6.<x> XZA Unsafe Function Call

6.<x>.1 Description of application vulnerability

There are several functions which under certain circumstances, such as if used in a signal handler, may result in the corruption of memory allowing for exploitation of the software. 
[This item deals with reentrancy, a special case of concurrency. For now, we set it aside.]
6.<x>.2 Cross reference

CWE: 

479. Unsafe Function Call from a Signal Handler 

6.<x>.3 Categorization

See clause 5.?. <Replace this with the categorization according to the analysis in Clause 5. At a later date, other categorization schemes may be added.>
6.<x>.4 Mechanism of failure

This flaw is a subset of race conditions occuring in signal handler calls which is concerned primarily with memory corruption caused by calls to non-reentrant functions in signal handlers.  Non-reentrant functions are functions that cannot safely be called, interrupted, and then recalled before the first call has finished without resulting in memory corruption.  The function call syslog() is an example of this.  In order to perform its functionality, it allocates a small amount of memory as "scratch space." If syslog() is suspended by a signal call and the signal handler calls syslog(), the memory used by both of these functions enters an undefined, and possibly an exploitable state. 

It may also be possible to execute arbitrary code through the use of a write-what-where condition.

6.<x>.5 Possible ways to avoid the vulnerability

A language might be chosen which is not subject to this flaw through a guarantee of reentrant code.

Implement signal handlers to only set flags rather than perform complex functionality.

Ensure that non-reentrant functions are not found in signal handlers.  Also, use sanity checks to ensure that state is consistently performing asynchronous actions which effect the state of execution.

6.<x>.6 Assumed variations among languages

This vulnerability description is intended to be applicable to languages with the following characteristics:

<Replace this with a bullet list summarizing the pertinent range of characteristics of languages for which this discussion is applicable. This list is intended to assist readers attempting to apply the guidance to languages that have not been treated in the language-specific annexes.>
6.<x>.7 Avoiding the vulnerability or mitigating its effects

Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:

<Replace this with a bullet list summarizing various ways in which programmers can avoid the vulnerability or contain its bad effects. Begin with the more direct, concrete, and effective means and then progress to the more indirect, abstract, and probabilistic means. 

