6.<x> XZX Memory Locking
[Clause 7. Add item recommending that POSIX and other API standards should provide the functionality.]
6.x.0 Status and history

PENDING

2007-07-20, Edited by Jim Moore

2007-07-13, Edited by Larry Wagoner

6.<x>.1 Description of application vulnerability

Sensitive data stored in memory that was not locked or that has been improperly locked may be written to swap files on disk by the virtual memory manager. 

6.<x>.2 Cross reference

CWE:
591. Memory Locking

6.<x>.3 Categorization

See clause 5.?. <Replace this with the categorization according to the analysis in Clause 5. At a later date, other categorization schemes may be added.>
6.<x>.4 Mechanism of failure

Sensitive data that is written to a swap file may be exposed.

6.<x>.5 Possible ways to avoid the vulnerability

Identify data that needs to be protected from swapping and choose platform-appropriate protection mechanisms.

Check return values to ensure locking operations are successful.

On Windows systems the VirtualLock function can lock a page of memory to ensure that it will remain present in memory and not be swapped to disk. However, on older versions of Windows, such as 95, 98, or Me, the VirtualLock() function is only a stub and provides no protection. On POSIX systems the mlock() call ensures that a page will stay resident in memory but does not guarantee that the page will not appear in the swap. Therefore, it is unsuitable for use as a protection mechanism for sensitive data. Some platforms, in particular Linux, do make the guarantee that the page will not be swapped, but this is non-standard and is not portable. Calls to mlock() also require supervisor privilege. Return values for both of these calls must be checked to ensure that the lock operation was actually successful.

6.<x>.6 Assumed variations among languages

This vulnerability description is intended to be applicable to languages with the following characteristics:

<Replace this with a bullet list summarizing the pertinent range of characteristics of languages for which this discussion is applicable. This list is intended to assist readers attempting to apply the guidance to languages that have not been treated in the language-specific annexes.>
6.<x>.7 Avoiding the vulnerability or mitigating its effects

Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:

<Replace this with a bullet list summarizing various ways in which programmers can avoid the vulnerability or contain its bad effects. Begin with the more direct, concrete, and effective means and then progress to the more indirect, abstract, and probabilistic means. 
Recommendations for standards work:
Provide the needed functionality
