
Technical	Report	 ISO/IEC	TR	24772-3:201X(E)	

	

©	ISO/IEC	2013	–	All	rights	reserved	 	 	 1	
	

Stephen Michell� 2015-6-5 11:16 PM
Deleted: 2

ISO/IEC	JTC	1/SC	22	N	0554	
Date:	2015-06-06	

ISO/IEC	TR	24772-3	

Edition	1	

ISO/IEC	JTC	1/SC	22/WG	23	

Secretariat:	ANSI	

Information	Technology	—	Programming	languages	—	Guidance	to	avoiding	
vulnerabilities	in	programming	languages	–	Vulnerability	descriptions	for	the	
programming	language	C		

	

Élément	introductif	—	Élément	principal	—	Partie	n:	Titre	de	la	partie	

	

Warning	

This	document	is	not	an	ISO	International	Standard.	It	is	distributed	for	review	and	comment.	It	is	subject	to	change	without	
notice	and	may	not	be	referred	to	as	an	International	Standard.	

Recipients	of	this	draft	are	invited	to	submit,	with	their	comments,	notification	of	any	relevant	patent	rights	of	which	they	
are	aware	and	to	provide	supporting	documentation.	

	 	

Document	type:	International	standard	
Document	subtype:	if	applicable	
Document	stage:	(10)	development	stage	
Document	language:	E	

	

Stephen Michell� 2017-2-20 9:16 AM
Deleted: 0000

Stephen Michell� 2017-2-20 9:16 AM
Formatted: Font:14 pt
Stephen Michell� 2015-6-5 11:16 PM
Deleted: 3-05

Stephen Michell� 2015-6-5 11:16 PM
Deleted: 2

Stephen Michell� 2015-6-5 11:16 PM
Deleted: Ada	

2	 ©	ISO/IEC	2013	–	All	rights	reserved	
	

	

Copyright	notice	

This	ISO	document	is	a	working	draft	or	committee	draft	and	is	copyright-protected	by	ISO.	While	the	
reproduction	of	working	drafts	or	committee	drafts	in	any	form	for	use	by	participants	in	the	ISO	standards	
development	process	is	permitted	without	prior	permission	from	ISO,	neither	this	document	nor	any	
extract	from	it	may	be	reproduced,	stored	or	transmitted	in	any	form	for	any	other	purpose	without	prior	
written	permission	from	ISO.	

Requests	for	permission	to	reproduce	this	document	for	the	purpose	of	selling	it	should	be	addressed	as	
shown	below	or	to	ISO’s	member	body	in	the	country	of	the	requester:	

ISO	copyright	office	
Case	postale	56,	CH-1211	Geneva	20	
Tel.	+	41	22	749	01	11	
Fax	+	41	22	749	09	47	
E-mail	copyright@iso.org	
Web	www.iso.org	

Reproduction	for	sales	purposes	may	be	subject	to	royalty	payments	or	a	licensing	agreement.	

Violators	may	be	prosecuted.	

©	ISO/IEC	2013	–	All	rights	reserved	 3	
	

Contents	 Page	

	

	 	

4	 ©	ISO/IEC	2013	–	All	rights	reserved	
	

Foreword	

ISO	(the	International	Organization	for	Standardization)	and	IEC	(the	International	Electrotechnical	Commission)	
form	the	specialized	system	for	worldwide	standardization.	National	bodies	that	are	members	of	ISO	or	IEC	
participate	in	the	development	of	International	Standards	through	technical	committees	established	by	the	
respective	organization	to	deal	with	particular	fields	of	technical	activity.	ISO	and	IEC	technical	committees	
collaborate	in	fields	of	mutual	interest.	Other	international	organizations,	governmental	and	non-governmental,	
in	liaison	with	ISO	and	IEC,	also	take	part	in	the	work.	In	the	field	of	information	technology,	ISO	and	IEC	have	
established	a	joint	technical	committee,	ISO/IEC	JTC	1.	

International	Standards	are	drafted	in	accordance	with	the	rules	given	in	the	ISO/IEC	Directives,	Part	2.	

The	main	task	of	the	joint	technical	committee	is	to	prepare	International	Standards.	Draft	International	
Standards	adopted	by	the	joint	technical	committee	are	circulated	to	national	bodies	for	voting.	Publication	as	an	
International	Standard	requires	approval	by	at	least	75	%	of	the	national	bodies	casting	a	vote.	

In	exceptional	circumstances,	when	the	joint	technical	committee	has	collected	data	of	a	different	kind	from	that	
which	is	normally	published	as	an	International	Standard	(“state	of	the	art”,	for	example),	it	may	decide	to	publish	
a	Technical	Report.			A	Technical	Report	is	entirely	informative	in	nature	and	shall	be	subject	to	review	every	five	
years	in	the	same	manner	as	an	International	Standard.	

Attention	is	drawn	to	the	possibility	that	some	of	the	elements	of	this	document	may	be	the	subject	of	patent	
rights.	ISO	and	IEC	shall	not	be	held	responsible	for	identifying	any	or	all	such	patent	rights.	

ISO/IEC	TR	24772-3	was	prepared	by	Joint	Technical	Committee	ISO/IEC	JTC	1,	Information	technology,	
Subcommittee	SC	22,	Programming	languages,	their	environments	and	system	software	interfaces.	

	 	

Stephen Michell� 2015-6-5 11:17 PM
Deleted: ,

©	ISO/IEC	2013	–	All	rights	reserved	 5	
	

Introduction	

This	Technical	Report	provides	guidance	for	the	programming	language	C	so	that	application	developers	
considering	C	or	using	C	will	be	better	able	to	avoid	the	programming	constructs	that	lead	to	vulnerabilities	in	
software	written	in	the	C		language	and	their	attendant	consequences.		This	guidance	can	also	be	used	by	
developers	to	select	source	code	evaluation	tools	that	can	discover	and	eliminate	some	constructs	that	could	
lead	to	vulnerabilities	in	their	software.	This	technical	can	also	be	used	in	comparison	with	companion	
technical	reports	and	with	the	language-independent	report,	TR	24772-1,	to	select	a	programming	language	
that	provides	the	appropriate	level	of	confidence	that	anticipated	problems	can	be	avoided.		

This	technical	report	part	is	intended	to	be	used	with	TR	24772-1,	which	discusses	programming	language	
vulnerabilities	in	a	language	independent	fashion.	

It	should	be	noted	that	this	Technical	Report	is	inherently	incomplete.		It	is	not	possible	to	provide	a	complete	
list	of	programming	language	vulnerabilities	because	new	weaknesses	are	discovered	continually.		Any	such	
report	can	only	describe	those	that	have	been	found,	characterized,	and	determined	to	have	sufficient	
probability	and	consequence.	

	 	

Stephen Michell� 2015-6-5 11:17 PM
Deleted: Ada

Stephen Michell� 2015-6-5 11:17 PM
Deleted: Ada

Stephen Michell� 2015-6-5 11:17 PM
Deleted: Ada

Stephen Michell� 2015-6-5 11:17 PM
Deleted: Ada

6	 ©	ISO/IEC	2013	–	All	rights	reserved	
	

Information	Technology	—	Programming	Languages	—	Guidance	to	avoiding	
vulnerabilities	in	programming	languages	through	language	selection	and	
use	–	Vulnerability	descriptions	for	the	programming	language	C	

	

1.	Scope	

This	Technical	Report	specifies	software	programming	language	vulnerabilities	to	be	avoided	in	the	development	
of	systems	where	assured	behaviour	is	required	for	security,	safety,	mission-critical	and	business-critical	software.		
In	general,	this	guidance	is	applicable	to	the	software	developed,	reviewed,	or	maintained	for	any	application.	

Vulnerabilities	described	in	this	technical	report	document	the	way	that	the	vulnerability	described	in	the	
language-independent	writeup	(in	Tr	24772-1)	are	manifested	in	C.		

2.	Normative	references	

The	following	referenced	documents	are	indispensable	for	the	application	of	this	document.		For	dated	
references,	only	the	edition	cited	applies.		For	undated	references,	the	latest	edition	of	the	referenced	document	
(including	any	amendments)	applies.	

ISO	80000–2:2009,	Quantities	and	units	—	Part	2:	Mathematical	signs	and	symbols	to	be	use	in	the	natural	
sciences	and	technology	
ISO/IEC	2382–1:1993,	Information	technology	—	Vocabulary	—	Part	1:	Fundamental	terms	

ISO/IEC	8652:2012	Information	Technology	–	Programming	Languages—Ada.	
ISO/IEC	TR	15942:2000,	Guidance	for	the	Use	of	Ada	in	High	Integrity	Systems.	
ISO/IEC	TR	24718:2005,	Guide	for	the	use	of	the	Ada	Ravenscar	Profile	in	high	integrity	systems.	
ISO	IEC	????	754-2008,	Binary	Floating	Point	Arithmetic,	IEEE,	2008.	
ISO	IEC	????	854-1987,	Radix-Independent	Floating-Point	Arithmetic,	IEEE,	1987	

3.	Terms	and	definitions,	symbols	and	conventions	

3.1	Terms	and	definitions	

In	addition	to	the	terms	and	definitions	found	in	TR	24772-1	clause	3,	the	following	terms	and	definitions	apply	to	
this	Technical	Report.	

access: An	execution-time	action,	to	read	or	modify	the	value	of	an	object.		Where	only	one	of	two	actions	is	
meant,	read	or	modify.		Modify	includes	the	case	where	the	new	value	being	stored	is	the	same	as	the	previous	
value.		Expressions	that	are	not	evaluated	do	not	access	objects.

alignment:		 The	requirement	that	objects	of	a	particular	type	be	located	on	storage	boundaries	with	addresses	
that	are	particular	multiples	of	a	byte	address.	

argument:	

Stephen Michell� 2015-6-5 11:18 PM
Formatted: Font:Bold
Stephen Michell� 2015-6-5 11:18 PM
Deleted: Ada	

Stephen Michell� 2015-6-5 11:18 PM
Deleted: Ada

Stephen Michell� 2015-6-5 11:21 PM
Formatted: Normal

©	ISO/IEC	2013	–	All	rights	reserved	 7	
	

actual	argument:	The	expression	in	the	comma-separated	list	bounded	by	the	parentheses	in	a	function	call	
expression,	or	a	sequence	of	preprocessing	tokens	in	the	comma-separated	list	bounded	by	the	parentheses	in	a	
function-like	macro	invocation.	

behaviour:	 An	external	appearance	or	action.	

implementation-defined	behaviour:	The	unspecified	behaviour	where	each	implementation	documents	how	the	
choice	is	made.		An	example	of	implementation-defined	behaviour	is	the	propagation	of	the	high-order	bit	when	a	
signed	integer	is	shifted	right.	

locale-specific	behaviour:	 The	behaviour	that	depends	on	local	conventions	of	nationality,	culture,	and	language	
that	each	implementation	documents.		An	example,	locale-specific	behaviour	is	whether	the	islower()	
function	returns	true	for	characters	other	than	the	26	lower	case	Latin	letters.	

undefined	behaviour:	 The	use	of	a	non-portable	or	erroneous	program	construct	or	of	erroneous	data,	for	which	
the	C	standard	imposes	no	requirements.		Undefined	behaviour	ranges	from	ignoring	the	situation	completely	
with	unpredictable	results,	to	behaving	during	translation	or	program	execution	in	a	documented	manner	
characteristic	of	the	environment	(with	or	without	the	issuance	of	a	diagnostic	message),	to	terminating	a	
translation	or	execution	(with	the	issuance	of	a	diagnostic	message).		An	example	of,	undefined	behaviour	is	the	
behaviour	on	integer	overflow.	

unspecified	behaviour:	The	use	of	an	unspecified	value,	or	other	behaviour	where	the	C	Standard	provides	two	or	
more	possibilities	and	imposes	no	further	requirements	on	which	is	chosen	in	any	instance.		For	example,	
unspecified	behaviour	is	the	order	in	which	the	arguments	to	a	function	are	evaluated.	

bit:	 The	unit	of	data	storage	in	the	execution	environment	large	enough	to	hold	an	object	that	may	have	one	of	
two	values.	It	need	not	be	possible	to	express	the	address	of	each	individual	bit	of	an	object.	

byte:	 The	addressable	unit	of	data	storage	large	enough	to	hold	any	member	of	the	basic	character	set	of	the	
execution	environment.		It	is	possible	to	express	the	address	of	each	individual	byte	of	an	object	uniquely.		A	byte	
is	composed	of	a	contiguous	sequence	of	bits,	the	number	of	which	is	implementation-defined.	The	least	
significant	bit	is	called	the	low-order	bit;	the	most	significant	bit	is	called	the	high-order	bit.	

character:	 An	abstract member	of	a	set	of	elements	used	for	the	organization,	control,	or	representation	of	
data.	

single-byte	character:	 The	bit	representation	that	fits	in	a	byte.	

multibyte	character:	 The	sequence	of	one	or	more	bytes	representing	a	member	of	the	extended	character	set	
of	either	the	source	or	the	execution	environment.			The	extended	character	set	is	a	superset	of	the	basic	
character	set.	

wide	character:	 The	bit	representation	that	will	fit	in	an	object		capable	of	representing	any	character	in	the	
current	locale.		The	C	Standard	uses	the	type	name	wchar_t	for	this	object.	

correctly	rounded	result:	 The	representation	in	the	result	format	that	is	nearest	in	value,	subject	to	the	current	
rounding	mode,	to	what	the	result	would	be	given	unlimited	range	and	precision.	

diagnostic	message:	 The	message	belonging	to	an	implementation-defined	subset	of	the	implementation’s	
message	output.		The	C	Standard	requires	diagnostic	messages	for	all	constraint	violations.	

8	 ©	ISO/IEC	2013	–	All	rights	reserved	
	

implementation:	 A	particular	set	of	software,	running	in	a	particular	translation	environment	under	particular	
control	options,	that	performs	translation	of	programs	for,	and	supports	execution	of	functions	in,	a	particular	
execution	environment.	

implementation	limit:	 The	restriction	imposed	upon	programs	by	the	implementation.	

memory	location:	Either	an	object	of	scalar8F

1	type,	or	a	maximal	sequence	of	adjacent	bit-fields		all	having	nonzero	
width.		A	bit-field-	and	an	adjacent	non-bit-field	member	are	in	separate	memory	locations.	The	same	applies	to	
two	bit-fields-fi,	if	one	is	declared	inside	a	nested	structure	declaration	and	the	other	is	not,	or	if	the	two	are	
separated	by	a	zero-length	bit-field	declaration,	or	if	they	are	separated	by	a	non-bit-field	member	declaration.	It	
is	not	safe	to	concurrently	update	two	bit-field-fi	in	the	same	structure	if	all	members	declared	between	them	are	
also	bit-fields,	no	matter	what	the	sizes	of	those	intervening	bit-fields		happen	to	be.		For	example	a	structure	
declared	as	

struct {

char a;
int b:5, c:11, :0, d:8;
struct { int ee:8; } e;

}

contains	four	separate	memory	locations:	The	member	a,	and	bit-fields	d	and	e.ee	are	separate	memory	
locations,	and	can	be	modified	concurrently	without	interfering	with	each	other.		The	bit-fields	b	and	c	together	
constitute	the	fourth	memory	location.		The	bit-fields	b	and	c	can’t	be	concurrently	modified,	but	b	and	a,	can	be	
concurrently	modified.	

object:	 The	region	of	data	storage	in	the	execution	environment,	the	contents	of	which	can	represent	values.			
When	referenced,	an	object	may	be	interpreted	as	having	a	particular	type.	

parameter:	

formal	parameter:	 The	object	declared	as	part	of	a	function	declaration	or	definition	that	acquires	a	value	on	
entry	to	the	function,	or	an	identifier	from	the	comma-separated	list	bounded	by	the	parentheses	immediately	
following	the	macro	name	in	a	function-like	macro	definition.	

recommended	practice:	 A	specification	that	is	strongly	recommended	as	being	in	keeping	with	the	intent	of	the	
C	Standard,	but	that	may	be	impractical	for	some	implementations.	

runtime-constraint:	 A	requirement	on	a	program	when	calling	a	library	function.	

value:	 The	precise	meaning	of	the	contents	of	an	object	when	interpreted	as	having	a	specific	type.	

implementation-defined	value:	 An	unspecified	value	where	each	implementation	documents	how	the	choice	for	
the	value	is	selected.	

indeterminate	value:	 Is	either	an	unspecified	value	or	a	trap	representation.	

																																																													

1	Integer	types,	Floating	types	and	Pointer	types	are	collectively	called	scalar	types	in	the	C	Standard.	

©	ISO/IEC	2013	–	All	rights	reserved	 9	
	

unspecified	value:	The	valid	value	of	the	relevant	type	where	the	C	Standard	imposes	no	requirements	on	which	
value	is	chosen	in	any	instance.			An	unspecified	value	cannot	be	a	trap	representation.	

trap	representation:	 An	object	representation	that	need	not	represent	a	value	of	the	object	type.	

	

4	Language	concepts				

block-structured	language:	A	language	that	has	a	syntax	for	enclosing	structures	between	bracketed	keywords,	
such	as	an	if	statement	bracketed	by	if	and	endif,	as	in	Fortran,	or	a	code	section	bracketed	by	BEGIN	and	
END,	as	in	PL/1.	

comb-structured	language:		 A	language	that	has	an	ordered	set	of	keywords	to	
define	separate	sections	within	a	block,	analogous	to	the	multiple	teeth	or	prongs	in	a	
comb	separating	sections	of	the	comb.	For	example,	in	Ada,	a	block	is	a	4-pronged	
comb	with	keywords	declare,	begin,	exception,	end,	and	the	if	statement	in	Ada	
is	a	4-pronged	comb	with	keywords	if,	then,	else,	end if.	
	
5	General	guidance	for	C	

[See	Template]	[Thoughts	welcomed	as	to	what	could	be	provided	here.	Possibly	an	opportunity	for	the	language	
community	to	address	issues	that	do	not	correlate	to	the	guidance	of	section	6.	For	languages	that	provide	non-
mandatory	tools,	how	those	tools	can	be	used	to	provide	effective	mitigation	of	vulnerabilities	described	in	the	
following	sections]		

6	Specific	Guidance	for	C	

6.1	General		

This	clause	contains	specific	advice	for	C	about	the	possible	presence	of	vulnerabilities	as	described	in	TR	24772-1,	
and	provides	specific	guidance	on	how	to	avoid	them	in	C	program	code.	This	section	mirrors	TR	24772-1	clause	6	
in	that	the	vulnerability	“Type	System	[IHN]”	is	found	in	6.2	of	TR	24772-1,	and	Ada	specific	guidance	is	found	in	
clause	6.2	and	subclauses	in	this	TR.		

6.2	Type	System	[IHN]	

6.2.1	Applicability	to	language	

C	is	a	statically	typed	language.		In	some	ways	C	is	both	strongly	and	weakly	typed	as	it	requires	all	variables	to	be	
typed,	but	sometimes	allows	implicit	or	automatic	conversion	between	types.		For	example,	C	will	implicitly	
convert	a	long int	to	an	int and	potentially	discard	many	significant	digits.		Note	that	integer	sizes	are	
implementation	defined	so	that	in	some	implementations,	the	conversion	from	a	long int	to	an	int cannot	
discard	any	digits	since	they	are	the	same	size.		In	some	implementations,	all	integer	types	could	be	implemented	
as	the	same	size.	

C	allows	implicit	conversions	as	in	the	following	example:	

	 short a = 1023;

Stephen Michell� 2015-6-5 11:20 PM
Deleted: For	the	purposes	of	this	document,	the	
terms	and	definitions	given	in	ISO/IEC	2382–1,	in	TR	
24772-1	and	the	following	apply.		Other	terms	are	
defined	where	they	appear	in	italic	type. ... [1]

Stephen Michell� 2015-6-5 11:23 PM
Deleted: How	Ada	addresses	issues	in	TR24772-1	
section	5. ... [2]

Stephen Michell� 2015-6-5 11:23 PM
Deleted: Ada

Stephen Michell� 2015-6-5 11:23 PM
Deleted: Ada

Stephen Michell� 2015-6-5 11:23 PM
Deleted: Ada

Stephen Michell� 2015-6-5 11:23 PM
Deleted: Ada

10	 ©	ISO/IEC	2013	–	All	rights	reserved	
	

 int b;
 b = a;

If	an	implicit	conversion	could	result	in	a	loss	of	precision	such	as	in	a	conversion	from	a	32	bit	int	to	a	16	bit	
short int:	

	 int a = 100000;
 short b;
 b = a;

many	compilers	will	issue	a	warning	message.	

C	has	a	set	of	rules	to	determine	how	conversion	between	data	types	will	occur.		For	instance,	every	integer	type	
has	an	integer	conversion	rank	that	determines	how	conversions	are	performed.	The	ranking	is	based	on	the	
concept	that	each	integer	type	contains	at	least	as	many	bits	as	the	types	ranked	below	it.		

The	integer	conversion	rank	is	used	in	the	usual	arithmetic	conversions	to	determine	what	conversions	need	to	
take	place	to	support	an	operation	on	mixed	integer	types.	

Other	conversion	rules	exist	for	other	data	type-conversions.		So	even	though	there	are	rules	in	place	and	the	
rules	are	rather	straightforward,	the	variety	and	complexity	of	the	rules	can	cause	unexpected	results	and	
potential	vulnerabilities.		For	example,	though	there	is	a	prescribed	order	in	which	conversions	will	take	place,	
determining	how	the	conversions	will	affect	the	final	result	can	be	difficult	as	in	the	following	example:	

	 long foo (short a, int b, int c, long d, long e, long f) {
 return (((b + f) * d – a + e) / c);
 }

The	implicit	conversions	performed	in	the	return	statement	can	be	nontrivial	to	discern,	but	can	greatly	impact	
whether	any	of	the	intermediate	values	wrap	around	during	the	computation.	

6.2.2	Guidance	to	language	users		

• Follow	the	advice	provided	in	6.3.5.	
• Consideration	of	the	rules	for	typing	and	conversions	will	assist	in	avoiding	vulnerabilities.	

Make	casts	explicit	to	give	the	programmer	a	clearer	vision	and	expectations	of	conversions.			

6.3	Bit	Representation	[STR]	

6.3.1	Applicability	to	language	
C	supports	a	variety	of	sizes	for	integers	such	as	short int,	int,	long int	and	long long int.		Each	
may	either	be	signed	or	unsigned.		C	also	supports	a	variety	of	bitwise	operators	that	make	bit	manipulations	easy	
such	as	left	and	right	shifts	and	bitwise	operators.		These	bit	manipulations	can	cause	unexpected	results	or	
vulnerabilities	through	miscalculated	shifts	or	platform	dependent	variations.	

Bit	manipulations	are	necessary	for	some	applications	and	may	be	one	of	the	reasons	that	a	particular	application	
was	written	in	C.		Although	many	bit	manipulations	can	be	rather	simple	in	C,	such	as	masking	off	the	bottom	
three	bits	in	an	integer,	more	complex	manipulations	can	cause	unexpected	results.		For	instance,	right	shifting	a	
signed	integer	is	implementation	defined	in	C,	while	shifting	by	an	amount	greater	than	or	equal	to	the	size	of	the	
data	type	is	undefined	behaviour.		For	instance,	on	a	host	where	an	int	is	of	size	32	bits,	

Stephen Michell� 2015-6-5 11:24 PM
Deleted: Implicit	conversions	cause	no	application	
vulnerability,	as	long	as	resulting	exceptions	are	
properly	handled. ... [3]

Stephen Michell� 2015-6-5 11:25 PM
Formatted: List Paragraph, Bulleted + Level:
1 + Aligned at: 0.63 cm + Indent at: 1.27
cm, Tabs: 1.27 cm, Left

Stephen Michell� 2015-6-5 11:25 PM
Formatted: List Paragraph, No bullets or
numbering

Stephen Michell� 2015-6-5 11:25 PM
Deleted: ... [4]

©	ISO/IEC	2013	–	All	rights	reserved	 11	
	

				 unsigned int foo(const int k) {
 unsigned int i = 1;
 return i << k;
 }

is	undefined	for	values	of	k	greater	than	or	equal	to	32.	

The	storage	representation	for	interfacing	with	external	constructs	can	cause	unexpected	results.		Byte	orders	
may	be	in	little-endian	or	big-endian	format	and	unknowingly	switching	between	the	two	can	unexpectedly	alter	
values.		

6.3.2	Guidance	to	language	users		
The	vulnerabilities	associated	with	the	complexity	of	bit-level	programming	can	be	
mitigated	by:		

• Only	use	bitwise	operators	on	unsigned	integer	values	as	the	results	of	some	bitwise	operations	on	signed	
integers	are	implementation	defined.	

• Use	commonly	available	functions	such	as	htonl(),	htons(),	ntohl()	and	ntohs()to	convert	
from	host	byte	order	to	network	byte	order	and	vice	versa.		This	would	be	needed	to	interface	between	
an	i80x86	architecture	where	the	Least	Significant	Byte	is	first	with	the	network	byte	order,	as	used	on	
the	Internet,	where	the	Most	Significant	Byte	is	first.		Note:	functions	such	as	these	are	not	part	of	the	C	
standard	and	can	vary	somewhat	among	different	platforms.	

• In	cases	where	there	is	a	possibility	that	the	shift	is	greater	than	the	size	of	the	variable,	perform	a	check	
as	the	following	example	shows,	or	a	modulo	reduction	before	the	shift:	

unsigned int i;
unsigned int k;
unsigned int shifted_i;
…

 if (k < sizeof(unsigned int)*CHAR_BIT)
 shifted_i = i << k;
else

 // handle error condition	

6.4	Floating-point	Arithmetic	[PLF]	

6.4.1	Applicability	to	language		

C	permits	the	floating-point	data	types	float,	double	and	long	double.		Due	to	the	approximate	nature	of	floating-
point	representations,	the	use	of	float	and	double	data	types	in	situations	where	equality	is	needed	or	where	
rounding	could	accumulate	over	multiple	iterations	could	lead	to	unexpected	results	and	potential	vulnerabilities	
in	some	situations.	

As	with	most	data	types,	C	is	flexible	in	how	float,	double	and	long double	can	be	used.		For	instance,	C	
allows	the	use	of	floating-point	types	to	be	used	as	loop	counters	and	in	equality	statements.		Even	though	a	loop	
may	be	expected	to	only	iterate	a	fixed	number	of	times,	depending	on	the	values	contained	in	the	floating-point	
type	and	on	the	loop	counter	and	termination	condition,	the	loop	could	execute	forever.		For	instance	iterating	a	
time	sequence	using	10	nanoseconds	as	the	increment:	

Stephen Michell� 2015-6-5 11:25 PM
Deleted: In	general,	the	type	system	of	Ada	
protects	against	the	vulnerabilities	outlined	in	
Section	6.4.	However,	the	use	of	
Unchecked_Conversion,	calling	foreign	language	
routines,	and	unsafe	manipulation	of	address	
representations	voids	these	guarantees. ... [5]

Stephen Michell� 2015-6-5 11:30 PM
Deleted:

Stephen Michell� 2015-6-5 11:30 PM
Formatted: Font:Cambria, Not Bold

Stephen Michell� 2015-6-5 11:26 PM
Deleted: ... [6]

12	 ©	ISO/IEC	2013	–	All	rights	reserved	
	

	 float f;
 for (f=0.0; f!=1.0; f+=0.00000001)

may	or	may	not	terminate	after	10,000,000	iterations.		The	representations	used	for	f	and	the	accumulated	
effect	of	many	iterations	may	cause	f	to	not	be	identical	to	1.0	causing	the	loop	to	continue	to	iterate	forever.	

Similarly,	the	Boolean	test	

	 float f=1.336f;
float g=2.672f;

 if (f == (g/2))

may	or	may	not	evaluate	to	true.		Given	that	f	and	g	are	constant	values,	it	is	expected	that	consistent	results	will	
be	achieved	on	the	same	platform.		However,	it	is	questionable	whether	the	logic	performs	as	expected	when	a	
float	that	is	twice	that	of	another	is	tested	for	equality	when	divided	by	2	as	above.		This	can	depend	on	the	
values	selected	due	to	the	quirks	of	floating-point	arithmetic.	

6.4.2	Guidance	to	language	users		

• Do	not	use	a	floating-point	expression	in	a	Boolean	test	for	equality.		In	C,	implicit	casts	may	make	
an	expression	floating-point	even	though	the	programmer	did	not	expect	it.	

Check	for	an	acceptable	closeness	in	value	instead	of	a	test	for	equality	when	using	floats	and	doubles	to	
avoid	rounding	and	truncation	problems.	
Do	not	convert	a	floating-point	number	to	an	integer	unless	the	conversion	is	a	specified	algorithmic	
requirement	or	is	required	for	a	hardware	interface.	

6.5	Enumerator	Issues	[CCB]	

6.5.1	Applicability	to	language	
	

The	enum	type	in	C	comprises	a	set	of	named	integer	constant	values	as	in	the	example:	

 enum abc {A,B,C,D,E,F,G,H} var_abc;

The	values	of	the	contents	of	abc	would	be	A=0,	B=1,	C=2,	and	so	on.		C	allows	values	to	be	assigned	to	the	
enumerated	type	as	follows:	

 enum abc {A,B,C=6,D,E,F=7,G,H} var_abc;

This	would	result	in:	

	 A=0,	B=1,	C=6, D=7,	E=8,	F=7,	G=8,	H=9	

yielding	both	gaps	in	the	sequence	of	values	and	repeated	values.	

If	a	poorly	constructed	enum	type	is	used	in	loops,	problems	can	arise.		Consider	the	enumerated	type	abc	
defined	above	used	in	a	loop:	

	 int x[8];

for (i=A; i<=H; i++){

Stephen Michell� 2015-6-5 11:27 PM
Formatted: Normal

Stephen Michell� 2015-6-5 11:27 PM
Deleted: ... [7]

Stephen Michell� 2015-6-5 11:27 PM
Formatted: Font:(Default) Courier New,
English (US)
Stephen Michell� 2015-6-5 11:29 PM
Formatted: List Paragraph, Bulleted + Level:
1 + Aligned at: 1.9 cm + Indent at: 2.54 cm
Stephen Michell� 2015-6-5 11:30 PM
Formatted: List Paragraph

Stephen Michell� 2015-6-5 11:28 PM
Deleted: ... [8]

Stephen Michell� 2015-6-5 11:30 PM
Formatted: English (US)

©	ISO/IEC	2013	–	All	rights	reserved	 13	
	

 t = x[i];

}

Because	the	enumerated	type	abc	has	been	renumbered	and	because	some	numbers	have	been	skipped,	the	
array	will	go	out	of	bounds	and	there	is	potential	for	unintentional	gaps	in	the	use	of	x.	

6.5.2	Guidance	to	language	users		

• Follow	the	guidance	of	6.6.5.	
• Use	enumerated	types	in	the	default	form	starting	at	0	and	incrementing	by	1	for	each	member	if	

possible.		The	use	of	an	enumerated	type	is	not	a	problem	if	it	is	well	understood	what	values	are	
assigned	to	the	members.	

• Avoid	using	loops	that	iterate	over	an	enum	that	has	representation	specified	for	the	enums,	unless	it	can	
be	guaranteed	that	there	are	no	gaps	or	repetition	of	representation	values	within	the	enum	definition.	

• Use	an	enumerated	type	to	select	from	a	limited	set	of	choices	to	make	possible	the	use	of	tools	to	detect	
omissions	of	possible	values	such	as	in	switch	statements.	

• Use	the	following	format	if	the	need	is	to	start	from	a	value	other	than	0	and	have	the	rest	of	the	values	
be	sequential:	

 enum abc {A=5,B,C,D,E,F,G,H} var_abc;

• Use	the	following	format	if	gaps	are	needed	or	repeated	values	are	desired	and	so	as	to	be	explicit	as	to	
the	values	in	the	enum,	then:	

		 enum abc {
A=0,
B=1,
C=6,
D=7,
E=8,
F=7,
G=8,
H=9

 } var_abc;	

6.6	Numeric	Conversion	Errors	[FLC]	

6.6.1	Applicability	to	language	

C	permits	implicit	conversions.		That	is,	C	will	automatically	perform	a	conversion	without	an	explicit	cast.		For	
instance,	C	allows	

	 int i;
 float f=1.25f;
 i = f;

This	implicit	conversion	will	discard	the	fractional	part	of	f	and	set	i	to	1.		If	the	value	of	f	is	greater	than	
INT_MAX,	then	the	assignment	of	f	to	i	would	be	undefined.	

Stephen Michell� 2015-6-5 11:31 PM
Deleted: Enumeration	representation	
specification	may	be	used	to	specify	non-default	
representations	of	an	enumeration	type,	for	
example	when	interfacing	with	external	systems.	All	
of	the	values	in	the	enumeration	type	must	be	
defined	in	the	enumeration	representation	
specification.	The	numeric	values	of	the	
representation	must	preserve	the	original	order.	For	
example: ... [9]

Stephen Michell� 2015-6-5 11:32 PM
Formatted: Normal, Space Before: 0 pt,
After: 0 pt, No bullets or numbering
Stephen Michell� 2015-6-5 11:32 PM
Deleted: For	case	statements	and	aggregates,	do	
not	use	the	others	choice. ... [10]

Stephen Michell� 2015-6-5 11:32 PM
Formatted: Kern at 16 pt

Stephen Michell� 2015-6-5 11:32 PM
Formatted: Kern at 16 pt

14	 ©	ISO/IEC	2013	–	All	rights	reserved	
	

The	rules	for	implicit	conversions	in	C	are	defined	in	the	C	standard.		For	instance,	integer	types	smaller	than	int	
are	promoted	when	an	operation	is	performed	on	them.	If	all	values	of	Boolean,	character	or	integer	type	can	be	
represented	as	an	int,	the	value	of	the	smaller	type	is	converted	to	an	int;	otherwise,	it	is	converted	to	an	
unsigned	int.	

Integer	promotions	are	applied	as	part	of	the	usual	arithmetic	conversions	to	certain	argument	expressions;	
operands	of	the	unary	+,	-,	and	~	operators,	and	operands	of	the	shift	operators.	The	following	code	fragment	
shows	the	application	of	integer	promotions:	

	 char c1, c2;
 c1 = c1 + c2;

Integer	promotions	require	the	promotion	of	each	variable	(c1	and	c2)	to	int	size.	The	two	int	values	are	
added	and	the	sum	is	truncated	to	fit	into	the	char	type.	

Integer	promotions	are	performed	to	avoid	arithmetic	errors	resulting	from	the	overflow	of	intermediate	values.	
For	example:	

	 signed char cresult, c1, c2, c3;
 c1 = 100;
 c2 = 3;
 c3 = 4;
 cresult = c1 * c2 / c3;

In	this	example,	the	value	of	c1	is	multiplied	by	c2.	The	product	of	these	values	is	then	divided	by	the	value	of	c3	
(according	to	operator	precedence	rules).	Assuming	that	signed	char	is	represented	as	an	8-bit	value,	the	product	
of	c1	and	c2	(300)	cannot	be	represented.	Because	of	integer	promotions,	however,	c1,	c2,	and	c3	are	each	
converted	to	int,	and	the	overall	expression	is	successfully	evaluated.	The	resulting	value	is	truncated	and	stored	
in	cresult.	Because	the	final	result	(75)	is	in	the	range	of	the	signed	char	type,	the	conversion	from	int	back	
to	signed char	does	not	result	in	lost	data.		It	is	possible	that	the	conversion	could	result	in	a	loss	of	data	
should	the	data	be	larger	than	the	storage	location.	

A	loss	of	data	(truncation)	can	occur	when	converting	from	a	signed	type	to	a	signed	type	with	less	precision.	For	
example,	the	following	code	can	result	in	truncation:	

	 signed long int sl = LONG_MAX;
 signed char sc = (signed char)sl;	

The	C	standard	defines	rules	for	integer	promotions,	integer	conversion	rank,	and	the	usual	arithmetic	
conversions.	The	intent	of	the	rules	is	to	ensure	that	the	conversions	result	in	the	same	numerical	values,	and	that	
these	values	minimize	surprises	in	the	rest	of	the	computation.	

6.6.2	Guidance	to	language	users	

• Check	the	value	of	a	larger	type	before	converting	it	to	a	smaller	type	to	see	if	the	value	in	the	larger	
type	is	within	the	range	of	the	smaller	type.		Any	conversion	from	a	type	with	larger	precision	to	a	
smaller	precision	type	could	potentially	result	in	a	loss	of	data.		In	some	instances,	this	loss	of	
precision	is	desired.		Such	cases	should	be	explicitly	acknowledged	in	comments.		For	example,	the	
following	code	could	be	used	to	check	whether	a	conversion	from	an	unsigned	integer	to	an	unsigned	
character	will	result	in	a	loss	of	precision:	

Stephen Michell� 2015-6-5 11:33 PM
Deleted: Ada	does	not	permit	implicit	conversions	
between	different	numeric	types,	hence	cases	of	
implicit	loss	of	data	due	to	truncation	cannot	occur	as	
they	can	in	languages	that	allow	type	coercion	between	
types	of	different	sizes. ... [11]

©	ISO/IEC	2013	–	All	rights	reserved	 15	
	

	 	 unsigned int i;
 unsigned char c;
 …
 if (i <= UCHAR_MAX) { // check against the maximum value
 // for an object of type unsigned char
 c = (unsigned char) i;
 }
 else {
 // handle error condition
 }

• Close	attention	should	be	given	to	all	warning	messages	issued	by	the	compiler	regarding	multiple	
casts.	Making	a	cast	in	C	explicit	will	both	remove	the	warning	and	acknowledge	that	the	change	in	
precision	is	on	purpose.	

	

6.7	String	Termination	[CJM]	

6.7.1	Applicability	to	language	

A	string	in	C	is	composed	of	a	contiguous	sequence	of	characters	terminated	by	and	including	a	null	character	(a	
byte	with	all	bits	set	to	0).		Therefore	strings	in	C	cannot	contain	the	null	character	except	as	the	terminating	
character.		Inserting	a	null	character	in	a	string	either	through	a	bug	or	through	malicious	action	can	truncate	a	
string	unexpectedly.		Alternatively,	not	putting	a	null	character	terminator	in	a	string	can	cause	actions	such	as	
string	copies	to	continue	well	beyond	the	end	of	the	expected	string.		Overflowing	a	string	buffer	through	the	
intentional	lack	of	a	null	terminating	character	can	be	used	to	expose	information	or	to	execute	malicious	code.	

6.7.2	Guidance	to	language	users	

Use	the	safer	and	more	secure	functions	for	string	handling		that	are	defined	in	normative	Annex	K	from	ISO/IEC	
9899:2011	[4]	or	the	ISO	TR24731-2	—	Part	II:	Dynamic	allocation	functions.		Both	of	these	define	alternative	
string	handling	library	functions	to	the	current	Standard	C	Library.		The	functions	verify	that	receiving	buffers	are	
large	enough	for	the	resulting	strings	being	placed	in	them	and	ensure	that	resulting	strings	are	null	terminated.			
One	implementation	of	these	functions	has	been	released	as	the	Safe	C	Library.	

6.8	Buffer	Boundary	Violation	(Buffer	Overflow)	[HCB]		

6.8.1	Applicability	to	language	

A	buffer	boundary	violation	condition	occurs	when	an	array	is	indexed	outside	its	bounds,	or	pointer	arithmetic	
results	in	an	access	to	storage	that	occurs	outside	the	bounds	of	the	object	accessed.	

In	C,	the	subscript	operator	[]	is	defined	such	that	E1[E2]	is	identical	to	(*((E1)+(E2))),	so	that	in	either	
representation,	the	value	in	location	(E1+E2)	is	returned.		C	does	not	perform	bounds	checking	on	arrays,	so	
the	following	code:	

				 int foo(const int i) {
 int x[] = {0,0,0,0,0,0,0,0,0,0};
 return x[i];

Stephen Michell� 2015-6-5 11:34 PM
Formatted: Normal, Indent: Left: 1.27
cm, No bullets or numbering
Stephen Michell� 2015-6-5 11:34 PM
Formatted: Font:(Default) Courier New
Stephen Michell� 2015-6-5 11:34 PM
Formatted: Font:(Default) Courier New,
ItalicStephen Michell� 2015-6-5 11:34 PM
Formatted: Font:(Default) Courier New,
ItalicStephen Michell� 2015-6-5 11:34 PM
Formatted: Font:(Default) Courier New

Stephen Michell� 2015-6-5 11:34 PM
Deleted: Use	Ada's	capabilities	for	user-defined	
scalar	types	and	subtypes	to	avoid	accidental	mixing	
of	logically	incompatible	value	sets. ... [12]

Stephen Michell� 2015-6-5 11:34 PM
Formatted: Normal, Space Before: 0 pt,
After: 0 pt, No bullets or numbering

Stephen Michell� 2015-6-5 11:35 PM
Deleted: With	the	exception	of	unsafe	
programming	(see	4	Concepts),	this	vulnerability	is	
not	applicable	to	Ada	as	strings	in	Ada	are	not	
delimited	by	a	termination	character.	Ada	programs	
that	interface	to	languages	that	use	null-terminated	
strings	and	manipulate	such	strings	directly	should	
apply	the	vulnerability	mitigations	recommended	
for	that	language.

16	 ©	ISO/IEC	2013	–	All	rights	reserved	
	

 }

will	return	whatever	is	in	location	x[i]	even	if,	i were	equal	to	-10	or	10	(assuming	either	subscript was	still	
within	the	address	space	of	the	program).		This	could	be	sensitive	information	or	even	a	return	address,	which	if	
altered	by	changing	the	value	of	x[-10]or x[10],	could	change	the	program	flow.	

The	following	code	is	more	appropriate	and	would	not	violate	the	boundaries	of	the	array	x:	

int foo(const int i) {
int x[X_SIZE] = {0};
if (i < 0 || i >= X_SIZE) {
 return ERROR_CODE;
}
else {

return x[i];
}

}

A	buffer	boundary	violation	may	also	occur	when	copying,	initializing,	writing	or	reading	a	buffer	if	attention	to	
the	index	or	addresses	used	are	not	taken.		For	example,	in	the	following	move	operation	there	is	a	buffer	
boundary	violation:	

char buffer_src[]={“abcdefg”};
char buffer_dest[5]={0};
strcpy(buffer_dest, buffer_src);

the	buffer_src	is	longer	than	the	buffer_dest,	and	the	code	does	not	check	for	this	before	the	actual	copy	
operation	is	invoked.		A	safer	way	to	accomplish	this	copy	would	be:	

	 char buffer_src[]={“abcdefg”];
 char buffer_dest[5]={0};
 strncpy(buffer_dest, buffer_src, sizeof(buffer_dest) -1);

this	would	not	cause	a	buffer	bounds	violation,	however,	because	the	destination	buffer	is	
smaller	than	the	source	buffer,	the	destination	buffer	will	now	hold	“abcd”,	the	5th	element	
of	the	array	would	hold	the	null	character.	

6.8.2	Guidance	to	language	users		

• Validate	all	input	values.	
• Check	any	array	index	before	use	if	there	is	a	possibility	the	value	could	be	outside	the	bounds	of	the	

array.		
• Use	length	restrictive	functions	such	as	strncpy()instead	of	strcpy().	
• Use	stack	guarding	add-ons	to	detect	overflows	of	stack	buffers.	
• Do	not	use	the	deprecated	functions	or	other	language	features	such	as	gets().	
• Be	aware	that	the	use	of	all	of	these	measures	may	still	not	be	able	to	stop	all	buffer	overflows	from	

happening.		However,	the	use	of	them	can	make	it	much	rarer	for	a	buffer	overflow	to	occur	and	much	
harder	to	exploit	it.	

• Use	the	safer	and	more	secure	functions	for	string	handling	from	the	normative	annex	K	of	C11	[4],	
Bounds-checking	interfaces.		The	functions	verify	that	output	buffers	are	large	enough	for	the	
intended	result	and	return	a	failure	indicator	if	they	are	not.	Optionally,	failing	functions	call	a	

Stephen Michell� 2015-6-6 12:01 AM
Formatted: Font:Not Bold

©	ISO/IEC	2013	–	All	rights	reserved	 17	
	

runtime-constraint	handler	to	report	the	error.	Data	is	never	written	past	the	end	of	an	array.	All	
string	results	are	null	terminated.	In	addition,	these	functions	are	re-entrant:	they	never	return	
pointers	to	static	objects	owned	by	the	function.		Annex	K	also	contains	functions	that	address	
insecurities	with	the	C	input-output	facilities.	

	

6.9	Unchecked	Array	Indexing	[XYZ]	

6.9.1	Applicability	to	language	

C	does	not	perform	bounds	checking	on	arrays,	so	though	arrays	may	be	accessed	outside	of	their	bounds,	the	
value	returned	is	undefined	and	in	some	cases	may	result	in	a	program	termination.		For	example,	in	C	the	
following	code	is	valid,	though,	for	example,	if	i	has	the	value	10,	the	result	is	undefined:	

	 int foo(const int i) {
int t;
int x[] = {0,0,0,0,0};
t = x[i];
return t;

 }

The	variable	t	will	likely	be	assigned	whatever	is	in	the	location	pointed	to	by	x[10]
(assuming	that	x[10]	is	still	within	the	address	space	of	the	program).	
	
6.9.2	Guidance	to	language	users		

• Perform	range	checking	before	accessing	an	array	since	C	does	not	perform	bounds	checking	
automatically.		In	the	interest	of	speed	and	efficiency,	range	checking	only	needs	to	be	done	when	it	
cannot	be	statically	shown	that	an	access	outside	of	the	array	cannot	occur.	

• Use	the	safer	and	more	secure	functions	for	string	handling	from	the	normative	annex	K	of	C11	[4],	
Bounds-checking	interfaces.		These	are	alternative	string	handling	library	functions.		The	functions	verify	
that	receiving	buffers	are	large	enough	for	the	resulting	strings	being	placed	in	them	and	ensure	that	
resulting	strings	are	null	terminated.	

	

6.10	Unchecked	Array	Copying	[XYW]	
		
6.10.1	Applicability	to	language	

A	buffer	overflow	occurs	when	some	number	of	bytes	(or	other	units	of	storage)	is	copied	from	one	buffer	to	
another	and	the	amount	being	copied	is	greater	than	is	allocated	for	the	destination	buffer.	

In	the	interest	of	ease	and	efficiency,	C	library	functions	such	as	memcpy(void * restrict s1,

const void * restrict s2, size_t n)	and	memmove(void *s1, const void *s2,
size_t n)	are	used	to	copy	the	contents	from	one	area	to	another.		memcpy()	and	memmove()	simply	copy	
memory	and	no	checks	are	made	as	to	whether	the	destination	area	is	large	enough	to	accommodate	the	n	units	
of	data	being	copied.		It	is	assumed	that	the	calling	routine	has	ensured	that	adequate	space	has	been	provided	in	

Stephen Michell� 2015-6-6 12:02 AM
Deleted: ... [13]

Stephen Michell� 2015-6-6 12:02 AM
Formatted: Portuguese (Brazil)

Stephen Michell� 2015-6-6 12:03 AM
Formatted: Font:Not Bold

Stephen Michell� 2015-6-6 12:03 AM
Deleted: All	array	indexing	is	checked	
automatically	in	Ada,	and	raises	an	exception	when	
indexes	are	out	of	bounds.	This	is	checked	in	all	
cases	of	indexing,	including	when	arrays	are	passed	
to	subprograms. ... [14]

Stephen Michell� 2015-6-6 12:04 AM
Deleted: ... [15]

18	 ©	ISO/IEC	2013	–	All	rights	reserved	
	

the	destination.		Problems	can	arise	when	the	destination	buffer	is	too	small	to	receive	the	amount	of	data	being	
copied	or	if	the	indices	being	used	for	either	the	source	or	destination	are	not	the	intended	indices..		

6.10.2	Guidance	to	language	users		

• Perform	range	checking	before	calling	a	memory	copying	function	such	as	memcpy()	and	memmove().		
These	functions	do	not	perform	bounds	checking	automatically.		In	the	interest	of	speed	and	efficiency,	
range	checking	only	needs	to	be	done	when	it	cannot	be	statically	shown	that	an	access	outside	of	the	
array	cannot	occur.	

• Use	the	safer	and	more	secure	functions	for	string	handling	from	the	normative	annex	K	of	C11	[4],	
Bounds-checking	interfaces.	

	

6.11	Pointer	Type	Conversions	[HFC]	

6.11.1	Applicability	to	language		

C	allows	casting	the	value	of	a	pointer	to	and	from	another	data	type.		These	conversions	can	cause	unexpected	
changes	to	pointer	values.	

Pointers	in	C	refer	to	a	specific	type,	such	as	integer.		If	sizeof(int)	is	4	bytes,	and	ptr	is	a	pointer	to	integers	that	
contains	the	value	0x5000,	then	ptr++	would	make	ptr	equal	to	0x5004.		However,	if	ptr	were	a	pointer	to	char,	
then	ptr++	would	make	ptr	equal	to	0x5001.		It	is	the	difference	due	to	data	sizes	coupled	with	conversions	
between	pointer	data	types	that	cause	unexpected	results	and	potential	vulnerabilities.		Due	to	arithmetic	
operations,	pointers	may	not	maintain	correct	memory	alignment	or	may	operate	upon	the	wrong	memory	
addresses.	

6.11.2	Guidance	to	language	users	

• Follow	the	advice	provided	by	6.12.5.	
• Maintain	the	same	type	to	avoid	errors	introduced	through	conversions.	
• Heed	compiler	warnings	that	are	issued	for	pointer	conversion	instances.		The	decision	may	be	made	to	

avoid	all	conversions	so	any	warnings	must	be	addressed.		Note	that	casting	into	and	out	of	“void	*”	
pointers	will	most	likely	not	generate	a	compiler	warning	as	this	is	valid	in	C.	

6.12	Pointer	Arithmetic	[RVG]	

6.12.1	Applicability	to	language		

When	performing	pointer	arithmetic	in	C,	the	size	of	the	value	to	add	to	a	pointer	is	automatically	scaled	to	the	
size	of	the	type	of	the	pointed-to	object.		For	instance,	when	adding	a	value	to	the	byte	address	of	a	4-byte	
integer,	the	value	is	scaled	by	a	factor	4	and	then	added	to	the	pointer.	The	effect	of	this	scaling	is	that	if	a	pointer	
P	points	to	the	i-th	element	of	an	array	object,	then	(P) + N	will	point	to	the	i+n-th	element	of	the	array.		
Failing	to	understand	how	pointer	arithmetic	works	can	lead	to	miscalculations	that	result	in	serious	errors,	such	
as	buffer	overflows.	

In	C,	arrays	have	a	strong	relationship	to	pointers.		The	following	example	will	illustrate	arithmetic	in	C	involving	a	
pointer	and	how	the	operation	is	done	relative	to	the	size	of	the	pointer's	target.		Consider	the	following	code	
snippet:	

Stephen Michell� 2015-6-6 12:04 AM
Deleted: With	the	exception	of	unsafe	programming	
(see	4	Concepts),	this	vulnerability	is	not	applicable	to	
Ada	as	Ada	allows	arrays	to	be	copied	by	simple	
assignment	(":=").	The	rules	of	the	language	ensure	
that	no	overflow	can	happen;	instead,	the	exception	
Constraint_Error	is	raised	if	the	target	of	the	
assignment	is	not	able	to	contain	the	value	assigned	to	
it.	Since	array	copy	is	provided	by	the	language,	Ada	
does	not	provide	unsafe	functions	to	copy	structures	by	
address	and	length

Stephen Michell� 2015-6-6 12:06 AM
Formatted: English (UK)
Stephen Michell� 2015-6-6 12:06 AM
Formatted: List Paragraph, Bulleted + Level:
1 + Aligned at: 0.63 cm + Indent at: 1.27
cm, Tabs: 1.27 cm, Left
Stephen Michell� 2015-6-6 12:06 AM
Formatted: English (US)

Stephen Michell� 2015-6-6 12:08 AM
Formatted: Normal, Space After: 0 pt,
Widow/Orphan control, Hyphenate
Stephen Michell� 2015-6-6 12:08 AM
Formatted: Font:(Default) +Theme Body
Stephen Michell� 2015-6-6 12:08 AM
Formatted: Font:(Default) +Theme Body
Stephen Michell� 2015-6-6 12:08 AM
Formatted: Font:(Default) +Theme Body
Stephen Michell� 2015-6-6 12:08 AM
Formatted: Font:(Default) +Theme Body
Stephen Michell� 2015-6-6 12:08 AM
Formatted: Font:(Default) +Theme Body
Stephen Michell� 2015-6-6 12:08 AM
Formatted: Font:(Default) +Theme Body
Stephen Michell� 2015-6-6 12:08 AM
Formatted: Font:(Default) +Theme Body
Stephen Michell� 2015-6-6 12:07 AM
Deleted: The	mechanisms	available	in	Ada	to	alter	
the	type	of	a	pointer	value	are	unchecked	type-
conversions	and	type-conversions	involving	pointer	
types	derived	from	a	common	root	type.	In	addition,	
uses	of	the	unchecked	address	taking	capabilities	can	
create	pointer	types	that	misrepresent	the	true	type	of	
the	designated	entity	(see	Section	13.10	of	the	Ada	
Language	Reference	Manual). ... [16]

Stephen Michell� 2015-6-6 12:08 AM
Formatted: Space After: 12 pt,
Widow/Orphan control, Hyphenate
Stephen Michell� 2015-6-6 12:08 AM
Formatted: Font:Not Italic, No underline,
Font color: Auto
Stephen Michell� 2015-6-6 12:08 AM
Formatted
Stephen Michell� 2015-6-6 12:08 AM
Formatted
Stephen Michell� 2015-6-6 12:08 AM

Deleted: <#>This	vulnerability	can	be	avoided	in	
Ada	by	not	using	the	features	explicitly	identified	as	
unsafe.	 ... [17]

©	ISO/IEC	2013	–	All	rights	reserved	 19	
	

	 int buf[5];
 int *buf_ptr = buf;	

where	the	address	of	buf	is	0x1234,	after	the	assignment	buf_ptr	points	to	buf[0].	Adding	1	to	buf_ptr	
will	result	in	buf_ptr	being	equal	to	0x1238	on	a	host	where	an	int	is	4	bytes; buf_ptr	will	then	point	to	
buf[1].		Not	realizing	that	address	operations	will	be	in	terms	of	the	size	of	the	object	being	pointed	to	can	lead	
to	address	miscalculations	and	undefined	behaviour.	

6.12.2	Guidance	to	language	users	

• Consider	an	outright	ban	on	pointer	arithmetic	due	to	the	error-prone	nature	of	pointer	arithmetic.	
• Verify	that	all	pointers	are	assigned	a	valid	memory	address	for	use.	

6.13	Null	Pointer	Dereference	[XYH]	

6.13.1	Applicability	to	language		

C	allows	memory	to	be	dynamically	allocated	primarily	through	the	use	of	malloc(),	calloc(),	and	
realloc().		Each	will	return	the	address	to	the	allocated	memory.		Due	to	a	variety	of	situations,	the	memory	
allocation	may	not	occur	as	expected	and	a	null	pointer	will	be	returned.		Other	operations	or	faults	in	logic	can	
result	in	a	memory	pointer	being	set	to	null.		Using	the	null	pointer	as	though	it	pointed	to	a	valid	memory	
location	can	cause	a	segmentation	fault	and	other	unanticipated	situations.	

Space	for	10000	integers	can	be	dynamically	allocated	in	C	in	the	following	way:	

int *ptr = malloc(10000*sizeof(int)); // allocate space for 10000 ints

malloc()	will	return	the	address	of	the	memory	allocation	or	a	null	pointer	if	insufficient	memory	is	available	
for	the	allocation.		It	is	good	practice	after	the	attempted	allocation	to	check	whether	the	memory	has	been	
allocated	via	an	if	test	against	NULL:	

if (ptr != NULL) // check to see that the memory could be allocated

Memory	allocations	usually	succeed,	so	neglecting	this	test	and	using	the	memory	will	usually	work.		That	is	why	
neglecting	the	null	test	will	frequently	go	unnoticed.		An	attacker	can	intentionally	create	a	situation	where	the	
memory	allocation	will	fail	leading	to	a	segmentation	fault.		

Faults	in	logic	can	cause	a	code	path	that	will	use	a	memory	pointer	that	was	not	dynamically	allocated	or	after	
memory	has	been	deallocated	and	the	pointer	was	set	to	null	as	good	practice	would	indicate.	

6.13.2	Guidance	to	language	users	

• Check	whether	a	pointer	is	null	before	dereferencing	it.		As	this	can	be	overly	extreme	in	many	cases	
(such	as	in	a	for	loop	that	performs	operations	on	each	element	of	a	large	segment	of	memory),	
judicious	checking	of	the	value	of	the	pointer	at	key	strategic	points	in	the	code	is	recommended.	

Stephen Michell� 2015-6-6 12:10 AM
Deleted: With	the	exception	of	unsafe	
programming	(see	4	Concepts),	this	
vulnerability	is	not	applicable	to	Ada	as	Ada	
does	not	allow	pointer	arithmetic.	

Stephen Michell� 2015-6-6 12:11 AM
Formatted: List Paragraph, Bulleted +
Level: 1 + Aligned at: 0.63 cm + Indent at:
 1.27 cm, Tabs: 1.27 cm, Left

20	 ©	ISO/IEC	2013	–	All	rights	reserved	
	

6.14	Dangling	Reference	to	Heap	[XYK]	

6.14.1	Applicability	to	language	

C	allows	memory	to	be	dynamically	allocated	primarily	through	the	use	of	malloc(),	calloc(),	and	
realloc().		C	allows	a	considerable	amount	of	freedom	in	accessing	the	dynamic	memory.		Pointers	to	the	
dynamic	memory	can	be	created	to	perform	operations	on	the	memory.		Once	the	memory	is	no	longer	needed,	
it	can	be	released	through	the	use	of	free().		However,	freeing	the	memory	does	not	prevent	the	use	of	the	
pointers	to	the	memory	and	issues	can	arise	if	operations	are	performed	after	memory	has	been	freed.	

Consider	the	following	segment	of	code:	

			int foo() {
	 int *ptr = malloc (100*sizeof(int));/* allocate space for 100 integers*/
 if (ptr != NULL) { /* check to see that the memory could be allocated */
 /* perform some operations on the dynamic memory */
 free (ptr); /* memory is no longer needed, so free it */
 /* program continues performing other operations */
 ptr[0] = 10; /* ERROR – memory being used after released */
 …
 }
 …
 }

The	use	of	memory	in	C	after	it	has	been	freed	is	undefined.		Depending	on	the	execution	path	taken	in	the	
program,	freed	memory	may	still	be	free	or	may	have	been	allocated	via	another	malloc()	or	other	dynamic	
memory	allocation.		If	the	memory	that	is	used	is	still	free,	use	of	the	memory	may	be	unnoticed.		However,	if	the	
memory	has	been	reallocated,	altering	of	the	data	contained	in	the	memory	can	result	in	data	corruption.		
Determining	that	a	dangling	memory	reference	is	the	cause	of	a	problem	and	locating	it	can	be	difficult.	

Setting	and	using	another	pointer	to	the	same	section	of	dynamically	allocated	memory	can	also	lead	to	
undefined	behaviour.		Consider	the	following	section	of	code:	

 int foo() {
 int *ptr = malloc (100*sizeof(int));/* allocate space for 100 integers */
 if (ptr != NULL) { /* check to see that the memory
 could be allocated */

int ptr2 = &ptr[10]; /* set ptr2 to point to the 10th
 element of the allocated memory */

… /* perform some operations on the
dynamic memory */

 free (ptr); /* memory is no longer needed */
 ptr = NULL; /* set ptr to NULL to prevent ptr
 from being used again */
 … /* program continues performing
 other operations */
 ptr2[0] = 10; /* ERROR – memory is being used
 after it has been released via ptr2 */
 …
 }

Stephen Michell� 2015-6-6 12:12 AM
Deleted: ... [18]

©	ISO/IEC	2013	–	All	rights	reserved	 21	
	

 return (0);
}

Dynamic	memory	was	allocated	via	a	malloc()	and	then	later	in	the	code,	ptr2	was	used	to	point	to	an	
address	in	the	dynamically	allocated	memory.		After	the	memory	was	freed	using	free(ptr)	and	the	good	
practice	of	setting	ptr	to	NULL	was	followed	to	avoid	a	dangling	reference	by	ptr	later	in	the	code,	a	dangling	
reference	still	existed	using	ptr2.	

6.14.2	Guidance	to	language	users	

• Follow	the	advice	provided	by	6.15.2.	
• Set	a	freed	pointer	to	null	immediately	after	a	free()	call,	as	illustrated	in	the	following	code:	

free (ptr);
ptr = NULL;

• Do	not	create	and	use	additional	pointers	to	dynamically	allocated	memory.	
• Only	reference	dynamically	allocated	memory	using	the	pointer	that	was	used	to	allocate	the	memory.	

	

6.15	Arithmetic	Wrap-around	Error	[FIF]	

6.15.1	Applicability	to	language	

Given	the	limited	size	of	any	computer	data	type,	continuously	adding	one	to	the	data	type	eventually	will	cause	
the	value	to	go	from	a	the	maximum	possible	value	to	a	small	value.		C	permits	this	to	happen	without	any	
detection	or	notification	mechanism.	

C	is	often	used	for	bit	manipulation.		Part	of	this	is	due	to	the	capabilities	in	C	to	mask	bits	and	shift	them.		
Another	part	is	due	to	the	relative	closeness	C	has	to	assembly	instructions.		Manipulating	bits	on	a	signed	value	
can	inadvertently	change	the	sign	bit	resulting	in	a	number	potentially	going	from	a	large	positive	value	to	a	large	
negative	value.	

For	example,	consider	the	following	code	for	a	short int	containing	16	bits:	

				 int foo(short int i) {
 i++;
 return i;
 }

Calling	foo	with	the	value	of	32767	would	cause	undefined	behaviour,	such	as	wrapping	to	-32768.		Manipulating	
a	value	in	this	way	can	result	in	unexpected	results	such	as	overflowing	a	buffer.		

In	C,	bit	shifting	by	a	value	that	is	greater	than	the	size	of	the	data	type	or	by	a	negative	number	is	undefined.		The	
following	code,	where	a	int	is	16	bits,	would	be	undefined	when	j	is	greater	than	or	equal	to	16	or	negative:	

				 int foo(int i, const int j) {
 return i>>j;
 }

6.15.2	Guidance	to	language	users	

• Be	aware	that	any	of	the	following	operators	have	the	potential	to	wrap	in	C:

Stephen Michell� 2015-6-6 12:13 AM
Deleted: Use	of	Unchecked_Deallocation	can	
cause	dangling	references	to	the	heap.	The	
vulnerabilities	described	in	6.15	exist	in	Ada,	when	
this	feature	is	used,	since	Unchecked_Deallocation	
may	be	applied	even	though	there	are	outstanding	
references	to	the	deallocated	object. ... [19]

Stephen Michell� 2015-6-6 12:14 AM
Formatted: Indent: Left: 1.27 cm, No
bullets or numbering
Stephen Michell� 2015-6-6 12:14 AM

Deleted: <#>Use	local	access	types	where	
possible. ... [20]

Stephen Michell� 2015-6-6 12:16 AM
Deleted: With	the	exception	of	unsafe	
programming	(see	4	Concepts),	this	vulnerability	is	
not	applicable	to	Ada	as	wrap-around	arithmetic	in	
Ada	is	limited	to	modular	types.	Arithmetic	
operations	on	such	types	use	modulo	arithmetic,	
and	thus	no	such	operation	can	create	an	invalid	
value	of	the	type. ... [21]

Stephen Michell� 2015-6-6 12:15 AM
Formatted: Heading 3
Stephen Michell� 2015-6-6 12:16 AM
Formatted: List Paragraph, Space
Before: 6 pt, After: 6 pt, Bulleted + Level:
1 + Aligned at: 0.63 cm + Indent at: 1.27
cm, No widow/orphan control, Don't
hyphenate, Don't allow hanging

22	 ©	ISO/IEC	2013	–	All	rights	reserved	
	

a + b a – b a * b a++ a-- a += b
a -= b a *= b a << b a >> b -a

• Use	defensive	programming	techniques	to	check	whether	an	operation	will	overflow	or	underflow	the	
receiving	data	type.		These	techniques	can	be	omitted	if	it	can	be	shown	at	compile	time	that	overflow	or	
underflow	is	not	possible.	

• Only	conduct	bit	manipulations	on	unsigned	data	types.		The	number	of	bits	to	be	shifted	by	a	shift	
operator	should	lie	between	1	and	(n-1),	where	n	is	the	size	of	the	data	type.	

	

6.16	Using	Shift	Operations	for	Multiplication	and	Division	[PIK]	

6.16.1	Applicability	to	language	

The	issues	for	C	are	well	defined	in	the	main	body	of	this	document	in	Error!	Reference	source	not	found..		Also	
ee,	Error!	Reference	source	not	found...	

6.16.2	Guidance	to	language	users	

The	guidance	for	C	users	is	well	defined	in	the	main	body	of	this	document	in	Error!	Reference	source	not	found..		
Also	see,	Error!	Reference	source	not	found..	

6.17	Choice	of	Clear	Names	[NAI]	6.17	Choice	of	Clear	Names	[NAI]	

6.17.1	Applicability	to	language	

C	is	somewhat	susceptible	to	errors	resulting	from	the	use	of	similarly	appearing	names.		C	does	require	the	
declaration	of	variables	before	they	are	used.		However,	C	allows	scoping	so	that	a	variable	that	is	not	declared	
locally	may	be	resolved	to	some	outer	block	and	a	human	reviewer	may	not	notice	that	resolution.				Variable	
name	length	is	implementation	specific	and	so	one	implementation	may	resolve	names	to	one	length	whereas	
another	implementation	may	resolve	names	to	another	length	resulting	in	unintended	behaviour.	

As	with	the	general	case,	calls	to	the	wrong	subprogram	or	references	to	the	wrong	data	element	(when	missed	
by	human	review)	can	result	in	unintended	behavior.	

	
6.17.2	Guidance	to	language	users		

• Use	names	that	are	clear	and	non-confusing.	
• Use	consistency	in	choosing	names.	
• Keep	names	short	and	concise	in	order	to	make	the	code	easier	to	understand.	
• Choose	names	that	are	rich	in	meaning.	
• Keep	in	mind	that	code	will	be	reused	and	combined	in	ways	that	the	original	developers	never	imagined.	
• Make	names	distinguishable	within	the	first	few	characters	due	to	scoping	in	C.		This	will	also	assist	in	

averting	problems	with	compilers	resolving	to	a	shorter	name	than	was	intended.	
• Do	not	differentiate	names	through	only	a	mixture	of	case	or	the	presence/absence	of	an	underscore	

character.	
• Avoid	differentiating	through	characters	that	are	commonly	confused	visually	such	as	‘O’	and	‘0’,	‘I’	(lower	

case	‘L’),	‘l’	(capital	‘I’)	and	‘1’,	‘S’	and	‘5’,	‘Z’	and	‘2’,	and	‘n’	and	‘h’.	
• Coding	guidelines	should	be	developed	to	define	a	common	coding	style	and	to	avoid	the	above	

dangerous	practices.	

Stephen Michell� 2015-6-6 12:19 AM
Deleted: With	the	exception	of	unsafe	programming	
(see	4	Concepts),	this	vulnerability	is	not	applicable	to	
Ada	as	shift	operations	in	Ada	are	limited	to	the	
modular	types	declared	in	the	standard	package	
Interfaces,	which	are	not	signed	entities

Stephen Michell� 2015-6-6 12:20 AM
Formatted: Normal, Space After: 0 pt,
Widow/Orphan control, Hyphenate

Stephen Michell� 2015-6-6 12:20 AM
Deleted: There	are	two	possible	issues:	the	use	of	the	
identical	name	for	different	purposes	(overloading)	and	
the	use	of	similar	names	for	different	purposes. ... [22]

©	ISO/IEC	2013	–	All	rights	reserved	 23	
	

6.18	Dead	store	[WXQ]	

6.18.1	Applicability	to	language	

This	vulnerability	exists	in	Ada	as	described	in	section	6.20,	with	the	exception	that	in	Ada	if	a	variable	is	read	by	a	
different	thread	(task)	than	the	thread	that	wrote	a	value	to	the	variable	it	is	not	a	dead	store.	Simply	marking	a	
variable	as	being	Volatile	is	usually	considered	to	be	too	error-prone	for	inter-thread	(task)	communication	by	the	
Ada	community,	and	Ada	has	numerous	facilities	for	safer	inter	thread	communication.	

Ada	compilers	do	exist	that	detect	and	generate	compiler	warnings	for	dead	stores.	

The	error	in	6.20.3	that	the	planned	reader	misspells	the	name	of	the	store	is	possible	but	highly	unlikely	in	Ada	
since	all	objects	must	be	declared	and	typed	and	the	existence	of	two	objects	with	almost	identical	names	and	
compatible	types	(for	assignment)	in	the	same	scope	would	be	readily	detectable.	

6.18.2	Guidance	to	Language	Users	

• Use	Ada	compilers	that	detect	and	generate	compiler	warnings	for	unused	variables	or	use	static	analysis	
tools	to	detect	such	problems.	

6.19	Unused	Variable	[YZS]	

6.19.1	Applicability	to	language	

This	vulnerability	exists	in	Ada	as	described	in	section	6.21,	although	Ada	compilers	do	exist	that	detect	and	
generate	compiler	warnings	for	unused	variables.	

6.19.2	Guidance	to	language	users	

• Do	not	declare	variables	of	the	same	type	with	similar	names.	Use	distinctive	identifiers	and	the	strong	
typing	of	Ada	(for	example	through	declaring	specific	types	such	as	Pig_Counter is range 0 .. 1000;	rather	
than	just	Pig: Integer;)	to	reduce	the	number	of	variables	of	the	same	type.	

• Use	Ada	compilers	that	detect	and	generate	compiler	warnings	for	unused	variables.	
• Use	static	analysis	tools	to	detect	dead	stores.		

6.20	Identifier	Name	Reuse	[YOW]	

6.20.1	Applicability	to	language	
Ada	is	a	language	that	permits	local	scope,	and	names	within	nested	scopes	can	hide	identical	names	declared	in	
an	outer	scope.		As	such	it	is	susceptible	to	the	vulnerability.		For	subprograms	and	other	overloaded	entities	the	
problem	is	reduced	by	the	fact	that	hiding	also	takes	the	signatures	of	the	entities	into	account.		Entities	with	
different	signatures,	therefore,	do	not	hide	each	other.	

Name	collisions	with	keywords	cannot	happen	in	Ada	because	keywords	are	reserved.	

The	mechanism	of	failure	identified	in	section	6.22.3	regarding	the	declaration	of	non-unique	identifiers	in	the	
same	scope	cannot	occur	in	Ada	because	all	characters	in	an	identifier	are	significant.	

6.20.2	Guidance	to	language	users	

• Use	expanded	names	whenever	confusion	may	arise.		

Stephen Michell� 2015-6-6 12:21 AM
Deleted: This	vulnerability	can	be	avoided	or	
mitigated	in	Ada	in	the	following	ways:	 ... [23]

24	 ©	ISO/IEC	2013	–	All	rights	reserved	
	

• Use	Ada	compilers	that	generate	compile	time	warnings	for	declarations	in	inner	scopes	that	hide	
declarations	in	outer	scopes.	

• Use	static	analysis	tools	that	detect	the	same	problem.	

6.21	Namespace	Issues	[BJL]	

This	vulnerability	is	not	applicable	to	Ada	because	Ada	does	not	attempt	to	disambiguate	conflicting	names	
imported	from	different	packages.	Instead,	use	of	a	name	with	conflicting	imported	declarations	causes	a	compile	
time	error.	The	programmer	can	disambiguate	the	name	usage	by	using	a	fully	qualified	name	that	identifies	the	
exporting	package.	

6.22	Initialization	of	Variables	[LAV]	

6.22.1	Applicability	to	language	

As	in	many	languages,	it	is	possible	in	Ada	to	make	the	mistake	of	using	the	value	of	an	uninitialized	variable.	
However,	as	described	below,	Ada	prevents	some	of	the	most	harmful	possible	effects	of	using	the	value.	

The	vulnerability	does	not	exist	for	pointer	variables	(or	constants).	Pointer	variables	are	initialized	to	null	by	
default,	and	every	dereference	of	a	pointer	is	checked	for	a	null	value.		

The	checks	mandated	by	the	type	system	apply	to	the	use	of	uninitialized	variables	as	well.	Use	of	an	out-of-
bounds	value	in	relevant	contexts	causes	an	exception,	regardless	of	the	origin	of	the	faulty	value.	(See	Error!	
Reference	source	not	found.	regarding	exception	handling.)	Thus,	the	only	remaining	vulnerability	is	the	potential	
use	of	a	faulty	but	subtype-conformant	value	of	an	uninitialized	variable,	since	it	is	technically	indistinguishable	
from	a	value	legitimately	computed	by	the	application.		

For	record	types,	default	initializations	may	be	specified	as	part	of	the	type	definition.	

For	controlled	types	(those	descended	from	the	language-defined	type	Controlled	or	Limited_Controlled),	the	
user	may	also	specify	an	Initialize	procedure	which	is	invoked	on	all	default-initialized	objects	of	the	type.	

The	pragma	Normalize_Scalars	can	be	used	to	ensure	that	scalar	variables	are	always	initialized	by	the	compiler	in	
a	repeatable	fashion.	This	pragma	is	designed	to	initialize	variables	to	an	out-of-range	value	if	there	is	one,	to	
avoid	hiding	errors.	

Lastly,	the	user	can	query	the	validity	of	a	given	value.	The	expression	X’Valid	yields	true	if	the	value	of	the	scalar	
variable	X	conforms	to	the	subtype	of	X	and	false	otherwise.	Thus,	the	user	can	protect	against	the	use	of	out-of-
bounds	uninitialized	or	otherwise	corrupted	scalar	values.	

6.22.2	Guidance	to	language	users	

This	vulnerability	can	be	avoided	or	mitigated	in	Ada	in	the	following	ways:	

• If	the	compiler	has	a	mode	that	detects	use	before	initialization,	then	this	mode	should	be	enabled	and	
any	such	warnings	should	be	treated	as	errors.	

• Where	appropriate,	explicit	initializations	or	default	initializations	can	be	specified.	
• The	pragma	Normalize_Scalars	can	be	used	to	cause	out-of-range	default	initializations	for	scalar	

variables.	
• The	‘Valid	attribute	can	be	used	to	identify	out-of-range	values	caused	by	the	use	of	uninitialized	

variables,	without	incurring	the	raising	of	an	exception.	

Stephen Michell� 2017-2-20 9:16 AM
Deleted: 6.36	Ignored	Error	Status	and	Unhandled	
Exceptions	[OYB]

©	ISO/IEC	2013	–	All	rights	reserved	 25	
	

Common	advice	that	should	be	avoided	is	to	perform	a	“junk	initialization”	of	variables.	Initializing	a	variable	with	
an	inappropriate	default	value	such	as	zero	can	result	in	hiding	underlying	problems,	because	the	compiler	or	
other	static	analysis	tools	will	then	be	unable	to	detect	that	the	variable	has	been	used	prior	to	receiving	a	
correctly	computed	value.	

6.23	Operator	Precedence/Order	of	Evaluation	[JCW]	

6.23.1	Applicability	to	language	

Since	this	vulnerability	is	about	"incorrect	beliefs"	of	programmers,	there	is	no	way	to	establish	a	limit	to	how	far	
incorrect	beliefs	can	go.	However,	Ada	is	less	susceptible	to	that	vulnerability	than	many	other	languages,	since	

• Ada	only	has	six	levels	of	precedence	and	associativity	is	closer	to	common	expectations.	For	example,	an	
expression	like	A = B or C = D	will	be	parsed	as	expected,	as	(A = B) or (C = D).	

• Mixed	logical	operators	are	not	allowed	without	parentheses,	for	example,	"A or B or C"	is	valid,	as	well	
as	"A and B and C",	but	"A and B or C"	is	not	(must	write	"(A	and	B)	or	C"	or	"A	and	(B	or	C)".	

• Assignment	is	not	an	operator	in	Ada.	

6.23.2	Guidance	to	language	users	

The	general	mitigation	measures	can	be	applied	to	Ada	like	any	other	language.	

6.24	Side-effects	and	Order	of	Evaluation	[SAM]	

6.24.1	Applicability	to	language	

There	are	no	operators	in	Ada	with	direct	side	effects	on	their	operands	using	the	language-defined	operations,	
especially	not	the	increment	and	decrement	operation.	Ada	does	not	permit	multiple	assignments	in	a	single	
expression	or	statement.	

There	is	the	possibility	though	to	have	side	effects	through	function	calls	in	expressions	where	the	function	
modifies	globally	visible	variables.	Although	functions	only	have	"in"	parameters,	meaning	that	they	are	not	
allowed	to	modify	the	value	of	their	parameters,	they	may	modify	the	value	of	global	variables.	Operators	in	Ada	
are	functions,	so,	when	defined	by	the	user,	although	they	cannot	modify	their	own	operands,	they	may	modify	
global	state	and	therefore	have	side	effects.	

Ada	allows	the	implementation	to	choose	the	order	of	evaluation	of	expressions	with	operands	of	the	same	
precedence	level,	the	order	of	association	is	left-to-right.		The	operands	of	a	binary	operation	are	also	evaluated	
in	an	arbitrary	order,	as	happens	for	the	parameters	of	any	function	call.	In	the	case	of	user-defined	operators	
with	side	effects,	this	implementation	dependency	can	cause	unpredictability	of	the	side	effects.		

6.24.2	Guidance	to	language	users	

• Make	use	of	one	or	more	programming	guidelines	which	prohibit	functions	that	modify	global	state,	and	
can	be	enforced	by	static	analysis.	

• Keep	expressions	simple.	Complicated	code	is	prone	to	error	and	difficult	to	maintain.	
• Always	use	brackets	to	indicate	order	of	evaluation	of	operators	of	the	same	precedence	level.		

26	 ©	ISO/IEC	2013	–	All	rights	reserved	
	

6.25	Likely	Incorrect	Expression	[KOA]	

6.25.1	Applicability	to	language	

An	instance	of	this	vulnerability	consists	of	two	syntactically	similar	constructs	such	that	the	inadvertent	
substitution	of	one	for	the	other	may	result	in	a	program	which	is	accepted	by	the	compiler	but	does	not	reflect	
the	intent	of	the	author.	

The	examples	given	in	6.27	are	not	problems	in	Ada	because	of	Ada's	strong	typing	and	because	an	assignment	is	
not	an	expression	in	Ada.	

In	Ada,	a	type-conversion	and	a	qualified	expression	are	syntactically	similar,	differing	only	in	the	presence	or	
absence	of	a	single	character:	

 Type_Name (Expression) -- a type-conversion

vs.	

	Type_Name'(Expression) -- a qualified expression

Typically,	the	inadvertent	substitution	of	one	for	the	other	results	in	either	a	semantically	incorrect	program	
which	is	rejected	by	the	compiler	or	in	a	program	which	behaves	in	the	same	way	as	if	the	intended	construct	had	
been	written.	In	the	case	of	a	constrained	array	subtype,	the	two	constructs	differ	in	their	treatment	of	sliding	
(conversion	of	an	array	value	with	bounds	100	..	103	to	a	subtype	with	bounds	200	..	203	will	succeed;	
qualification	will	fail	a	run-time	check).	

Similarly,	a	timed	entry	call	and	a	conditional	entry	call	with	an	else-part	that	happens	to	begin	with	a	delay	
statement	differ	only	in	the	use	of	"else"	vs.	"or"	(or	even	"then abort"	in	the	case	of	a asynchronous_select	
statement).		

Probably	the	most	common	correctness	problem	resulting	from	the	use	of	one	kind	of	expression	where	a	
syntactically	similar	expression	should	have	been	used	has	to	do	with	the	use	of	short-circuit	vs.	non-short-circuit	
Boolean-valued	operations	(for	example,	"and then"	and	"or else"	vs.	"and"	and	"or"),	as	in	

if (Ptr /= null) and (Ptr.all.Count > 0) then ... end if;

-- should have used "and then" to avoid dereferencing null	

6.25.2	Guidance	to	language	users	

• Compilers	and	other	static	analysis	tools	can	detect	some	cases	(such	as	the	preceding	example).	
• Developers	may	also	choose	to	use	short-circuit	forms	by	default	(errors	resulting	from	the	incorrect	use	

of	short-circuit	forms	are	much	less	common),	but	this	makes	it	more	difficult	for	the	author	to	express	
the	distinction	between	the	cases	where	short-circuited	evaluation	is	known	to	be	needed	(either	for	
correctness	or	for	performance)	and	those	where	it	is	not.	

6.26	Dead	and	Deactivated	Code	[XYQ]	

6.26.1	Applicability	to	language	

Ada	allows	the	usual	sources	of	dead	code	(described	in	6.26)	that	are	common	to	most	conventional	
programming	languages.	

©	ISO/IEC	2013	–	All	rights	reserved	 27	
	

6.26.2	Guidance	to	language	users	

Implementation	specific	mechanisms	may	be	provided	to	support	the	elimination	of	dead	code.	In	some	cases,	
pragmas	such	as	Restrictions,	Suppress,	or	Discard_Names	may	be	used	to	inform	the	compiler	that	some	code	
whose	generation	would	normally	be	required	for	certain	constructs	would	be	dead	because	of	properties	of	the	
overall	system,	and	that	therefore	the	code	need	not	be	generated.		For	example,	given	the	following:	

package Pkg is
type Enum is (Aaa, Bbb, Ccc);
pragma Discard_Names(Enum);

end Pkg;

If	Pkg.Enum'Image	and	related	attributes	(for	example,	Value, Wide_Image)	of	the	type	are	never	used,	and	if	the	
implementation	normally	builds	a	table,	then	the	pragma	allows	the	elimination	of	the	table.	

6.27	Switch	Statements	and	Static	Analysis	[CLL]	

6.27.1	Applicability	to	language	

With	the	exception	of	unsafe	programming	(see	4	Language	concepts)	and	the	use	of	default	cases,	this	
vulnerability	is	not	applicable	to	Ada	as	Ada	ensures	that	a	case	statement	provides	exactly	one	alternative	for	
each	value	of	the	expression's	subtype.		This	restriction	is	enforced	at	compile	time.		The	others	clause	may	be	
used	as	the	last	choice	of	a	case	statement	to	capture	any	remaining	values	of	the	case	expression	type	that	are	
not	covered	by	the	preceding	case	choices.		If	the	value	of	the	expression	is	outside	of	the	range	of	this	subtype	
(for	example,	due	to	an	uninitialized	variable),	then	the	resulting	behaviour	is	well-defined	(Constraint_Error	is	
raised).		Control	does	not	flow	from	one	alternative	to	the	next.	Upon	reaching	the	end	of	an	alternative,	control	
is	transferred	to	the	end	of	the	case	statement.		

The	remaining	vulnerability	is	that	unexpected	values	are	captured	by	the	others	clause	or	a	subrange	as	case	
choice.		For	example,	when	the	range	of	the	type	Character	was	extended	from	128	characters	to	the	256	
characters	in	the	Latin-1	character	type,	an	others	clause	for	a	case	statement	with	a	Character	type	case	
expression	originally	written	to	capture	cases	associated	with	the	128	characters	type	now	captures	the	128	
additional	cases	introduced	by	the	extension	of	the	type	Character.		Some	of	the	new	characters	may	have	
needed	to	be	covered	by	the	existing	case	choices	or	new	case	choices.		

6.27.2	Guidance	to	language	users	

• For	case	statements	and	aggregates,	avoid	the	use	of	the	others	choice.	
• For	case	statements	and	aggregates,	mistrust	subranges	as	choices	after	enumeration	literals	have	been	

added	anywhere	but	the	beginning	or	the	end	of	the	enumeration	type	definition. 15F

2	

6.28	Demarcation	of	Control	Flow	[EOJ]	

This	vulnerability	is	not	applicable	to	Ada	as	the	Ada	syntax	describes	several	types	of	compound	statements	that	
are	associated	with	control	flow	including	if	statements,	loop	statements,	case	statements,	select	statements,	and	
extended	return	statements.	Each	of	these	forms	of	compound	statements	require	unique	syntax	that	marks	the	
end	of	the	compound	statement.	

																																																													

2	This	case	is	somewhat	specialized	but	is	important,	since	enumerations	are	the	one	case	where	subranges	turn	bad	on	the	user.	

Stephen Michell� 2017-2-20 9:16 AM
Formatted: Font:Italic, Underline, Font
color: Custom Color(RGB(0,112,192))
Stephen Michell� 2017-2-20 9:16 AM
Deleted: 4	Concepts

28	 ©	ISO/IEC	2013	–	All	rights	reserved	
	

6.29	Loop	Control	Variables	[TEX]	

With	the	exception	of	unsafe	programming	(see	4	Language	concepts),	this	vulnerability	is	not	applicable	to	Ada	
as	Ada	defines	a	for loop	where	the	number	of	iterations	is	controlled	by	a	loop	control	variable	(called	a	loop	
parameter).	This	value	has	a	constant	view	and	cannot	be	updated	within	the	sequence	of	statements	of	the	body	
of	the	loop.	

6.30	Off-by-one	Error	[XZH]	

6.30.1	Applicability	to	language	

Confusion between the need for < and <= or > and >= in a test.
A	for loop	in	Ada	does	not	require	the	programmer	to	specify	a	conditional	test	for	loop	termination.	
Instead,	the	starting	and	ending	value	of	the	loop	are	specified	which	eliminates	this	source	of	off-by-one	
errors.	A	while loop	however,	lets	the	programmer	specify	the	loop	termination	expression,	which	could	
be	susceptible	to	an	off-by-one	error.	

Confusion as to the index range of an algorithm.
Although	there	are	language	defined	attributes	to	symbolically	reference	the	start	and	end	values	for	a	
loop	iteration,	the	language	does	allow	the	use	of	explicit	values	and	loop	termination	tests.	Off-by-one	
errors	can	result	in	these	circumstances.	

Care	should	be	taken	when	using	the	'Length	attribute	in	the	loop	termination	expression.	The	
expression	should	generally	be	relative	to	the	'First	value.	

The	strong	typing	of	Ada	eliminates	the	potential	for	buffer	overflow	associated	with	this	vulnerability.	If	
the	error	is	not	statically	caught	at	compile	time,	then	a	run-time	check	generates	an	exception	if	an	
attempt	is	made	to	access	an	element	outside	the	bounds	of	an	array.	

Failing to allow for storage of a sentinel value.
Ada	does	not	use	sentinel	values	to	terminate	arrays.	There	is	no	need	to	account	for	the	storage	of	a	
sentinel	value,	therefore	this	particular	vulnerability	concern	does	not	apply	to	Ada.	

6.30.2	Guidance	to	language	users	

• Whenever	possible,	a	for loop	should	be	used	instead	of	a	while loop.	
• Whenever	possible,	the	'First,	'Last,	and	'Range	attributes	should	be	used	for	loop	termination.	If	the	

'Length	attribute	must	be	used,	then	extra	care	should	be	taken	to	ensure	that	the	length	expression	
considers	the	starting	index	value	for	the	array.	

6.31	Structured	Programming	[EWD]	

6.31.1	Applicability	to	language	

Ada	programs	can	exhibit	many	of	the	vulnerabilities	noted	in	6.31:	leaving	a	loop	at	an	arbitrary	point,	local	
jumps	(goto),	and	multiple	exit	points	from	subprograms.	

Ada	however	does	not	suffer	from	non-local	jumps	and	multiple	entries	to	subprograms.	

Stephen Michell� 2017-2-20 9:16 AM
Formatted: Font:Italic, Underline, Font color:
Custom Color(RGB(0,112,192))
Stephen Michell� 2017-2-20 9:16 AM
Deleted: 4	Concepts

©	ISO/IEC	2013	–	All	rights	reserved	 29	
	

6.31.2	Guidance	to	language	users	

Avoid	the	use	of	goto,	loop exit	statements,	return	statements	in	procedures	and	more	than	one	return	
statement	in	a	function		If	not	following	this	guidance	caused	the	function	code	to	be	clearer	–	short	of	
appropriate	restructuring	–	then	multiple	exit	points	should	be	used.	

6.32	Passing	Parameters	and	Return	Values	[CSJ]	

6.32.1	Applicability	to	language	

Ada	employs	the	mechanisms	(for	example,	modes	in,	out	and	in out)	that	are	recommended	in	Section	6.34.	
These	mode	definitions	are	not	optional,	mode	in	being	the	default.	The	remaining	vulnerability	is	aliasing	when	a	
large	object	is	passed	by	reference.	

6.32.2	Guidance	to	language	users	

• Follow	avoidance	advice	in	Section	6.24.	

6.33	Dangling	References	to	Stack	Frames	[DCM]	

6.33.1	Applicability	to	language	

In	Ada,	the	attribute	'Address	yields	a	value	of	some	system-specific	type	that	is	not	equivalent	to	a	pointer.	The	
attribute	'Access	provides	an	access	value	(what	other	languages	call	a	pointer).	Addresses	and	access	values	are	
not	automatically	convertible,	although	a	predefined	set	of	generic	functions	can	be	used	to	convert	one	into	the	
other.	Access	values	are	typed,	that	is	to	say,	they	can	only	designate	objects	of	a	particular	type	or	class	of	types.		

As	in	other	languages,	it	is	possible	to	apply	the	'Address	attribute	to	a	local	variable,	and	to	make	use	of	the	
resulting	value	outside	of	the	lifetime	of	the	variable.	However,	'Address	is	very	rarely	used	in	this	fashion	in	Ada.	
Most	commonly,	programs	use	'Access	to	provide	pointers	to	objects	and	subprograms,	and	the	language	
enforces	accessibility	checks	whenever	code	attempts	to	use	this	attribute	to	provide	access	to	a	local	object	
outside	of	its	scope.	These	accessibility	checks	eliminate	the	possibility	of	dangling	references.	

As	for	all	other	language-defined	checks,	accessibility	checks	can	be	disabled	over	any	portion	of	a	program	by	
using	the	Suppress pragma.	The	attribute	Unchecked_Access	produces	values	that	are	exempt	from	accessibility	
checks.	

6.33.2	Guidance	to	language	users	

• Only	use	'Address	attribute	on	static	objects	(for	example,	a	register	address).		
• Do	not	use	'Address	to	provide	indirect	untyped	access	to	an	object.		
• Do	not	use	conversion	between	Address	and	access	types.		
• Use	access	types	in	all	circumstances	when	indirect	access	is	needed.		
• Do	not	suppress	accessibility	checks.		
• Avoid	use	of	the	attribute	Unchecked_Access.	
• Use	‘Access	attribute	in	preference	to	‘Address.	

30	 ©	ISO/IEC	2013	–	All	rights	reserved	
	

6.34	Subprogram	Signature	Mismatch	[OTR]	

6.34.1	Applicability	to	language	

There	are	two	concerns	identified	with	this	vulnerability.	The	first	is	the	corruption	of	the	execution	stack	due	to	
the	incorrect	number	or	type	of	actual	parameters.	The	second	is	the	corruption	of	the	execution	stack	due	to	
calls	to	externally	compiled	modules.	

In	Ada,	at	compilation	time,	the	parameter	association	is	checked	to	ensure	that	the	type	of	each	actual	
parameter	matches	the	type	of	the	corresponding	formal	parameter.	In	addition,	the	formal	parameter	
specification	may	include	default	expressions	for	a	parameter.	Hence,	the	procedure	may	be	called	with	some	
actual	parameters	missing.	In	this	case,	if	there	is	a	default	expression	for	the	missing	parameter,	then	the	call	will	
be	compiled	without	any	errors.	If	default	expressions	are	not	specified,	then	the	procedure	call	with	insufficient	
actual	parameters	will	be	flagged	as	an	error	at	compilation	time.		

Caution	must	be	used	when	specifying	default	expressions	for	formal	parameters,	as	their	use	may	result	in	
successful	compilation	of	subprogram	calls	with	an	incorrect	signature.	The	execution	stack	will	not	be	corrupted	
in	this	event	but	the	program	may	be	executing	with	unexpected	values.	

When	calling	externally	compiled	modules	that	are	Ada	program	units,	the	type	matching	and	subprogram	
interface	signatures	are	monitored	and	checked	as	part	of	the	compilation	and	linking	of	the	full	application.	
When	calling	externally	compiled	modules	in	other	programming	languages,	additional	steps	are	needed	to	
ensure	that	the	number	and	types	of	the	parameters	for	these	external	modules	are	correct.		

6.34.2	Guidance	to	language	users	

• Do	not	use	default	expressions	for	formal	parameters.	
• Interfaces	between	Ada	program	units	and	program	units	in	other	languages	can	be	managed	using	

pragma Import	to	specify	subprograms	that	are	defined	externally	and	pragma Export	to	specify	
subprograms	that	are	used	externally.	These	pragmas	specify	the	imported	and	exported	aspects	of	the	
subprograms,	this	includes	the	calling	convention.	Like	subprogram	calls,	all	parameters	need	to	be	
specified	when	using	pragma Import and	pragma Export.	

• The	pragma Convention	may	be	used	to	identify	when	an	Ada	entity	should	use	the	calling	conventions	of	
a	different	programming	language	facilitating	the	correct	usage	of	the	execution	stack	when	interfacing	
with	other	programming	languages.		

• In	addition,	the	Valid	attribute	may	be	used	to	check	if	an	object	that	is	part	of	an	interface	with	another	
language	has	a	valid	value	and	type.	

6.35	Recursion	[GDL]	

6.35.1	Applicability	to	language	

Ada	permits	recursion.	The	exception	Storage_Error	is	raised	when	the	recurring	execution	results	in	insufficient	
storage.	

6.35.2	Guidance	to	language	users	

• If	recursion	is	used,	then	a	Storage_Error	exception	handler	may	be	used	to	handle	insufficient	storage	
due	to	recurring	execution.		

• Alternatively,	the	asynchronous	control	construct	may	be	used	to	time	the	execution	of	a	recurring	call	
and	to	terminate	the	call	if	the	time	limit	is	exceeded.		

©	ISO/IEC	2013	–	All	rights	reserved	 31	
	

• In	Ada,	the	pragma Restrictions	may	be	invoked	with	the	parameter	No_Recursion.	In	this	case,	the	
compiler	will	ensure	that	as	part	of	the	execution	of	a	subprogram	the	same	subprogram	is	not	invoked.	

6.36	Ignored	Error	Status	and	Unhandled	Exceptions	[OYB]	

6.36.1	Applicability	to	language	

Ada	offers	a	set	of	predefined	exceptions	for	error	conditions	that	may	be	detected	by	checks	that	are	compiled	
into	a	program.	In	addition,	the	programmer	may	define	exceptions	that	are	appropriate	for	their	application.	
These	exceptions	are	handled	using	an	exception	handler.	Exceptions	may	be	handled	in	the	environment	where	
the	exception	occurs	or	may	be	propagated	out	to	an	enclosing	scope.		

As	described	in	6.38,	there	is	some	complexity	in	understanding	the	exception	handling	methodology	especially	
with	respect	to	object-oriented	programming	and	multi-threaded	execution.	

6.36.2	Guidance	to	language	users	

• In	addition	to	the	mitigations	defined	in	the	main	text,	values	delivered	to	an	Ada	program	from	an	
external	device	may	be	checked	for	validity	prior	to	being	used.	This	is	achieved	by	testing	the	Valid	
attribute.		

6.37	Fault	Tolerance	and	Failure	Strategies	[REW]	

6.37.1	Applicability	to	language	

An	Ada	system	that	consists	of	multiple	tasks	is	subject	to	the	same	hazards	as	multithreaded	systems	in	other	
languages.	A	task	that	fails,	for	example,	because	its	execution	violates	a	language-defined	check,	terminates	
quietly.	

Any	other	task	that	attempts	to	communicate	with	a	terminated	task	will	receive	the	exception	Tasking_Error.	
The	undisciplined	use	of	the	abort	statement	or	the	asynchronous	transfer	of	control	feature	may	destroy	the	
functionality	of	a	multitasking	program.	

6.37.2	Guidance	to	language	users	

• Include	exception	handlers	for	every	task,	so	that	their	unexpected	termination	can	be	handled	and	
possibly	communicated	to	the	execution	environment.	

• Use	objects	of	controlled	types	to	ensure	that	resources	are	properly	released	if	a	task	terminates	
unexpectedly.	

• The	abort	statement	should	be	used	sparingly,	if	at	all.	
• For	high-integrity	systems,	exception	handling	is	usually	forbidden.	However,	a	top-level	exception	

handler	can	be	used	to	restore	the	overall	system	to	a	coherent	state.			
• Define	interrupt	handlers	to	handle	signals	that	come	from	the	hardware	or	the	operating	system.	This	

mechanism	can	also	be	used	to	add	robustness	to	a	concurrent	program.	
• Annex	C	of	the	Ada	Reference	Manual	(Systems	Programming)	defines	the	package	Ada.Task_Termination	

to	be	used	to	monitor	task	termination	and	its	causes.	
• Annex	H	of	the	Ada	Reference	Manual	(High	Integrity	Systems)	describes	several	pragma,	restrictions,	

and	other	language	features	to	be	used	when	writing	systems	for	high-reliability	applications.	For	
example,	the	pragma Detect_Blocking	forces	an	implementation	to	detect	a	potentially	blocking	
operation	within	a	protected	operation,	and	to	raise	an	exception	in	that	case.	

32	 ©	ISO/IEC	2013	–	All	rights	reserved	
	

6.38	Type-breaking	Reinterpretation	of	Data	[AMV]	

6.38.1	Applicability	to	language	

Unchecked_Conversion	can	be	used	to	bypass	the	type-checking	rules,	and	its	use	is	thus	unsafe,	as	in	any	other	
language.	The	same	applies	to	the	use	of	Unchecked_Union,	even	though	the	language	specifies	various	inference	
rules	that	the	compiler	must	use	to	catch	statically	detectable	constraint	violations.	

Type	reinterpretation	is	a	universal	programming	need,	and	no	usable	programming	language	can	exist	without	
some	mechanism	that	bypasses	the	type	model.	Ada	provides	these	mechanisms	with	some	additional	
safeguards,	and	makes	their	use	purposely	verbose,	to	alert	the	writer	and	the	reader	of	a	program	to	the	
presence	of	an	unchecked	operation.	

6.38.2	Guidance	to	language	users	

• The	fact	that	Unchecked_Conversion	is	a	generic	function	that	must	be	instantiated	explicitly	(and	given	a	
meaningful	name)	hinders	its	undisciplined	use,	and	places	a	loud	marker	in	the	code	wherever	it	is	used.	
Well-written	Ada	code	will	have	a	small	set	of	instantiations	of	Unchecked_Conversion.		

• Most	implementations	require	the	source	and	target	types	to	have	the	same	size	in	bits,	to	prevent	
accidental	truncation	or	sign	extension.		

• Unchecked_Union	should	only	be	used	in	multi-language	programs	that	need	to	communicate	data	
between	Ada	and	C	or	C++.	Otherwise	the	use	of	discriminated	types	prevents	"punning"	between	values	
of	two	distinct	types	that	happen	to	share	storage.	

• Using	address	clauses	to	obtain	overlays	should	be	avoided.	If	the	types	of	the	objects	are	the	same,	then	
a	renaming	declaration	is	preferable.	Otherwise,	the	pragma Import	should	be	used	to	inhibit	the	
initialization	of	one	of	the	entities	so	that	it	does	not	interfere	with	the	initialization	of	the	other	one.	

6.39	Memory	Leak	[XYL]	

6.39.1	Applicability	to	language	

For	objects	that	are	allocated	from	the	heap	without	the	use	of	reference	counting,	the	memory	leak	vulnerability	
is	possible	in	Ada.	For	objects	that	must	allocate	from	a	storage	pool,	the	vulnerability	can	be	present	but	is	
restricted	to	the	single	pool	and	which	makes	it	easier	to	detect	by	verification.	For	objects	of	a	controlled	type	
that	uses	referencing	counting	and	that	are	not	part	of	a	cyclic	reference	structure,	the	vulnerability	does	not	
exist.	

Ada	does	not	mandate	the	use	of	a	garbage	collector,	but	Ada	implementations	are	free	to	provide	such	memory	
reclamation.		For	applications	that	use	and	return	memory	on	an	implementation	that	provides	garbage	
collection,	the	issues	associated	with	garbage	collection	exist	in	Ada.	

6.39.2	Guidance	to	language	users	

• Use	storage	pools	where	possible.	
• Use	controlled	types	and	reference	counting	to	implement	explicit	storage	management	systems	that	

cannot	have	storage	leaks.		
• Use	a	completely	static	model	where	all	storage	is	allocated	from	global	memory	and	explicitly	managed	

under	program	control.	

©	ISO/IEC	2013	–	All	rights	reserved	 33	
	

6.40	Templates	and	Generics	[SYM]	

With	the	exception	of	unsafe	programming	(see	4	Language	concepts),	this	vulnerability	is	not	applicable	to	Ada	
as	the	Ada	generics	model	is	based	on	imposing	a	contract	on	the	structure	and	operations	of	the	types	that	can	
be	used	for	instantiation.	Also,	explicit	instantiation	of	the	generic	is	required	for	each	particular	type.		

Therefore,	the	compiler	is	able	to	check	the	generic	body	for	programming	errors,	independently	of	actual	
instantiations.	At	each	actual	instantiation,	the	compiler	will	also	check	that	the	instantiated	type	meets	all	the	
requirements	of	the	generic	contract.	

Ada	also	does	not	allow	for	‘special	case’	generics	for	a	particular	type,	therefore	behaviour	is	consistent	for	all	
instantiations.	

6.41	Inheritance	[RIP]	

6.41.1	Applicability	to	language		

The	vulnerability	documented	in	Section	6.43	applies	to	Ada.		

Ada	only	allows	a	restricted	form	of	multiple	inheritance,	where	only	one	of	the	multiple	ancestors	(the	parent)	
may	define	operations.	All	other	ancestors	(interfaces)	can	only	specify	the	operations’	signature.	Therefore,	Ada	
does	not	suffer	from	multiple	inheritance	derived	vulnerabilities.	

6.41.2	Guidance	to	language	users		

• Use	the	overriding	indicators	on	potentially	inherited	subprograms	to	ensure	that	the	intended	contract	is	
obeyed,	thus	preventing	the	accidental	redefinition	or	failure	to	redefine	an	operation	of	the	parent.		

• Use	the	mechanisms	of	mitigation	described	in	the	main	body	of	the	document.	

6.42	Extra	Intrinsics	[LRM]	

The	vulnerability	does	not	apply	to	Ada,	because	all	subprograms,	whether	intrinsic	or	not,	belong	to	the	same	
name	space.	This	means	that	all	subprograms	must	be	explicitly	declared,	and	the	same	name	resolution	rules	
apply	to	all	of	them,	whether	they	are	predefined	or	user-defined.	If	two	subprograms	with	the	same	name	and	
signature	are	visible	(that	is	to	say	nameable)	at	the	same	place	in	a	program,	then	a	call	using	that	name	will	be	
rejected	as	ambiguous	by	the	compiler,	and	the	programmer	will	have	to	specify	(for	example	by	means	of	a	
qualified	name)	which	subprogram	is	meant.	

6.43	Argument	Passing	to	Library	Functions	[TRJ]		

6.43.1	Applicability	to	language	

The	general	vulnerability	that	parameters	might	have	values	precluded	by	preconditions	of	the	called	routine	
applies	to	Ada	as	well.		

However,	to	the	extent	that	the	preclusion	of	values	can	be	expressed	as	part	of	the	type	system	of	Ada,	the	
preconditions	are	checked	by	the	compiler	statically	or	dynamically	and	thus	are	no	longer	vulnerabilities.	For	
example,	any	range	constraint	on	values	of	a	parameter	can	be	expressed	in	Ada	by	means	of	type	or	subtype	
declarations.	Type	violations	are	detected	at	compile	time,	subtype	violations	cause	run-time	exceptions.	

Stephen Michell� 2017-2-20 9:16 AM
Formatted: Font:Italic, Underline, Font
color: Custom Color(RGB(0,112,192))
Stephen Michell� 2017-2-20 9:16 AM
Deleted: 4	Concepts

34	 ©	ISO/IEC	2013	–	All	rights	reserved	
	

6.43.2	Guidance	to	language	users	

• Exploit	the	type	and	subtype	system	of	Ada	to	express	preconditions	(and	postconditions)	on	the	values	
of	parameters.	

• Document	all	other	preconditions	and	ensure	by	guidelines	that	either	callers	or	callees	are	responsible	
for	checking	the	preconditions	(and	postconditions).	Wrapper	subprograms	for	that	purpose	are	
particularly	advisable.	

• Library	providers	should	specify	the	response	to	invalid	values.	

6.44	Inter-language	Calling	[DJS]	

6.44.1	Applicability	to	Language	

The	vulnerability	applies	to	Ada,	however	Ada	provides	mechanisms	to	interface	with	common	languages,	such	as	
C,	Fortran	and	COBOL,	so	that	vulnerabilities	associated	with	interfacing	with	these	languages	can	be	avoided.	

6.44.2	Guidance	to	Language	Users	

• Use	the	inter-language	methods	and	syntax	specified	by	the	Ada	Reference	Manual	when	the	routines	to	
be	called	are	written	in	languages	that	the	ARM	specifies	an	interface	with.	

• Use	interfaces	to	the	C	programming	language	where	the	other	language	system(s)	are	not	covered	by	
the	ARM,	but	the	other	language	systems	have	interfacing	to	C.	

• Make	explicit	checks	on	all	return	values	from	foreign	system	code	artifacts,	for	example	by	using	the	
'Valid	attribute	or	by	performing	explicit	tests	to	ensure	that	values	returned	by	inter-language	calls	
conform	to	the	expected	representation	and	semantics	of	the	Ada	application.	

6.45	Dynamically-linked	Code	and	Self-modifying	Code	[NYY]		

With	the	exception	of	unsafe	programming	(see	4	Language	concepts),	this	vulnerability	is	not	applicable	to	Ada	
as	Ada	supports	neither	dynamic	linking	nor	self-modifying	code.	The	latter	is	possible	only	by	exploiting	other	
vulnerabilities	of	the	language	in	the	most	malicious	ways	and	even	then	it	is	still	very	difficult	to	achieve.	

6.46	Library	Signature	[NSQ]	

6.46.1	Applicability	to	language	

Ada	provides	mechanisms	to	explicitly	interface	to	modules	written	in	other	languages.	Pragmas	Import,	Export	
and	Convention	permit	the	name	of	the	external	unit	and	the	interfacing	convention	to	be	specified.		

Even	with	the	use	of	pragma Import,	pragma Export	and	pragma Convention	the	vulnerabilities	stated	in	Section	
6.48	are	possible.	Names	and	number	of	parameters	change	under	maintenance;	calling	conventions	change	as	
compilers	are	updated	or	replaced,	and	languages	for	which	Ada	does	not	specify	a	calling	convention	may	be	
used.	

6.46.2	Guidance	to	language	users	

• The	mitigation	mechanisms	of	Section	6.48.5	are	applicable.	

Stephen Michell� 2017-2-20 9:16 AM
Formatted: Font:Italic, Underline, Font color:
Custom Color(RGB(0,112,192))
Stephen Michell� 2017-2-20 9:16 AM
Deleted: 4	Concepts

©	ISO/IEC	2013	–	All	rights	reserved	 35	
	

6.48	Unanticipated	Exceptions	from	Library	Routines	[HJW]	

6.48.1	Applicability	to	language	

Ada	programs	are	capable	of	handling	exceptions	at	any	level	in	the	program,	as	long	as	any	exception	naming	
and	delivery	mechanisms	are	compatible	between	the	Ada	program	and	the	library	components.	In	such	cases	the	
normal	Ada	exception	handling	processes	will	apply,	and	either	the	calling	unit	or	some	subprogram	or	task	in	its	
call	chain	will	catch	the	exception	and	take	appropriate	programmed	action,	or	the	task	or	program	will	
terminate.	

If	the	library	components	themselves	are	written	in	Ada,	then	Ada's	exception	handling	mechanisms	let	all	called	
units	trap	any	exceptions	that	are	generated	and	return	error	conditions	instead.	If	such	exception	handling	
mechanisms	are	not	put	in	place,	then	exceptions	can	be	unexpectedly	delivered	to	a	caller.	

If	the	interface	between	the	Ada	units	and	the	library	routine	being	called	does	not	adequately	address	the	issue	
of	naming,	generation	and	delivery	of	exceptions	across	the	interface,	then	the	vulnerabilities	as	expressed	in	
Section	6.49	apply.		

6.47.2	Guidance	to	language	users	

• Ensure	that	the	interfaces	with	libraries	written	in	other	languages	are	compatible	in	the	naming	and	
generation	of	exceptions.	

• Put	appropriate	exception	handlers	in	all	routines	that	call	library	routines,	including	the	catch-all	
exception	handler	when others =>.	

• Document	any	exceptions	that	may	be	raised	by	any	Ada	units	being	used	as	library	routines.		

6.48	Pre-Processor	Directives	[NMP]	

This	vulnerability	is	not	applicable	to	Ada	as	Ada	does	not	have	a	pre-processor.	

6.49	Suppression	of	Language-defined	Run-time	Checking	[MXB]	

6.49.1	Applicability	to	Language	

The	vulnerability	exists	in	Ada	since	“pragma	Suppress”	permits	explicit	suppression	of	language-defined	checks	
on	a	unit-by-unit	basis	or	on	partitions	or	programs	as	a	whole.	(The	language-defined	default,	however,	is	to	
perform	the	runtime	checks	that	prevent	the	vulnerabilities.)	Pragma	Suppress	can	suppress	all	language-defined	
checks	or	12	individual	categories	of	checks.	

6.49.2	Guidance	to	Language	Users	

• Do	not	suppress	language	defined	checks.	
• If	language-defined	checks	must	be	suppressed,	use	static	analysis	to	prove	that	the	code	is	correct	for	all	

combinations	of	inputs.	
• If	language-defined	checks	must	be	suppressed,	use	explicit	checks	at	appropriate	places	in	the	code	to	

ensure	that	errors	are	detected	before	any	processing	that	relies	on	the	correct	values.	

36	 ©	ISO/IEC	2013	–	All	rights	reserved	
	

6.50	Provision	of	Inherently	Unsafe	Operations	[SKL]	

6.50.1	Applicability	to	Language	

In	recognition	of	the	occasional	need	to	step	outside	the	type	system	or	to	perform	“risky”	operations,	Ada	
provides	clearly	identified	language	features	to	do	so.	Examples	include	the	generic	Unchecked_Conversion	for	
unsafe	type-conversions	or	Unchecked_Deallocation	for	the	deallocation	of	heap	objects	regardless	of	the	
existence	of	surviving	references	to	the	object.	If	unsafe	programming	is	employed	in	a	unit,	then	the	unit	needs	
to	specify	the	respective	generic	unit	in	its	context	clause,	thus	identifying	potentially	unsafe	units.	Similarly,	there	
are	ways	to	create	a	potentially	unsafe	global	pointer	to	a	local	object,	using	the	Unchecked_Access	attribute.	

6.51	Obscure	Language	Features	[BRS]	

6.51.1	Applicability	to	language	

Ada	is	a	rich	language	and	provides	facilities	for	a	wide	range	of	application	areas.	Because	some	areas	are	
specialized,	it	is	likely	that	a	programmer	not	versed	in	a	special	area	might	misuse	features	for	that	area.		For	
example,	the	use	of	tasking	features	for	concurrent	programming	requires	knowledge	of	this	domain.	Similarly,	
the	use	of	exceptions	and	exception	propagation	and	handling	requires	a	deeper	understanding	of	control	flow	
issues	than	some	programmers	may	possess.	

6.51.2	Guidance	to	language	users	
The	pragma Restrictions	can	be	used	to	prevent	the	use	of	certain	features	of	the	language.	Thus,	if	a	program	
should	not	use	feature	X,	then	writing	pragma Restrictions (No_X); ensures	that	any	attempt	to	use	feature	X	
prevents	the	program	from	compiling.	

Similarly,	features	in	a	Specialized	Needs	Annex	should	not	be	used	unless	the	application	area	concerned	is	well-
understood	by	the	programmer.	

6.52	Unspecified	Behaviour	[BQF]	

6.52.1	Applicability	to	language	

In	Ada,	there	are	two	main	categories	of	unspecified	behaviour,	one	having	to	do	with	unspecified	aspects	of	
normal	run-time	behaviour,	and	one	having	to	do	with	bounded	errors,	errors	that	need	not	be	detected	at	run-
time	but	for	which	there	is	a	limited	number	of	possible	run-time	effects	(though	always	including	the	possibility	
of	raising	Program_Error).	

For	the	normal	behaviour	category,	there	are	several	distinct	aspects	of	run-time	behaviour	that	might	be	
unspecified,	including:	

• Order	in	which	certain	actions	are	performed	at	run-time;	
• Number	of	times	a	given	element	operation	is	performed	within	an	operation	invoked	on	a	composite	or	

container	object;	
• Results	of	certain	operations	within	a	language-defined	generic	package	if	the	actual	associated	with	a	

particular	formal	subprogram	does	not	meet	stated	expectations	(such	as	“<”	providing	a	strict	weak	
ordering	relationship);	

• Whether	distinct	instantiations	of	a	generic	or	distinct	invocations	of	an	operation	produce	distinct	values	
for	tags	or	access-to-subprogram	values.	

©	ISO/IEC	2013	–	All	rights	reserved	 37	
	

The	index	entry	in	the	Ada	Standard	for	unspecified	provides	the	full	list.	Similarly,	the	index	entry	for	bounded	
error	provides	the	full	list	of	references	to	places	in	the	Ada	Standard	where	a	bounded	error	is	described.	

Failure	can	occur	due	to	unspecified	behaviour	when	the	programmer	did	not	fully	account	for	the	possible	
outcomes,	and	the	program	is	executed	in	a	context	where	the	actual	outcome	was	not	one	of	those	handled,	
resulting	in	the	program	producing	an	unintended	result.	

6.52.2	Guidance	to	language	users		

As	in	any	language,	the	vulnerability	can	be	reduced	in	Ada	by	avoiding	situations	that	have	unspecified	
behaviour,	or	by	fully	accounting	for	the	possible	outcomes.	

Particular	instances	of	this	vulnerability	can	be	avoided	or	mitigated	in	Ada	in	the	following	ways:	

• For	situations	where	order	of	evaluation	or	number	of	evaluations	is	unspecified,	using	only	operations	
with	no	side-effects,	or	idempotent	behaviour,	will	avoid	the	vulnerability;	

• For	situations	involving	generic	formal	subprograms,	care	should	be	taken	that	the	actual	subprogram	
satisfies	all	of	the	stated	expectations;	

• For	situations	involving	unspecified	values,	care	should	be	taken	not	to	depend	on	equality	between	
potentially	distinct	values;	

• For	situations	involving	bounded	errors,	care	should	be	taken	to	avoid	the	situation	completely,	by	
ensuring	in	other	ways	that	all	requirements	for	correct	operation	are	satisfied	before	invoking	an	
operation	that	might	result	in	a	bounded	error.	See	the	Ada	Annex	section	on	Initialization	of	Variables	
[LAV]	for	a	discussion	of	uninitialized	variables	in	Ada,	a	common	cause	of	a	bounded	error.	

6.53	Undefined	Behaviour	[EWF]	

6.53.1	Applicability	to	language	

In	Ada,	undefined	behaviour	is	called	erroneous	execution,	and	can	arise	from	certain	errors	that	are	not	required	
to	be	detected	by	the	implementation,	and	whose	effects	are	not	in	general	predictable.	

There	are	various	kinds	of	errors	that	can	lead	to	erroneous	execution,	including:	

• Changing	a	discriminant	of	a	record	(by	assigning	to	the	record	as	a	whole)	while	there	remain	active	
references	to	subcomponents	of	the	record	that	depend	on	the	discriminant;	

• Referring	via	an	access	value,	task	id,	or	tag,	to	an	object,	task,	or	type	that	no	longer	exists	at	the	time	of	
the	reference;	

• Referring	to	an	object	whose	assignment	was	disrupted	by	an	abort	statement,	prior	to	invoking	a	new	
assignment	to	the	object;	

• Sharing	an	object	between	multiple	tasks	without	adequate	synchronization;	
• Suppressing	a	language-defined	check	that	is	in	fact	violated	at	run-time;	
• Specifying	the	address	or	alignment	of	an	object	in	an	inappropriate	way;	
• Using	Unchecked_Conversion,	Address_To_Access_Conversions,	or	calling	an	imported	subprogram	to	

create	a	value,	or	reference	to	a	value,	that	has	an	abnormal	representation.	

The	full	list	is	given	in	the	index	of	the	Ada	Standard	under	erroneous	execution.	

Any	occurrence	of	erroneous	execution	represents	a	failure	situation,	as	the	results	are	unpredictable,	and	may	
involve	overwriting	of	memory,	jumping	to	unintended	locations	within	memory,	and	other	uncontrolled	events.	

38	 ©	ISO/IEC	2013	–	All	rights	reserved	
	

6.53.2	Guidance	to	language	users	

The	common	errors	that	result	in	erroneous	execution	can	be	avoided	in	the	following	ways:	

• All	data	shared	between	tasks	should	be	within	a	protected	object	or	marked	Atomic,	whenever	practical;	
• Any	use	of	Unchecked_Deallocation	should	be	carefully	checked	to	be	sure	that	there	are	no	remaining	

references	to	the	object;	
• pragma Suppress	should	be	used	sparingly,	and	only	after	the	code	has	undergone	extensive	verification.		

The	other	errors	that	can	lead	to	erroneous	execution	are	less	common,	but	clearly	in	any	given	Ada	application,	
care	must	be	taken	when	using	features	such	as:	

• abort;		
• Unchecked_Conversion;		
• Address_To_Access_Conversions;		
• The	results	of	imported	subprograms;		
• Discriminant-changing	assignments	to	global	variables.	

The	mitigations	described	in	Section	6.55.5	are	applicable	here.	

6.54	Implementation-Defined	Behaviour	[FAB]	

6.54.1	Applicability	to	language	

There	are	a	number	of	situations	in	Ada	where	the	language	semantics	are	implementation	defined,	to	allow	the	
implementation	to	choose	an	efficient	mechanism,	or	to	match	the	capabilities	of	the	target	environment.	Each	of	
these	situations	is	identified	in	Annex	M	of	the	Ada	Standard,	and	implementations	are	required	to	provide	
documentation	associated	with	each	item	in	Annex	M	to	provide	the	programmer	with	guidance	on	the	
implementation	choices.	

A	failure	can	occur	in	an	Ada	application	due	to	implementation-defined	behaviour	if	the	programmer	presumed	
the	implementation	made	one	choice,	when	in	fact	it	made	a	different	choice	that	affected	the	results	of	the	
execution.	In	many	cases,	a	compile-time	message	or	a	run-time	exception	will	indicate	the	presence	of	such	a	
problem.	For	example,	the	range	of	integers	supported	by	a	given	compiler	is	implementation	defined.	However,	
if	the	programmer	specifies	a	range	for	an	integer	type	that	exceeds	that	supported	by	the	implementation,	then	
a	compile-time	error	will	be	indicated,	and	if	at	run	time	a	computation	exceeds	the	base	range	of	an	integer	type,	
then	a	Constraint_Error	is	raised.	

Failure	due	to	implementation-defined	behaviour	is	generally	due	to	the	programmer	presuming	a	particular	
effect	that	is	not	matched	by	the	choice	made	by	the	implementation.	As	indicated	above,	many	such	failures	are	
indicated	by	compile-time	error	messages	or	run-time	exceptions.	However,	there	are	cases	where	the	
implementation-defined	behaviour	might	be	silently	misconstrued,	such	as	if	the	implementation	presumes	
Ada.Exceptions.Exception_Information	returns	a	string	with	a	particular	format,	when	in	fact	the	implementation	
does	not	use	the	expected	format.	If	a	program	is	attempting	to	extract	information	from	Exception_Information	
for	the	purposes	of	logging	propagated	exceptions,	then	the	log	might	end	up	with	misleading	or	useless	
information	if	there	is	a	mismatch	between	the	programmer’s	expectation	and	the	actual	implementation-
defined	format.	

©	ISO/IEC	2013	–	All	rights	reserved	 39	
	

6.54.2	Guidance	to	language	users		

Many	implementation-defined	limits	have	associated	constants	declared	in	language-defined	packages,	generally	
package System.	In	particular,	the	maximum	range	of	integers	is	given	by	System.Min_Int .. System.Max_Int,	and	
other	limits	are	indicated	by	constants	such	as	System.Max_Binary_Modulus,	System.Memory_Size,	
System.Max_Mantissa,	and	similar.	Other	implementation-defined	limits	are	implicit	in	normal	‘First	and	‘Last	
attributes	of	language-defined	(sub)	types,	such	as	System.Priority’First	and	System.Priority’Last.	Furthermore,	
the	implementation-defined	representation	aspects	of	types	and	subtypes	can	be	queried	by	language-defined	
attributes.	Thus,	code	can	be	parameterized	to	adjust	to	implementation-defined	properties	without	modifying	
the	code.	

• Programmers	should	be	aware	of	the	contents	of	Annex	M	of	the	Ada	Standard	and	avoid	
implementation-defined	behaviour	whenever	possible.		

• Programmers	should	make	use	of	the	constants	and	subtype	attributes	provided	in	package	System	and	
elsewhere	to	avoid	exceeding	implementation-defined	limits.		

• Programmers	should	minimize	use	of	any	predefined	numeric	types,	as	the	ranges	and	precisions	of	these	
are	all	implementation	defined.	Instead,	they	should	declare	their	own	numeric	types	to	match	their	
particular	application	needs.	

• When	there	are	implementation-defined	formats	for	strings,	such	as	Exception_ Information,	any	
necessary	processing	should	be	localized	in	packages	with	implementation-specific	variants.		

6.55	Deprecated	Language	Features	[MEM]	

6.55.1	Applicability	to	language		
If	obsolescent	language	features	are	used,	then	the	mechanism	of	failure	for	the	vulnerability	is	as	described	in	
Section	6.55.3.	

6.55.2	Guidance	to	language	users		

• Use	pragma Restrictions (No_Obsolescent_Features)	to	prevent	the	use	of	any	obsolescent	features.	
• Refer	to	Annex	J	of	the	Ada	reference	manual	to	determine	if	a	feature	is	obsolescent.	

6.56	Concurrency	–	Activation	[CGA]	
	
6.56.1	Applicability	to	language	

6.56.2	Guidance	to	language	users	

	

40	 ©	ISO/IEC	2013	–	All	rights	reserved	
	

6.57	Concurrency	–	Directed	termination	[CGT]	
	
6.57.1	Applicability	to	language	

6.57.2	Guidance	to	language	users	

6.58	Concurrent	Data	Access	[CGX]		
	
6.58.1	Applicability	to	language	

6.58.2	Guidance	to	language	users	

	

6.59	Concurrency	–	Premature	Termination	[CGS]	
	
6.59.1	Applicability	to	language	

6.59.2	Guidance	to	language	users	

6.60	Protocol	Lock	Errors	[CGM]	
	
6.60.1	Applicability	to	language	

6.60.2	Guidance	to	language	users	

6.61	Uncontrolled	Format	String		[SHL]	
	
7	Language	specific	vulnerabilities	for	Ada	
	
8	Implications	for	standardization	

Future	standardization	efforts	should	consider	the	following	items	to	address	vulnerability	issues	identified	earlier	
in	this	Annex:	

• Some	languages	(for	example,	Java)	require	that	all	local	variables	either	be	initialized	at	the	point	of	
declaration	or	on	all	paths	to	a	reference.	Such	a	rule	could	be	considered	for	Ada	(see	6.22	Initialization	
of	Variables	[LAV]).	

• Pragma Restrictions	could	be	extended	to	allow	the	use	of	these	features	to	be	statically	checked	(see	
6.31	Structured	Programming	[EWD]).	

• When	appropriate,	language-defined	checks	should	be	added	to	reduce	the	possibility	of	multiple	
outcomes	from	a	single	construct,	such	as	by	disallowing	side-effects	in	cases	where	the	order	of	
evaluation	could	affect	the	result	(see	6.52	Unspecified	Behaviour	[BQF]).	

• When	appropriate,	language-defined	checks	should	be	added	to	reduce	the	possibility	of	erroneous	
execution,	such	as	by	disallowing	unsynchronized	access	to	shared	variables	(see	6.53	Undefined	
Behaviour	[EWF]).	

• Language	standards	should	specify	relatively	tight	boundaries	on	implementation-defined	behaviour	
whenever	possible,	and	the	standard	should	highlight	what	levels	represent	a	portable	minimum	

Stephen Michell� 2017-2-20 9:16 AM
Formatted: Font:Italic, Underline, Font color:
Custom Color(RGB(0,112,192))
Stephen Michell� 2017-2-20 9:16 AM

Deleted: 6.22	Initialization	of	Variables	[LAV]

Stephen Michell� 2017-2-20 9:16 AM
Formatted: Font:Italic, Underline, Font color:
Custom Color(RGB(0,112,192))

Stephen Michell� 2017-2-20 9:16 AM
Deleted: 6.31	Structured	Programming	[EWD]

Stephen Michell� 2017-2-20 9:16 AM
Formatted: Font:Italic, Underline, Font color:
Custom Color(RGB(0,112,192))
Stephen Michell� 2017-2-20 9:16 AM

Deleted: 6.52	Unspecified	Behaviour	[BQF]

Stephen Michell� 2017-2-20 9:16 AM
Formatted: Font:Italic, Underline, Font color:
Custom Color(RGB(0,112,192))
Stephen Michell� 2017-2-20 9:16 AM

Deleted: 6.53	Undefined	Behaviour	[EWF]

©	ISO/IEC	2013	–	All	rights	reserved	 41	
	

capability	on	which	programmers	may	rely.	For	languages	like	Ada	that	allow	user	declaration	of	numeric	
types,	the	number	of	predefined	numeric	types	should	be	minimized	(for	example,	strongly	discourage	or	
disallow	declarations	of	Byte_Integer,	Very_Long_Integer,	and	similar,	in	package Standard)	(see	6.54	
Implementation-Defined	Behaviour	[FAB]).	

• Ada	could	define	a	pragma Restrictions	identifier	No_Hiding	that	forbids	the	use	of	a	declaration	that	
result	in	a	local	homograph	(see	6.20	Identifier	Name	Reuse	[YOW]).	

• Add	the	ability	to	declare	in	the	specification	of	a	function	that	it	is	pure,	that	is,	it	has	no	side	effects	(see	
6.24	Side-effects	and	Order	of	Evaluation	[SAM]).	

• Pragma Restrictions	could	be	extended	to	restrict	the	use	of	'Address attribute	to	library	level	static	
objects	(see	6.33	Dangling	References	to	Stack	Frames	[DCM]).	

• Future	standardization	of	Ada	should	consider	implementing	a	language-provided	reference	counting	
storage	management	mechanism	for	dynamic	objects	(see	6.39	Memory	Leak	[XYL]).	

• Provide	mechanisms	to	prevent	further	extensions	of	a	type	hierarchy	(see	6.41	Inheritance	[RIP]).	
• Future	standardization	of	Ada	should	consider	support	for	arbitrary	pre-	and	postconditions	(see	6.43	

Argument	Passing	to	Library	Functions	[TRJ]).	
• Ada	standardization	committees	can	work	with	other	programming	language	standardization	committees	

to	define	library	interfaces	that	include	more	than	a	program	calling	interface.	In	particular,	mechanisms	
to	qualify	and	quantify	ranges	of	behaviour,	such	as	pre-conditions,	post-conditions	and	invariants,	would	
be	helpful	(see	6.46	Library	Signature	[NSQ]).	

	 	

Stephen Michell� 2017-2-20 9:16 AM
Formatted: Font:Italic, Underline, Font
color: Custom Color(RGB(0,112,192))
Stephen Michell� 2017-2-20 9:16 AM

Deleted: 6.54	Implementation-Defined	
Behaviour	[FAB]

Stephen Michell� 2017-2-20 9:16 AM
Formatted: Font:Italic, Underline, Font
color: Custom Color(RGB(0,112,192))

Stephen Michell� 2017-2-20 9:16 AM
Deleted: 6.20	Identifier	Name	Reuse	[YOW]

Stephen Michell� 2017-2-20 9:16 AM
Formatted: Font:Italic, Underline, Font
color: Custom Color(RGB(0,112,192))
Stephen Michell� 2017-2-20 9:16 AM

Deleted: 6.24	Side-effects	and	Order	of	
Evaluation	[SAM]

Stephen Michell� 2017-2-20 9:16 AM
Formatted: Font:Italic, Underline, Font
color: Custom Color(RGB(0,112,192))

Stephen Michell� 2017-2-20 9:16 AM
Deleted: 6.33	Dangling	References	to	Stack	
Frames	[DCM]

Stephen Michell� 2017-2-20 9:16 AM
Formatted: Font:Italic, Underline, Font
color: Custom Color(RGB(0,112,192))
Stephen Michell� 2017-2-20 9:16 AM

Deleted: 6.39	Memory	Leak	[XYL]

Stephen Michell� 2017-2-20 9:16 AM
Formatted: Font:Italic, Underline, Font
color: Custom Color(RGB(0,112,192))
Stephen Michell� 2017-2-20 9:16 AM

Deleted: 6.41	Inheritance	[RIP]

Stephen Michell� 2017-2-20 9:16 AM
Formatted: Font:Italic, Underline, Font
color: Custom Color(RGB(0,112,192))
Stephen Michell� 2017-2-20 9:16 AM

Deleted: 6.43	Argument	Passing	to	Library	
Functions	[TRJ]

Stephen Michell� 2017-2-20 9:16 AM
Formatted: Font:Italic, Underline, Font
color: Custom Color(RGB(0,112,192))

Stephen Michell� 2017-2-20 9:16 AM
Deleted: 6.48	Library	Signature	[NSQ]

42	 ©	ISO/IEC	2013	–	All	rights	reserved	
	

8.	Language	Vulnerabilities	Specific	to	Ada	

	 	

©	ISO/IEC	2013	–	All	rights	reserved	 43	
	

Bibliography	

[1]	 ISO/IEC	Directives,	Part	2,	Rules	for	the	structure	and	drafting	of	International	Standards,	2004	

[2]	 ISO/IEC	TR	10000-1,	Information	technology	—	Framework	and	taxonomy	of	International	Standardized	
Profiles	—	Part	1:	General	principles	and	documentation	framework	

[3]	 ISO	10241	(all	parts),	International	terminology	standards	

	[7]	 ISO/IEC/IEEE	60559:2011,	Information	technology	–	Microprocessor	Systems	–	Floating-Point	arithmetic	

	[9]	 ISO/IEC	8652:1995,	Information	technology	—	Programming	languages	—	Ada	

	[11]	 R.	Seacord,	The	CERT	C	Secure	Coding	Standard.	Boston,MA:	Addison-Westley,	2008.	

	[14]	 ISO/IEC	TR	15942:2000,	Information	technology	—	Programming	languages	—	Guide	for	the	use	of	the	
	 Ada	programming	language	in	high	integrity	systems	

	[17]	 ISO/IEC	TR	24718:	2005,	Information	technology	—	Programming	languages	—	Guide	for	the	use	of	the	
Ada	Ravenscar	Profile	in	high	integrity	systems	

	[19]	 ISO/IEC	15291:1999,	Information	technology	—	Programming	languages	—	Ada	Semantic	Interface	
Specification	(ASIS)	

[20]	 Software	Considerations	in	Airborne	Systems	and	Equipment	Certification.	Issued	in	the	USA	by	the	
Requirements	and	Technical	Concepts	for	Aviation	(document	RTCA	SC167/DO-178B)	and	in	Europe	by	the	
European	Organization	for	Civil	Aviation	Electronics	(EUROCAE	document	ED-12B).December	1992.	

[21]	 IEC	61508:	Parts	1-7,	Functional	safety:	safety-related	systems.	1998.	(Part	3	is	concerned	with	software).	

[22]	 ISO/IEC	15408:	1999	Information	technology.	Security	techniques.	Evaluation	criteria	for	IT	security.	

[23]	 J	Barnes,	High	Integrity	Software	-	the	SPARK	Approach	to	Safety	and	Security.	Addison-Wesley.	2002.	

1. Lecture	Notes	on	Computer	Science	5020,	“Ada	2012	Rationale:	The	Language,	the	Standard	Libraries,”	
John	Barnes,	Springer,	2012.		???????	

	
	[25]	 Steve	Christy,	Vulnerability	Type	Distributions	in	CVE,	V1.0,	2006/10/04	

	[29]	 Lions,	J.	L.	ARIANE	5	Flight	501	Failure	Report.	Paris,	France:	European	Space	Agency	(ESA)	&	National	
Center	for	Space	Study	(CNES)	Inquiry	Board,	July	1996.	

	[33]	 The	Common	Weakness	Enumeration	(CWE)	Initiative,	MITRE	Corporation,	(http://cwe.mitre.org/)	

[34]	 Goldberg,	David,	What	Every	Computer	Scientist	Should	Know	About	Floating-Point	Arithmetic,	ACM	
Computing	Surveys,	vol	23,	issue	1	(March	1991),	ISSN	0360-0300,	pp	5-48.	

[35]	 IEEE	Standards	Committee	754.	IEEE	Standard	for	Binary	Floating-Point	Arithmetic,	ANSI/IEEE	Standard	
754-2008.	Institute	of	Electrical	and	Electronics	Engineers,	New	York,	2008.	

[36]	 Robert	W.	Sebesta,	Concepts	of	Programming	Languages,	8th	edition,	ISBN-13:	978-0-321-49362-0,	ISBN-
10:	0-321-49362-1,	Pearson	Education,	Boston,	MA,	2008	

44	 ©	ISO/IEC	2013	–	All	rights	reserved	
	

[37]	 Bo	Einarsson,	ed.	Accuracy	and	Reliability	in	Scientific	Computing,	SIAM,	July	2005	
http://www.nsc.liu.se/wg25/book	

[38]	 GAO	Report,	Patriot	Missile	Defense:	Software	Problem	Led	to	System	Failure	at	Dhahran,	Saudi	Arabia,	B-
247094,	Feb.	4,	1992,	http://archive.gao.gov/t2pbat6/145960.pdf	

[39]	 Robert	Skeel,	Roundoff	Error	Cripples	Patriot	Missile,	SIAM	News,	Volume	25,	Number	4,	July	1992,	page	
11,	http://www.siam.org/siamnews/general/patriot.htm	

	[41]	 Holzmann,	Garard	J.,	Computer,	vol.	39,	no.	6,	pp	95-97,	Jun.,	2006,	The	Power	of	10:	Rules	for	Developing	
Safety-Critical	Code	

[42]	 P.	V.	Bhansali,	A	systematic	approach	to	identifying	a	safe	subset	for	safety-critical	software,	ACM	SIGSOFT	
Software	Engineering	Notes,	v.28	n.4,	July	2003	

[43]	 Ada	95	Quality	and	Style	Guide,	SPC-91061-CMC,	version	02.01.01.	Herndon,	Virginia:	Software	
Productivity	Consortium,	1992.		Available	from:	http://www.adaic.org/docs/95style/95style.pdf	

[44]	 Ghassan,	A.,	&	Alkadi,	I.	(2003).	Application	of	a	Revised	DIT	Metric	to	Redesign	an	OO	Design.	Journal	of	
Object	Technology	,	127-134.	

[45]	 Subramanian,	S.,	Tsai,	W.-T.,	&	Rayadurgam,	S.	(1998).	Design	Constraint	Violation	Detection	in	Safety-
Critical	Systems.	The	3rd	IEEE	International	Symposium	on	High-Assurance	Systems	Engineering	,	109	-	
116.	

[46]	 Lundqvist,	K	and	Asplund,	L.,	“A	Formal	Model	of	a	Run-Time	Kernel	for	Ravenscar”,	The	6th	International	
Conference	on	Real-Time	Computing	Systems	and	Applications	–	RTCSA	1999	

	 	

©	ISO/IEC	2013	–	All	rights	reserved	 45	
	

Index	

	

		
Ada,	13,	59,	63,	73,	76	
AMV	–	Type-breaking	Reinterpretation	of	Data,	72	
API	

Application	Programming	Interface,	16	
APL,	48	
Apple	

OS	X,	120	
application	vulnerabilities,	9	
Application	Vulnerabilities	

Adherence	to	Least	Privilege	[XYN],	113	
Authentication	Logic	Error	[XZO],	135	
Cross-site	Scripting	[XYT],	125	
Discrepancy	Information	Leak	[XZL],	129	
Distinguished	Values	in	Data	Types	[KLK],	112	
Download	of	Code	Without	Integrity	Check	[DLB],	137	
Executing	or	Loading	Untrusted	Code	[XYS],	116	
Hard-coded	Password	[XYP],	136	
Improper	Restriction	of	Excessive	Authentication	

Attempts	[WPL],	140	
Improperly	Verified	Signature	[XZR],	128	
Inclusion	of	Functionality	from	Untrusted	Control	

Sphere	[DHU],	139	
Incorrect	Authorization	[BJE],	138	
Injection	[RST],	122	
Insufficiently	Protected	Credentials	[XYM],	133	
Memory	Locking	[XZX],	117	
Missing	or	Inconsistent	Access	Control	[XZN],	134	
Missing	Required	Cryptographic	Step	[XZS],	133	
Path	Traversal	[EWR],	130	
Privilege	Sandbox	Issues	[XYO],	114	
Resource	Exhaustion	[XZP],	118	
Resource	Names	[HTS],	120	
Sensitive	Information	Uncleared	Before	Use	[XZK],	130	
Unquoted	Search	Path	or	Element	[XZQ],	127	
Unrestricted	File	Upload	[CBF],	119	
Unspecified	Functionality	[BVQ],	111	
URL	Redirection	to	Untrusted	Site	('Open	Redirect')	

[PYQ],	140	
Use	of	a	One-Way	Hash	without	a	Salt	[MVX],	141	

application	vulnerability,	5	
Ariane	5,	21	
		
bitwise	operators,	48	
BJE	–	Incorrect	Authorization,	138	
BJL	–	Namespace	Issues,	43	
black-list,	120,	124	
BQF	–	Unspecified	Behaviour,	92,	94,	95	

break,	60	
BRS	–	Obscure	Language	Features,	91	
buffer	boundary	violation,	23	
buffer	overflow,	23,	26	
buffer	underwrite,	23	
BVQ	–	Unspecified	Functionality,	111	
		
C,	22,	48,	50,	51,	58,	60,	63,	73	
C++,	48,	51,	58,	63,	73,	76,	86	
C11,	192	
call	by	copy,	61	
call	by	name,	61	
call	by	reference,	61	
call	by	result,	61	
call	by	value,	61	
call	by	value-result,	61	
CBF	–	Unrestricted	File	Upload,	119	
CCB	–	Enumerator	Issues,	18	
CGA	–	Concurrency	–	Activation,	98	
CGM	–	Protocol	Lock	Errors,	105	
CGS	–	Concurrency	–	Premature	Termination,	103	
CGT	-	Concurrency	–	Directed	termination,	100	
CGX	–	Concurrent	Data	Access,	101	
CGY	–	Inadequately	Secure	Communication	of	

Shared	Resources,	107	
CJM	–	String	Termination,	22	
CLL	–	Switch	Statements	and	Static	Analysis,	54	
concurrency,	2	
continue,	60	
cryptologic,	71,	128	
CSJ	–	Passing	Parameters	and	Return	Values,	61,	82	
		
dangling	reference,	31	
DCM	–	Dangling	References	to	Stack	Frames,	63	
Deactivated	code,	53	
Dead	code,	53	
deadlock,	106	
DHU	–	Inclusion	of	Functionality	from	Untrusted	

Control	Sphere,	139	
Diffie-Hellman-style,	136	
digital	signature,	84	
DJS	–	Inter-language	Calling,	81	
DLB	–	Download	of	Code	Without	Integrity	Check,	

137	
DoS	

Denial	of	Service,	118	
dynamically	linked,	83	

46	 ©	ISO/IEC	2013	–	All	rights	reserved	
	

		
EFS	–	Use	of	unchecked	data	from	an	uncontrolled	

or	tainted	source,	109	
encryption,	128,	133	
endian	

big,	15	
little,	15	

endianness,	14	
Enumerations,	18	
EOJ	–	Demarcation	of	Control	Flow,	56	
EWD	–	Structured	Programming,	60	
EWF	–	Undefined	Behaviour,	92,	94,	95	
EWR	–	Path	Traversal,	124,	130	
exception	handler,	86	
		
FAB	–	Implementation-defined	Behaviour,	92,	94,	95	
FIF	–	Arithmetic	Wrap-around	Error,	34,	35	
FLC	–	Numeric	Conversion	Errors,	20	
Fortran,	73	
		
GDL	–	Recursion,	67	
generics,	76	
GIF,	120	
goto,	60	
		
HCB	–	Buffer	Boundary	Violation	(Buffer	Overflow),	

23,	82	
HFC	–	Pointer	Casting	and	Pointer	Type	Changes,	28	
HJW	–	Unanticipated	Exceptions	from	Library	

Routines,	86	
HTML	

Hyper	Text	Markup	Language,	124	
HTS	–	Resource	Names,	120	
HTTP	

Hypertext	Transfer	Protocol,	127	
		
IEC	60559,	16	
IEEE	754,	16	
IHN	–Type	System,	12	
inheritance,	78	
IP	address,	119	
		
Java,	18,	50,	52,	76	
JavaScript,	125,	126,	127	
JCW	–	Operator	Precedence/Order	of	Evaluation,	47	
		
KLK	–	Distinguished	Values	in	Data	Types,	112	
KOA	–	Likely	Incorrect	Expression,	50	
		
language	vulnerabilities,	9	
Language	Vulnerabilities	

Argument	Passing	to	Library	Functions	[TRJ],	80	
Arithmetic	Wrap-around	Error	[FIF],	34	

Bit	Representations	[STR],	14	
Buffer	Boundary	Violation	(Buffer	Overflow)	[HCB],	23	
Choice	of	Clear	Names	[NAI],	37	
Concurrency	–	Activation	[CGA],	98	
Concurrency	–	Directed	termination	[CGT],	100	
Concurrency	–	Premature	Termination	[CGS],	103	
Concurrent	Data	Access	[CGX],	101	
Dangling	Reference	to	Heap	[XYK],	31	
Dangling	References	to	Stack	Frames	[DCM],	63	
Dead	and	Deactivated	Code	[XYQ],	52	
Dead	Store	[WXQ],	39	
Demarcation	of	Control	Flow	[EOJ],	56	
Deprecated	Language	Features	[MEM],	97	
Dynamically-linked	Code	and	Self-modifying	Code	

[NYY],	83	
Enumerator	Issues	[CCB],	18	
Extra	Intrinsics	[LRM],	79	
Floating-point	Arithmetic	[PLF],	xvii,	16	
Identifier	Name	Reuse	[YOW],	41	
Ignored	Error	Status	and	Unhandled	Exceptions	[OYB],	

68	
Implementation-defined	Behaviour	[FAB],	95	
Inadequately	Secure	Communication	of	Shared	

Resources	[CGY],	107	
Inheritance	[RIP],	78	
Initialization	of	Variables	[LAV],	45	
Inter-language	Calling	[DJS],	81	
Library	Signature	[NSQ],	84	
Likely	Incorrect	Expression	[KOA],	50	
Loop	Control	Variables	[TEX],	57	
Memory	Leak	[XYL],	74	
Namespace	Issues	[BJL],	43	
Null	Pointer	Dereference	[XYH],	30	
Numeric	Conversion	Errors	[FLC],	20	
Obscure	Language	Features	[BRS],	91	
Off-by-one	Error	[XZH],	58	
Operator	Precedence/Order	of	Evaluation	[JCW],	47	
Passing	Parameters	and	Return	Values	[CSJ],	61,	82	
Pointer	Arithmetic	[RVG],	29	
Pointer	Casting	and	Pointer	Type	Changes	[HFC],	28	
Pre-processor	Directives	[NMP],	87	
Protocol	Lock	Errors	[CGM],	105	
Provision	of	Inherently	Unsafe	Operations	[SKL],	90	
Recursion	[GDL],	67	
Side-effects	and	Order	of	Evaluation	[SAM],	49	
Sign	Extension	Error	[XZI],	36	
String	Termination	[CJM],	22	
Structured	Programming	[EWD],	60	
Subprogram	Signature	Mismatch	[OTR],	65	
Suppression	of	Language-defined	Run-time	Checking	

[MXB],	89	

©	ISO/IEC	2013	–	All	rights	reserved	 47	
	

Switch	Statements	and	Static	Analysis	[CLL],	54	
Templates	and	Generics	[SYM],	76	
Termination	Strategy	[REU],	70	
Type	System	[IHN],	12	
Type-breaking	Reinterpretation	of	Data	[AMV],	72	
Unanticipated	Exceptions	from	Library	Routines	[HJW],	

86	
Unchecked	Array	Copying	[XYW],	27	
Unchecked	Array	Indexing	[XYZ],	25	
Uncontrolled	Fromat	String	[SHL],	110	
Undefined	Behaviour	[EWF],	94	
Unspecified	Behaviour	[BFQ],	92	
Unused	Variable	[YZS],	40	
Use	of	unchecked	data	from	an	uncontrolled	or	tainted	

source	[EFS],	109	
Using	Shift	Operations	for	Multiplication	and	Division	

[PIK],	35	
language	vulnerability,	5	
LAV	–	Initialization	of	Variables,	45	
LHS	(left-hand	side),	241	
Linux,	120	
livelock,	106	
longjmp,	60	
LRM	–	Extra	Intrinsics,	79	
		
MAC	address,	119	
macof,	118	
MEM	–	Deprecated	Language	Features,	97	
memory	disclosure,	130	
Microsoft	

Win16,	121	
Windows,	117	
Windows	XP,	120	

MIME	
Multipurpose	Internet	Mail	Extensions,	124	

MISRA	C,	29	
MISRA	C++,	87	
mlock(),	117	
MVX	–	Use	of	a	One-Way	Hash	without	a	Salt,	141	
MXB	–	Suppression	of	Language-defined	Run-time	

Checking,	89	
		
NAI	–	Choice	of	Clear	Names,	37	
name	type	equivalence,	12	
NMP	–	Pre-Processor	Directives,	87	
NSQ	–	Library	Signature,	84	
NTFS	

New	Technology	File	System,	120	
NULL,	31,	58	
NULL pointer,	31	
null-pointer,	30	

NYY	–	Dynamically-linked	Code	and	Self-modifying	
Code,	83	

		
OTR	–	Subprogram	Signature	Mismatch,	65,	82	
OYB	–	Ignored	Error	Status	and	Unhandled	

Exceptions,	68,	163	
		
Pascal,	82	
PHP,	124	
PIK	–	Using	Shift	Operations	for	Multiplication	and	

Division,	34,	35,	197	
PLF	–	Floating-point	Arithmetic,	xvii,	16	
POSIX,	99	
pragmas,	75,	96	
predictable	execution,	4,	8	
PYQ	–	URL	Redirection	to	Untrusted	Site	('Open	

Redirect'),	140	
		
real	numbers,	16	
Real-Time	Java,	105	
resource	exhaustion,	118	
REU	–	Termination	Strategy,	70	
RIP	–	Inheritance,	xvii,	78	
rsize_t,	22	
RST	–	Injection,	109,	122	
runtime-constraint	handler,	191	
RVG	–	Pointer	Arithmetic,	29	
		
safety	hazard,	4	
safety-critical	software,	5	
SAM	–	Side-effects	and	Order	of	Evaluation,	49	
security	vulnerability,	5	
SeImpersonatePrivilege,	115	
setjmp,	60	
SHL	–	Uncontrolled	Format	String,	110	
size_t,	22	
SKL	–	Provision	of	Inherently	Unsafe	Operations,	90	
software	quality,	4	
software	vulnerabilities,	9	
SQL	

Structured	Query	Language,	112	
STR	–	Bit	Representations,	14	
strcpy,	23	
strncpy,	23	
structure	type	equivalence,	12	
switch,	54	
SYM	–	Templates	and	Generics,	76	
symlink,	131	
		
tail-recursion,	68	
templates,	76,	77	
TEX	–	Loop	Control	Variables,	57	
thread,	2	

48	 ©	ISO/IEC	2013	–	All	rights	reserved	
	

TRJ	–	Argument	Passing	to	Library	Functions,	80	
type	casts,	20	
type	coercion,	20	
type	safe,	12	
type	secure,	12	
type	system,	12	
		
UNC	

Uniform	Naming	Convention,	131	
Universal	Naming	Convention,	131	

Unchecked_Conversion,	73	
UNIX,	83,	114,	120,	131	
unspecified	functionality,	111	
Unspecified	functionality,	111	
URI	

Uniform	Resource	Identifier,	127	
URL	

Uniform	Resource	Locator,	127	
		
VirtualLock(),	117	
		
white-list,	120,	124,	127	
Windows,	99	
WPL	–	Improper	Restriction	of	Excessive	

Authentication	Attempts,	140	
WXQ	–	Dead	Store,	39,	40,	41	
		
XSS	

Cross-site	scripting,	125	
XYH	–	Null	Pointer	Deference,	30	
XYK	–	Dangling	Reference	to	Heap,	31	
XYL	–	Memory	Leak,	74	
XYM	–	Insufficiently	Protected	Credentials,	9,	133	
XYN	–Adherence	to	Least	Privilege,	113	
XYO	–	Privilege	Sandbox	Issues,	114	
XYP	–	Hard-coded	Password,	136	
XYQ	–	Dead	and	Deactivated	Code,	52	
XYS	–	Executing	or	Loading	Untrusted	Code,	116	
XYT	–	Cross-site	Scripting,	125	
XYW	–	Unchecked	Array	Copying,	27	
XYZ	–	Unchecked	Array	Indexing,	25,	28	
XZH	–	Off-by-one	Error,	58	
XZI	–	Sign	Extension	Error,	36	
XZK	–	Senitive	Information	Uncleared	Before	Use,	

130	
XZL	–	Discrepancy	Information	Leak,	129	
XZN	–	Missing	or	Inconsistent	Access	Control,	134	
XZO	–	Authentication	Logic	Error,	135	
XZP	–	Resource	Exhaustion,	118	
XZQ	–	Unquoted	Search	Path	or	Element,	127	
XZR	–	Improperly	Verified	Signature,	128	
XZS	–	Missing	Required	Cryptographic	Step,	133	
XZX	–	Memory	Locking,	117	
		
YOW	–	Identifier	Name	Reuse,	41,	44	
YZS	–	Unused	Variable,	39,	40	

	

