
ISO/IEC JTC 1/SC 22/OWGV N 0064
A Comparison of Ada and Real-time Java for Safety-Critical Applications

Date 4 April 2007
Contributed by Ben Brosgol
Original file name PaperPresentationAE2006-Brosgol.pdf
Notes

A Comparison of Ada and Real-Time Java for Safety-Critical Applications
© 2006 AdaCore

Ada Europe 2006 –Ben Brosgol and Andy Wellings
Page 1

A Comparison of Ada and
Real-Time Java™ for
Safety-Critical Applications

Ben Brosgol
brosgol@adacore.com

Presentation cover
page EU

Reliable Software Technologies - Ada Europe 2006
Porto, Portugal
5-9 June 2005
www.ada-europe.org/conference2006.html

Tuesday, 6 June 2006

104 Fifth Avenue, 15th Floor
New York, NY 10011

+1-212-620-7300 (voice)
+1-212-807-0162 (FAX)

AdaCore
US Headquarters:

8 rue de Milan
75009 Paris France

+33-1-4970-6716 (voice)
+33-1-4970-0552 (FAX)

AdaCore
European Headquarters:

www.adacore.com

instituto
superior de
engenharia do
porto

Andy Wellings
andy@cs.york.ac.uk

www.york.ac.uk

1

Overview

Summary of issues

Safety certification and language requirements / features

Ada and safety-critical software

Java and safety-critical software

Real-Time Specification for Java (RTSJ) summary

Proposals for safety-critical real-time Java profile

Conclusions

A Comparison of Ada and Real-Time Java for Safety-Critical Applications
© 2006 AdaCore

Ada Europe 2006 –Ben Brosgol and Andy Wellings
Page 2

2

Summary of issues

What is “safety critical” software?

• Failure can cause loss of human life or have other catastrophic consequences

How does safety criticality affect software development?

• Regulatory agencies require compliance with certification requirements

• Safety-related standards may apply to the finished product, or to the
development process

Choice of programming language has large impact on the cost of
developing / certifying safety-critical systems

• Dilemma: features that help in developing maintainable systems interfere with
safety certification

Examples: Object-Oriented Programming, generics, exceptions, concurrency

• Traditional approach: select subset (profile) amenable to safety certification

Chosen features depend on the analysis methods to be used

Goal of this presentation

• Assess Ada (including Ada 2005 amendment) and real-time Java for suitability
as base languages for safety-critical profiles

DO-178B to serve as exemplar of software safety certification standard

“Safety critical” = DO-178B, Level A or B

3

DO-178B and language requirements

Reliability

• No “traps and pitfalls”

• Early error detection

• Compile-time checking

Predictability

• Unambiguous language semantics

• Static demonstration that time / storage constraints satisfied

Analyzability

• Traceability between requirements and code

All requirements implemented

Each piece of code maps back to a requirement
• No dead code or “Easter eggs”

• Coverage analysis (including Modified Condition Decision Coverage at Level A)

Expressiveness

• Support for application-specific real-time functionality (hardware interrupts,
etc.)

A Comparison of Ada and Real-Time Java for Safety-Critical Applications
© 2006 AdaCore

Ada Europe 2006 –Ben Brosgol and Andy Wellings
Page 3

4

DO-178B and language features: issues

High-level features [predictability, analyzability]

• Array slice assignment implicit loops and conditionals (coverage analysis)

• Access-to-subprogram which subprogram is called

Encapsulation [analyzability]

• Information hiding coverage analysis

Object-Oriented Programming

• Inheritance [reliability, analyzability]

• Polymorphism [predictability, analyzability]

• Dynamic binding [analyzability]

Generics [analyzability]

Inline expansion [predictability, analyzability]

Run-time support [predictability, analyzability]

• Exception handling, concurrency, memory management

• API

Compiler optimizations [predictability, analyzability]

These issues are addressed in the
Object-Oriented Technology in Aviation
(“OOTiA”) Handbook, developed under
FAA and NASA sponsorship

5

Ada and safety-critical requirements (1)

Reliability

• Very few features have surprising effects

• Prevention of dangling references to declared objects, subprograms

• Specification of intent on operation inheritance

• Atomic task activation

• Pragma Assert

• But: absence of garbage collection means programmer responsible for memory
management

Predictability

• Language semantics are generally well-defined, in an ISO standard

But there are features whose effects are implementation defined, implementation
dependent, unspecified, or bounded errors

• Implementation decisions can affect time or space predictability

Functions returning unconstrained arrays

• Solutions in practice

Analyze source program (e.g. no read of uninitialized object)

Adhere to subset (no functions returning unconstrained arrays)

Analyze object code so that implementation decision is known

Ada 2005

A Comparison of Ada and Real-Time Java for Safety-Critical Applications
© 2006 AdaCore

Ada Europe 2006 –Ben Brosgol and Andy Wellings
Page 4

6

Ada and safety-critical requirements (2)

Analyzability

• Some features help analyzability

Child units may be used for testing packages with encapsulated state

• But full language is too complex; need to subset

• Key features are pragma Restrictions and pragma Profile

Ada is in effect a family of profiles, where user can select features à la carte

No such thing as the safety-critical Ada profile

• OOP features are easily avoided

• But no standard annotation facility

Expressibility

• Support for low-level and real-time programming

• Ravenscar Profile for certifiable concurrent applications

• Good inter-language interfacing facilities, to incorporate certifiable libraries
from other languages

• Some weaknesses

Limited support for distribution / networking

7

Java and safety-critical requirements (1)

Why consider Java for safety-critical systems?

• Well-defined semantics for sequential features

• Real-Time Specification for Java (RTSJ) adds deterministic semantics and
predictability for the threading features, and non GC’ed memory areas

• Some systems being developed in Java may have safety-critical components

Reliability

• Addresses many of the insecurities of C and C++

Run-time checks for array index out of bounds, etc.

Automatic garbage collection (but this interferes with predictability, analyzability)

• But there are a number of problems

Weak typing of primitives

C-based lexical structure and syntax
• Example: x==y as a statement or x=y as an expression
• Example: 0XF000000000000000 versus 16#F000_0000_0000_0000#

Signed integer arithmetic will wrap around rather than overflow

Inheritance issues

Low-level (error-prone) thread model

Absence of named parameter associations

A Comparison of Ada and Real-Time Java for Safety-Critical Applications
© 2006 AdaCore

Ada Europe 2006 –Ben Brosgol and Andy Wellings
Page 5

8

Java and safety-critical requirements (2)

Predictability

• Sequential Java is well-defined, except for semantics of finalization

• Thread model is underspecified

• Language definition is not a formal standard

• Garbage collection issues

Analyzability

• “Pure” OO language

Issues with inheritance, polymorphism, dynamic binding

• Garbage collection issues

• Too complex for safety certification

Language semantics (exceptions, threading, memory management, …)

Class library

Java Virtual Machine

Expressiveness

• Applications not amenable to OOP have a contrived style

• Rich API, but these would need to be certified

9

Timeline for real-time and safety-critical Java
NIST Workshops

Lisa Carnahan, NIST

Sun JCP: JSR-001
Real-Time for Java Expert Group

Greg Bollella (IBM/Sun)
www.rtj.org

J-Consortium
Real-Time Java WG

Kelvin Nilsen (NewMonics / Aonix)
www.j-consortium.org

Real-Time Specification for Java
RTSJ V0.9

RTSJ V1.0: RI, TCK
Peter Dibble (Timesys)

1998

June 2000

Nov 2001

RTSJ V1.0.1June 2005

July 2003 Safety-Critical RT Java
The Open Group

Real-Time Core Extensions

Jan 1999

Jan 2006 Formation of Expert Group
The Open Group

(Doug Locke)

V1.0.2May 2006

JSR 282
Peter Dibble
(Timesys)

Draft JSR

HIJA Proposal

Aonix Proposal

“Ravenscar
Java”

A Comparison of Ada and Real-Time Java for Safety-Critical Applications
© 2006 AdaCore

Ada Europe 2006 –Ben Brosgol and Andy Wellings
Page 6

10

Real-Time Specification for Java (1)

Goals

• Add real-time predictability to Java platform

Well-defined scheduling semantics

Priority inversion management

Avoid Garbage Collection latency

• Provide flexibility

Alternative schedulers

Dynamic effects (e.g. priority changes)

Concurrency

• Class RealtimeThread extends java.lang.Thread

Release parameters, scheduling parameters

• NoHeap real-time thread can preempt GC

• Flexible scheduling framework with on-line feasibility analysis

• User can supply handlers for deadline miss, cost overrun

• Base scheduler (fixed-priority, ≥28 priorities, FIFO within priority, preemptive)

• Support for periodic, aperiodic, sporadic real-time threads

Synchronization (priority inversion management)

• Priority inheritance (required), priority ceiling emulation (optional)

11

Real-Time Specification for Java (2)

Memory management

• Garbage-collected heap

• Immortal memory

• Scoped memory areas

A scoped area is used for allocations performed by a specified method invocation

Reclaimable when no threads reference it

Run-time check needed when assigning a reference to a field of an object

Asynchrony

• Asynchronous Transfer of Control

• Asynchronous Events, Async Event Handlers

Time and timers

• High-resolution time (absolute, relative)

• Timers (periodic, one-shot)

Low-level features

• Specialized kinds of “physical” memory

• “Peek/poke” of primitive data in “raw” memory

API

• Use specially implemented standard Java classes

A Comparison of Ada and Real-Time Java for Safety-Critical Applications
© 2006 AdaCore

Ada Europe 2006 –Ben Brosgol and Andy Wellings
Page 7

12

RTSJ and safety-critical requirements

The RTSJ was never intended for safety-critical applications

• It is defined assuming the full generality of the Java language

• Some features (e.g., Asynchronous Transfer of Control) are too complex

• Many rules require run-time checks

But it does address some of the problems with full Java

• Garbage collection latency

• Underspecified semantics for thread scheduling

• Priority inversion management

There is work in progress to define a safety-critical real-time Java
profile “based on” the RTSJ

• Started in July 2003 - The Open Group’s Real-Time Embedded Systems Forum

• Two main competing proposals

HIJA (High-Integrity Java Applications) proposal from aicas (James Hunt)

Aonix Scalable Real-Time Java proposal (Kelvin Nilsen)

• Current status

Doug Locke is the spec lead (as of January 2006)

Decision in progress on which proposal to use as starting point

Java Spec Request is planned for submission to Sun during summer 2006

13

HIJA Safety-Critical Java Proposal

General approach

• Basically an RTSJ subset, aimed at certification at DO-178B Levels A and B

• Annotations support static analysis for memory management, synchronization

Concurrency

• RTSJ base scheduler, 28 priorities

• Application comprises periodic and sporadic async event handlers

• No CPU time monitoring, dynamic priorities, on-line feasibility analysis

Synchronization (priority inversion management)

• No synchronized statements, only synchronized methods

• Priority Ceiling Emulation, no blocking lockless implementation

Memory management

• Simple uses of scoped and immortal memory, no Garbage Collection

Asynchrony

• No Asynchronous Transfer of Control

• Simplified Async Event handling model

Initialization Mission Phase RecoveryStart Halt

A Comparison of Ada and Real-Time Java for Safety-Critical Applications
© 2006 AdaCore

Ada Europe 2006 –Ben Brosgol and Andy Wellings
Page 8

14

Aonix Safety-Critical Java proposal

General approach

• Inspired by RTSJ, but deviates when deemed necessary

• Annotations support static analysis

Concurrency

• RTSJ base scheduler, 28 priorities

• Only NoHeapRealtimeThreads

• No CPU time monitoring, deadline miss handling, dynamic priorities, on-line
feasibility analysis

Synchronization (priority inversion management)

• No synchronized statements, only synchronized methods

• PCP or Atomic (PCP with no blocking)

Memory management

• Immortal memory, “Thread stack” based on static analysis, no Garbage
Collection

Concern about fragmentation if use RTSJ scoped memory

Asynchrony

• No Asynchronous Transfer of Control

• Simplified Async Event handling model

15

Java profiles and safety-critical requirements

Reliability

• Profiles’ restrictions address a few of the issues raised by full Java, but most
are intrinsic to the use of Java

Predictability

• Profiles address Java’s issues with thread model, Garbage Collection

• Aonix proposal handles storage determination issue

• Java’s (lack of) official standardization status applies to the profiles

Analyzability

• Annotations assist static analysis

• Profiles address some of Java’s analyzability issues

Thread model, garbage collection

• Profiles also address some analyzability issues raised by the RTSJ

Eliminate ATC, dynamic priority changes, etc.

Require Priority Ceiling Emulation

• But the OOP analyzability issues are intrinsic to Java

Expressibility

• Clumsy to use Java for non-OO processing

• APIs need to be specially written for certifiability

A Comparison of Ada and Real-Time Java for Safety-Critical Applications
© 2006 AdaCore

Ada Europe 2006 –Ben Brosgol and Andy Wellings
Page 9

16

Conclusions

Ada

• Easier to subset for safety-critical applications

OOP can be removed

Pragma Restrictions, pragma Profile

• Long history of success in this domain

• Lacks standard annotation facility

SPARK offers one approach

Java

• Harder to subset since many issues are intrinsic

Error-prone C-based syntax and lexical structure

Pure OO language

• Subsetting for static analyzability conflicts with Java’s dynamic philosophy

• No experience in producing safety-critical systems in Java

• Java 1.5 annotation facility useful but is too weak

• Work on safety-critical profile will require consensus building

Summary

• Ada is a better technical starting point for safety-critical profiles

• Market interest will keep safety-critical Java an area of active development

