
6.x Library Signature [NSQ] 
 
6.x.0 Status and history 
 
2009-02-14 – Edits from editor’s teleconference 28th Jan 
2008-10-05: Revised draft provided by Dan Nagle 
2008-09: Considered at Stuttgart meeting 
 
6.x.1 Description of application vulnerability 
 
Some older libraries were coded before the value of subprogram signatures was recognized, and added 
to language standards.  Programs written in modern languages may use libraries written in other 
languages than the program implementation language.  If the library is large, the effort of adding those 
signatures for all of the functions use by hand may be tedious and error-prone.  Portable cross-language 
signatures may will require detailed understanding of both languages, which one a programmer may 
lack. 
 
Integrating two or more programming languages into a single executable relies upon knowing how to 
interface the function calls, argument list and global data structures so the symbols match in the object 
code during linking. 
 
Byte alignment can be a source of data corruption if memory boundaries between the programming 
languages are different. Each language may also align structure data differently.  
 
6.x.2 Cross reference 
 
6.x.3 Mechanism of failure 
 
When an older software library lacks the language-specified signatures, due to its being prepared prior 
to the requirement that signatures be used, the signature must be created.  If this is done manually, 
it may be tedious and error-prone.  Furthermore, ifWhen the library and the application in which it is to 
be used are written in different languages, the specification of signatures is complicated by inter-
language issues as well. 
 
As used in this vulnerability description, the term library includes the interface to the operating system, 
which may be specified only for the language used to code the operating system itself.  In this case, 
any program written in any other language faces the inter-language interoperability issue of creating a 
fully-functional signature. 
 
Automated methods may exist.  Or, translators may have options to create the signatures as they 
compile the older library.  However, neither of these remedies might be required by the language 
standard and so may not be universally available. 
 
If When the application language and the library language are different, then the ability to specify 
signatures according to either standard may not exist, or be very difficult.  Thus, a translator-by-
translator solution may be needed, 
which maximizes the probability of incorrect signatures (since the solution must be recreated for each 
translator pair).  Incorrect signatures may or may not be caught during the linking phase. 
 
6.x.4 Applicable language characteristics 
 
Languages where older versions of the language standard did not specify that subprogram signatures 
be supplied for all subprogram references. 
 

MOOREJ
Note
functions'

MOOREJ
Note
lists

MOOREJ
Note
Consider removing paragraph or rephrase to explain that accessing system calls is a specific instance of the problem.

MOOREJ
Note
Mention that this refers to implementation dependant mappings.

MOOREJ
Note
Vulnerabilities include replacing a library routine and attacking the data structure.

MOOREJ
Note
MISRA C rule 1.3 and MISRA C++ 1-0-2



Languages that do not specify how to describe signatures for subprograms written in other languages. 
 
6.x.5 Avoiding the vulnerability or mitigating its effects 
 
Software developers can avoid the vulnerability or mitigate its ill effects in the following ways: 
 

•Use translator options to create the needed signatures when compiling the library 
• Use tools to create the signatures  
• Avoid using translator options or language features to reference library subprograms without 

proper signatures 
•Try to find a later version of the library that has the signatures 

 
6.x.6 Implications for standardization 
 
In future standardization activities, the following items should be considered:Language standards 
should: 
 

•Require translators to create signatures when needed when translating older libraries that lack 
them. 

• Provide correct linkage even in the absence of correctly specified procedure signatures.  (Note 
that this may be very difficult where the original source code is unavailable.) 

• Provide specified means to describe the signatures of subprograms written using other 
languages. 

 
6.x.7 Bibliography 


