
For OWGV Meeting #1, 2006 June, Washington, DC, 
USA

1D2-060622

Terms of Reference:
ISO/IEC Project 22.24772,

“Guidance to Avoiding Vulnerabilities 
in Programming Languages through 

Language Selection and Use”

Jim Moore
Convener, ISO/IEC JTC 1/SC 22/OWG Vulnerability

James.W.Moore@ieee.org



For OWGV Meeting #1, 2006 June, Washington, DC, 
USA

2D2-060622

Project Terms of Reference

• The next several slides describe the “terms of 
reference” – i.e. scope, purpose, products, etc –
of this standards project.

• The terms are derived from the New Work 
Item Proposal that was approved by SC22.

• I have restated the terms in the form of an 
FAQ that can be added to our web site.

• Each of the following slides has a common 
form ...



For OWGV Meeting #1, 2006 June, Washington, DC, 
USA

3D2-060622

Quote from NP: FAQ Response:

FAQ: This box contains a 
(possible) Frequently Asked 

Question.

This box quotes relevant 
source material from the 
approved New Work Item 

Proposal.
This box proposes an 
answer to the FAQ.



For OWGV Meeting #1, 2006 June, Washington, DC, 
USA

4D2-060622

What is the intent of this standards effort?

Title
Guidance to Avoiding Vulnerabilities 
in Programming Languages through 
Language Selection and Use
Purpose and justification
... so that application developers will 
be better informed regarding the 
vulnerabilities inherent to candidate 
languages and the costs of avoiding 
such vulnerabilities. An additional 
benefit is that developers will be 
better prepared to select tooling to 
assist in the evaluation and avoidance 
of vulnerabilities.

The intent of the project is to write a 
report containing guidance to users of 
programming languages on how to 
avoid the vulnerabilities that exist in 
the programming language selected 
for a particular project. Implicitly, the 
guidance may also be helpful in 
selecting a language for a particular 
project. Finally, the report may be 
helpful in choosing tooling to assist 
in evaluating and avoiding 
vulnerabilities.

Quote from NP: FAQ Response:

FAQ:



For OWGV Meeting #1, 2006 June, Washington, DC, 
USA

5D2-060622

What is a “vulnerability”?

[Tentative – subject to discussion.]
“A flaw in a product that makes it 
infeasible, even when using the 
product properly, to prevent an 
attacker from usurping privileges on 
the user's system, regulating its 
operation, compromising data on it, 
or assuming ungranted trust.”
-- From Microsoft, “Definition of a 
Security Vulnerability”: 
http://www.microsoft.com/technet/ar
chive/community/columns/security/e
ssays/vulnrbl.mspx?mfr=true

Quote from NP: FAQ Response:

FAQ:



For OWGV Meeting #1, 2006 June, Washington, DC, 
USA

6D2-060622

What is “guidance”?

Some standards documents 
contain "normative" provisions 
– requirements that a user must 
obey in order to be allowed to 
make a claim of conformance 
to the standard. This document 
will not contain such 
provisions; it will contain only 
information and suggestions 
for users.

Quote from NP: FAQ Response:

FAQ:



For OWGV Meeting #1, 2006 June, Washington, DC, 
USA

7D2-060622

Is the guidance intended to be “one size fits all”?

Scope The guidance could be 
applicable to any software 
development project applying 
the programming languages 
considered in the TR. The 
advisability of applying the 
guidance would vary 
depending upon the criticality 
of properties such as safety, 
security or privacy. ...

No. When one considers a 
number of vulnerabilities, the 
severity of their consequences 
may vary and the resource 
necessary to avoid them or 
mitigate their consequences 
may also vary. Users need to 
make an informed selection of 
vulnerabilities to be treated 
based on the need of the 
software product to preserve 
critical properties and the cost 
of preserving those properties.

Quote from NP: FAQ Response:

FAQ:



For OWGV Meeting #1, 2006 June, Washington, DC, 
USA

8D2-060622

What is a “critical property”?

Purpose and justification ... These 
problems can have serious 
consequences for systems that are 
intended to implement integrity 
properties such as safety, security or 
privacy. Although the consequences 
may be less severe, there is also the 
cost of dealing with electronic 
vandalism enabled by vulnerabilities 
in programs that are not themselves 
intended to have high integrity 
properties.

Of course, we hope that all software 
works correctly. However, 
consequences of software failure can 
be particularly severe when the 
failure compromises safety, security, 
or privacy. These are examples of 
critical properties. A critical property 
is a property of software and its 
containing system that must be 
preserved in order to avoid failures 
that present unacceptably severe 
consequences.

Quote from NP: FAQ Response:

FAQ:



For OWGV Meeting #1, 2006 June, Washington, DC, 
USA

9D2-060622

Is there more critical software now than in the good old days?

Well, there's the obvious fact that 
software is now being used in more 
devices, including devices with 
critical properties. In addition to this, 
the increasing connectivity provided 
by the internet increases the 
vulnerability of all software. An 
intruder can attack any piece of 
software that is executing on a 
machine, and then use that software 
as a springboard to attack other 
software on the machine or on the 
network. So it becomes important to 
decrease the vulnerability of all
software – even software with low 
criticality. 

Quote from NP: FAQ Response:

FAQ:



For OWGV Meeting #1, 2006 June, Washington, DC, 
USA

10D2-060622

So, is all software critical?

No, there will always be 
software where additional 
development effort is justified 
to increase safety, security, or 
privacy. However, it is now 
appropriate for all software 
(except software in isolated, 
dedicated systems) to exhibit 
greater resistance to attack and 
exploitation.

Quote from NP: FAQ Response:

FAQ:



For OWGV Meeting #1, 2006 June, Washington, DC, 
USA

11D2-060622

What sorts of vulnerabilities exist in programming languages?

Purpose and justification - Any 
programming language contains constructs 
that are vague or difficult to use. Many 
language definitions include "implementation 
dependencies" that can affect their semantics 
in different execution environments. There is a 
set of "common mode" failures that occur 
across a variety of languages. Finally, there are 
weaknesses in language constructs that can be 
exploited by attackers, for example, the now-
famous "buffer overrun" attacks. As a result, 
software programs sometimes execute 
differently than was intended by their 
developers. 

Any programming language contains 
constructs that are vague or difficult to use. 
Many language definitions include 
"implementation dependencies" that can affect 
their semantics in different execution 
environments. There is a set of "common 
mode" failures that occur across a variety of 
languages, for example, problems with 
pointers. Finally, there are weaknesses in 
constructs provided by particular languages, 
for example, "buffer overrun" in C. There was 
a time when many of these weaknesses might 
have been regarded as benign. In a connected 
world, though, the weaknesses can be 
exploited by attackers. "Buffer overrun" is 
simply the most famous example.

Quote from NP: FAQ Response:

FAQ:



For OWGV Meeting #1, 2006 June, Washington, DC, 
USA

12D2-060622

Is there a criterion for selecting language features for guidance?

Purpose and justification -
... Successful treatment of these 
problems would result in the 
production of software codes that 
exhibit more predictable behaviour in 
execution. ... One criteria for 
selecting guidance for the report 
would be whether the guidance 
improves the predictability of 
execution.

The general idea is that a particular 
program code should execute the 
behaviour that the programmer 
intended, even when stimulated in 
unanticipated ways by external 
parties or events. We call this 
property “predictable execution”. We 
will consider providing guidance on a 
feature of a programming language if 
that guidance can improve the 
predictability of execution of 
program codes containing the feature.

Quote from NP: FAQ Response:

FAQ:



For OWGV Meeting #1, 2006 June, Washington, DC, 
USA

13D2-060622

Is it possible to completely protect code from exploitation by attackers?

Purpose and justification
... Although an ideal result is 
currently impractical, "predictable 
execution" is an ideal toward which 
we can strive.

The goal is to provide guidance 
helping coders improve the 
predictability of the execution of 
their code, even in the face of 
attempted exploitation. Complete 
success is infeasible, so the goal of 
fully predictable execution represents 
an ideal. Nevertheless, practical 
guidance can help to reduce the 
frequency and the consequences of 
successful attack.

Quote from NP: FAQ Response:

FAQ:



For OWGV Meeting #1, 2006 June, Washington, DC, 
USA

14D2-060622

How will the Technical Report be organized?

Purpose and justification
... The purpose of this project 
is to prepare comparative 
guidance spanning a large 
number of programming 
languages ... 

The plan is to organize the 
report by type of vulnerability. 
Then the Technical Report 
would describe how each type 
of vulnerability manifests itself 
in the various programming 
languages. For each language 
the report would provide 
techniques for avoiding the 
vulnerability or guidance for 
mitigating its ill effects.

Quote from NP: FAQ Response:

FAQ:



For OWGV Meeting #1, 2006 June, Washington, DC, 
USA

15D2-060622

What sort of guidance will be provided?

Purpose and justification
... In developing the guidance, the project 
will prefer linguistic means of avoiding 
vulnerabilities but, when necessary may 
describe extra-linguistic means (e.g. 
static analysis or targeted testing). In 
developing the guidance, the project will 
prefer the avoidance of identified risks 
but, when necessary, may describe means 
to mitigate the risk of vulnerabilities that 
cannot be economically avoided. Finally, 
in cases where identified problems can be 
neither avoided nor mitigated, the report 
may assist users in understanding the 
nature of risk that must be accepted. 

In the simplest of cases, the report will 
suggest alternative coding patterns that 
are equally effective but which avoid the 
vulnerability or which otherwise improve 
the predictability of execution. When that 
is not possible, the report may suggest the 
use of static analysis techniques and may 
provide guidance for coding in a manner 
that will improve the effectiveness of the 
analysis. When static analysis is not 
feasible, the report may suggest the use 
of other testing or verification techniques. 
Whenever possible, the report will assist 
users in understanding the cost and 
benefits of avoiding risks and the nature 
of any residual risks.

Quote from NP: FAQ Response:

FAQ:



For OWGV Meeting #1, 2006 June, Washington, DC, 
USA

16D2-060622

Is this guidance only for coders? 

Purpose and justification
... The admission that some problems 
must be treated via analysis or testing 
introduces a secondary consideration in 
recommending linguistic means for 
avoiding vulnerabilities; in some 
situations, one construct might be 
preferred over another on the grounds 
that it is easier to test or easier to analyze. 
This relationship between construction 
and subsequent verification activities 
makes it clear that the report will be 
useful both for those emphasizing 
"correctness by construction" and those 
who desire to improve the predictability 
of execution through testing and analysis.

No. In some cases, it may be difficult to 
avoid the vulnerability through coding 
techniques. One might have to rely on 
static analysis or testing in order to 
evaluate the vulnerability. In some cases, 
though, naively coded constructs cannot 
be effectively analyzed. In such cases, it 
may be preferable to design the program 
in a particular way – not because it 
avoids the vulnerability – but because it 
allows the analysis or testing to be 
performed more effectively. A balanced 
approach to dealing with the 
vulnerabilities will involve design, 
construction, testing and verification.

Quote from NP: FAQ Response:

FAQ:



For OWGV Meeting #1, 2006 June, Washington, DC, 
USA

17D2-060622

What are the planned products of the project?

Programme of work
If the proposed new work item is 
approved , which of the following 
document(s) is (are) expected to be 
developed? ... a technical report, type 
3
Scope ... In addition to producing a 
Technical Report, it is possible that 
the working group might create 
recommendations for working groups 
that maintain the standards or 
specifications for the programming 
languages considered in the TR.

Two products are envisioned. One is 
a Type 3 Technical Report intended 
for users of programming languages. 
The Technical Report will contain 
guidance explaining different kinds 
of vulnerabilities and how they can 
be avoided in different programming 
languages. The second product might 
be feedback to the standards 
committees responsible for 
programming language standards, 
suggesting changes that could be 
made to their language specifications.

Quote from NP: FAQ Response:

FAQ:



For OWGV Meeting #1, 2006 June, Washington, DC, 
USA

18D2-060622

What is a Type 3 Technical Report?

The most important point is 
that it is not a standard. 
ISO/IEC JTC 1 develops two 
types of documents: standards 
and technical reports—three 
types of them. A Type 3 
Technical Report is a 
document that is inherently 
unsuitable to be a standard. 
The planned document 
precisely fits that category 
because it will not include 
normative provisions.

Quote from NP: FAQ Response:

FAQ:



For OWGV Meeting #1, 2006 June, Washington, DC, 
USA

19D2-060622

Will the report be guided by empirical data?

Purpose and justification
... Although a strict reliance on 
empirical evidence of effectiveness 
and quantified analysis of 
cost/benefit is not feasible, the 
project will be guided by both of 
those notions in its selection of 
guidance to be included in the report. 
Because of the dearth of quantifiable 
evidence, a cautious approach to 
incorporating guidance may be 
appropriate. 

Ideally, yes. However, in many areas 
empirical data is simply not available 
and the collective judgment of 
experts may be used. 

Quote from NP: FAQ Response:

FAQ:



For OWGV Meeting #1, 2006 June, Washington, DC, 
USA

20D2-060622

Where will the list of vulnerabilities come from?

Currently, there are non-ISO efforts 
underway called "Common Vulnerability 
Enumeration" and "Common Weakness 
Evaluation". These projects involve a 
partnership among tool makers and users 
to provide common names to 
vulnerabilities and weaknesses, 
permitting parties to communicate about 
their nature. A representative of these 
projects, Bob Martin, will attend the June 
meeting so that we can determine 
whether these projects might provide the 
vulnerability data that we need. If all else 
fails, we might have to develop an ad hoc 
list based on the judgment of the working 
group.

Quote from NP: FAQ Response:

FAQ:



For OWGV Meeting #1, 2006 June, Washington, DC, 
USA

21D2-060622

What languages will be considered?

Relevant documents to be considered
– The programming language standards of 

ISO/IEC JTC 1/SC 22. 
– For market reasons, the specifications of 

popular languages that are not the subject 
of ISO standards. ...

– Existing documents providing usage 
guidance for individual languages, e.g. 
ISO/IEC TR 15942, MISRA C, 
NUREG/CR-6463. ...

– Existing work on safe programming 
approaches, e.g. the SPARK language, 
ISO/IEC draft TR 24731 (Specification 
for Secure C Library Functions) 

Any of the programming languages 
maintained by JTC 1/SC 22 are 
candidates. Also, popular languages 
maintained by groups outside ISO are 
also candidates, e.g. C# and Java. The 
working group will have to make a 
cost/benefit judgment regarding which 
languages to include. This judgment will 
depend, in part, upon the ability to obtain 
participation by experts in those 
languages. Currently, the group is not 
considering scripting languages, like 
Python, or design languages, like UML.

Quote from NP: FAQ Response:

FAQ:



For OWGV Meeting #1, 2006 June, Washington, DC, 
USA

22D2-060622

What other work will be considered?

Relevant documents to be 
considered
– ... The software engineering 

standards of ISO/IEC JTC 1/SC 7, 
as a source of extra-linguistic 
mitigation methods. ...

– Standards dealing with functional 
safety, notably, IEC 61508. ...

In some cases, programming 
language vulnerabilities cannot 
be feasibly avoided. In such 
cases, one might apply other 
software engineering, risk 
management, or safety 
engineering techniques to deal 
with the problem. The software 
engineering standards of 
ISO/IEC JTC 1/SC 7 may be 
relevant in this area, as well as 
the functional safety standard, 
IEC 61508.

Quote from NP: FAQ Response:

FAQ:



For OWGV Meeting #1, 2006 June, Washington, DC, 
USA

23D2-060622

Who will participate in the working group?

Cooperation and liaison
The proposal recognizes that a 
normally constituted working group 
will not suffice to perform the 
necessary work. In addition, to the 
usual National Body participants, it is 
proposed to use experts appointed by 
each existing working group in JTC
1/SC 22, liaison experts appointed by 
other organizations maintaining 
programming language 
specifications, and liaison experts 
appointed by other standards 
committees maintaining related 
documents.

As is normally the case, the 
Technical Report will have to be 
approved by a consensus of national 
bodies. Therefore, participants in the 
working group will be representatives 
of those NBs. However, it is clear 
that this group will need additional 
sources of expertise. Therefore, the 
working groups of SC22 have also 
been asked to name experts to 
participate in the group. We are also 
seeking to establish liaisons to 
provide experts for non-ISO 
languages.

Quote from NP: FAQ Response:

FAQ:



For OWGV Meeting #1, 2006 June, Washington, DC, 
USA

24D2-060622

What is the schedule for doing the work?

Preparatory work offered 
with target date(s)
... It is proposed to perform the 
work on the "normal" (36 
month) schedule. However, it 
is recognized that the work 
may be performed in 
increments that subdivide the 
schedule or with refinements 
that would produce subsequent 
amendments or revisions.

The tentative schedule for the 
work is:
First meeting: June 2006
Document outline: Jan 2007
Submission to SC 22: Jan 2008
Submission to JTC 1: Oct 2008
Publication: Jan 2009

Quote from NP: FAQ Response:

FAQ:



For OWGV Meeting #1, 2006 June, Washington, DC, 
USA

25D2-060622

Where can I obtain more information?

Preparatory work 
offered with target 
date(s)
A web site provides a 
summary of progress to 
date: 
http://www.aitcnet.org/isai/

...

A web site provides a 
summary of progress to 
date:
http://www.aitcnet.org/isai/

Quote from NP: FAQ Response:

FAQ:



For OWGV Meeting #1, 2006 June, Washington, DC, 
USA

26D2-060622

Some Examples from Existing 
Documents



For OWGV Meeting #1, 2006 June, Washington, DC, 
USA

27D2-060622

An example of “comparative guidance”

• From the NP: ... prepare comparative 
guidance spanning a large number of 
programming languages



For OWGV Meeting #1, 2006 June, Washington, DC, 
USA

28D2-060622

Example from NUREG/CR-6463, Rev. 1, Review Guidelines for Software 
Languages for Use in Nuclear Power Plant Safety Systems: Final Report, 

1997, US Nuclear Regulatory Commission

If dynamic memory allocation is unavoidable, the 
source code should include provisions to ensure that: 
– All dynamically allocated memory during a specific 

execution cycle is released at the end of that cycle, and 
– The possibility of interruption of execution between the 

point where memory is dynamically allocated and when it 
is released is minimized (if not totally eliminated); there 
should also be provisions in the application code that will 
detect any situation where dynamically allocated memory 
has not been released and release such memory. 

To see the following languages select: Ada; C and 
C++ ; Pascal; PL/M; Ada 95.



For OWGV Meeting #1, 2006 June, Washington, DC, 
USA

29D2-060622

Example from NUREG/CR-6463, Rev. 1, Review Guidelines for Software 
Languages for Use in Nuclear Power Plant Safety Systems: Final Report, 

1997, US Nuclear Regulatory Commission

The following discussion applies to C++ only. 
In C++, the functions to dynamically allocate and free 
memory are new and delete. The following guideline 
applies. 
• Ensure that all classes include a destructor. To avoid 

memory leaks, all classes must include a destructor that 
releases any memory allocated by the class. Constructors 
must themselves be defined in a way to avoid possible 
memory leaks in case of failures. Ensure that for all derived 
classes there are virtual destructors. 



For OWGV Meeting #1, 2006 June, Washington, DC, 
USA

30D2-060622

An example of the relationship of coding and 
analysis

• From the NP: ... the project will prefer linguistic 
means of avoiding vulnerabilities but, when 
necessary may describe extra-linguistic means 
(e.g. static analysis or targeted testing) ... 



For OWGV Meeting #1, 2006 June, Washington, DC, 
USA

31D2-060622

Example from ISO/IEC TR 15942:2000, Information technology 
— Programming languages — Guide for the use of the Ada 

programming language in high integrity systems
Initialization of Variables
All variables should be given a meaningful value before use. Failure to do so 
may raise a predefined exception or cause a bounded error at run-time. Initial 
values may be given by:
1. Associating an explicit initialization expression with the variable at the point 
of its declaration.
2. Making an assignment to the variable that will be executed prior to 
references to it.
For state variables in packages, assignments may also be made in the package 
elaboration part. A consistent approach to the initialization of package state 
variables should be adopted.
In all cases, Data Flow analysis should be used to confirm that every object 
has been assigned a value before it is used. The effectiveness of the analysis is 
undermined if variables are initialized unnecessarily (sometimes called ‘junk 
initialization’). ...


	Terms of Reference:�ISO/IEC Project 22.24772,� “Guidance to Avoiding Vulnerabilities in Programming Languages through Language
	Project Terms of Reference
	What is the intent of this standards effort?
	What is a “vulnerability”?
	What is “guidance”?
	Is the guidance intended to be “one size fits all”?
	What is a “critical property”?
	Is there more critical software now than in the good old days?
	So, is all software critical?
	What sorts of vulnerabilities exist in programming languages?
	Is there a criterion for selecting language features for guidance?
	Is it possible to completely protect code from exploitation by attackers?
	How will the Technical Report be organized?
	What sort of guidance will be provided?
	Is this guidance only for coders? 
	What are the planned products of the project?
	What is a Type 3 Technical Report?
	Will the report be guided by empirical data?
	Where will the list of vulnerabilities come from?
	What languages will be considered?
	What other work will be considered?
	Who will participate in the working group?
	What is the schedule for doing the work?
	Where can I obtain more information?
	Some Examples from Existing Documents
	An example of “comparative guidance”
	Example from NUREG/CR-6463, Rev. 1, Review Guidelines for Software Languages for Use in Nuclear Power Plant Safety Systems: Fi
	Example from NUREG/CR-6463, Rev. 1, Review Guidelines for Software Languages for Use in Nuclear Power Plant Safety Systems: Fi
	An example of the relationship of coding and analysis
	Example from ISO/IEC TR 15942:2000, Information technology — Programming languages — Guide for the use of the Ada programming 

