ISO/IEC JTC 1/SC 22/0WGV N 0064

A Comparison of Ada and Real-time Java for Safety-Critical Applications

Date 4 April 2007

Contributed by Ben Brosgol

Original file name PaperPresentationAE2006-Brosgol.pdf
Notes

AdaCore

The GNAT Pro Company

A Comparison of Ada and Real-Time Java for Safety-Critical Applications

© 2006 AdaCore

Ada

The GNAT Pro Company

A Comparison of Ada and
Real-Time Java™ for
Safety-Critical Applications

THE UNIVERSITY @F%nk

#

|
edrope

isep
instituto
superior de
engenharia do
porto

Ben Brosgol Andy Wellings
brosgol@adacore.com andy@cs.york.ac.uk

www.adacore.com www.york.ac.uk
Reliable Software Technologies - Ada Europe 2006
Porto, Portugal

5-9 June 2005
www.ada-europe.org/conference2006.html

Tuesday, 6 June 2006

AdaCore AdaCore
US Headquarters: European Headquarters:
104 Fifth Avenue, 15% Floor 8 rue de Milan
New York, NY 10011 75009 Paris France
+1-212-620-7300 (voice) +33-1-4970-6716 (voice)
+1-212-807-0162 (FAX) +33-1-4970-0552 (FAX)

Ada Overview

Summary of issues

Safety certification and language requirements / features

Ada and safety-critical software

Java and safety-critical software

Real-Time Specification for Java (RTSJ) summary

Proposals for safety-critical real-time Java profile

Conclusions

Ada Europe 2006 —Ben Brosgol and Andy Wellings

Page |

AdaCore

The GNAT Pro Company

A Comparison of Ada and Real-Time Java for Safety-Critical Applications

© 2006 AdaCore

Ada Summary of issues

What is “safety critical” software?
* Failure can cause loss of human life or have other catastrophic consequences
How does safety criticality affect software development?
= Regulatory agencies require compliance with certification requirements
= Safety-related standards may apply to the finished product, or to the
development process
Choice of programming language has large impact on the cost of
developing / certifying safety-critical systems
« Dilemma: features that help in developing maintainable systems interfere with
safety certification
= Examples: Object-Oriented Programming, generics, exceptions, concurrency
= Traditional approach: select subset (profile) amenable to safety certification
= Chosen features depend on the analysis methods to be used
Goal of this presentation
« Assess Ada (including Ada 2005 amendment) and real-time Java for suitability
as base languages for safety-critical profiles
= DO-178B to serve as exemplar of software safety certification standard
= “Safety critical” = DO-178B, Level A or B

Ada DO-178B and language requirements

Reliability

= No “traps and pitfalls”

« Early error detection

= Compile-time checking

Predictability

= Unambiguous language semantics

= Static demonstration that time / storage constraints satisfied
Analyzability

= Traceability between requirements and code

= All requirements implemented

= Each piece of code maps back to a requirement
* No dead code or “Easter eggs”

= Coverage analysis (including Modified Condition Decision Coverage at Level A)

Expressiveness
= Support for application-specific real-time functionality (hardware interrupts,
etc.)

Ada Europe 2006 —Ben Brosgol and Andy Wellings

Page 2

AdaCore

The GNAT Pro Company

Ada DO-178B and language features: issues

High-level features [predictability, analyzability]
* Array slice assignment = implicit loops and conditionals (coverage analysis)
* Access-to-subprogram = which subprogram is called

Encapsulation [analyzability]

These issues are addressed in the
Object-Oriented Technology in Aviation
Object-Oriented Programming (“O0TiA”) Handbook, developed under
FAA and NASA sponsorship

= Information hiding = coverage analysis

= Inheritance [reliability, analyzability]

= Polymorphism [predictability, analyzability]
= Dynamic binding [analyzability]
Generics [analyzability]

Inline expansion [predictability, analyzability]
Run-time support [predictability, analyzability]
* Exception handling, concurrency, memory management
= API

Compiler optimizations [predictability, analyzability]

Ada Ada and safety-critical requirements (1)

Reliability
= Very few features have surprising effects
= Prevention of dangling references to declared objects, subprograms
« Specification of intent on operation inheritance
= Atomic task activation Ada 2005
= Pragma Assert
= But: absence of garbage collection means programmer responsible for memory
management
Predictability
= Language semantics are generally well-defined, in an ISO standard

= But there are features whose effects are implementation defined, implementation
dependent, unspecified, or bounded errors

= Implementation decisions can affect time or space predictability
= Functions returning unconstrained arrays

« Solutions in practice
= Analyze source program (e.g. no read of uninitialized object)
= Adhere to subset (no functions returning unconstrained arrays)
= Analyze object code so that implementation decision is known

A Comparison of Ada and Real-Time Java for Safety-Critical Applications Ada Europe 2006 —Ben Brosgol and Andy Wellings
© 2006 AdaCore Page 3

AdaCore

The GNAT Pro Company

A Comparison of Ada and Real-Time Java for Safety-Critical Applications

© 2006 AdaCore

Ada Ada and safety-critical requirements (2)

Analyzability
= Some features help analyzability
= Child units may be used for testing packages with encapsulated state
« But full language is too complex; need to subset
- Key features are pragma Restrictions and pragma Profile
= Ada is in effect a family of profiles, where user can select features & la carte
= No such thing as the safety-critical Ada profile
= OOP features are easily avoided
= But no standard annotation facility
Expressibility
* Support for low-level and real-time programming
= Ravenscar Profile for certifiable concurrent applications

= Good inter-language interfacing facilities, to incorporate certifiable libraries
from other languages

= Some weaknesses

= Limited support for distribution / networking

Ada Java and safety-critical requirements (1)

Why consider Java for safety-critical systems?
= Well-defined semantics for sequential features

« Real-Time Specification for Java (RTSJ) adds deterministic semantics and
predictability for the threading features, and non GC’ed memory areas

= Some systems being developed in Java may have safety-critical components
Reliability
= Addresses many of the insecurities of C and C++
= Run-time checks for array index out of bounds, etc.

= Automatic garbage collection (but this interferes with predictability, analyzability)

« But there are a number of problems
*= Weak typing of primitives
= C-based lexical structure and syntax

« Example: x==y as a statement or x=y as an expression
* Example: 0XFO00000000000000 versus 16#F000_0000_0000_0000#

= Signed integer arithmetic will wrap around rather than overflow
= Inheritance issues

= Low-level (error-prone) thread model

= Absence of named parameter associations

Ada Europe 2006 —Ben Brosgol and Andy Wellings

Page 4

AdaCore

The GNAT Pro Company

Predictability

= Thread model is underspecified

= Garbage collection issues
Analyzability

* “Pure” OO language

= Garbage collection issues
= Too complex for safety certification

= Class library
= Java Virtual Machine
Expressiveness
= Applications not amenable to OOP have a

Ada Java and safety-critical requirements (2)

* Sequential Java is well-defined, except for semantics of finalization

= Language definition is not a formal standard

» Issues with inheritance, polymorphism, dynamic binding

= Language semantics (exceptions, threading, memory management, ...)

contrived style

* Rich API, but these would need to be certified

Ada Timeline for real-time

P
Jan 1999 Sun JCP: JSR-001
Real-Time for Java Expert Group
Greg Bollella (1IBM/Sun)
www.rtj.org

!

June 2000 Real-Time Specification for Java
RTSJ V0.9

'

Nov 2001 RTSJ V1.0: RI, TCK
Peter Dibble (Timesys)

July 2003 “Ravenscar
Java”
June 2005 RTSJ V1.0.1 |
HIJA Proposal
Jan 2006 JSR 282 e

Peter Dibble
(Timesys)

May 2006 V1.0.2

and safety-critical Java

1998 NIST Workshops
Lisa Carnahan, NIST

““““ >
J-Consortium
Real-Time Java WG
Kelvin Nilsen (NewMonics / Aonix)
WWW. j-consortium.org

Real-Time Core Extensions

Safety-Critical RT Java '
The Open Group

Formation of Expert Group
The Open Group
(Doug Locke)

«
Aonix Proposal

"2 Draft JSR 4

A Comparison of Ada and Real-Time Java for Safety-Critical Applications
© 2006 AdaCore

Ada Europe 2006 —Ben Brosgol and Andy Wellings

Page 5

AdaCore

The GNAT Pro Company

Ada Real-Time Specification for Java (1)

Goals
* Add real-time predictability to Java platform
= Well-defined scheduling semantics
= Priority inversion management
= Avoid Garbage Collection latency
* Provide flexibility
= Alternative schedulers
= Dynamic effects (e.g. priority changes)
Concurrency
e Class RealtimeThread extends java.lang.Thread
= Release parameters, scheduling parameters
= NoHeap real-time thread can preempt GC
* Flexible scheduling framework with on-line feasibility analysis
* User can supply handlers for deadline miss, cost overrun
= Base scheduler (fixed-priority, >28 priorities, FIFO within priority, preemptive)
« Support for periodic, aperiodic, sporadic real-time threads
Synchronization (priority inversion management)

= Priority inheritance (required), priority ceiling emulation (optional) 10

Ada Real-Time Specification for Java (2)

Memory management
= Garbage-collected heap
« Immortal memory
« Scoped memory areas
= A scoped area is used for allocations performed by a specified method invocation
» Reclaimable when no threads reference it
= Run-time check needed when assigning a reference to a field of an object
Asynchrony
= Asynchronous Transfer of Control
= Asynchronous Events, Async Event Handlers
Time and timers
= High-resolution time (absolute, relative)
« Timers (periodic, one-shot)
Low-level features
« Specialized kinds of “physical” memory
« “Peek/poke” of primitive data in “raw” memory
API

= Use specially implemented standard Java classes 11

A Comparison of Ada and Real-Time Java for Safety-Critical Applications
© 2006 AdaCore

Ada Europe 2006 —Ben Brosgol and Andy Wellings

Page 6

AdaCore

The GNAT Pro Company

A Comparison of Ada and Real-Time Java for Safety-Critical Applications

© 2006 AdaCore

Ada RTSJ and safety-critical requirements

The RTSJ was never intended for safety-critical applications
= It is defined assuming the full generality of the Java language
= Some features (e.g., Asynchronous Transfer of Control) are too complex
= Many rules require run-time checks
But it does address some of the problems with full Java
= Garbage collection latency
= Underspecified semantics for thread scheduling
= Priority inversion management
There is work in progress to define a safety-critical real-time Java
profile “based on” the RTSJ
« Started in July 2003 - The Open Group’s Real-Time Embedded Systems Forum
= Two main competing proposals
= HIJA (High-Integrity Java Applications) proposal from aicas (James Hunt)
= Aonix Scalable Real-Time Java proposal (Kelvin Nilsen)
= Current status
= Doug Locke is the spec lead (as of January 2006)
= Decision in progress on which proposal to use as starting point

= Java Spec Request is planned for submission to Sun during summer 2006 12

Ada HIJA Safety-Critical Java Proposal

General approach

= Basically an RTSJ subset, aimed at certification at DO-178B Levels A and B

= Annotations support static analysis for memory management, synchronization
Concurrency

= RTSJ base scheduler, 28 priorities

= Application comprises periodic and sporadic async event handlers

= No CPU time monitoring, dynamic priorities, on-line feasibility analysis
Synchronization (priority inversion management)

= No synchronized statements, only synchronized methods

= Priority Ceiling Emulation, no blocking = lockless implementation

Memory management

Initialization H Mission PhaseH Recovery
t |

= Simple uses of scoped and immortal memory, no Garbage Collection

Asynchrony
= No Asynchronous Transfer of Control
= Simplified Async Event handling model

13

Ada Europe 2006 —Ben Brosgol and Andy Wellings

Page 7

AdaCore

The GNAT Pro Company

A Comparison of Ada and Real-Time Java for Safety-Critical Applications

© 2006 AdaCore

Ada Aonix Safety-Critical Java proposal

General approach
= Inspired by RTSJ, but deviates when deemed necessary
= Annotations support static analysis
Concurrency
= RTSJ base scheduler, 28 priorities
= Only NoHeapRealtimeThreads
= No CPU time monitoring, deadline miss handling, dynamic priorities, on-line
feasibility analysis
Synchronization (priority inversion management)
« No synchronized statements, only synchronized methods
= PCP or Atomic (PCP with no blocking)
Memory management
< Immortal memory, “Thread stack” based on static analysis, no Garbage
Collection
= Concern about fragmentation if use RTSJ scoped memory
Asynchrony
= No Asynchronous Transfer of Control
= Simplified Async Event handling model

14

Ada Java profiles and safety-critical requirements

Reliability
= Profiles’ restrictions address a few of the issues raised by full Java, but most
are intrinsic to the use of Java
Predictability
= Profiles address Java’s issues with thread model, Garbage Collection
= Aonix proposal handles storage determination issue
« Java’s (lack of) official standardization status applies to the profiles
Analyzability
= Annotations assist static analysis
= Profiles address some of Java’s analyzability issues
= Thread model, garbage collection
= Profiles also address some analyzability issues raised by the RTSJ
= Eliminate ATC, dynamic priority changes, etc.
= Require Priority Ceiling Emulation
= But the OOP analyzability issues are intrinsic to Java
Expressibility
* Clumsy to use Java for non-OO processing

= APIs need to be specially written for certifiability

15

Ada Europe 2006 —Ben Brosgol and Andy Wellings

Page 8

AdaCore

The GNAT Pro Company

A Comparison of Ada and Real-Time Java for Safety-Critical Applications

© 2006 AdaCore

Ada Conclusions

Ada
« Easier to subset for safety-critical applications
= OOP can be removed
= Pragma Restrictions, pragma Profile
« Long history of success in this domain
« Lacks standard annotation facility
= SPARK offers one approach
Java
= Harder to subset since many issues are intrinsic
= Error-prone C-based syntax and lexical structure
= Pure OO language

Subsetting for static analyzability conflicts with Java’s dynamic philosophy
= No experience in producing safety-critical systems in Java
= Java 1.5 annotation facility useful but is too weak
= Work on safety-critical profile will require consensus building
Summary
= Ada is a better technical starting point for safety-critical profiles
= Market interest will keep safety-critical Java an area of active development

16

Ada Europe 2006 —Ben Brosgol and Andy Wellings

Page 9

