
 ISO	
 IEC	
 8652:2012.	
 “Programming	
 Languages	
 and	
 their	
 Environments	
 –	
 Programming	
 Language	

Ada”.	
 International	
 Standards	
 Organization,	
 Geneva,	
 Switzerland,	
 2012.	

	

[3]	
 Burns,	
 Alan,	
 and	
 Wellings,	
 Andy.	
 “Programming	
 Language	
 Vulnerabilities	
 –	
 Lets	
 not	
 forget	

concurrency”,	
 International	
 Real	
 Time	
 Ada	
 Workshop	
 14,	
 ACM	
 Ada	
 Letters,	
 New	
 York,	
 NY,	
 2012.	

	

[4]	
 	
 Motor	
 Industry	
 Software	
 Reliability	
 Association.	
 "Guidelines	
 for	
 the	
 Use	
 of	
 the	
 C	
 Languag(
 s	
 in	

Vehicle	
 Based	
 Software”,	
 2012	
 (third	
 edition).	
  	

	

[5]	
 	
 Motor	
 Industry	
 Software	
 Reliability	
 Association."Guidelines	
 for	
 the	
 Use	
 of	
 the	
 C++	
 Language	
 in	

Vehicle	
 Based	
 Software”,	
 2008.	

	

[6]	
 	
 ISO	
 IEC	
 TR	
 14592,	
 “Guidance	
 for	
 the	
 use	
 of	
 Ada	
 in	
 high	
 integrity	
 systems”,	
 ISO,	
 Geneva	

Switzerland,	
 2001.	

	

[7]	
 	
 Stroustrop,	
 B.	
 “Joint Strike Fighter Air Vehicle C++ Coding Standards for the System
Development and Demonstration Program”, available from http://www.stroustrup.com/JSF-AV-
rules.pdf	

	

[8]	
 	
 Common	
 Weakness	
 Enumeration,	
 MITRE	
 Corp,	
 cwe.mitre.org	

