1 General [intro]

1.1 Scope [intro.scope]

This International Standard specifies requirements for processors oftthogramming language. Thel
first such requirement is that they implement the language, and so this Standard also ¢hefil@thes
requirements and relaxations of the first requirement appear at various places within the Standard.

C+ is a general purpose programming language based on the C programming language as desé€tibed in
ISO/IEC 9899 (1.2). In addition to the facilities provided by &; frovides additional data types, classes,
templates, exceptions, inline functions, operator overloading, function name overloading, referencés, free
store management operators, function argument checking and type conversion, and additional libraryi facili-
ties. These extensions to C are summarized in C.1. The differences between €SO & are summa- O

rized in C.2. The extensions te+Gince 1985 are summarized in C.1.2. O

1.2 Normative references [(intro.refs]

The following standards contain provisions which, through reference in this text, constitute provisidnhs of
this International Standard. At the time of publication, the editions indicated were valid. All standards are
subject to revision, and parties to agreements based on this International Standard are encouraged tad investi-
gate the possibility of applying the most recent editions of the standards indicated below. Members[of IEC

and 1SO maintain registers of currently valid International Standards. a

— ANSI X3/TR-1-82:1982 American National Dictionary for Information Processing Systems a

— ISO/IEC 9899:1990C Standard O

— ISO/IEC xxxx:199xAmendment 1 to C Standard a

EBox 1 ED
CThis last title must be filled in when Amendment 1 is approved. The other titles have not been chegked for
[accuracy. 11

1.3 Definitions [intro.defs]

For the purposes of this International Standard, the definitions given in ANSI X382 and the follow- O
ing definitions apply. a

— argument: An expression in the comma-separated list bounded by the parentheses in a functiah call
expression, a sequence of prepreocessing tokens in the comma-separated list bounded by the parenthe-
ses in a function-like macro invocation, the operandhobw , or an expression in the commak:l
separated list bounded by the angle brackets in a template instantiation. Also knowacisamrgu- [
ment or “actual parameter. 0

— diagnostic message: A message belonging to an implementation-defined subset of [he
implementation’s message output. a

— dynamic type: The dynamic typeof an expression is determined by its current value and may change
during the execution of a program. If a pointer (8.3.1) whose static typeirger to clas®” is point- [
ing to an object of clasB, derived from B (10), the dynamic type of the pointetpsinter toD.” O

1-2 General DRAFT: 25 January 1994 1.3 Definitions

References (8.3.2) are treated similarly. O

— implementation-defined behavior: Behavior, for a correct program construct and correct data, that
depends on the implementation and that each implementation shall document. The range of possible
behaviors is delineated by the standard. O

— implementation limits: Restrictions imposed upon programs by the implementation. O

— locale-specific behavior:Behavior that depends on local conventions of nationality, culture, and [an-
guage that each implementation shall document. O

— multibyte character: A sequence of one or more bytes representing a member of the extended charac-
ter set of either the source or the execution environment. The extended character set is a superset of the
basic character set. O

— parameter: an object or reference declared as part of a function declaration or definition ir the datch
clause of an exception handler that acquires a value on entry to the function or handler, an identifier
from the comma-separated list bounded by the parentheses immediately following the macro name in a
function-like macro definition, or emplate-parameterA function may said tétake argumentsor to 0O
“have parametersParameters are also known d@$@amal argumentsor “formal parameters. O

— signature: The signature of a function is the information about that function that participates in aver-
load resolution (13.2): the types of its parameters and, if the function is a non-static member of &lclass,
the CV-qualifiers (if any) on the function itself and whether the function is a direct member of its [dlass
or inherited from a base class. O

— static type: The static typeof an expression is the type (3.8) resulting from analysis of the program
without consideration of execution semantics. It depends only on the form of the program and daés not
change. O

— undefined behavior: Behavior, upon use of an erroneous program construct, of erroneous data,[br of
indeterminately valued objects, for which the standard imposes no requirements. Permissible undefined
behavior ranges from ignoring the situation completely with unpredictable results, to behaving during
translation or program execution in a documented manner characteristic of the environment (With or
without the issuance of a diagnostic message), to terminating a translation or execution (with the
issuance of a diagnostic message). Note that many erroneous program constructs do not engendér unde-
fined behavior. They are required to be diagnosed. O

— unspecified behavior:Behavior, for a correct program construct and correct data, that depends dn the
implementation. The range of possible behaviors is delineated by the standard. The implementation is
not required to document which behavior occurs. O

1.4 Syntax notation [syntax]

In the syntax notation used in this manual, syntactic categories are indicétigt ype, and literal words

and characters ioonstant width type. Alternatives are listed on separate lines except in a few cases
where a long set of alternatives is presented on one line, marked by the"phes& An optional termi-

nal or nonterminal symbol is indicated by the subs¢opt,” so

{ expressiop), } ad
indicates an optional expression enclosed in braces.
Names for syntactic categories have generally been chosen according to the following rules: a

— X-nameis a use of an identifier in a context that determines its meaning dlags-namgtypedef- [0
name. a

1) Function signatures do not include return type, because that does not participate in overload resolution. O

1.4 Syntax notation DRAFT: 25 January 1994 General 43

— X-id is an identifier with no context-dependent meaning (guelified-id). O

— X-seqis one or moreX’s without intervening delimiters (e.gleclaration-seds a sequence of declarat]
tions). O

— X-listis one or moreX’s separated by intervening commas (eegpression-lists a sequence of exprest]
sions separated by commas).

1.5 The G+ memory model [intro.memory]

The fundamental storage unit in ther@emory model is thbyte. A byte is at least large enough to con-

tain any member of the basic execution character set and is composed of a contiguous sequence of bits, the
number of which is implementation-defined. The least significant bit is callddwherder bit; the most
significant bit is called thaigh-orderbit. The memory accessible to a@rogram is comprised of one or

more contiguous sequences of bytes. Each byte (except perhaps registers) has a unique address.

The constructs in a+€ program create, refer to, access, and manipuolgiertsin memory. Each object
(except bit-fields) occupies one or more contiguous bytes. Objects are created by definitions (3.1) and
new-expressiongs.3.4). Each object hastgpe determined by the construct that creates it. The type in
turn determines the number of bytes that the object occupies and the interpretation of their contents.
Objects may contain other objects, caltdb-object49.2, 10). An object that is not a sub-object of any
other object is called eomplete objectFor every objeck, there is some object calléte complete object

of x, determined as follows: O

— If x is a complete object, thenis the complete object af. O
— Otherwise, the complete objectofs the complete object of the (unique) object that contains
Ct+ provides a variety of built-in types and several ways of composing new types from existing types.

Certain types havalignmentrestrictions. An object of one of those types may appear only at an address
that is divisible by a particular integer. O

1.6 Processor compliance [intro.compliance]

Every conforming & processor shall, within its resource limits, accept and correctly execute well-fofthed
CH programs, and shall issue at least one diagnostic error message when presented with any ill-formed pro-
gram that contains a violation of any rule that is identified as diagnosable in this Standard or of any[Syntax
rule, except as noted herein.

Well-formed G+ programs are those that are constructed according to the syntax rules, semantic rulés iden-
tified as diagnosable, and the One Definition Rule (3.1). If a program is not well-formed but does nadf con-
tain any diagnosable errors, this Standard places no requirement on processors with respect to that program.

1.7 Program execution [intro.execution]

The semantic descriptions in this Standard define a parameterized nondeterministic abstract machihé. This
Standard places no requirement on the structure of conforming processors. In particular, they néed not
copy or emulate the structure of the abstract machine. Rather, conforming processors are requiredo emu-
late (only) the observable behavior of the abstract machine as explained below. O

Certain aspects and operations of the abstract machine are described in this Standard as implemehtationed
defined (for examplesizeof(int)). These constitute the parameters of the abstract machine. Each
implementation shall include documentation describing its characteristics and behavior in these réspects,
which documentation defines the instance of the abstract machine that corresponds to that implemEntation
(referred to as the “corresponding instance” below). O

Certain other aspects and operations of the abstract machine are described in this Standard as uriSpecified
(for example, order of evaluation of arguments to a function). In each case the Standard defines & set of
allowable behaviors. These define the nondeterministic aspects of the abstract machine. An instance of the
abstract machine may thus have more than one possible execution sequence for a given program and a

1-4 General DRAFT: 25 January 1994 1.7 Program execution

given input. O

Certain other operations are described in this International Standard as undefined (for example, the &ffect of
dereferencing the null pointer). O

A conforming processor executing a well-formed program shall produce the same observable beh&vior as
one of the possible execution sequences of the corresponding instance of the abstract machine With the
same program and the same input. However, if any such execution sequence contains an undefinéd opera-
tion, this Standard places no requirement on the processor executing that program with that input (ridt even
with regard to operations previous to the first undefined operation). O

The observable behavior of the abstract machine is its sequence of reads and voitddeto data and O
calls to library 1/0 functioné) O

I An implementation can offer additional library 1/O functions as an extension. Implementations that do so should treat calls to those
functions as “observable behavior” as well.

2 Lexical conventions [lex]

A C+ program need not all be translated at the same time. The text of the program is kept in units called
source filesn this standard. A source file together with all the headers (17.1.2) and source files indllded
(16.2) via the preprocessing directi#mclude , less any source lines skipped by any of the conditional
inclusion (16.1) preprocessing directives, is callé@aslation unit Previously translated translation units

may be preserved individually or in libraries. The separate translation units of a program communicate
(3.4) by (for example) calls to functions whose identifiers have external linkage, manipulation of objects
whose identifiers have external linkage, or manipulation of data files. Translation units may be separately
translated and then later linked to produce an executable program. (3.4).

2.1 Phases of translation [lex.phases]
The precedence among the syntax rules of translation is specified by the foIIowing3bhases.

1 Physical source file characters are mapped to the source character set (introducing new-line charac-
ters for end-of-line indicators) if necessary. Trigraph sequences (2.2) are replaced by corresgonding
single-character internal representations.

2 Each instance of a new-line character and an immediately preceding backslash character is deleted,
splicing physical source lines to form logical source lines. A source file that is not empty shall end
in a new-line character, which shall not be immediately preceded by a backslash character.

3 The source file is decomposed into preprocessing tokens (2.3) and sequences of white-space charac-
ters (including comments). A source file shall not end in a partial preprocessing token or comment.
Each comment is replaced by one space character. New-line characters are retained. Whether each
nonempty sequence of white-space characters other than new-line is retained or replaced by one
space character is implementation-defined. The process of dividing a source file’s characters into
preprocessing tokens is context-dependent. For example, see the handlimigha a#include
preprocessing directive.

4 Preprocessing directives are executed and macro invocations are exparfiedude prepro-
cessing directive causes the named header or source file to be processed from phase 1 through phase
4, recursively.

5 Each source character set member and escape sequence in character constants and string literals is
converted to a member of the execution character set.

6 Adjacent character string literal tokens are concatenated and adjacent wide string literal tokens are
concatenated.

7 White-space characters separating tokens are no longer significant. Each preprocessing token is
converted into a token. (See 2.4). The resulting tokens are syntactically and semantically analyzed
and translated. The result of this process starting from a single source file is dafadlation
unit.

8 The translation units that will form a program are combined. All external object and function refer-
ences are resolved.

3) Implementations must behave as if these separate phases occur, although in practice different phases may be folded together.

2

2-2 Lexical conventions DRAFT: 25 January 1994 2.1 Phases of translation

Box 2 O

0
U 0
0 What about shared libraries?

Library components are linked to satisfy external references to functions and objects not defined in the
current translation. All such translator output is collected into a program image which contains infor-
mation needed for execution in its execution environment.

2.2 Trigraph sequences [lex.trigraph]
Before any other processing takes place, each occurrence of one of the following sequences of three charac-
ters (trigraph sequencés$ is replaced by the single character indicated in Table 1. O
Table 1—trigraph sequences O
O
Urigraph replacementU trigraph replacement trigraph replacemgnt =
O ??= # 2?7 [27 { 0 B
g 2?2/ \ @?)] 27?78 } O g
H 27 n 421 | s - H §
For example,
??=define arraycheck(a,b) a??(b??) ??1??! b??(a??)
becomes
#define arraycheck(a,b) a[b] || b[a]
2.3 Preprocessing tokens [lex.pptoken]
preprocessing-token:
header-name
identifier
pp-number
character-constant
string-literal
operator
digraph
punctuator O

each non-white-space character that cannot be one of the above

Each preprocessing token that is converted to a token (2.5) shall have the lexical form of a keyword, an
identifier, a constant, a string literal, an operator, a digraph, or a punctuator.

A preprocessing tokeis the minimal lexical element of the language in translation phases 3 through 6.

The categories of preprocessing token aeader namesdentifiers preprocessing numbersharacter
constantsstring literals operators punctuators digraphs and single non-white-space characters that do

not lexically match the other preprocessing token categories. Hraa" character matches the last catél

gory, the behavior is undefined. Preprocessing tokens can be separatbiebgpacethis consists of
comments (2.6), avhite-space charactefspace, horizontal tab, new-line, vertical tab, and form-feed), or

both. As described in Clause 16, in certain circumstances during translation phase 4, white spacdl(or the
absence thereof) serves as more than preprocessing token separation. White space may appear within a pre-
processing token only as part of a header name or between the quotation characters in a character constant
or string literal.

2.3 Preprocessing tokens DRAFT: 25 January 1994 Lexical conventions-2

If the input stream has been parsed into preprocessing tokens up to a given character, the next preprocessing
token is the longest sequence of characters that could constitute a preprocessing token.

The program fragmerttEx is parsed as a preprocessing number token (one that is not a valid floating or
integer constant token), even though a parse as the pair of preprocessind. takdEx might produce a

valid expression (for example,iix were a macro defined ad). Similarly, the program fragmed€1 is

parsed as a preprocessing number (one that is a valid floating constant token), whethErioamtacro
name.

The program fragment+++++y is parsed ag ++ ++ + y |, which violates a constraint on increment
operators, even though the paxset + ++y might yield a correct expression.

2.4 Digraph sequences [lex.digraph]
Alternate representations are provided for the operators and punctuators whose primary representations use
the“national charactersThese include digraphs and additional reserved words. O
digraph: ad
<% O
%> ad
< g
> |
%% O

In translation phase 3 (2.1) the digraphs are recognized as preprocessing tokens. Then in translatioh phase
7 the digraphs and the additional identifiers listed below are converted into tokens identical to thosg from

the corresponding primary representations, as shown in Table 2. O
Table 2—identifiers that are treated as operators 0
a
Chlternate primary U alternate _ primaryl! _alternate primaﬁ g
0 <% { - and && apd_eq &= 0 B
0 %> } (bitor | or_eq |= O g
H < [Hor I xor_é:ﬁ A= H =
o >] [xor " nat ! 0 B
U %% # Ucompl ~ net_eq I= U B
- | 5 (]
lEbltand & 0 0 0]
2.5 Tokens [lex.token]
token:
identifier
keyword
literal
operator
punctuator

There are five kinds of tokens: identifiers, keywords, literals (which include strings and character and
numeric constants), operators, and other separators. Blanks, horizontal and vertical tabs, newlines, form-
feeds, and comments (collectivetyyhite spac®), as described below, are ignored except as they serve to
separate tokens. Some white space is required to separate otherwise adjacent identifiers, keywords, and lit-
erals.

If the input stream has been parsed into tokens up to a given character, the next token is taken to be the
longest string of characters that could possibly constitute a token.

2—-4 Lexical conventions DRAFT: 25 January 1994 2.6 Comments

2.6 Comments [lex.comment]

The character§ start a comment, which terminates with the chara¢tersThese comments do not nest]

The characterf start a comment, which terminates the next new-line character. If there is a form-fded or

a vertical-tab character in such a comment, only white-space characters may appear between itland the
new-line that terminates the comment; no diagnostic is required. The comment chéraadtersand*/

have no special meaning within//la comment and are treated just like other characters. Similarly, the
comment charactef6 and/* have no special meaning withirf*a comment.

2.7 Identifiers [lex.name]

identifier:
nondigit
identifier nondigit
identifier digit

nondigit one of
_abcdefghijklm
nopgqrstuvwxyz
ABCDEFGHIJKLM
NOPQRSTUVWXYZ

digit: one of
0123456789

An identifier is an arbitrarily long sequence of letters and digits. The first character must be a letter; the
underscore counts as a letter. Upper- and lower-case letters are different. All characters are significant.

2.8 Keywords [lex.key]
The identifiers shown in Table 3 are reserved for use as keywords, and may not be used otherwise il phases
7 and 8: O
Table 3—keywords 0
O
Lasm delete if reinterpret_cast true U o
uto do inline return try B ad
ool double int short typedef g U
break dynamic_cast long signed typeid o O
[tase else mutable sizeof union o d
Ltatch enum namespace static unsigned U o
har extern new static_cast using B ad
class false operator struct virtual g U
[const float private switch void o O
[tonst _cast for protected template volatile o O
Ltontinue friend public this wchar_t U o
efault goto register throw while H g

Furthermore, the alternate representations shown in Table 4 for certain operators and punctuators (2.4) are
reserved and may not be used otherwise: O

2.8 Keywords DRAFT: 25 January 1994 Lexical conventions -5

Table 4—alternate representations 0

0

Chitand and bitor or xor compl O 0
nd eq or_eq xor_eq not not eq H g

In addition, identifiers containing a double underscore) are reserved for use by+Cimplementations [
and standard libraries and should be avoided by users; no diagnostic is required.

The ASCII representation of+€ programs uses as operators or for punctuation the characters shon in

Table 5. O
Table 5—operators and punctuation characters O

0

O % ~ & * () - + = {1y ~ B D
H]\;’:"<>?,./ E] g

Table 6 shows the character combinationations that are used as operators. O
Table 6—character combinations used as operators 0

0

O> 44+ - * > << >> <= > == I= && t O

Hl *= [= Op= 4= = <<= >>= &= = |: - E g

Each is converted to a single token in translation phase 7 (2.1).

Table 7 shows character combinations that are used as alternative representations for certain operators and

punctuators (2.4). O
Table 7—digraphs O
0
K% %> < > %% B |

Each of these is also recognized as a single token in translation phases 3 and 7.
Table 8 shows additional tokens that are used by the preprocessor. a
Table 8—preprocessing tokens O
0
B ##t %% %%%% H |

Certain implementation-dependent properties, such as the typsizefoh (5.3.3) and the ranges of funi]
damental types (3.8.1), are defined in the standard header files (16.2)

<float.h> <limits.h> <stddef.h>
These headers are part of the ISO C standard. In addition the headers O
<new.h> <stdarg.h> <stdlib.h>

define the types of the most basic library functions. The last two headers are part of the ISO C standard;
<new.h> is G+ specific.

2-6 Lexical conventions DRAFT: 25 January 1994 2.9 Literals

2.9 Literals [lex.literal]

There are several kinds of literals (often referred tacanstant).

literal:
integer-literal
character-literal
floating-literal
string-literal
boolean-literal O
2.9.1 Integer literals [lex.icon]

integer-literal:
decimal-literal integer-suffix,
octal-literal integer-suffix,
hexadecimal-literal integer-suffjy

decimal-literal:
nonzero-digit
decimal-literal digit

octal-literal:
0
octal-literal octal-digit

hexadecimal-literal:
0x hexadecimal-digit
0X hexadecimal-digit
hexadecimal-literal hexadecimal-digit

nonzero-digit: one of ad
1234567829

octal-digit: one of 0
0123 4586 7

hexadecimal-digit: one of ad
012345617829
abocdef

A B CDEF

integer-suffix:
unsigned-suffix long-suffjx
long-suffix unsigned-suffjx

unsigned-suffix:one of O
u U

long-suffix: one of O
I L

An integer literal consisting of a sequence of digits is taken to be decimal (base ten) unless it bef@ins with
(digit zero). A sequence of digits starting withis taken to be an octal integer (base eight). The dgits
and9 are not octal digits. A sequence of digits precedetxbgr 0X is taken to be a hexadecimal integer
(base sixteen). The hexadecimal digits incladar A throughf or F with decimal values ten through fif-
teen. For example, the number twelve can be writfsr914, or 0XC.

2.9.1 Integer literals DRAFT: 25 January 1994 Lexical conventions -7

The type of an integer literal depends on its form, value, and suffix. If it is decimal and has no suffix, it has
the first of these types in which its value can be represented:long int , unsigned long int . If

it is octal or hexadecimal and has no suffix, it has the first of these types in which its value can be repre-
sentedint , unsigned int ,long int ,unsigned long int . Ifitis suffixed byu or U, its type is

the first of these types in which its value can be represamséyned int , unsigned long int . If

it is suffixed byl orL, its type is the first of these types in which its value can be represkmgdint ,
unsigned long int . If it is suffixed byul , lu , uL, Lu, Ul, U, UL, or LU, its type isunsigned

long int

A program is ill-formed if it contains an integer literal that cannot be represented by any of the allowed
types.

2.9.2 Character literals [lex.ccon]

character-literal:
' c-char-sequence
L’ c-char-sequence

c-char-sequence:
c-char
c-char-sequence c-char

c-char:
any member of the source character set except O
the single-quoté, backslash , or new-line character O
escape-sequence

escape-sequence:
simple-escape-sequence
octal-escape-sequence
hexadecimal-escape-sequence

simple-escape-sequencene of O
LS S VAR
\a \b \ff \n \r \t \Wv

octal-escape-sequence:
\ octal-digit
\ octal-digit octal-digit
\ octal-digit octal-digit octal-digit

hexadecimal-escape-sequence:
\x hexadecimal-digit
hexadecimal-escape-sequence hexadecimal-digit

A character literal is one or more characters enclosed in single quotesy’as, ioptionally preceded by [
the letterL, as inL’x’ . Single character literals that do not begin witlhave typechar , with value O
equal to the numerical value of the character in the machine’s character set. Multicharacter literalsthat do
not begin withL have typent and implementation-defined value. O

A character literal that begins with the lettersuch ad 'ab’ , is a wide-character literal. Wide-charactén
literals have typevchar_t . They are intended for character sets where a character does not fit into @ sin-
gle byte. O

Certain nongraphic characters, the single quotbe double quotg, ?, and the backsladh may be repre- [
sented according to Table 9. O

2-8 Lexical conventions DRAFT: 25 January 1994 2.9.2 Character literals

Table 9—escape sequences O
0

Lhew-line NL(LF) \n U |
orizontal tab HT \t E a
[yertical tab VT \v 0 O
backspace BS \b 0 ad
Ctarriage return CR \r O ad
Horm feed FF \f g 0
lert BEL \a E O
ackslash \ g O
rguestion mark ? \? 0 O
Ckingle quote ' \ O O
LHouble quote " \+ U 0
ctal number ooo \ooo E O
ex number hhh \xhhh g

If the character following a backslash is not one of those specified, the behavior is undefined. An escape
sequence specifies a single character.

The escapkoooconsists of the backslash followed by one, two, or three octal digits that are taken to spec-
ify the value of the desired character. The estag®h consists of the backslash followed hyollowed

by a sequence of hexadecimal digits that are taken to specify the value of the desired character. There is no
limit to the number of hexadecimal digits in the sequence. A sequence of octal or hexadecimal digits is ter-
minated by the first character that is not an octal digit or a hexadecimal digit, respectively. The value of a
character literal is implementation dependent if it exceeds that of the lelngest a

2.9.3 Floating literals [lex.fcon]

floating-constant:
fractional-constant exponent-pgytfloating-suffix,
digit-sequence exponent-part floating-siffix

fractional-constant:
digit-sequencg, . digit-sequence
digit-sequence.

exponent-part:
e sign,, digit-sequence
E sign,, digit-sequence

sign: one of 0O
+ -

digit-sequence:
digit
digit-sequence digit

floating-suffix: one of ad
fl F L

A floating literal consists of an integer part, a decimal point, a fraction pagtpak, an optionally signed

integer exponent, and an optional type suffix. The integer and fraction parts both consist of a sequence of
decimal (base ten) digits. Either the integer part or the fraction part (not both) may be missing; either the
decimal point or the lettar (or E) and the exponent (not both) may be missing. The type of a floating lit-
eral isdouble unless explicitly specified by a suffix. The suffifeandF specifyfloat , the suffixed

andL specifylong double .

2.9.4 string literals DRAFT: 25 January 1994 Lexical conventions -9

2.9.4 String literals [lex.string]

string-literal:
" s-char-sequencg’
L" s-char-sequengg’

s-char-sequence:
s-char
s-char-sequence s-char

s-char:
any member of the source character set except O
the double-quoté, backslash , or new-line character 0O
escape-sequence

A string literal is a sequence of characters (as defined in 2.9.2) surrounded by double quotes, opfionally
beginning with the lettek, as in"..." orL".." . A string literal that does not begin withhas type 0O
“array ofchar " and storage classtatic (3.7), and is initialized with the given characters. Whether all
string literals are distinct (that is, are stored in nonoverlapping objects) is implementation dependent. The
effect of attempting to modify a string literal is undefined.

A string literal that begins with, such ad."asdf" , is a wide-character string. A wide-character stringlis
of type“array ofwchar_t .” Concatenation of ordinary and wide-character string literals is undefined. O

HBox 3 B 0
[Bhould this render the program ill-formed? Or is it deliberately undefined to encourage extehsions 1]

Adjacent string literals are concatenated. Characters in concatenated strings are kept distinct. For eéXample,
II\XAII IIBII

contains the two charactéksA’ and’B’ after concatenation (and not the single hexadecimal character
XAB’).

After any necessary concatenatithi is appended so that programs that scan a string can find its end.
The size of a string is the number of its characters including this terminator. Within a string, the double

guote character must be preceded by\a O
2.9.5 Boolean literals [({lex.bool]

boolean-literal: a

false a

true 0

The Boolean literals are the keywoffdése andtrue . Such literals have typggool and the given val- O
ues. They are not Ivalues. O

3 Basic concepts [basic]

This clause presents the basic concepts of #idahiguage. It explains the difference betweemlgject O

and anameand how they relate to the notion oflaalue It introduces the concepts oflaclarationand a
definitionand presents#€’s notion oftype scopelinkage andstorage class The mechanisms for starting

and terminating a program are discussed. Finally, this clause presents the fundamental types of the lan-
guage and lists the ways of constructing derived types from these.

This clause does not cover concepts that affect only a single part of the language. Such conceptsCare dis-
cussed in the relevant clauses.

An entityis a value, object, subobject, base class subobject, array element, variable, function, set af func-
tions, instance of a function, enumerator, type, class member, template, or namespace. a

A nameis a use of an identifier (2.7) that denotes an entitgttw(6.6.4, 6.1). ad

Every name that denotes an entity is introduced dbgctaration Every name that denotes a label is intra}

duced either by goto statement (6.6.4) or labeled-stateme(@.1). Every name is introduced in somg
contiguous portion of program text calledeclarative regio(B.3), which is the largest part of the program

in which that name can possibly be valid. In general, each particular name is valid only within somelpossi-
bly discontiguous portion of program text calledsitop€3.3). To determine the scope of a declaration[it

is sometimes convenient to refer to fwential scopef a declaration. The scope of a declaration is the

same as its potential scope unless the potential scope contains another declaration of the same namnié. In that
case, the potential scope of the declaration in the inner (contained) declarative region is excluded fidm the

scope of the declaration in the outer (containing) declarative region. a
For example, in ad
intj = 24, O

main() a

O

inti=j,j; 0

j=42; O

} O

the identifierj is declared twice as a name (and used twice). The declarative region of therfaisides O
the entire example. The potential scope of theffils¢gins immediately after thptand extends to the end]
of the program, but its (actual) scope excludes the text betweenatine the} . The declarative region of(]
the second declaration pf(thej immediately before the semicolon) includes all the text betyemmd}, O
but its potential scope excludes the declarationn ©he scope of the second declaration o the same [0
as its potential scope.. a

Some names denote types, classes, or templates. In general, it is necessary to determine whethellor not a
name denotes one of these entities before parsing the program that contains it. The process that défermines
this is callechame lookup a

An identifier used in more than one translation unit may potentially refer to the same entity in these ttansla-
tion units depending on the linkage (3.4) specified in the translation units.

4

3-2 Basic concepts DRAFT: 25 January 1994 3 Basic concepts

An objectis a region of storage (3.9). In addition to giving it a name, declaring an object gives the ohject a
storage class(3.7), which determines the object’s lifetime. Some objectpa@yenorphic the implemen- O
tation generates information carried in each such object that makes it possible to determine that @bject’s
type during program execution. For other objects, the meaning of the values found therein is determihed by

the type of the expressions used to access them. O

ox 4 g |
[Most of this section needs more worKk. ™
3.1 Declarations and definitions [basic.def]

A declaration (7) introduces one or more names into a program and gives each name a meaning. [

A declaration is alefinition unless it declares a function without specifying the function’s body (8.4} it
contains thextern specifier (7.1.1) and neither @nitializer nor afunction-body it declares a static datd
member in a class declaration (9.5), it is a class name declaration (9.1), ortypeddef declaration O

(7.1.3), ausing declaration(7.3.3), oriasing directive(7.3.4). O
The following, for example, are definitions: O
int a; 1! definesa O
extern constintc = 1; 1 definesc ad
int f(int x) { return x+a; } // definedf O
struct S {inta;intb;}; // definesS O
struct X { 1 definesX ad
int x; 1 defines nonstatic data member ad
static int y; I declares static data membgr O
X(0: x(0) {} 1 defines a constructor of g
; 0
int Xiy =1, i definesX::y O
enum { up, down }; I definesup and down O
namespace N {int d; } 1 definesN and N::d O
namespace N1 = N; 1! definesN1 O
X anX; 1l definesanX 0
whereas these are just declarations:
extern int a; I declaresa O
extern const int c; /i declaresc O
int f(int); 1 declaresf ad
struct S; 1 declaresS d
typedef int Int; I declaresint O
extern X anotherX; /i declaresanotherX O
using N::d; 1l declaresN::d O

In some circumstancesHCimplementations generate definitions automatically. These definitions inclide
default constructors, copy constructors, assignment operators, and destructors. For example, given [

struct C {
string s; /I string is the standard library class (17.5.1.1)

h

main()

{
Ca;
C b=gq;
b=a;

}
the implementation will generate functions to make the definitidbezfuivalent to

O Ooogogooo oogodg

3.1 Declarations and definitions DRAFT: 25 January 1994 Basic concepts-3

struct C { a
string s; a
CO:s0{} O
C(const C& x): s(x.s) { } a
C& operator=(const C& x) { s = x.s; return *this; } a
~CO{} O
2 0
3.2 One definition rule [([basic.def.odr]
H?JOX 5 B q
(rhis is still very much under review by the Committée. O

No translation unit shall contain more than one definition of any variable, function, named class or efilmer-
ation type. O

A function isusedif it is called, its address is taken, or it is a virtual member function that is not gure.

Every program shall contain at least one definition of every function that is used in that program. Thait def-
inition may appear explicitly in the program, it may be found in the standard or a user-defined librdudy, or
(when appropriate) the implementation may generate it. If a non-virtual function is not defined, a diagnos-

tic is required only if an attempt is actually made to call that function. O

EBox 6 [D
|:|ThIS says nothing about user-defined libraries. Probably it shouldn’t, but perhaps it should be morqﬁkpllcn
[that it isn’t discussing it. ™

Exactly one definition in a program is required for a non-local variable with static storage duration, hless
it has a builtin type or is an aggregate and also is unused or used only as the operasidenfftheopera- [0

tor. O
BBox 7 g 0
(Orhis is still uncertain.f] |

At least one definition of a class is required in a translation unit if the class is used other than in theforma-

tion of a pointer type. O
EBox 8 [D
|:|ThIS is not quite right, because it is possible to declare a function that returns a class object Wltthlt first
Cdefining the class. M
EBox 9 [D
DThere may be other situations that do not require a class to be defined: extern declarations (i.e. "[gitern X
[X;"), declaration of static members, others??? ™
For example the following complete translation unit is well-formed, even though it never defines O

struct X; 1 declareX s a struct type a

struct X* x1; // useX in pointer formation O

X* X2; 1 useX in pointer formation a

3-4 Basic concepts DRAFT: 25 January 1994 3.2 One definition rule

There may be more than one definition of a named enumeration type in a program provided that each defi-

nition appears in a different translation unit and the values of the enumerators are the same. O
ox 10 E O
Orhis will need to be revisited when the ODR is made more precise M

There may be more than one definition of a class type in a program provided that each definition appears in
a different translation unit and the definitions describe the same type. No diagnostic is required for alviola-

tion of this ODR rule. O
ox 11 E O
Orhis will need to be revisited when the ODR is made more precise M
3.3 Declarative regions and scopes [[basic.scope]
3.3.1 Local scope [basic.scope.local]

A name declared in a block (6.3) is local to that block. Its scope begins at its point of declaration (813.10)
and ends at the end of its declarative region. O

Names of parameters of a function are local to the function and shall not be redeclared in the ouférmost
block of that function. O

The name in @atch exception-declaration is local to the handler and shall not be redeclared in the auter-
most block of the handler. O

Names in a declaration in titgenditionpart of anif , while , for , do, orswitch statement are local tol]

the controlled statement and shall not be redeclared in the outermost block of that statement. O
3.3.2 Function prototype scope [Tbasic.scope.proto]

In a function declaration, names of parameters (if supplied) have function prototype scope, whichl@ermi-
nates at the end of the function declarator. O
3.3.3 Function scope O
Labels (6.1) can be used anywhere in the function in which they are declared. Only labels have fiihction
scope. g
3.3.4 File scope [[basic.file.scope]

A name declared outside all named namespacesriespace, blocks (6.3) and classes (9) liges scope 0O
The potential scope of such a name begins at its point of declaration (3.3.10) and ends at the end of the
translation unit that is its declarative region. Names declared with file scope are sajtbtoabe O

File scope can be treated as a special case of namespace scope (3.3.5) by viewing an entire translation unit
as an unnamed namespace callegjtblal namespace g
3.3.5 Namespace scope [basic.scope.namespace]

A name declared in a namespacaamespacg has namespace scope. lIts potential scope includeslits
namespace from the name’s point of declaration (3.3.10) onwards, as well as the potential scopélof any
using directivg7.3.4) that nominates its namespace. O

3.3.6 Class scope DRAFT: 25 January 1994 Basic concepts53

3.3.6 Class scope [[basic.scope.class]

The name of a class member is local to its class and can be used only in a member of that class (8.4) or a
class derived from that class, after theperator applied to an expression of the type of its class (5.2.4)0r a
class derived from (10) its class, after theoperator applied to a pointer to an object of its class (5.2.4)Jor

a class derived from (10) its class, after thescope resolution operator (5.1) applied to the name of its
class or a class derived from its class, or aftesiag directiveas described above. O

Box 12 h
O

O
What does: "can be used only in a member of that class" mean? It should be phrased to includefiBody of
Cmember functions, ctor-init-list, static initializers. M

3.3.7 Name hiding [basic.scope.hiding]

A name may be hidden by an explicit declaration of that same name in a nested declarative region or
derived class. O

A class name (9.1) may be hidden by the name of an object, function, or enumerator declared in thé same
scope. If a class and an object, function, or enumerator are declared in the same scope (in any ordeér) with

the same name the class name is hidden. O
If a name is in scope and is not hidden it is said tadible g
The region in which a name is visible is calledriechof the name. g
HBox 13 u g

O
Orhe term 'reach’ is defined here but never used. More work is needed with the "descriptive terminolagy".

3.3.8 Explicit qualification [[basic.scope.exqual]

A hidden name can still be used when it is qualified by its class or namespace name usingpieator [
(5.1, 9.5, 10). A hidden file scope name can still be used when it is qualified by the:unapgrator O
(5.2). O

3.3.9 Elaborated type specifier [Ibasic.scope.elab]

A class name hidden by a name of an object, function, or enumerator in local or class scope canstill be
used when appropriately (7.1.5) prefixed withss , struct , orunion , or when followed by the

operator. Similarly, a hidden enumeration name can be used when appropriately (7.1.5) prefixed with
enum. For example:

O

class A {
public:
static int n;

h

main()

{
int A;

Ain =42, I/ OK
class A a; I OK
Ab; [l ill-formed: A does not name a type

}
The scope rules are summarized in 10.5.

O Ooooo oo oogooo

3-6 Basic concepts DRAFT: 25 January 1994 3.3.10 Point of declaration

3.3.10 Point of declaration [Mbasic.scope.pdecl]

Thepoint of declaratiorfor a name is immediately after its complete declarator (8) and befamgigkzer [
(if any), except as noted below. For example,

intx=12;

{intx=x;}
Here the seconx is initialized with its own (unspecified) value. O
For the point of declaration for an enumerator, see 7.2. O

The point of declaration of a function with tegtern orfriend specifier is in the innermost enclosingl
namespace just after outermost nested scope containing it which is contained in the namespace. [

[(Box 14 [
O

[]
CThe terms "just after the outermost nested scope" imply name injection. We avoided introducing e con-
Ctept of name injection in the working paper up until now. We should probably continue to do withoufll

The point of declaration of a class first declared irekaborated-type-specifidgs immediately after the O
identifier; O
A nonlocal name remains visible up to the point of declaration of the local name that hides it. For example,
constint i=2;
{int ifi]; }

declares a local array of two integers.

3.4 Program and linkage [basic.link]
A programconsists of one or morteanslation units(2) linked together. A translation unit consists of @
sequence of declarations. O
translation unit: a
declaration-seg, 0

A name which haiternal linkage is local to its translation unit. Names with internal linkage are: vati-
ables or function members of a namespace that are explicitly destated ; function members of all
namespace that are explicitly declameléthe and not explicitly declaredxtern ; variable members of
a namespace that are explicitly declaoeshst and not explicitly declare@xtern ; members of an [
unnamed namespace. 0

The name of a class that has not been used in the declaration of an object, function, or class that h@ds exter-
nal linkage and has no static members (9.5) and no noninline member functions (9.4.2) has internal lihkage.

Every declaration of a particular name of namespace scope that is not declared to have internal lirikage in
one of these ways shall refer to the same variable (3.9), function (8.3.5), or class (9) in every trarislation
unit in which it appears. Such names are said to aézeznallinkage. O

A name which is declared in an unnamed namespace has internal linkage and such name does ndfl refer to
another entity with the same name declared in another translation unit. O

Typedef names (7.1.3), enumerators (7.2), and template names (14) do not have external linkage. O

HBox 15 B 0
[How are the bodies of templates linked to their declaratiohs? M

10

11
12

3.4 Program and linkage DRAFT: 25 January 1994 Basic concepts-3

Static class members (9.5) have external linkage.

Noninline class member functions have external linkage. Inline class member functions must have exactly

one definition in a program. O
%ox 16 E O
Oro be reworked when the ODR is clarified. M

Local names (3.3) explicitly declarezktern have external linkage unless already declastadic
(7.1.12).

After all adjustments of types (during which typedefs (7.1.3) are replaced by their definitions), thelfypes
specified by all declarations of a particular external name must be identical, except that such types may dif-
fer by the presence or absence of a major array bound (8.3.4). A violation of this rule does not reuire a
diagnostic.

A function may be defined only in namespace or class scope. O

Linkage to non-& declarations can be achieved usitiplkage-specificatiorf7.5).

3.5 Start and termination [basic.start]
3.5.1 Main function [[basic.start.main]
A program shall contain a function calledin , which is the designated start of the program. O

This function is not predefined by the compiler, it cannot be overloaded, and its type is implemeniation
dependent. The two examples below are allowed on any implementation. It is recommended that any fur-
ther (optional) parameters be added atgv . The functiormain() may be defined as

intmain() {/*... */} ad
or
int main(int argc, char* argv[]) { /* ... */ } O

In the latter formargc shall be the number of arguments passed to the program from an environment in
which the program is run. Hrgc is nonzero these arguments shall be supplied as zero-terminated strings
in argv[0] throughargv[argc-1] andargv[0] shall be the name used to invoke the program(or

" . Itis guaranteed thatrgv[argc]==

The functionmain() shall not be called from within a program. The linkage (3.4nain() is imple- O
mentation dependent. The addressn@fin() shall not be taken andhain() shall not be declared
inline or static

Calling the function
void exit(int); g

declared irn<stdlib.h> (17.2.4.4) terminates the program without leaving the current block and héhce
without destroying any local variables (12.4). The argument value is returned to the program’s environ-
ment as the value of the program.

A return statement imain() has the effect of leaving the main function (destroying any local variables)
and callingexit() with the return value as the argument. If control reaches the emaiof without [
encountering aeturn statement, the effect is that of executing O

return O; O

3-8 Basic concepts DRAFT: 25 January 1994 3.5.2 Initialization of non-local objects

3.5.2 Initialization of non-local objects [Ibasic.start.init]
ox 17 E |
[rhis is still under active discussion by the committee. M

The initialization of nonlocal static objects (3.7) in a translation unit is done before the first use of any func-
tion or object defined in that translation unit. Such initializations (8.5, 9.5, 12.1, 12.6.1) may be done
before the first statement afain() or deferred to any point in time before the first use of a function or
object defined in that translation unit. The default initialization of all static objects to zero (8.5) is per-
formed before any dynamic (that is, run-time) initialization. No further order is imposed on the initial-
ization of objects from different translation units. The initialization of local static objects is described in
6.7. O

3.6 Termination [[basic.start.term]

Destructors (12.4) for initialized static objects are called when returningrfraim() and when calling O
exit() (17.2.4.4). Destruction is done in reverse order of initialization. The funateodit() from

<stdlib.h> can be used to specify that a function must be called at exitexit() is to be called,
objects initialized before aatexit() call may not be destroyed until after the function specified in the
atexit() call has been called. O

Where a €+ implementation coexists with a C implementation, any actions specified by the C impleniénta-
tion to take place after treexit() functions have been called take place after all destructors have been
called.

Calling the function

void abort(); ad
declared irgstdlib.h> terminates the program without executing destructors for static objects and with-
out calling the functions passedatexit() . a
3.7 Storage duration [[basic.stc]
The storage duration of an object determines its lifetime. a
The storage class specifiestatic , auto , andmutable are related to storage duration as described
below. O
3.7.1 Static storage duration [[basic.stc.static]
All non-local variables have static storage duration; such variables are created and destroyed as deddribed in
3.5 and stmt.decl. a
Note that if an object of static storage class has a constructor or a destructor with side effects, it shalllnot be
eliminated even if it appears to be unused. a
%ox 18 g 0
[This awaits committee action on the “as-if” rulél ™

The keywordstatic may be used to declare a local variable with static storage duration; for a description
of initialization and destruction of local variables, see 6.7. O

The keywordstatic applied to a class variable in a class definition also determines that it has statidstor-
age duration. a

3.7.2 Automatic storage duration DRAFT: 25 January 1994 Basic concepts-8

3.7.2 Automatic storage duration [Mbasic.stc.auto]

Local objects not declarestatic ~ or explicitly declarecauto haveautomaticstorage duration and arel
associated with an invocation of a block. O

Each object with automatic storage duration is initialized (12.1) each time the control flow reaches itsl defi-
nition and destroyed (12.4) whenever control passes from within the scope of the object to outside that
scope (6.6).

A named automatic object with a constructor or destructor with side effects may not be destroyed before the

end of its block, nor may it be eliminated even if it appears to be unused. O
3.7.3 Dynamic storage class [Ibasic.stc.dynamic]
Objects may be created and destroyed dynamically, uspegator new , operator new[] , O
operator delete , oroperator delete [] O
In addition, an explicit destructor call may destroy an object.

ox 19 E O
[rhis section requires much more work. M
3.7.4 Duration of sub-objects [[basic.stc.inherit]
The storage duration of class subobjects, base class subobjects and array elements is that of their omplete
object (1.5). O
3.7.5 Themutable keyword [Mbasic.stc.mutable]

The keywordmutable is grammatically a storage class specifier but is unrelated to the storage dufation
(lifetime) of the class member it describes. Modifying a class member deciatadle is deemed not to O
be modifying the value of the object that contains that member. Thenefotahle members otonst [0

objects are natonst . O
3.7.6 Reference duration [[basic.stc.ref]
Except in the case of a local reference declaration initialised by an rvalue, a reference may be usedib name
an existing object denoted by an Ivalue. O
The reference has static duration if it is declared non-locally, automatic duration if declared locally iAtlud-
ing as a function parameter, and inherited duration if declared in a class. O
References may or may not require storage. O
The duration of a reference is distinct from the duration of the object it refers to except in the case offa local
reference declaration initialized by an rvalue. O
Access through a reference to an object which no longer exists or has not yet been constructed yields unde-
fined behaviour. O

ox 20 O O

O
[Can references be declared auto or static? This section probably does not belong here. M

3-10 Basic concepts DRAFT: 25 January 1994 3.8 Types

3.8 Types [basic.types]

There are two kinds of types: fundamental types and compound types. Types may describe objectd, refer-
ences (8.3.2), or functions (8.3.5).

Arrays of unknown size and classes that have been declared but not defined anecmatiptetetypes [0
because the size and structure of an instance of the type is unknown. Alsnidthéy/pe represents anl]
empty set of values, so that no objects of typel ever existvoid is an incomplete type. The terni]
incompletely-defined object tyjgea synonym foincomplete typethe termcompletely-defined object typé]l
is a synonym focomplete type

A class type (such dglass X ") may be incomplete at one point in a translation unit and complete later
on; the type'class X " is the same type at both points. The declared type of an array may be incomplete
at one point in a translation unit and complete later on; the array types at those two“poiajs df [
unknown bound off” and“array of NT”) are different types. However, the type of a pointer to array of
unknown size cannot be completed.

Variables that have incomplete type are prohibited in some contexts. For example: O

class X; /I X us an incomplete type

extern X* xp; /I Xp is a pointer to an incomplete type O

extern int arr[]; /I the type of arr is incomplete O

typedef int UNKA[]; // UNKA is an incomplete type

UNKA* arrp; /[arrp is a pointer to an incomplete type ad

UNKA** arrpp;

void foo()

{
Xp++; /l'ill-formed: X is incomplete t
arrp++; /l'ill-formed: incomplete type O
arrpp++; /I okay: sizeof UNKA* is known 0

}

struct X {inti; }; // now X is a complete type

int arr[10]; /I now the type of arr is complete

X X; 0O

void bar()

{
Xp = &X; /I okay; type is “pointer to X" d
arrp = &airr; Il ill-formed: different types 0
Xpt++; /I okay: X is complete d
arrp++; /I ill-formed: UNKA can'’t be completed g

}

3.8.1 Fundamental types [basic.fundamental]

There are several fundamental types. The standard hdladis.h> specifies the largest and smallest
values of each for an implementation.

Objects declared as charactarlsar) are large enough to store any member of the implementation’s basic
character set. If a character from this set is stored in a character variable, its value is equivalent to the inte-
ger code of that character. Characters may be explicitly dealamsigned or signed . Plainchar , O
signed char , andunsigned char are three distinct types. Bhar , asignedchar , and an O
unsigned char consume the same amount of space.

An enumeratiorcomprises a set of named integer constant values. Each distinct enumeration constitutes a
differentenumerated typeEach constant has the type of its enumeration. O

10

11

3.8.1 Fundamental types DRAFT: 25 January 1994 Basic concepts- 13

There are fousigned integer type$signed char , “short int ,“int ", and“longint " Inthis O

list, each type provides at least as much storage as those preceding it in the list, but the implementafion may
otherwise make any of them equal in storage size. R&irs have the natural size suggested by the
machine architecture; the other signed integer types are provided to meet special needs.

Typewchar_t is a distinct type whose values can represent distinct codes for all members of the [@rgest
extended character set specified among the supported loddldsdale). Typewchar_t has the same[
size, signedness, and alignment requirements (1.5) as one of the other integral types, aatiedytag O

type

For each of the signed integer types, there exists a corresponding (but diféggaet) integer type O
“unsigned char , “unsigned short int ", “unsigned int , and “unsigned long O
int, " each of which which occupies the same amount of storage and has the same alignment requirements
(1.5) as the corresponding signed integer @p\"n alignment requiremens an implementation-dependent]
restriction on the value of a pointer to an object of a given type (5.4, 1.5). O

Unsigned integers, declaredsigned , obey the laws of arithmetic modul8 @&heren is the number of O
bits in the representation of that particular size of integer. This implies that unsigned arithmetic does not
overflow.

Values of typebool can be eithetrue or false 5 There are nesigned , unsigned , short , or 0O
long bool types or values. As described beldwpl values behave as integral types. Thus, for exah-
ple, they participate in integral promotions (4.1, 5.2.3). Although values obtygle generally behave asl]
signed integers, for example by promoting (4.1)nto instead ofunsigned int , abool value can O
successfully be stored in a bit-field of any (nonzero) size. O

There are threBloating types:float , double , andlong double . The typedouble provides at least 0

as much precision dat , and the typéong double provides at least as much precisiordasble . O
Each implementation defines the characteristics of the fundamental floating point types in the standard
headekfloat.h>

Typesbool , char , and the signed and unsigned integer types are collectively aatégptal types. A O
synonym for integral type imteger type Enumerations (7.2) are not integral, but they can be promaied
(4.1) to signed or unsignéat . Integral andfloating types are collectively calleafithmetictypes.

Thevoid type specifies an empty set of values. It is used as the return type for functions that do not return
a value. No object of typeoid may be declared. Any expression may be explicitly converted to type
void (5.4); the resulting expression may be used only as an expression statement (6.2), as the left operand
of a comma expression (5.18), or as a second or third oper@nd5f16). O

3.8.2 Compound types [[basic.compound]

There is a conceptually infinite number of compound types constructed from the fundamental typediin the
following ways:

— arraysof objects of a given type, 8.3.4;

— functions which have parameters of given types and return objects of a given type, 8.3.5;
— pointersto objects or functions (including static members of classes) of a given type, 8.3.1;
— referencedo objects or functions of a given type, 8.3.2;

— constantswhich are values of a given type, 7.1.5;

— classescontaining a sequence of objects of various types (9), a set of functions for manipulating
these objects (9.4), and a set of restrictions on the access to these objects and functions, 11;

g) See 7.1.5.2 regarding the correspondence between types and the sequgpeespetifies that designate them.
) Using abool value in ways described by this International Standard as “undefined,” such as by examining the value of an unini-
tialized automatic variable, might cause it to behave as if is naitleer norfalse .

3-12 Basic concepts DRAFT: 25 January 1994 3.8.2 Compound types

— structures which are classes without default access restrictions, 11;
— unions which are classes capable of containing objects of different types at different times, 9.6;

— pointers to non-statf class membersvhich identify members of a given type within objects of a
given class, 8.3.3.

In general, these methods of constructing types can be applied recursively; restrictions are mentioned in
8.3.1,8.3.4,8.3.5, and 8.3.2.

Any type so far mentioned is amqualified type Each unqualified type has three correspondingiified
versionsof its type.7 a const-qualifiedversion, avolatile-qualifiedversion, and &onst-volatile-qualified O
version (see 7.1.5). The cv-qualified or unqualified versions of a type are distinct types that belongto the
same category and have the same representation and alignment requirefertpound type is not [
cv-qualified (3.8.3) by the cv-qualifiers (if any) of the type from which it is compounded.

A pointer to objects of a typEis referred to as ‘gointer toT.” For example, a pointer to an object of type
int is referred to a8pointer toint ” and a pointer to an object of classs called & pointer toX.” Point- [
ers to incomplete types are allowed although there are restrictions on what can be done with them (3.8).

Objects of cv-qualified (3.8.3) or unqualified typeid* (pointer to void), can be used to point to objects
of unknown type. Avoid* must have enough bits to hold any object pointer.

Except for pointers to static members, text referririgptonters does not apply to pointers to members.

3.8.3 CV-qualifiers [basic.type.qualifier]

There are twav-qualifiers, const andvolatile . When applied to an objeatpnst means the pro-
gram may not change the object, aothtile has an implementation-defined mean??\@n object may
have both cv-qualifiers.

There is a (partial) ordering on cv-qualifiers, so that one object or pointer may be saittyebev- O
qualifiedthan another. Table 10 shows the relations that constitute this ordering.

Table 10—relations onconst and volatile 0
0

Lho cv-qualifier < const U 0

o cv-qualifier < volatile E ad

(o cv-qualifier < const volatile 0 O

O const < const volatile 0 O

g volatile < const volatile B g

A pointer or reference to cv-qualified type (sometimes called a cv-qualified pointer or reference) neéd not
actually point to a cv-qualified object, but it is treated as if it does. For example, a pottastant a

may point to an unqualifiedht , but a well-formed program may not attempt to change the pointedHto
object through that pointer even though it may change the same object through some other accdss path.
CV-qualifiers are supported by the type system so that a cv-qualified object or cv-qualified access path to
an object may not be subverted without casting (5.4). For example:

®) static class members are objects or functions, and pointers to them are ordinary pointers to objects or functions.

See 8.3.4 and 8.3.5 regarding cv-qualified array and function types. O
8) The same representation and alignment requirements are meant to imply interchangeability as arguments to functions, return values
from functions, and members of unions.

Roughly,volatile means the object may change of its own accord (that is, the processor may not assume that the object contin-
ues to hold a previously held value).

3.8.3 CV-qualifiers DRAFT: 25 January 1994 Basic concepts-33

void f()
{
inti=2; /I not cv-qualified
constint ci = 3; // cv-qualified (initialized as required)
ci=4; /I error: attempt to modify const
const int* cip; Il pointer to const int O
cip = &i; Il okay: cv-qualified access path to unqualified
*cip = 4, I error: attempt to modify through ptr to const
int* ip; O
ip = cip; [error; attempt to convert const int* to int* O
}
3.8.4 Type names [basic.type.name]
Fundamental and compound types can be given names typduef mechanism (7.1.3), and families of]
types and functions can be specified and named ketglate mechanism (14). O
3.9 Lvalues and rvalues [[basic.lval]
Every expression is either aralueor rvalue O

An Ivalue refers to an ob&ect or function. Some rvalue expressithrtse of class or cv-qualified clas§l
type—also refer to objectls.) O

Some builtin operators and function calls yield Ivalues. For exampesifin expression of pointer typel]
then*E is an Ivalue expression referring to the object or function to wiiphints. As another example[]

the function O
int& f(); a
yields an Ivalue, so the cdf) is an an Ivalue expression. O

Some builtin operators expect Ivalue operands, for example the builtin assignment operators all expétt their
left hand operands to be Ivalues. Other builtin operators yield rvalues, and some expect them. For éxample
the unary and binary operator expect rvalue arguments and yields an rvalue result. Constructor inkbca-
tions and calls to functions that do not return references are always rvalues. O

The discussion of each builtin operator in 5 indicates whether it expects Ivalue operands and whether it
yields an Ivalue. The discussion of reference initialization in 8.5.3 indicates the behavior of lvalués and
rvalues in other significant contexts.

User defined operators are functions, and whether such operators expect or yield Ivalues is deterniined by
their type. O

Rvalues may be qualified types, however the unqualified type is used unless the rvalue is of class type and
a member function is called on the rvalue. O

Whenever an lvalue that refers to a non-aimiyon-class object appears in a context where an lvalue isfhot
expected, the value contained in the referenced object is used. When this occurs, the value has the unquali-
fied type of the Ivalue. For example:

const int* cip; O
inti=*cip // "*cip" has type int

If this type is incomplete, the program is ill-formed.

1) Expressions such as invocations of constructors and of functions that return a class type do in some sense refer to an object, and the
ilnisjlementation may invoke a member function upon such objects, but the expressions are not lvalues.
An Ivalue that refers to an array object is usually converted to a (rvalue) pointer to the initial element of the array (4.6). O

10
11

12
13

14

3-14 Basic concepts DRAFT: 25 January 1994 3.9 Lvalues and rvalues

HBOX 21 g
On C this is undefined[]
For example:
struct X;
X* Xp;]
Xp; /I okay: pointer to incomplete type
*Xp; /I error: incomplete type

However, when an Ivalue is used as the operamsizedf the value contained in the referenced objectlis
notaccessed, since that operator does not evaluate its operand.

An lvalue or rvalue of class type can also be used to modify its referent under certain circumstances.[]

ox 22 E O
[Provide example cross-referende. M
Functions cannot be modified, but pointers to functions may be modifiable. O

An expression of incomplete type cannot be used to modify an object, but a pointer to such an obje&tt may
be modifiable and the object itself may be modifiable at some point in the program where its type is com-
plete. O

Array objects cannot be modified, but their elements may be modifiable. O

The referent of @onst -qualified expression shall not be modified (through that expression), except that if
it is of class type and hagrautable component, that component may be modified. O

If an expression can be used to modify its object, it is calledifiable A program that attempts to modify]
an object through a nonmodifiable Ivalue or rvalue expression is ill-formed. O

4 Standard conversions [conv]

Some operators may, depending on their operands, cause conversion of the value of an operand from one
type to another. This section summarizes the conversions demanded by most ordinary operators and

explains the result to be expected from such conversions; it will be supplemented as required by the discus-

sion of each operator. These conversions are also used in initialization (8.5, 8.5.3, 12.8, 12.1). 12.3 and

13.2 describe user-defined conversions and their interaction with standard conversions. The result of a con-

version is an Ivalue only if the result is a reference (8.3.2).

4.1 Integral promotions [conv.prom]

A char , wchar_t , bool , short int , enumerator, object of enumeration type (7.2), oman bit- O
field (9.7) (in both their signed and unsigned varieties) may be used wherever an integer rvalue may be
used. In contexts where a constant integer is requiretiptile, char , wchar_t , short int , object of O
enumeration type (7.2), or bit-field must be constant. (Enumerators are always constant). a

Except for enumerators, objects of enumeration type, andwghpar t , if anint can represent all thell
values of the original type, the value is convertedtto; otherwise it is converted tmsigned int . a

For enumerators, objects of enumeration type, andvgbar t , if anint can represent all the values of]
the underlying type, the value is converted tanan; otherwise if arunsigned int can represent all the
values, the value is converted towarsigned int ; otherwise, if dong can represent all the values, the

value is converted tolang ; otherwise it is converted tmsigned long . a
A Boolean value may be convertedrtb , takingfalse to zero andrue to one. ad
This process is callddtegral promotion a
4.2 Integral conversions [conv.integral]

An integer rvalue may be converted to any integral type. If the target tyosigned the resulting value

is the least unsigned integer congruent to the source integer (mddulegen is the number of bits used

to represent the unsigned type). In a two’'s complement representation, this conversion is conceptual and
there is no change in the bit pattern.

When an integer is converted to a signed type, the value is unchanged if it can be represented in the new

type; otherwise the value is implementation dependent. a
When an integer is convertedhool , see 4.9. a
4.3 Float and double [conv.double]

Single-precision floating point arithmetic may be usedfifmat expressions. When a less precise float-

ing value is converted to an equally or more precise floating type, the value is unchanged. When a more
precise floating value is converted to a less precise floating type and the value is within representable range,
the result may be either the next higher or the next lower representable value. If the result is out of range,
the behavior is undefined.

4-2 Standard conversions DRAFT: 25 January 1994 4.4 Floating and integral

4.4 Floating and integral [conv.float]

Conversion of a floating value to an integral type truncates; that is, the fractional part is discarded. Such
conversions are machine dependent; for example, the direction of truncation of negative numbers varies
from machine to machine. The result is undefined if the value cannot be represented in the integral type.

Conversions of integral values to floating type are as mathematically correct as the hardware allows. Loss
of precision occurs if an integral value cannot be represented exactly as a value of the floating type.
4.5 Arithmetic conversions [conv.arith]
Many binary operators that expect operands of arithmetic type cause conversions and yield result types in a
similar way. The purpose is to yield a common type, which is also the type of the result. This pattern is
called the' usual arithmetic conversiofis.

— If either operand is of typeng double , the other is converted tong double .

— Otherwise, if either operand d®uble , the other is converted tiouble .

— Otherwise, if either operandfipat , the other is converted flmat

— Otherwise, the integral promotions (4.1) are performed on both operands.

— Then, if either operand imsigned long the other is converted tmsigned long .

— Otherwise, if one operand id@ng int and the otheunsigned int , then if along int can
represent all the values of ansigned int , theunsigned int is converted to éong int ;
otherwise both operands are convertedrsigned long int

— Otherwise, if either operandlisng , the other is converted tong .
— Otherwise, if either operandusmsigned , the other is converted tmsigned

— Otherwise, both operands an¢ .

4.6 Pointer conversions [conv.ptr]

The following conversions may be performed wherever pointers (8.3.1) are assigned, initialized, compared,
or otherwise used:

— A constant expression (5.19) that evaluates to zero (the null pointer constant) when assigned to,
compared with, alternated with (5.16), or used as an initializer of an operand of pointer type is con-
verted to a pointer of that type. It is guaranteed that this value will produce a pointer distinguishable
from a pointer to any object or function.

— A pointer to a cv-qualified or unqualified object type may be converted to a pointer to the same type
with greater cv-qualifications (3.8.3). That is, for any unqualified fyp@T* may be converted to
aconst T*, avolatile T*, or aconst volatile T*; aconst T* may be converted to a
const volatile T*; or avolatile T* may be converted toaonst volatile T*.

— A pointer to any object type may be converted towoid* with the greater or equal cv-
qualifications. That is, for any unqualified tyfpe aT* may be converted towid* , aconst
void* , avolatile void* , or aconst volatile void* ;aconst T* may be converted to
a constvoid* or a constvolatile void* ; a volatile T* may be converted to a
volatile void* or aconstvolatilevoid* ; and aconstvolatileT* may be con-
verted to aonst volatile void*

— Two pointer types and T2 asamilar if there exists a typ& and integeN >0 such that:
TlisTevyn * <--Cvyp 1 * CVyg

and a

4.6 Pointer conversions DRAFT: 25 January 1994 Standard conversions-3

T2 isTcvpn * «-+ CVp 1 * CVy g
where eacley, j is const , volatile , const volatile , or nothing. An expression of typd]
T1 may be converted to tyge if and only if the following conditions are satisfied: O
— the pointer types are similar. O
— for everyj >0, if const isincvy ; thenconst isincv,;, and similarly fovolatile . g
— thecv, j andcv, ; are different, thegonst is in everycv, y for 0<k <j. g

— A pointer to function may be converted tgad* provided avoid* has sufficient bits to hold it.

— A pointer to a class may be converted to a pointer to an accé®siizlee class of that class (20)
provided the conversion is unambiguous (10.1); a base class is accessible if its public members are
accessible (11.1). The result of the conversion is a pointer to the base class sub-object of the derived
class object. The null pointed)is converted into itself.

— An expression with typearray ofT” may be converted to a pointer to the initial element of the array

(5).

— An expression with typéfunction returningT” is converted td'pointer to function returning@”
except when used as the operand of the address-of op&@ttine function call operat@y or the
sizeof operator, or when the expression is a reference to a non-static member function. O

— A pointer may be converted to typeol , see 4.9.

4.7 Reference conversions [conv.ref]

The following conversion may be performed wherever references (8.3.2) are initialized (including argument
passing (5.2.2) and function value return (6.6.3)):

— An Ivalue of a cv-qualified or unqualified object type may be converted to a reference to thelsame
type with increased cv-qualifications.

— An Ivalue of a class may be converted to a reference to an accessible base class (10, 11.1)1of that
class (8.5.3) provided this conversion can be done unambiguously (10.2). The result of the conver-
sion is a reference to the base class sub-object of the derived class object.

4.8 Pointers to members [conv.mem]

The following conversion may be performed wherever pointers to members (8.3.3) are initialized, assigned,
compared, or otherwise used:

— A constant expression (5.19) that evaluates to zero is converted to a pointer to member. It is guaran-
teed that this value will produce a pointer to member distinguishable from any other pointer to mem-
ber.

— A pointer to a member of a class may be converted to a pointer to member of a class derived from
that class provided the (inverse) conversion from the derived class to the base class pointer is acces-
sible (11.1) and provided this conversion can be done unambiguously (10.2).

The rule for conversion of pointers to members (from pointer to member of base to pointer to member of
derived) appears inverted compared to the rule for pointers to objects (from pointer to derived to pointer to
base) (4.6, 10). This inversion is necessary to ensure type safety.

NN pointer to a class may be explicitly converted to a pointer to a base class, regardless of accessibility, using a cast (5.2.3 or 5.4).

4-4 Standard conversions DRAFT: 25 January 1994 4.8 Pointers to members

Note that a pointer to member is not a pointer to object or a pointer to function and the rules for conversions
of such pointers do not apply to pointers to members. In particular, a pointer to member cannot be con-

verted to avoid* . O
A pointer to member may be converted to tigpel , see 4.9. g
4.9 Boolean conversions [Jconv.bool]

Conversion tdool is required in several contexts, such as initializitgal variable, or in theondition O
of anif orwhile statement or the first operand of the operator. O

In all such cases, the expression to be converted must be of arithmetic, pointer, or pointer to memhér type
or of a class type for which only one unambiguous conversion exists to arithmetic, pointer, pointer toCmem-
ber, orbool . Otherwise, the program is ill-formed. O

A zero value (or a pointer that would compare equal to zero) bedaises ; any other value becomed]
true . g

5 Expressions [expr]

This clause defines the syntax, order of evaluation, and meaning of expressions. An expressidh is a
sequence of operators and operands that specifies a computation. An expression may result in a value and
may cause side effects.

Operators can be overloaded, that is, given meaning when applied to expressions of class type (9). Uses of
overloaded operators are transformed into function calls as described in 13.4. Overloaded operatdis obey
the rules for syntax specified in this clause, but the requirements of operand type, Ivalue, and evaluation
order are replaced by the rules for function call. Relations between operators, stiahnasaninga+=1, O

are not guaranteed for overloaded operators (fé)A).

This clause defines the operators when applied to types for which they have not been overloaded. Qperator
overloading cannot modify the rules for operators applied to types for which they are defined by the lan-
guage itself.

Operators may be regrouped according to the usual mathematical rules only where the operators really are
associative or commutative. Overloaded operators are never assumed to be associative or commutative.
Except where noted, the order of evaluation of operands of individual operators and subexpressions of indi-
vidual expressions is unspecified. In particular, if a value is modified twice in an expression, the result of
the expression is unspecified except where an ordering is guaranteed by the operators involved. For exam-
ple,

i = V[i++]; /I the value of ‘" is undefined

I=7,i++,i++; /I''i becomes 9

The handling of overflow and divide by zero in expression evaluation is implementation dependent. Most
existing implementations of+E ignore integer overflows. Treatment of division by zero and all floating
point exceptions vary among machines, and is usually adjustable by a library function.

Except where noted, operands of typeast T, volatile T, T&, const T&, andvolatile T& can
be used as if they were of the plain type Similarly, except where noted, operands of typeonst O

and T* volatile can be used as if they were of the plain tf¥pe Similarly, a plainT can be used O
where avolatile T oraconst T is required. These rules apply in combination so that, except where
noted, aconst T* volatile can be used whereT& is required. Such uses do not count as standard

conversions when considering overloading resolution (13.2).

If an expression initially has the typeeference td™” (8.3.2, 8.5.3), the type is adjusted‘td” prior to any [0
further analysis, the expression designates the object or function denoted by the reference, and thélexpres-
sion is an Ivalue. A reference can be thought of as a name of an object.

User-defined conversions of class objects to and from fundamental types, pointers, and so on, can be
defined (12.3). If unambiguous (13.2), such conversions will be applied by the compiler wherever &lclass
object appears as an operand of an operator, as an initializer (8.5), as the controlling expression in a selec-
tion (6.4) or iteration (6.5) statement, as a function return value (6.6.3), or as a function argument (5.2.2).

3 Nor is it guaranteed for tygeool ; += must not havéool left operand.

5-2 Expressions DRAFT: 25 January 1994 5.1 Primary expressions

5.1 Primary expressions [expr.prim]
1 Primary expressions are literals, names, and names qualified by the scope resolution:pperator

primary-expression:

literal

this
identifier
operator-function-id
qualified-id

(expression)

id-expression

2 A literal is a primary expression. Its type depends on its form (2.9).

3 In the body of a nonstatic member function (9.4), the keywtloisl names a pointer to the object for
which the function was invoked. The keywdtds cannot be used outside a class member function
body.

HBOX 23 E
[n a constructor it is common practice to allthws in meme-initializers O

4 The operator: followed by anidentifier, a qualified-id or anoperator-function-idis a primary expres-
sion. lIts type is specified by the declaration of the identifier, namepemator-function-id The result is
the identifier, name, ooperator-function-id The result is an Ivalue if the identifier is. The identifier or
operator-function-idnust be of file scope. Use pf allows a type, an object, a function, or an enumerator
to be referred to even if its identifier has been hidden (3.3).

5 A parenthesized expression is a primary expression whose type and value are identical to those of the
unadorned expression. The presence of parentheses does not affect whether the expression is an Ivalue.
6 A id-expressiorns a restricted form of primary-expressiothat can appear afterand-> (5.2.4):
id-expression: ad
unqualified-id O
qualified-id O
unqualified-id: ad
identifier
operator-function-id
conversion-function-id
"~ class-name
HBox 24 g 0
Ossue: now it's allowed to invokeint() , but~class-name _doesn't allow for that.[] ™
7 An identifier is anid-expressiorprovided it has been suitably declared (7). ®jerator-function-id, see
13.4. Forconversion-function-ig, see 12.3.2. Alass-namerefixed by~ denotes a destructor; see 12.4.
qualified-id:
nested-name-specifier unqualified-id O
8 A nested-name-specifitihhat names a class (7.1.5) followed:by and the name of a member of that clags

(9.2), or a member of a base of that class (10),gsadified-id its type is the type of the member. The
result is the member. The result is an lvalue if the member isclabg-namenay be hidden by a nontype
name, in which case thdass-namas still found and used. Wheuotass-name: class-nameés used, and [0
the twoclass-name refer to the same class, this notation names the constructor (12.1). dfslksneame

i~ class-namés used, the twalass-name must refer to the same class; this notation names [fhe

5.1 Primary expressions DRAFT: 25 January 1994 Expressions-3

destructor (12.4). Multiply qualified names, suchNik:N2::N3::n , can be used to refer to nested
types (9.8).

5.2 Postfix expressions [expr.post]

Postfix expressions group left-to-right.

postfix-expression:
primary-expression
postfix-expressior] expression]
postfix-expression(expression-ligf,)
simple-type-specifie expression-ligf;)
postfix-expression id-expression
postfix-expression> id-expression
postfix-expressiont++
postfix-expression-

dynamic_cast < type-id > (expression) O
static_cast < type-id > (expression) O
reinterpret_cast < type-id > (expression) g
const_cast < type-id > (expression) O
typeid (expression)

typeid (type-id) O

expression-list:
assignment-expression
expression-list, assignment-expression

5.2.1 Subscripting [expr.sub]

A postfix expression followed by an expression in square brackets is a postfix expression. The intuitive
meaning is that of a subscript. One of the expressions must have thipdyyer toT” and the other must

be of enumeration or integral type. The type of the resull.is The type“T" must be complete. The
expressiorE1[E2] is identical (by definition) ta((E1)+(E2)) . See 5.3 and 5.7 for details*ofind+

and 8.3.4 for details of arrays.

5.2.2 Function call [expr.call]

There are two kinds of function call: ordinary function call and member fuﬁé}i@m) call. A function

call is a postfix expression followed by parentheses containing a possibly empty, comma-separated list of
expressions which constitute the arguments to the function. For ordinary function call, the postfix expres-
sion must be a function name, or a pointer or reference to function. For member function call, the postfix
expression must be an implicit (9.4) or explicit class member access (5.2.4)iddeapeessions a func-

tion member name, or a pointer-to-member expression (5.5) selecting a function member. The first expres-
sion in the postfix expression is then calleddbgect expressigrand the call is as a member of the object
pointed to or referred to. If a function or member function name is used, the name may be overloaded (13),
in which case the appropriate function will be selected according to the rules in 13.2. The function called in
a member function call is normally selected according to the static type of the object expression (see 10),
but if that function isvirtual ~ the function actually called will be the final overrider (10.3) of the selected
function in the dynamic type of the object expression (i.e., the type of the object pointed or referred to by
the current value of the object expression).

The type of the function call expression is the return type of the statically chosen function (i.e., ignoring the
virtual keyword), even if the type of the function actually called is different. This type must be com-
plete or the typ&oid .

12) A static member function (9.5) is an ordinary function.

10

5-4 Expressions DRAFT: 25 January 1994 5.2.2 Function call

When a function is called, each parameter (8.3.5) is initialized (8.5.3, 12.8, 12.1) with its corresponding
argument. Standard (4) and user-defined (12.3) conversions are performed. The value of a function call is
the value returned by the called function except in a virtual function call if the return type of the final over-
rider is different from the return type of the statically chosen function, the value returned from the final
overrider is converted to the return type of the statically chosen function. A function may change the val-
ues of its nonconstant parameters, but these changes cannot affect the values of the arguments except where
a parameter is of a narenst reference type (8.3.2). Where a parameter is of reference type a temporary
variable is introduced if needed (7.1.5, 2.9, 2.9.4, 8.3.4, 12.2). In addition, it is possible to modify the val-
ues of honconstant objects through pointer parameters.

A function may be declared to accept fewer arguments (by declaring default arguments (8.3.6)) arl more
arguments (by using the ellipsis, 8.3.5) than the number of parameters in the function definition (8.4).

If no declaration of the called function is accessible from the scope of the call the program is ill-formed.
This implies that, except where the ellipsis () is used, a parameter is available for each argument.

Any argument of typdloat for which there is no parameter is converteddable before the call; any

of char , short , enumeration, or a bit-field type for which there is no parameter are conveieéd tr
unsigned by integral promotion (4.1). An object of a class for which no parameter is declared is passed
as a data structure.

EBOX 25 B
[To “pass a parameter as a data structure” means, roughly, that the parameter must be a PODSp{and that
[Cbtherwise the behavior is undefined. This must be made more precise. a

An object of a class for which a parameter is declared is passed by initializing the parameter with the argu-
ment by a constructor call before the function is entered (12.2, 12.8).

The order of evaluation of arguments is unspecified; take note that compilers differ. All side effects of
argument expressions take effect before the function is entered. The order of evaluation of the postfix
expression and the argument expression list is unspecified.

Recursive calls are permitted.

A function call is an Ivalue if and only if the result type is a reference.

5.2.3 Explicit type conversion (functional notation) [expr.type.conv]

A simple-type-specifief7.1.5) followed by a parenthesizegdpression-listonstructs a value of the speci-

fied type given the expression list. If the expression list specifies a single value, the expression is equiva-
lent (in definedness, and if defined in meaning) to the corresponding cast expression (5.4). If the expres-
sion list specifies more than a single value, the type must be a class with a suitably declared constructor
(8.5, 12.1).

A simple-type-specifigf7.1.5) followed by a (empty) pair of parentheses constructs a value of the specified
type. If the type is a class with a default constructor (12.1), that constructor will be called; otherwige the
result is the default value given to a static object of the specified type. See also (5.4).

5.2.4 Class member access [expr.ref]

A postfix expression followed by a dat)(or an arrow) followed by anid-expressions a postfix [
expression. For the first option (dot) the type of the first expressiomlfjeet expressigrmust be'class

object (of a complete type). For the second option (arrow) the type of the first expressiqoi(ttes
expressiopmust bée' pointer to class objet{of a complete type). Thd-expressioimust name a member

of that class, except that an imputed destructor may be explicitly invoked for a built-in type, see112.4.
Therefore, ifE1 has the typépointer to clas,” then the expressioBl->E2 is converted to the equiva-d

lent form (*(E1)).E2 ; the remainder of this subclause will address only the first optionl?botb the

) Note that ifE1 has the typépointer to clasX”, then(*(E1)) is an Ivalue.

5.2.4 Class member access DRAFT: 25 January 1994 Expressionss5

id-expressioris a qualified-id the class specified by the thested-name-specifi@f the qualified-idis O

looked up as a type both in the class of the object expression (or the class pointed to by the pointer expres-
sion) and the context in which the entoestfix-expressionccurs. If thenested-name-specifiepntains a O
template-class-id_temp.class), its template-argumestare evaluated in the context in which the entire
postfix-expressionccurs. For the purpose of this type lookup, the name, if any, of each class is also con-
sidered a nested class member of that class. These searches must yield a single type which may be found in
either or both contexts. Abbreviatimipject-expression.id-expressiasE1.E2 , then the type and Ivaluel
properties of this expression are determined as follows. In the remainder of this sulocjaepessents O
eitherconst or the absence abnst ; vgrepresents eitheqolatile or the absence oblatile

If E2 is declared to have tygeeference td”, thenE1l.E2 is an Ivalue; the type &1.E2 is“T”. Other- 0O
wise, one of the following rules applies. O

— If E2 is a static data member, and the typ&»fis “cq vqT”, thenE1.E2 is an Ivalue; the expres-{J
sion designates the named member of the class. The tigleE#t is“cq vqT”. O

— If E2is a (possibly overloaded) static member function, and the tyg@ of“ cv-qualifier function O
of(parameter type list) returning’, thenE1.E2 is an Ivalue; the expression designates the stdfic
member function. The type &1.E2 is the same type as that®?, namely“cv-qualifier function [
of(parameter type list) returning . O

— If E2 is a non-static data member, and the typEdis “cql vqlX’, and the type oE2 is“cq2 vg2 O
T”, the expression designates the named member of the object designated by the first expredsion. If
Elis an Ivalue, thefc1.E2 is an Ivalue. Let the notatiomg12stand for the'uniori’ of vqland 0O
vg2; that is, ifvqlorvg2is volatile , thenvgl2isvolatile . Similarly, let the notatioeql2 O
stand for thé'union’ of cqlandcqg?2 that is, ifcqlor cq2is const , thencgql2isconst . If E2is [0
declared to be mmutable member, then the type BfL.E2 is“vql2T". If E2is not declared to be[
amutable member, then the type BfL.E2 is“cql2 vql2T”. O

— If E2 is a (possibly overloaded) non-static member function, and the tyg2 o “cv-qualifier O
function of(parameter type list) returnifijg, thenE1.E2 is notan lvalue. The expression desig-!
nates a member function (of some clds The expression may be used only as the left-hdnd
operand of a member function call (9.4) or as the operand of the parenthesis operator (13.4.4). The
type ofE1.E2 is “classX’s cv-qualifier member function of(parameter type list) returihg O

— If E2is a nested type, the expressiihE?2 is ill-formed. O

— If E2 is a member constant, and the typdegfis “T,” the expressiofE1.E2 is not an Ivalue. The O
type of EL.E2 is“T". O

Note that'class objectscan be structures (9.2) and unions (9.6). Classes are discussed in 9.

5.2.5 Increment and decrement [expr.post.incr]

The value obtained by applying a postfix is the value of the operand. The operand must be a modifiable
Ivalue. The type of the operand must be an arithmetic type or a pointer to object type. After the result is
noted, the object is incremented byunless the object is of tygmol , in which case it is set toue [0

(this use is deprecated). The type of the result is the same as the type of the operand, but it is not an Ivalue.
See also 5.7 and 5.17.

The operand of postfix is decremented analogously to the postfixoperator, except that the operand
shall not be of typbool .
5.2.6 Dynamic cast [expr.dynamic.cast]

The result of the expressialynamic_cast<T>(v) is of typeT, which must be a pointer or a referendé
to a complete class type ‘Gpointer tocv void ”. The type of must be a complete pointer typdifs a
pointer, or a complete reference typ# i a reference.

5-6 Expressions DRAFT: 25 January 1994 5.2.6 Dynamic cast

If T is a pointer to clasB andv is a pointer to clasB such thaB is an unambiguous accessible direct or
indirect base class &, the result is a pointer to the unigBesub-object of thé object pointed to by.
Similarly, if T is a reference to clag&andyv is a reference to clagssuch thaB is an unambiguous acces-
sible direct or indirect base class@fthe result is a reference to the unijq6L)JB sub-object of th® object
referred to by. For example,

struct B {};
struct D : B {};
void foo(D* dp)
{

B* bp = dynamic_cast<B*>(dp); // equivalentto B* bp = dp;
}

Otherwisev must be a pointer or reference to a polymorphic type (10.3).

If Tisvoid* then the result is a pointer to the complete object (12.6.2) pointedvto ®yherwise, a run-
time check is applied to see if the object pointed or referred voday be converted to the type pointed or
referred to byT.

The run-time check logically executes like this: If, in the complete object pointed (referred)vtovby
points (refers) to an umambiguous base class sub-object obgect, the result is a pointer (reference) to
thatT object. Otherwise, if the type of the complete object has an unambiguous public base clasg,of type
the result is a pointer (reference) to Theub-object of the complete object. Otherwise, the run-time check
fails.

The value of a failed cast to pointer type is the null pointer. A failed cast to reference type throws
Bad_cast (17.3.2.4). For example,
class A { virtual void f(); };

class B { virtual void g(); };
class D : public virtual A, private B {};

void g()
{
D d;
B* bp = (B*)&d; // cast needed to break protection
A* ap = &d; I/ public derivation, no cast needed
D& dr = dynamic_cast<D&>(*bp); // succeeds
ap = dynamic_cast<A*>(bp); Il succeeds
bp = dynamic_cast<B*>(ap); /l fails
ap = dynamic_cast<A*>(&dr); /I succeeds
bp = dynamic_cast<B*>(&dr); // fails
}

class E : public D, public B {};
class F : public E, public D {}
void h()
{
F f
A* ap = &f; // okay: finds unique A
D* dp = dynamic_cast<D*>(ap); // fails: ambiguous
E* ep=(E*ap; // error: cast from virtual base
E* ep = dynamic_cast<E*>(ap); // succeeds

%) The complete object pointed or refereed tovbyjay contain otheB objects as base classes, but these are ignored.

5.2.7 Type identification DRAFT: 25 January 1994 Expressions-&¥

5.2.7 Type identification [expr.typeid]

The result of aypeid expression is of typeonst Type_info& (17.3.4.2). The value is a reference to
aType_info object that represents thge-idor the type of thexpressiomespectively. O

If the expressionis a reference to a polymorphic type (10.3) Thge-info for the complete object
(12.6.2) referred to is the result. Where theressioris a pointer to a polymorphic type dereferenced
using* or [expressioh the Type-info for the complete object pointed to is the result. Otherwise, the

result is theType-info representing the (static) type of #nepression O
5.2.8 Static cast [Jexpr.static.cast]

The result of the expressistatic_cast<T>(v) is of type T. Types may not be defined in &l
static_cast. Any type conversion not mentioned below and not explicitly defined by the user (12.3)
is ill-formed. O
Thestatic_cast operator cannot cast away constness. See below. O

Any implicit conversion (including standard conversions and user-defined conversions) can be perfdrmed
explicitly usingstatic_cast. O

A pointer to a complete clag&may be explicitly converted to a pointer to a complete desst haBas [0
a direct or indirect base class if an unambiguous conversionDrmnB exists (4.6, 10.2) and Bis not a [
virtual base class (10.1). Such a cast from a base to a derived class is valid only if the pointer poini$ to an
object of the base class that is actually a sub-object of an object of the derived class; the resultinglpointer
points to the enclosing object of the derived class. Otherwise (the object of the base class is nofla sub-
object of an object of the derived class) the result of the cast is undefined. O

ox 26 E |
Orhe two proposals differed in the preceding behavior. We believe this is the intended behavior; M

Aside from this pointer conversion (base-to-derived), the inverse of any implicit conversion can bél per-
formed explicitly usingstatic_cast subject to the restriction that the explicit conversion does not ¢ast
away constness. g

Additional conversions that may be performed explicitly usitagic_cast are listed below. No other[
conversions may be performed explicitly usstgtic_cast. O

A value of integral type may be explicitly converted to an enumeration type. The result of the convirsion
will compare equal to the integral value provided that the value is within the range of the enumeréation’s
underlying type (7.2). Otherwise, the result is undefined. O

A “pointer to member oflass A of type T1” may be explicitly converted to “gointer to member of [
class B of typeT2” whenclass A andclass B are either the same class or one is is unambiguously

derived from the other (4.6), and the typidsandT2 are the same. O
ox 27 B |
Or'he proposal implied the above without direct statement. Checkihis. M

The effect of calling a member function through a pointer to member function type that differs frofd the
type used in the definition of the member function is undefined. O

The effect of calling a member function through a pointer to member function type that differs frofd the
type used in the definition of the member function is undefined. O

An Ivalue expression of typeT” may be explicitly converted to the typeeference toX” if an expression [
of type“pointer toT” may be explicitly converted to the typpointer toX” with a static_cast . The O
implementation shall not copy a sub-object to bind a reference; for example, O

10

11

12

13

14

15

16

17

5-8 Expressions DRAFT: 25 January 1994 5.2.8 Static cast

struct B {}; a
struct D : public B {}; a
const B & = D(); // copying only B sub-object not allowed a

BBox 28 =N

O
Bssue (core#l, editorial): An rvalue expression of tijpemay be explicitly converted to the typeefer- {1
rence toconst X " if a variable of typé'reference ta@onst X " can be initialized with an rvalue exprest
Csion of type! T”. =N

Constructors or conversion functions are not called as the result of a cast to a reference. Converdion of a
reference to a base class to a reference to a derived class is exactly analogous to the conversion offa pointer

to a base class to a pointer to a derived class, with respect to restrictions and semantics. O

The result of a cast to a reference type is an Ivalue; the results of other casts are not. Operations pérformed

on the result of a pointer or reference cast refer to the same object as the original (uncast) expression.

An expression may be converted to a class type (only) if an appropriate constructor or conversion dperator

has been declared; seel2.3. O

If a null pointer value is converted to a tyfyointer toT”, the resulting pointer value is a null pointer

value. O
In the description of types, the notatiom represents a set of cv-qualifiers (one obfst }, { vola- a
tile }, { const, volatile 1, or the empty set). O
ox 29 g 0
[Orhis probably should be moved to the discussion of types. M
Any expression may be explicitly converted to typevoid ." ad
ox 30 E O
OWe believe this was the intent; check this. M

The following rules define casting away constness. In these Tuleand Xn represent types. For twol

pointer types: O
X1=Tlcvll*cvl2*..cvIN* where T1is not a pointer type and a
X2=T2cv21 *cv22*..cv2M* where T2 is not a pointer type and a
K is the minimum of N and M, g
H?:ox 31 B O
CEditor: re-format this into subscripts, etc. N

casting from X1 to X2 casts away constness if, for a non-pointermtyedy.,int), there does not exist ar]

implicit conversion from: O
T cvl(N-K+1) * cvl(N-K+2) * ... cvIN * to O
T cv2(N-K+1) * cv2(M-K+2) * ... cv2M * a

Casting from a typéreference tal'l” to “reference tar2” casts away constness if a cast frgminter to [
T1” to “pointer toT2” casts away constness. g

Casting from'‘pointer toC1 member of typd'1” to “pointer toC2 member of typ&2” casts away const-[1
ness if a cast frorfpointer toT1” to “pointer toT2” casts away constness. O

18

10

11

12

13

5.2.8 Static cast DRAFT: 25 January 1994 Expressions-9

For static_cast or const_cast , N and Mmust be equal, otherwiserainterpret_cast is O
required. Note that these rules are not intended to protect constness in all cases -- in particular, conMersions
between pointers to functions are not covered because such conversions lead to values whose u&é causes

undefined behavior. O
5.2.9 Reinterpret cast [Jexpr.reinterpret.cast]

The result of the expressioginterpret_cast<T>(v) is of type“T.” Types may not be defined in &1
reinterpret_cast. Any type conversion not mentioned below and not explicitly defined by the user
(12.3) is ill-formed. O
Thereinterpret_cast operator cannot cast away constnessstee_cast (_expr.static.cas). 0O
Conversions that may be performed explicitly usiamterpret_cast are listed below. The map-O
ping performed byeinterpret_cast is implementation-defined; it may, or may not, produce a repre-
sentation different from the original value. O

A pointer may be explicitly converted to any integral type large enough to hold it. The mapping funcfibn is
implementation-defined, but is intended to be unsurprising to those who know the addressing strucfure of
the underlying machine. O

A value of integral type may be explicitly converted to a pointer. A pointer converted to an integer of(Suffi-
cient size (if any such exists on the implementation) and back to the same pointer type will have its dtiginal
value; mappings between pointers and integers are otherwise implementation-defined. O

An incomplete class may be used in a pointer cast. If there is any inheritance relationship betwéén the
source and target classes, the behavior is undefined. O

A pointer to function may be explicitly converted to a pointer to an object type provided the object pdinter
type has enough bits to hold the function pointer. A pointer to an object type may be explicitly conierted

to a pointer to function provided the function pointer type has enough bits to hold the object pointgr. In
both cases, use of the resulting pointer may cause addressing exceptions if the subject pointer doeslhot refer
to suitable storage. O

A pointer to a function may be explicitly converted to a pointer to a function of a different type. The &ffect
of calling a function through a pointer to a function type that differs from the type used in the definitidn of
the function is undefined. See also 4.6. O

A “pointer to member oflass A of type T1” may be explicitly converted to “gointer to member of [
class B of typeT2” whenclass A andclass B are either the same class or one is is unambiguously
derived from the other (4.6), and the tygdsandT2 differ. (The case wheml andT2 are the same typell
is covered bytatic_cast , (5.2.8). O

The effect of calling a member function through a pointer to member function type that differs frofd the
type used in the definition of the member function is undefined. O

If a null pointer value is converted to a tyfyointer toT”, the resulting pointer value is a null pointdrl
value. O

An Ivalue expression of typeT” may be explicitly converted to the typeeference toX” if an expression [

of type“pointer toT” may be explicitly converted to the typpointer toX” usingreinterpret_cast .0
Constructors or conversion functions are not called as the result of a cast to a reference. Converdion of a
reference to a base class to a reference to a derived class is exactly analogous to the conversion offa pointer
to a base class to a pointer to a derived class, with respect to restrictions and semantics. O

The result of a cast to a reference type is an Ivalue; the results of other casts are not. Operations pérformed
on the result of a pointer or reference cast refer to the same object as the original (uncast) expression.

5-10 Expressions DRAFT: 25 January 1994 5.2.10 Const cast

5.2.10 Const cast [Jexpr.const.cast]

The result of the expressiaronst_cast<T>(v) is of type “T.” Types may not be defined in 41l
const_cast. Any type conversion not mentioned below and not explicitly defined by the user (1213) is
ill-formed. O

A pointer or reference to any object type, or a pointer to data member may be explicitly converted toa type
that is identical except faronst andvolatile qualifiers. For pointers and references, the result will

refer to the original object. For pointers to data members, the result will refer to the same membeflas the
original (uncast) pointer to data member. Depending on the type of the referenced object, a write opération
through the resulting pointer, reference or pointer to data member may produce undefined behavior; see

_decl.type. O
If a null pointer value is converted to a tyfyeointer toT”, the resulting pointer value is a null pointdr
value. O
5.3 Unary expressions (Jexpr.unary]

Expressions with unary operators group right-to-left. O

unary-expression:
postfix-expression
++ unary-expression
-~ unary-expression
unary-operator cast-expression
sizeof unary-expression
sizeof (type-id)
new-expression
delete-expression

unary-operator: one of O
* & o+ - | ~

5.3.1 Unary operators [(Jexpr.unary.op]

The unary* operator meanmdirectiorn the expression must be a pointer, and the result is an Ivalue réfer-
ring to the object to which the expression points. If the type of the expressmmiriter toT,” the type of
the result iST.”

The result of the unarg operator is a pointer to its operand. The operand must be an Ivalue, [or a
qualified-id In the first two cases, if the type of the expressidiTjs the type of the result igpointer to
T.” In particular, the address of an object of type T” is “pointer tocv T,” with the same cv-qualifiers.(d

For example, the address of an object of typenst int " has type'pointer toconst int .” Fora 0O
qualified-id, if the member is not static and of typE’ in class C , the type of the result ipointer to [
member ofttlass C of typeT.” For a static member of typ&”, the type is plaifipointer toT.” O

The address of an object of incomplete type may be taken, but only if the complete type of that object does
not have the address-of operatmpdrator&()) overloaded; no diagnostic is required. O

The address of an overloaded function (13) can be taken only in a context that uniquely determines which
version of the overloaded function is referred to (see 13.3).

The operand of the unaryoperator must have arithmetic or pointer type and the result is the value of the
argument. Integral promotion is performed on integral operands. The type of the result is the type of the
promoted operand.

The operand of the unaryoperator must have arithmetic type and the result is the negation of its operand.
Integral promotion is performed on integral operands. The negative of an unsigned quantity is computed by
subtracting its value from"2wheren is the number of bits in the promoted operand. The type of the result

is the type of the promoted operand.

5.3.1 Unary operators DRAFT: 25 January 1994 Expressions—-3.1

The operand of the logical negation operators converted tdool (4.9); its value idrue if the con- O
verted operand ifalse andfalse otherwise. The type of the resultisol . g

The operand of must have integral type; the result is the one’s complement of its operand. Integral pro-
motions are performed. The type of the result is the type of the promoted operand.

5.3.2 Increment and decrement [expr.pre.incr]

The operand of prefix+ is incremented by, or set totrue if it is bool (this use is deprecated). Thél
operand must be a modifiable Ivalue. The type of the operand must be an arithmetic type or a poiriter to a
completely-defined object type. The value is the new value of the operand; it is an Ivatuis. niét of O

type bool , the expressior+x is equivalent tax+=1. See the discussions of addition (5.7) and assign-
ment operators (5.17) for information on conversions.

The operand of prefix- is decremented analogously to the prefix operator, except that the operand
shall not be of typbool .

5.3.3 Sizeof [expr.sizeof]

Thesizeof operator yields the size, in bytes, of its operand. The operand is either an expression, which
is not evaluated, or a parenthesized type name.sitkef operator may not be applied to an expressian

that has function or incomplete type, or to the parenthesized name of such a type, or to an Ivalue that desig-
nates a bit-field. Abyte is unspecified by the language except in terms of the valusizebf ;
sizeof(char) is 1, butsizeof(bool) is implementation-deﬁned%7 O

When applied to a reference, the result is the size of the referenced object. When applied to a class, the
result is the number of bytes in an object of that class including any padding required for placing such
objects in an array. The size of any class or class object is greater than zero. When applied to an array, the
result is the total number of bytes in the array. This implies that the size of an arelgmknts i: times

the size of an element.

Thesizeof operator may be applied to a pointer to a function, but not to a function.
Types may not be defined irsezeof expression.

The result is a constant of tyg&ze t , an implementation-dependent unsigned integral type defined in
the standard headestddef.h>

5.3.4 New [expr.new]

The new-expressioattempts to create an object of tgpe-id(8.1) to which it is applied. This type must
be a complete object type.

new-expression:
T opt NEW new-placemepy new-typ_e-id new-?n_it?alﬁzg;;t
T opt NEW new-placemegy, (type-id) new-initializeg,

new-placement:
(expression-list)

new-type-id:
type-specifier-seq new-declaraigr

new-declarator:
* cv-qualifier-seg, new-declaratog,
Ioopt nested-name-specifiet cv-qualifier-seg, new-declaratog, O
direct-new-declarator

17) sizeof(bool) is not required to bg. |

5-12 Expressions DRAFT: 25 January 1994 5.3.4 New

direct-new-declarator:
[expression]
direct-new-declarator[constant-expression

oOod

new-initializer:
(expression-ligf,)

The lifetime of an object created bynaw-expressiors not restricted to the scope in which it is created.
The new-expressioreturns a pointer to the object created. When that object is an array (thatlisgsthe O
new-declaratorsyntax is used or theew-type-idor type-id denotes an array type), timew-expression [
yields a pointer to the initial element (if any) of the array. For example niegitint andnew int[10]

return anint Oand the type ohewint[i][10] is int(*)[10] . Every constant-expressiom a O
direct-new-declaratomust be a constant integral expression (5.19) with a strictly positive value. [(The
expressionn adirect-new-declaratomust be of integral type. If thexpressiorhas a negative value, thel
result of the new-expressions undefined. Thus, for example, if is a variable of typeint , O

new float[n][5] is well-formed (becaus@ is the expressionof a direct-new-declaratg; but O
new float[5][n] is not well-formed (because is not aconstant-expression If n is negative, the O
effect ofnew float[n][5] is undefined.

When the value of thexpressionn adirect-new-declarators zero, an array with no elements is allocated.
The pointer returned by theew-expressionill be non-null and distinct from the pointer to any other
object.

The type-specifier-segnay not contairconst , volatile , class declarations, or enumeration declara-
tions.

Storage for the object created bynew-expressioiis obtained from the appropriatdlocation function

(12.5) pperator new() for non-arrays ooperator new[]() for arrays). When the allocation func-

tion is called, the first argument will be amount of space requested (which may be larger than the size of the
object being created only if that object is an array). Adwe-placemendyntax can be used to supply addi-

tional arguments. For exampleew T results in a call obperator new(sizeof(T)) ,new(2f) T

results in a call obperatornew(sizeof(T),2,f) , newT[5] results in a call obperator

new[](xX) , andnew(2,f) T[5] results in a call obperator newl[](y,2,f) , Wwherex andy are

greater than or equal sizeof(T[5])

The return value from the allocation function, if non-null, will be assumed to point to a block of appropri-
ately aligned available storage of the requested size, and the object will be created in that block (but not
necessarily at the beginning of the block, if the object is an array). The allocation function may indicate
failure by throwing axalloc exception (15, 17.3.3.1). In this case no initialization is done.

If a class has one or more constructors (12gve-expressiofor that class calls one of them to initialize

the object. If the class does not have a default constructor, suitable arguments (13.2) must be provided in a
new-initializer. If there is no constructor anchaw-initializeris used, it must be of the for(rexpression [0

or () . If an expression is present it will be used to initialize the object; if notnemwainitializeris not

used, the object will start out with an unspecified value.

Access and ambiguity control are done for both the allocation function and the constructor (12.1, 12.5).

An object of a class can be creatednleyv only if suitable arguments are provided to the class’s constiilic-
tors, or if the class has a default construtior. O

No initializers can be specified for arrays. Arrays of objects of a class can be createevizgxgression [
only if the class has a default constructonn that case, the default constructor will be called for each éle-
ment of the array, in order of increasing address.

O
18) This means thattruct s{}; s x; s y(x); is allowed on the grounds thelass s has an implicitly declared copy con-0
structor, to which the argumexts being provided. O

PODS structs have an implicitly-declared default constructor. |

10

11

12

5.3.4 New DRAFT: 25 January 1994 Expressions-3.3

Whether the allocation function is called before evaluating the constructor arguments, after evaluating the
constructor arguments but before entering the constructor, or by the constructor itself is unspecified. It is
also unspecified whether the arguments to a constructor are evaluated if the allocation function returns the
null pointer or throws an exception.

In anew-type-idused as the operand foew, parentheses may not be used. This implies that
new int(*[10])(); Il error

is ill-formed because the binding is
(new int) (*[10])(); // error

The explicitly parenthesized version of tiew operator can be used to create objects of derived types. For
example,

new (int (*{10])());
allocates an array df0 pointers to functions (taking no argument and returiing).

Thenew-typan anew-expressiois the longest possible sequencaeiv-declaratos. This prevents ambi-
guities between declarator operat&rg, [] , and their expression counterparts. For example,

new int*i; /I syntax error: parsed as ‘(new int*) i’
1 not as ‘(new int)*’

The* is the pointer declarator and not the multiplication operator.

5.3.5 Delete [expr.delete]

Thedelete-expressiooperator destroys a complete object (1.5) or array createddwy-axpressian

delete-expression:
I opt delete cast-expression
i opt delete [] cast-expression

The first alternative is for non-array objects, and the second is for arrays. The result kagitype

In either alternative, if the value of the operandlelete is the null pointer the operation has no effect.
Otherwise, in the first alternativedlete objeqt the value of the operand d@élete must be a pointer to a
non-array object created bynaw-expressiowithout anew-placemenspecification, or a pointer to a sub-

object representing a base class of such an object. O
%ox 32 E |
Ossue: ... or a class with an unambiguous conversion to such a pointer fype ... M

In the second alternativelélete array, the value of the operand délete must be a pointer to an array
created by aew-expressiowithout anew-placemergpecification. Otherwise, the result is undefined.

In the first alternativedelete objeqt if the static type of the operand is different from its dynamic type and

the class of the complete object has a destructor (12.4), the static type must have a virtual destructor or the
result is undefined. In the second alternatdeldte array if the dynamic type of the object to be deleted is

a class that has a destructor and its static type is different from its dynamic type, the result is undefined.

The effect of attempting to access a deleted object is undefined and the deletion of an object may change its
value. Furthermore, if the expression denoting the objectiglede-expressiois a modifiable lvalue, any
attempt to access its value after the deletion is undefined.

A program that appliedelete to a pointer to constant is ill formed.

If the class of the object being deleted is incomplete at the point of deletion and the class has a destructor or
an allocation function or a deallocation function, the result is undefined.

5-14 Expressions DRAFT: 25 January 1994 5.3.5 Delete

The delete-expressiowill invoke the destructor (if any) for the object or the elements of the array being
deleted. In the case of an array, the elements will be destroyed in order of decreasing address (that is, in
reverse order of construction).

To free the storage pointed to, tlielete-expressiomwill call a deallocation function(operator

delete() for non-arrays ooperator delete[]() for arrays); see 12.5.

5.4 Explicit type conversion (cast notation) [expr.cast]
The result of the expressiofi) cast-expressions of type T. An explicit type conversion can bd]l
expressed using functional notation (5.2.3), a type conversion operdigran{ic_cast, g
static_cast, reinterpret_cast, const_cast), or thecastnotation.

cast-expression:
unary-expression
(type-id) cast-expression

Types may not be defined in casts. O
Any type conversion not mentioned below and not explicitly defined by the user (12.3) is ill-formed.

The conversions performed layatic_cast , reinterpret_cast , const_cast , or any sequencel]
thereof, may be performed using the cast notation of explicit type conversion. The same semantic[festric-
tions and behaviors apply.

In addition to those conversions, a pointer to an object of a derived class (10) may be explicitly corverted
to a pointer to any of its base classes regardless of accessibility restrictions (11.2), provided the corversion
is unambiguous (10.2). The resulting pointer will refer to the contained object of the base class. O

5.5 Pointer-to-member operators [expr.mptr.oper]
The pointer-to-member operaters and.* group left-to-right.

pm-expression:
cast-expression
pm-expression* cast-expression
pm-expression->* cast-expression

The binary operator* binds its second operand, which must be of typainter to member of” to its
first operand, which must be of clagsor of a class of whiciH is an unambiguous and accessible base
class. The result is an object or a function of the type specified by the second operand.

The binary operator>* binds its second operand, which must be of tygmnter to member of” to its
first operand, which must be of typpointer toT” or “pointer to a class of whichis an unambiguous and
accessible base clds3he result is an object or a function of the type specified by the second operand.

If the result of.* or->* is a function, then that result can be used only as the operand for the function
call operatof) . For example,

(ptr_to_obj->*ptr_to_mfct)(10);
calls the member function denoted jpy_to_mfct for the object pointed to bgtr to obj . The
result of an* expression or &* expression is an Ivalue only if its first operand is an Ivalue and its sec-
ond operand refers to an Ivalue.
5.6 Multiplicative operators [expr.mul]

The multiplicative operators, / , and%group left-to-right.

5.6 Multiplicative operators DRAFT: 25 January 1994 Expressions 515

multiplicative-expression:
pm-expression
multiplicative-expressiort pm-expression
multiplicative-expression’ pm-expression
multiplicative-expressiorfo pm-expression

The operands of and/ must have arithmetic type; the operand&ahust have integral type. The usual
arithmetic conversions (4.5) are performed on the operands and determine the type of the result.

The binary* operator indicates multiplication.

The binary/ operator yields the quotient, and the bin#gperator yields the remainder from the division

of the first expression by the second. If the second operanaid¥is zero the result is undefined; other-
wise (a/b)*b + a%b is equal taa. If both operands are nonnegative then the remainder is nonnegative;
if not, the sign of the remainder is implementation dependent.

5.7 Additive operators [expr.add]

The additive operators and- group left-to-right. The usual arithmetic conversions (4.5) are performed
for operands of arithmetic type.

additive-expression:
multiplicative-expression
additive-expression+ multiplicative-expression
additive-expression multiplicative-expression

For addition, either both operands shall have arithmetic type, or one operand shall be a pointer to a com-
pletely defined object type and the other shall have integral type.

For subtraction, one of the following shall hold: a
— both operands have arithmetic type; a

— both operands are pointers to qualified or unqualified versions of the same completely defined object
type; or O

— the left operand is a pointer to a completely defined object type and the right operand has integral type.

If both operands have arithmetic type, the usual arithmetic conversions are performed on them. The result
of the binary+ operator is the sum of the operands. The result of the binaperator is the difference
resulting from the subtraction of the second operand from the first.

For the purposes of these operators, a pointer to a nonarray object behaves the same as a pointer to the first
element of an array of length one with the type of the object as its element type.

When an expression that has integral type is added to or subtracted from a pointer, the result has the type of
the pointer operand. If the pointer operand points to an element of an array object, and the array is large
enough, the result points to an element offset from the original element such that the difference of the sub-
scripts of the resulting and original array elements equals the integral expression. In other words, if the
expressiorP points to the-th element of an array object, the expressi®)sN (equivalently,N+(P))

and (P)-N (whereN has the valu@) point to, respectively, thern-th andi—n-th elements of the array

object, provided they exist. Moreover, if the expres$igoints to the last element of an array object, the
expressior(P)+1 points one past the last element of the array object, and if the exprégsiams one

past the last element of an array object, the expref@iph points to the last element of the array object.

If both the pointer operand and the result point to elements of the same array object, or one past the last ele-
ment of the array object, the evaluation shall not produce an overflow; otherwise, the behavior is undefined.
If the result is used as an operand of the uhasperator, the behavior is undefined unless both the pointer
operand and the result point to elements of the same array object, or the pointer operand points one past the
last element of an array object and the result points to an element of the same array object.

5-16 Expressions DRAFT: 25 January 1994 5.7 Additive operators

When two pointers to elements of the same array object are subtracted, the result is the difference of the
subscripts of the two array elements. The type of the result is an implementation-defined signed integral
type; this type shall be the same type that is defingudrdsf _t in the<stddef.h> header. As with [

any other arithmetic overflow, if the result does not fit in the space provided, the behavior is undefined. In
other words, if the expressioRsandQ point to, respectively, thieth andj-th elements of an array object,

the expressiofP)-(Q) has the value-j provided the value fits in an object of typiediff t . More-

over, if the expressioR points either to an element of an array object or one past the last element of an
array object, and the expressi@points to the last element of the same array object, the expression
(Q)+1)-(P) has the same value g8)-(P))+1 and as((P)-((Q)+1)) , and has the value zero

if the expressionP points one past the last element of the array object, even though the expgi@$sion

does not point to an element of the array object. Unless both pointers point to elements of the same array
object, or one past the last element of the array object, the behavior is unédfined.

5.8 Shift operators [expr.shift]

The shift operators< and>> group left-to-right.

shift-expression:
additive-expression
shift-expression<< additive-expression
shift-expression>> additive-expression

The operands must be of integral type and integral promotions are performed. The type of the result is that
of the promoted left operand. The result is undefined if the right operand is negative, or greater than or
equal to the length in bits of the promoted left operand. The valag gk E2 is EL1 (interpreted as a bit
pattern) left-shiftedE?2 bits; vacated bits are zero-filled. The valud&df>> E2 is E1 right-shiftedE2 bit
positions. The right shift is guaranteed to be logical (zero-filllihas an unsigned type or if it has a non-
negative value; otherwise the result is implementation dependent.

5.9 Relational operators [expr.rel]

The relational operators group left-to-right, but this fact is not very usefbkc means(a<b)<c and
not (a<b)&&(b<c)

relational-expression:
shift-expression
relational-expression< shift-expression
relational-expression> shift-expression
relational-expression<=shift-expression
relational-expression>=shift-expression

The operands must have arithmetic or pointer type. The operaftass than)> (greater than)s<= (less
than or equal to), and= (greater than or equal to) all yieldise ortrue . The type of the result isO
bool .

The usual arithmetic conversions are performed on arithmetic operands. Pointer conversions are performed
on pointer operands to bring them to the same type, which must be a qualified or unqualified version of the
type of one of the operands. This implies that any pointer may be compared to a constant expression evalu-
ating to zero and any pointer can be compared to a pointer of qualified or unqualifiedit/pe (in the

latter case the pointer is first converted/tdd*). Pointers to objects or functions of the same type (after
pointer conversions) may be compared; the result depends on the relative positions of the pointed-to objects

or functions in the address space.

O
2Y) Another way to approach pointer arithmetic is first to convert the pointer(s) to character pointer(s): In this scheme the htegral
expression added to or subtracted from the converted pointer is first multiplied by the size of the object originally pointed to,[@nd the
resulting pointer is converted back to the original type. For pointer subtraction, the result of the difference between the characiér point-
ers is similarly divided by the size of the object originally pointed to. |

When viewed in this way, an implementation need only provide one extra byte (which may overlap another object in the progrdm) just
after the end of the object in order to satisfy“thiee past the last elem&mequirements. O

5.9 Relational operators DRAFT: 25 January 1994 Expressions-37

If two pointers of the same type point to the same object or function, or both point one past the end of the
same array, or are both null, they compare equal. If two pointers of the same type point to different objects
or functions, or only one of them is null, they compare unequal. If two pointers point to nonstatic data
members of the same object, the pointer to the later declared member compares higher provided the two
members not separated by arcess-specifielabel (11.1) and provided their class is not a union. If two
pointers point to nonstatic members of the same object separatedalogems-specifielabel (11.1) the

result is unspecified. If two pointers point to data members of the same union, they compare equal (after
conversion tovoid* , if necessary). If two pointers point to elements of the same array or one beyond the
end of the array, the pointer to the object with the higher subscript compares higher. Other pointer compar-
isons are implementation dependent.

5.10 Equality operators [expr.eq]

equality-expression:
relational-expression
equality-expression== relational-expression
equality-expression= relational-expression

The== (equal to) and the= (not equal to) operators have the same semantic restrictions, conversion§] and
result type as the relational operators except for their lower precedence and truth-value resuli<i{Thius
==c<d istrue whenevela<b andc<d have the same truth-value.) g

In addition, pointers to members of the same type may be compared. Pointer to member conversions (4.8)
are performed. A pointer to member may be compared to a constant expression that evaluates to zero.

5.11 BitwiseAND operator [expr.bit.and]

and-expression:
equality-expression
and-expression& equality-expression

The usual arithmetic conversions are performed; the result is the bitvaseinction of the operands. The
operator applies only to integral operands.

5.12 Bitwise exclusive®R operator [expr.xor]

exclusive-or-expression:
and-expression
exclusive-or-expressiot and-expression

The usual arithmetic conversions are performed; the result is the bitwise exadasfuaction of the
operands. The operator applies only to integral operands.

5.13 Bitwise inclusiveOR operator [expr.or]

inclusive-or-expression:
exclusive-or-expression
inclusive-or-expressior] exclusive-or-expression

The usual arithmetic conversions are performed; the result is the bitwise inchrsifesction of its
operands. The operator applies only to integral operands.

5.14 LogicalAND operator [expr.log.and]

logical-and-expression:
inclusive-or-expression
logical-and-expression&& inclusive-or-expression

The && operator groups left-to-right. The operands are both converted thogbe(4.9). The result is O

5-18 Expressions DRAFT: 25 January 1994 5.14 LogicaND operator

true if both operands argue andfalse otherwise. Unlikef, && guarantees left-to-right evaluationt]
the second operand is not evaluated if the first operdatbés .

The result is @ool . All side effects of the first expression except for destruction of temporaries (12.2)
happen before the second expression is evaluated.

5.15 LogicalOR operator [expr.log.or]

logical-or-expression:
logical-and-expression
logical-or-expression|| logical-and-expression

The|| operator groups left-to-right. The operands are both converteddlo(4.9). It returngrue if O
either of its operands iBue , andfalse otherwise. Unlikgl , || guarantees left-to-right evaluation;
moreover, the second operand is not evaluated if the first operand evaltiates to O

The result is ool . All side effects of the first expression except for destruction of temporaries (12.2)
happen before the second expression is evaluated.

5.16 Conditional operator [expr.cond]

conditional-expression:
logical-or-expression
logical-or-expression? expression: assignment-expression

Conditional expressions group right-to-left. The first expression is convertepbto(4.9). It is evaluated O

and if it istrue , the result of the conditional expression is the value of the second expression, otherwise
that of the third expression. All side effects of the first expression except for destruction of tempataries
(12.2) happen before the second or third expression is evaluated.

If either the second or third expression thr@w-expressiol(15.2), the result is of the type of the other.

If both the second and the third expressions are of arithmetic type, then if they are of the same type the
result is of that type; otherwise the usual arithmetic conversions are performed to bring them to a common
type. Otherwise, if both the second and the third expressions are either a pointer or a constant expression
that evaluates to zero, pointer conversions (4.6) are performed to bring them to a common type which must
be a qualified or unqualified version of the type of either the second or the third expression. Otherwise, if
both the second and the third expressions are either a pointer to member or a constant expression that evalu-
ates to zero, pointer to member conversions (4.8) are performed to bring them to a com 6wl11j¢je

must be a qualified or unqualified version of the type of either the second or the third expression. [@ther-
wise, if both the second and the third expressions are Ivalues of related class types, they are convdrted to a
common type as if by a cast to a reference to the common type (4.7). Otherwise, if both the secondland the
third expressions have typevvoid ", the common type v void .” Otherwise, if both the second andl

the third expressions are of the same claghe common type i§. Otherwise the expression is ill formed.

The result has the common type; only one of the second and third expressions is evaluated. The result is an
Ivalue if the second and the third operands are of the same type and both are Ivalues.

5.17 Assignment operators [expr.ass]

There are several assignment operators, all of which group right-to-left. All require a modifiable Ivalue as
their left operand, and the type of an assignment expression is that of its left operand. The result of the
assignment operation is the value stored in the left operand after the assignment has taken place; the result
is an Ivalue.

2 This is one instance in which theomposite typg as described in the C Standard, is still employed-n C O

10

5.17 Assignment operators DRAFT: 25 January 1994 Expressions-59

assignment-expression:
conditional-expression
unary-expression assignment-operator assignment-expression
throw-expression

assignment-operatorone of ad
= *= [= Op= += = >>= <<= &= "= |:

In simple assignment], the value of the expression replaces that of the object referred to by the left
operand. If both operands have arithmetic type, the right operand is converted to the type of the left
preparatory to the assignment. There is no implicit conversion to an enumeration (7.2), so if the left
operand is of an enumeration type the right operand must be of the same type. If the left operand is of
pointer type, the right operand must be the null pointer (4.6) or of a type that can be converted to the type of
the left operand, which conversion takes place before the assignment.

An expression of typ&pointer tocvl T” can be assigned to a pointer of tyjpeinter tocv2 T” if the set [0
of cv-qualifierscvlis a subset afv2(7.1.5 see also 8.5).

If the left operand is of pointer to member type, the right operand must be of pointer to member type or a
constant expression that evaluates to zero; the right operand is converted to the type of the left before the
assignment.

Assignment to objects of a class ¥0)s defined by the functioX::operator=() (13.4.3). Unless the
user defines aK::operator=() , the default version is used for assignment (12.8). This implies that an
object of a class derived froi¥ (directly or indirectly) by unambiguous public derivation (4.6) can be
assigned to aK.

A pointer to a member of claBsmay be assigned to a pointer to a member of &adshe same type pro-
videdDis derived fronB (directly or indirectly) by unambiguous public derivation (10.2).

Assignment to an object of typeeference ta” assigns to the object of tyjedenoted by the reference.

If E1 is not of typebool , the behavior of an expression of the forEil op= E2 is equivalent to O
E1=E1 op E2 except thaE1l is evaluated only once. k= and-=, the left operand may be a pointer to
completely defined object type, in which case the (integral) right operand is converted as explained in 5.7;
all right operands and all nonpointer left operands must have arithmetic type.

For class objects, assignment is not in general the same as initialization (8.5, 12.1, 12.6, 12.8).

See 15.2 for throw expressions.

5.18 Comma operator [expr.comma]

The comma operator groups left-to-right.

expression:
assignment-expression
expression, assignment-expression

A pair of expressions separated by a comma is evaluated left-to-right and the value of the left expression is
discarded. All side effects of the left expression are performed before the evaluation of the right expres-
sion. The type and value of the result are the type and value of the right operand; the result is an lvalue if
its right operand is.

In contexts where comma is given a special meaning, for example, in lists of arguments to functions (5.2.2)
and lists of initializers (8.5), the comma operator as described in this clause can appear only in parentheses;
for example,

f(a, (t=3, t+2), c);

has three arguments, the second of which has the ¥alue

5-20 Expressions DRAFT: 25 January 1994 5.19 Constant expressions

5.19 Constant expressions [expr.const]

In several places,+€ requires expressions that evaluate to an integral constant: as array bounds (8.3.4), as
case expressions (6.4.2), as bit-field lengths (9.7), and as enumerator initializers (7.2).

constant-expression:
conditional-expression

A constant-expressiocan involve only literals (2.9), enumeratocenst values of integral types initial-

ized with constant expressions (8.5), aimbof expressions. Floating constants (2.9.3) must be cast to
integral types. Only type conversions to integral types may be used. In particular, exsigpbfn
expressions, functions, class objects, pointers, and references cannot be used. The comma operator and
assignment-operatermay not be used in a constant expression.

6 Statements [stmt.stmt]
0
Except as indicated, statements are executed in sequence. a
statement:

labeled-statement
expression-statement
compound-statement
selection-statement
iteration-statement
jump-statement
declaration-statement
try-block

6.1 Labeled statement [stmt.label]

A statement may be labeled.

labeled-statement:
identifier : statement
case constant-expression statement
default : statement

An identifier label declares the identifier. The only use of an identifier label is as the targetof.aThe

scope of a label is the function in which it appears. Labels cannot be redeclared within a function. A label
can be used ingoto statement before its definition. Labels have their own name space and do not inter-
fere with other identifiers.

Case labels and default labels may occur only in switch statements.

6.2 Expression statement [stmt.expr]

Most statements are expression statements, which have the form

expression-statement:
expressiog}Jt ;

Usually expression statements are assignments or function calls. All side effects from an expression state-
ment are completed before the next statement is executed. An expression statement with the expression
missing is called a null statement; it is useful to carry a label just befoyeafh@ compound statement and

to supply a null body to an iteration statement suchiale (6.5.1).

6.3 Compound statement or block [stmt.block]

So that several statements can be used where one is expected, the compound statement (also, and equiva-
lently, called“block’) is provided.

compound-statement:
{ statement-sgg }

6-2 Statements DRAFT: 25 January 1994 6.3 Compound statement or block

statement-seq:
statement
statement-seq statement

A compound statement defines a local scope (3.3).
Note that a declaration isstatement6.7).

6.4 Selection statements [stmt.select]

Selection statements choose one of several flows of control.

selection-statement:
if (condition) statement
if (condition) statementelse statement
switch (condition) statement

condition:
expression
type-specifier-seq declarator assignment-expression O

The statementn a selection-statemeriboth statements, in tredse form of theif statement) implicitly O
defines a local scope (3.3). This can be expressed as a rewriting rule in which the statement is replaced by a
compound statement containing the original statement. For example,
if (x)
for (inti;;) {
...
}

may be equivalently rewritten as
if () {
for (inti;;) {
...
}

}
Thus after théf statement, is no longer in scope.

The rules forconditiors apply both tselection-statemestand to thdor andwhile statements (6.5). 0
The declaratormay not specify a function or an array. Tgpe-specifiemay not declare a new class or
enumeration.

A name introduced by a declaration ic@nditionis in scope from its point of declaration until the end of
the statements controlled by the condition. The valueaminditionthat is an initialized declaration is thé]l
value of the initialized variable; the value of@nditionthat is an expression is the value of the expressiah.
The value of the condition will be referred to as sinfphe conditiofi where the usage is unambiguous.

A variable, constant, etc. in the outermost block of a statement controlled by a condition may not have the
same name as a variable, constant, etc. declared in the condition.

If a conditioncan be syntactically resolved as either an expression or the declaration of a local name, it is
interpreted as a declaration.

6.4.1 Theif statement [stmt.if]

The condition is converted to tygmol ; if that is not possible, the program is ill-formed. If it yields
true the first substatement is executedelfe is used and the condition yieltise , the second sub-0
statement is executed. Thise ambiguity is resolved by connecting alse with the last encountered
else -lessif .

6.4.2 Theswitch statement DRAFT: 25 January 1994 Statements &

6.4.2 Theswitch statement [stmt.switch]

Theswitch statement causes control to be transferred to one of several statements depending on the value
of an expression.

The condition must be of integral type or of a class type for which an unambiguous conversion to integral
type exists (12.3). Integral promotion is performed. Any statement within the statement may be labeled
with one or more case labels as follows:

case constant-expression

where theconstant-expressiofb.19) is converted to the promoted type of the switch expression. No two of
the case constants in the same switch may have the same value.

There may be at most one label of the form

default :
within aswitch statement.

Switch statements may be nestedaae ordefault label is associated with the smallest switch enclos-

ing it.

When theswitch statement is executed, its condition is evaluated and compared with each case cdnstant.
If one of the case constants is equal to the value of the condition, control is passed to the statementifollow-
ing the matched case label. If no case constant matches the condition, and if thdeéaidta label, O

control passes to the statement labeled by the default label. If no case matches and if thuerfaist no
then none of the statements in the switch is executed.

case anddefault labels in themselves do not alter the flow of control, which continues unimpeded
across such labels. To exit from a switch, ls®ak , 6.6.1.

Usually, the statement that is the subject of a switch is compound. Declarations may appear in the
statemenbf a switch-statement. O

6.5 Iteration statements [stmt.iter]

Iteration statements specify looping.

iteration-statement:
while (condition) statement
do statement while (expression) ;
for (for-init-statement conditiq, ; expressiog,) statement

for-init-statement:
expression-statement
declaration-statement

Note that dor-init-statemenends with a semicolon.

The statemenin aniteration-statemenimplicitly defines a local scope (3.3) which is entered and exited
each time through the loop. This can be expressed as a rewriting rule in which the statement is replaced by
a compound statement containing the original statement. For example,
while (x)
for (inti;;) {
I ...
}

may be equivalently rewritten as

6-4 Statements DRAFT: 25 January 1994 6.5 Iteration statements

while (x) {
for (inti;;) {
...
}
}

Thus after thevhile statementi is no longer in scope.

See 6.4 for the rules @onditiors.

6.5.1 Thewhile statement [stmt.while]

In thewhile statement the substatement is executed repeatedly until the value of the condition bédomes
false . The test takes place before each execution of the statement.

The condition is converted twol (4.9). a

6.5.2 Thedo statement [stmt.do]

In the do statement the substatement is executed repeatedly until the value of the condition bédomes
false . The test takes place after each execution of the statement.

The condition is converted twol (4.9). a

6.5.3 Thefor statement [stmt.for]
Thefor statement

for (for-init-statement conditiq, ; expressiog,) statement ad
is equivalent to

for-init-statement

while (condition) { O
statement
expression; O
}

except that @ontinue in statemenfnot enclosed in another iteration statement) will exeexpeession [
before re-evaluatingondition Thus the first statement specifies initialization for the loop; the conditidn
specifies a test, made before each iteration, such that the loop is exited when the condition bEcomes
false ; the expression often specifies incrementing that is done after each iteration. The condition iS con-
verted tobool (4.9).

Either or both of the condition and the expression may be dropped. A missidiionmakes the implied O
while clause equivalent tohile(true) . O

If the for-init-statements a declaration, the scope of the names declared extends to the end of the block
enclosing thdor-statement

6.6 Jump statements [stmt.jump]

Jump statements unconditionally transfer control.

jump-statement:
break ;
continue ;
return expressiog ;
goto identifier ;

On exit from a scope (however accomplished), destructors (12.4) are called for all constructed hameéd auto-
matic objects declared in that scope, in the reverse order of their declaration. Transfer out of a loop, out of
a block, or back past an initialized automatic variable involves the destruction of automatic variablé$ that

6.6 Jump statements DRAFT: 25 January 1994 Statements-5

are in scope at the point transferred from but not at the point transferred to. (See 6.7 for transfers into
blocks). However, the program may be terminated (by cadliitf) or abort() , for example) with-
out destroying automatic class objects.

6.6.1 Thebreak statement [stmt.break]

Thebreak statement may occur only in #&eration-statemenbr aswitch statement and causes termi-
nation of the smallest enclosiitgration-statemenor switch statement; control passes to the statement
following the terminated statement, if any.

6.6.2 Thecontinue statement [stmt.cont]

Thecontinue statement may occur only in &aration-statemenand causes control to pass to the loop-
continuation portion of the smallest enclositggation-statementthat is, to the end of the loop. More pre-
cisely, in each of the statements

while (foo) { do { for (;;) {

...
contin: ; contin: ; contin: ;
} } while (foo); }

acontinue not contained in an enclosed iteration statement is equivalgatdo contin

6.6.3 Thereturn statement [stmt.return]
A function returns to its caller by timeturn statement.

A return statement without an expression can be used only in functions that do not return a value, that is, a
function with the return value typeoid , a constructor (12.1), or a destructor (12.4). A return statement
with an expression can be used only in functions returning a value; the value of the expression is returned to
the caller of the function. If required, the expression is converted, as in an initialization, to the return type
of the function in which it appears. This may involve the construction and copy of a temporary object
(12.2). Flowing off the end of a function is equivalent tetarn with no value; this results in undefined
behavior in a value-returning function.

6.6.4 Thegoto statement [stmt.goto]

Thegoto statement unconditionally transfers control to the statement labeled by the identifier. The identi-
fier must be a label (6.1) located in the current function.

6.7 Declaration statement [stmt.dcl]

A declaration statement introduces one or more new identifiers into a block; it has the form

declaration-statement:
declaration

If an identifier introduced by a declaration was previously declared in an outer block, the outer declaration
is hidden for the remainder of the block, after which it resumes its force.

Automatic variables are initialized each time thdEclaration-statemens executed. Automatic variableg]
declared in the block are destroyed on exit from the block (6.6).

It is possible to transfer into a block, but not in a way that bypasses declarations with initialization. Al pro-
gram that jumps from a point where an automatic local variable is not in scope to a point where iflis in
scope is ill-formed unless the variable is an aggregate (8.5.1) that is declared withuotialeer(8.5).

For example,

6-6 Statements DRAFT: 25 January 1994 6.7 Declaration statement

void f()
{
...
goto Ix; /I ill-formed: jump into scope of ‘a’ O
...
ly:
Xa=1;
...
Ix:
goto ly; /I ok, jump implies destructor
/I call for ‘a’ followed by construction O
/I again immediately following label ly O
}

Initialization of a local object with storage claswtic (7.1.1) is done the first time control passés
through its declaration (only). Wherestatic variable is initialized with an expression that is not a
constant-expressigrdefault initialization to zero of the appropriate type (8.5) happens before its block is
first entered.

The destructor for a locatatic object will be executed if and only if the variable was constructed. The
destructor must be called either immediately before or as part of the callsatéxh@ functions (3.5).
Exactly when is unspecified.

6.8 Ambiguity resolution [stmt.ambig]

There is an ambiguity in the grammar involviegpression-statementinddeclaratiors: An expression-
statementvith a function-style explicit type conversion (5.2.3) as its leftmost subexpression can be indis-
tinguishable from aleclarationwhere the firstleclaratorstarts with & . In those cases ttstatements a
declaration

To disambiguate, the wholstatementmay have to be examined to determine if it iseapression-
statemenbr adeclaration This disambiguates many examples. For example, assumisig simple-
type-specifie(7.1.5),

T(@)->m=7; /I expression-statement
T(@)++; /I expression-statement
T(a,5)<<c; /I expression-statement
T(*d)(int); /I declaration

T(©)[I; // declaration

TMH={1,2}; /I declaration
T(*g)(double(3)); // declaration

In the last example abovg, which is a pointer td, is initialized todouble(3) . This is of course ill-
formed for semantic reasons, but that does not affect the syntactic analysis.

The remaining cases adeclaratiors. For example,

T(a); // declaration
T(*b)0); /I declaration
T(c)=7, /I declaration

T(d),e,f=3; /I declaration
T(g)(h,2); /I declaration

The disambiguation is purely syntactic; that is, the meaning of the names, beyond whethert}ipeyidre
or not, is not used in the disambiguation.

A slightly different ambiguity betweeexpression-statemenanddeclaratiors is resolved by requiring a
type-idfor function declarations within a block (6.3). For example,

6.8 Ambiguity resolution DRAFT: 25 January 1994 Statements -67

void g()
intf(); // declaration
int a; /I declaration
fQ); /I expression-statement
a; /I expression-statement

7 Declarations [dcl.dcl]

A declaration introduces one or more names into a program and specifies how those names are to e inter-
preted. Declarations have the form

declaration:
decl-specifier-seg; init-declarator-list,,; ;
function-definition ad
template-declaration
asm-definition
linkage-specification
namespace-definition
namespace-alias-definition
using-declaration
using-directive

O

oooOoo

asm-definitios are described in 7.4, atidkage-specificatios are described in 7.5unction-definitios [
are described in 8.4 anemplate-declaratiom are described intemp.dcls. The description of the generall
form of declaration O

decl-specifier-seg; init-declarator-list,; ; d

is divided into two partsdecl-specifies, the components of gecl-specifier-segare described in 7.1 and]
declaratoss, the components of amit-declarator-list are described in 8. O

A declaration occurs in a scope (3.3); the scope rules are summarized in 10.5. A declaration that dédlares a
function or defines a class, template, or function also has one or more scopes nested within it. Thesd nested
scopes, in turn, may have declarations nested within them. Unless otherwise stated, utterances in tliis chap-
ter about components in, of, or contained by a declaration or subcompoent thereof refer only to thosé com-
ponents of the declaration that a nested within scopes nested within the declaration. O

In the general form of declaration, the optiomat-declarator-listmay be omitted only when declaring &l
class (9) or enumeration (7.2), that is, when deel-specifier-segqontains either &lass-specifieran [
elaborated-type-specifiewith a class-key(9.1), or anenum-specifier In these cases and whenever a
class-specifieor enum-specifieis present in thelecl-specifier-seqthe identifiers in these specifiers argl
among the names being declared by the declaratiarigss-namesnum-namesor enumeratorglepend- [
ing on the syntax). O

Each init-declarator in the init-declarator-list contains exactly oneleclarator-id which is the name O
declared by thainit-declarator and hence one of the names declared by the declaration.typ&e [
specifier§7.1.5) in thedecl-specifier-secand the recursivaeleclarator structure of theinit-declarator O
describe a type_¢ecl.meaning), which is then associated with the name being declared binithe [
declarator. O

If the decl-specifier-seqontains theypedef specifier, the declaration is calledypedef declaratiomnd [
the name of eachit-declarator is declared to be gpedef-namesynonymous with its associated typél
(7.1.3). If thedecl-specifier-seccontains notypedef specifier, the declaration is calledfanction O
declarationif the type associated with the name is a function type (8.3.5) aalject declaratiorother- [
wise. O

7-2 Declarations DRAFT: 25 January 1994 7 Declarations

Syntactic components beyond those found in the general form of declaration are added to a functiohldecla-
ration to make dunction-definition An object declaration, however, is also a definition unless it contdins
theextern specifier and has no initializer (3.1). A definition causes the appropriate amount of storage to
be reserved and any appropriate initialization (8.5) to be done. O

Only in function-definitiong8.4) and in function declarations for constructors, destructors, and type [don-
versions may thdecl-specifier-sefe omitted. O

Generally speaking, the names declared by a declaration are introduced into the scope in which the[declara-
tion occurs. The presence ofreend specifier and certain uses of tekaborated-type-specifeter this O
general behavior, however. (see 11.4 and 9.1)

7.1 Specifiers [dcl.spec]

The specifiers that can be used in a declaration are

decl-specifier:
storage-class-specifier
type-specifier
function-specifier
friend ad
typedef

decl-specifier-seq:
decl-specifier-segj; decl-specifier

The longest sequence aécl-specifies that could possibly be a type name is taken addblespecifier-seq
of adeclaration The sequence must be self-consistent as described below. For example,

typedef char* Pc;
static Pc; [/l error: name missing

Here, the declaratiostaticPc is ill-formed because no name was specified for the static variablél of
type Pc. To get a variable of typat calledPc, thetype-specifieint must be present to indicate that
the typedef-naméc is the name being (re)declared, rather than being part afettiespecifiersequence.

For example,

void f(const Pc); I/ void f(char* const) (not const char*) O
void g(const int Pc); // void g(const int)

Note that sincesigned , unsigned , long , andshort by default implyint , atype-nameappearing [
after one of those specifiers is treated as the name being (re)declared. For example,

void h(unsigned Pc); // void h(unsigned int)
void k(unsigned int Pc); // void k(unsigned int)

7.1.1 Storage class specifiers [dcl.stc]

The storage class specifiers are

storage-class-specifier:
auto
register
static
extern
mutable

Ooooooo

At most onestorage-class-specifienay appear in a givedecl-specifier-seq If a storage-class-specifier
appears in @ecl-specifier-segthere can be ntypedef specifier in the samdecl-specifier-seqnd the O
init-declarator-list of the declaration must not be empty. Tterage-class-specifiaapplies to the namel
declared by eacinit-declaratorin the list and not to any names declared by other specifiers. O

7.1.1 Storage class specifiers DRAFT: 25 January 1994 Declarations 37

Theauto orregister specifiers can be applied only to names of objects declared in a block (6.3)0r to
function parameters (8.4). They specify that the named object is an automatic object (3.7). An[bbject
declared without atorage-class-specifieat block scope or as a function parameter has automatic storage
class by default. Hence, tlaito specifier is almost always redundant and not often used; one ude of
auto is to distinguish aeclaration-statemeritom anexpression-stateme(8.2) explicitly.

A register specifier has the same semantics aawn specifier together with a hint to the compilel!
that the object so declared will be heavily used. The hint may be ignored and in most implementations it
will be ignored if the address of the object is taken. O

The static ~ specifier can be applied only to names of objects and functions and to anonymous thions
(9.6). There can be retatic function declarations within a block, nor astatic function parame- [
ters. Astatic specifier used in the declaration of an object declares the object to be a static DObject
(_basic.stc). Astatic specifier may be used in the declaration of class members and its affddt is
described in 9.5. O

Theextern specifier can be applied only to the hames of objects and functionsexiéra specifier O
cannot be used in the declaration of class members or function parameters.

A name declared with static specifier has internal linkage. For a nonmember functiomlare O
specifier is equivalent tostatic ~ specifier for linkage purposes (3.4). A name declared at file scope With

the extern specifier has external linkage. An object or function declared at block scope wittilthe
extern specifier has external linkage unless the declaration matches a previous file scope declaration that
has internal linkage, in which case the object or function has internal linkage and refers to the samélobject
or function denoted by the file scope declarafidh. O

A name declared at file scope withoustarage-class-specifidras external linkage unless it has internal
linkage because of a previous declaration and provided it is not dectarsid . Objects declaredonst [
have internal linkage unless they have external linkage because of a previous declaration. O

The linkages implied by successive declarations for a given entity must agree. That is, within albiven
scope, each declaration declaring the same object name or the same overloading of a function naime must
imply the same linkage. Each function in a given set of overloaded functions may have a different linkage,
however. For example,

static char* f(); // f() has internal linkage

char* f() I () still has internal linkage
{rF...*}

char* g(); /I g() has external linkage

static char* g() // error: inconsistent linkage
{rF..*}

static int a; /l ‘a’ has internal linkage

int a; // error: two definitions

static int b; //'b’ has internal linkage

extern int b; I/ ‘b’ still has internal linkage

intc; /l ‘¢’ has external linkage

static int c; /I error: inconsistent linkage

extern d; /1 'd" has external linkage

static int d; /I error: inconsistent linkage

O
22) Here, “previously” includes enclosing scopes. This implies that a name spesifitd and then specifieéxtern inan 0O
inner scope still has internal linkage. |

9

10

7—-4 Declarations DRAFT: 25 January 1994 7.1.1 Storage class specifiers

The name of a declared but undefined class can be usedextean declaration. Such a declaration,
however, cannot be used before the class has been defined. For example,

struct S;

extern S a;
extern S f();
extern void g(S);

void h()
{

g(a); [l error: S undefined
fQ); [l error: S undefined

}

Themutable specifier can be applied only to names of class data members (9.2) and can not be apjlied to
names declarecbnst orstatic . For example O
class X {

mutable const int* p; // ok
mutable int* const q; // ill-formed

OooOoo

h

Themutable specifier on a class data member nullifieast specifier applied to the containing clas8
object and permits modification of the mutable class member even though the rest of the cbjest s
(7.1.5).

7.1.2 Function specifiers [dcl.fct.spec]

Function-specifiergan be used only in function declarations. O

function-specifier:
inline
virtual

Theinline specifier is a hint to the compiler that inline substitution of the function body is to be pre-
ferred to the usual function call implementation. The hint may be ignored. For a nonmember functian, the
inline specifier also gives the function internal linkage (3.4). A function (5.2.2, 8.3.5) defined withinlthe
declaration of a class is inline by default.

An inline member function must have exactly the same definition in every compilation in which it appElars.

A class member function need not be explicitly declared witlintiree ~ specifier in the class declaratiori]
to be inline. When nadnline specifier is used, linkage will be external unless a definition with the
inline specifer appears before the first call. a

class X {

public:
int f(); O
inline int g(); // X::g() has internal linkage
int h();

I3

void k(X* p)
inti=p->f(); // now X::f() has external linkage

int j = p->g();
...

7.1.2 Function specifiers DRAFT: 25 January 1994 Declarations—B

inline int X::f() Il error: called before defined
I as inline
{

}

...

inline int X::g()

...
}

inline int X::h() // now X::h() has internal linkage

{
}

...

The virtual specifier may be used only in declarations of nonstatic class member functions within a
class declaration; see 10.3.

7.1.3 Thetypedef specifier [dcl.typedef]

Declarations containing thdecl-specifietypedef declare identifiers that can be used later for naming
fundamental or derived types. Ttypedef specifier may not be used irfunction-definition(8.4), and it O
may not be combined indecl-specifier-sewith any other kind of specifier exceptype-specifier

typedef-name:
identifier

A name declared with thgpedef specifier becomestgpedef-nameWithin the scope of its declaration[]
atypedef-namés syntactically equivalent to a keyword and names the type associated with the identifier in
the way described in 8. If, indecl-specifier-seqgontaining thedecl-specifietypedef , there is ndype- O
specifier or the onlytype-specifies arecv-qualifiers, thetypedef declaration is ill-formed. Aypedef-
nameis thus a synonym for another type. tybedef-nameoes not introduce a new type the way a cldss
declaration (9.1) or enum declaration does. For example, after

typedef int MILES, *KLICKSP;
the constructions

MILES distance;
extern KLICKSP metricp;

are all correct declarations; the typadaftance isint ; that ofmetricp is “pointer toint .”

In a given scope, gpedef specifier may be used to redefine the name of any type declared in that §cope
to refer to the type to which it already refers. For example,

typedef structs { /* ... */ } s;
typedef int [;

typedef int [;

typedef I [;

In a given scope, fypedef specifier may not be used to redefine the name of any type declared irntthat
scope to refer to a different type. For example,

class complex { /* ... */ };
typedef int complex; I/ error: redefinition

Similarly, in a given scope, a class may not be declared with the same nantgpaded-namehat is O
declared in that scope and refers to a type other than the class itself. For example,

7-6 Declarations DRAFT: 25 January 1994 7.1.3 Thiypedef specifier

typedef int complex;
class complex { /* ... */ }; I/ error: redefinition

A typedef-namdhat names a class iscass-nameg9.1). Thetypedef-namenay not be used after al
class , struct , orunion prefix and not in the names for constructors and destructors within the class
declaration itself. For example,

struct S {
S0;
~S0;
2
typedef struct S T; O
Sa=T(); I/l ok

struct T *p; [/l error

An unnamed class defined in a declaration witlypedef specifier gets a dummy name. For linkage
purposes only (3.4), thgpedef-nameéeclared by the declaration is used to denote the class type in place of

the dummy name. Thiypedef-namés still only a synonym for the dummy name and may not be uSed
where a true class name is required. Such a class cannot have explicit constructors or destructord because
they cannot be named by the user. For example,

typedef struct {
S(); [/ error: requires a return type since S is ad
/I an ordinary member function, not a constructor O
1S

A typedef-naméhat names an enumeration is emum-namg7.2). Thetypedef-namenay not be used
after anenum prefix.
7.1.4 Thefriend specifier [dcl.friend]

Thefriend specifier is used to specify access to class members; see 11.4.

7.1.5 Type specifiers [dcl.type]
The type-specifiers are

type-specifier:
simple-type-specifier
class-specifier
enum-specifier
elaborated-type-specifier
cv-qualifier

As a general rule, at most otype-specifieiis allowed in the completdecl-specifier-segf a declaration
The only exceptions to this rule are the following:

— const orvolatile may be combined with any othigpe-specifier

— signed orunsigned may be combined witbhar , long , short , orint .

— short orlong may be combined witimt .

O 0o 0o m oo o

— long may be combined witdouble .

At least onaype-specifieiis required in a typedef declaration. At least tyype-specifieiis required in a O
function declaration unless it declares a constructor, destructor or type conversion operator. If thefé is no
type-specifieror if the onlytype-specifies present in aecl-specifier-seare cv-qualifiers, then thent O
specifier is assumed as defa%fl)L.Regarding the prohibition of the defautt specifier intypedef a

O
23)Redundant cv-qualifiers are allowed to be introduced through the use of typedefs or template type arguments and are ignoréd.

7.1.5 Type specifiers DRAFT: 25 January 1994 Declarations—7

declarations, seetypedef; in all other instances, the use d#cl-specifier-sexjwhich contain ngimple- [

type-specifies (and thus default to plaint) is deprecated. O
class-specifies andenum-specifiex are discussed in 9 and 7.2, respectively. The remaiypegspecifies [
are discussed in the rest of this section. O
7.1.5.1 Thecv-qualifiers (Jdcl.type.cv]

The presence of eonst specifier in adecl-specifier-segpecifies aconst object. Except that any clas$]
member declarethutable may be modified, any attempt to modifycanst object after it has been ini-O

tialized and before it is destroyed results in undefined behavior. O
Example O
class X { a

public: a

mutable int i; a

int j; O

h O

class Y { public: X x; } a

const Yy; O

VX /I defined behavior O

Y. X j++; // undefined behavior a

Y* p = const_cast<Y*>(&y); /I cast away const-ness of y a

p->X.i = 99; /I defined behavior a

p->X.j = 99; /I undefined behavior a

Unless explicitly declaredxtern , aconst object does not have external linkage and must be initialized
(8.5; 12.1). An integratonst initialized by a constant expression may be used in constant expresgions
(5.19). Each element ofanst array isconst and each non-function, non-static, non-mutable member
of aconst class object isonst (9.4.1). O

There are no implementation-independent semanticgdiatile objects;volatile is a hint to the O
compiler to avoid aggressive optimization involving the object because the value of the object may be
changed by means undetectable by a compiler. Each elementotdtite array isvolatile and
each nonfunction, nonstatic member afodatile class object igolatile (9.4.1). An object may be
bothconst andvolatile , with thetype-specifies appearing in either order.

BBox 33

B\Iotwithstanding the description above, the semantie®latile are intended to be the same i+ @s {1
rthey are in C. However, it's not possible simply to copy the wording from the C standard until we Uder-
stand the ramifications of sequence points, etc. &

DED

7.1.5.2 Simple type specifiers ([dcl.type.simple]

The simple type specifiers are O

7-8 Declarations

The simple-type-specifisrspecify either a previously-declared user-defined type or one of the fundaméntal

simple-type-specifier:
o
char
wchar_t
bool
short
int
long
signed
unsigned
float
double
void

type-name:
class-name
enum-name
typedef-name

DRAFT: 25 January 1994

¢ nested-name-specifigytype-name

7.1.5.2 Simple type specifiers

OoOoOono

types (3.8.1). Table 11 summarizes the valid combinatiorsngble-type-speciferand the types theyl

specify.

Table 11—simple-type-specifier and the types they specify

[Specifier(s) U Type
ype-name othe type named
rchar O“char ”
Cunsigned char O“unsigned char "~
Csigned char U«signed char ”
ool O«hool
cunsigned 0 unsignedint "
runsigned int 0O“unsigned int "
[signed O“int "
Csigned int O«int
nt “int "

cunsigned short int
runsigned short
Cunsigned long int
Lunsigned long
igned long int
csigned long
rong int
(ong
Lsigned short int
igned short
cshortint
rshort
Owchar_t
Hloat
ouble
ong double
[void

0 unsigned short int
[]“unsigned short int
0“unsigned long int
U“unsigned long int
“longint "
0‘long int
0“long int
0“long int
U«shortint ”
U«short int
0 short int
0“short int
O“wchar_t
U«float ”
U«double ”
'long double
0“void ”

OOdoooOoooooooooooooooooooooooooood

O

1 I 1 |

When multiplesimple-type-specifierare allowed, they may be freely intermixed with ottlecl-specifiers [

in any order. Theigned specifier forcechar objects and bit-fields to be signed; it is redundant with

7.1.5.2 Simple type specifiers DRAFT: 25 January 1994 Declarations-9

other integral types. O

7.1.5.3 Elaborated type specifiers (Jdcl.type.elab]

Generally speaking, thelaborated-type-specifiés used to refer to a previously decladss-nameor [
enum-nameven though the name may be hidden by an intervening object, function, or enumerator declara-
tion (3.3), but in some cases it also can be used to dedkrgsaname

elaborated-type-specifier:

class-key:: o, nested-name-specifigridentifier ad
enum::, nested-name-specifigyidentifier g
class-key:
class
struct
union
If an elaborated-type-specifiés the sole constituent ofdeclarationof the form O
class-key identifier; O

then theelaborated-type-specifiadeclares thédentifier to be aclass-nameén the scope that contains thél
declaration (9.1). Otherwise, thdentifier following the class-keyor enum keyword is resolved asO
described in 10.5 according to its qualifications, if any, but ignoring any objects, functions, or enumeétators
that have been declared. If tidentifier resolves to alass-nameor enum-namethe elaborated-type- O
specifierintroduces it into the declaration the same wajngle-type-specifantroduces itgype-name If [

the identifier resolves to dypedef-namethe elaborated-type-specifigs ill-formed. If the resolution is O
unsuccessful, thelaborated-type-specifiés ill-formed unless it is of the simple foratass-key identifier O

In this case, th&entifier is declared in the smallest non-class, non-function prototype scope enclosirig the
elaborated-type-specifi€B.3).

The class-keyor enum keyword present in thelaborated-type-specifienust agree in kind with the declat
ration to which the name in thelaborated-type-specifierefers. This rule also applies to the form df
elaborated-type-specifiehat declares aelass-namesince it can be construed as refering to the definitionlof
the class. Thus, in amslaborated-type-specifietheenum keyword must be used to refer to an enumera-
tion (7.2), theunion class-keymust be used to refer to a union (9), and eithercthgs or struct O
class-keymust be used to refer to a structure (9) or to a class declared usicigghe class-key For [
example: O

7-10 Declarations DRAFT: 25 January 1994 7.1.5.3 Elaborated type specifiers

struct Node { a
struct Node* Next; /I ok: Refers to Node at file scope a

struct Data* Data; /I ok: Declares type Data a

/I at file scope and member Data a

h 0
struct Data { a
struct Node* Node; /I ok: Refers to Node at file scope O

* % a

h 0
struct Base { a
struct Data; /I ok: Declares nested Data O

struct ::Data* thatData; /I ok: Refers to ::Data 0

struct Base::Data* thisData; Il ok: Refers to nested Data a

struct Data { /* ... */ }; /I Defines nested Data a

struct Data; /I ok: Redeclares nested Data a

|3 O
struct Data; /I ok: Redeclares Data at file scope a
struct ::Data; /I error: qualified and nothing declared. a
struct Base::Data; /I error: qualified and nothing declared. a
struct Base::Datum; Il error: Datum undefined 0
struct Base::Data* pBase; /I ok: refers to nested Data O

7.2 Enumeration declarations [dcl.enum]

An enumeration is a distinct type (3.8.1) with named constants. Its name becosnesnanamethat is, a
reserved word within its scope.

enum-name:
identifier

enum-specifier:
enum identifier,,, { enumerator-lisj, }

enumerator-list: 0
enumerator-definition O
enumerator-list, enumerator-definition a

enumerator-definition: 0
enumerator
enumerator= constant-expression O

enumerator: 0
identifier

The identifiers in arenumerator-listare declared as constants, and may appear wherever constants are
required. If noenumerator-definitiorswith = appear, then the values of the corresponding constants biggin
at zero and increase by one ase¢hamerator-lisis read from left to right. Aenumerator-definitiomwvith

= gives the associatezhumeratorthe value indicated by thenstant-expressigsubsequergnumeratos [
without initializers continue the progression from the assigned value cdrfstant-expressiomust be of
integral type.

For example, O

7.2 Enumeration declarations DRAFT: 25 January 1994 Declarations 711

enum{a, b,c=0};
enum {d, e, f=e+2 };

definesa, ¢, andd to be zerob ande to bel, andf to be3.

The point of declaration for an enumerator is immediately aftenitsnerator-definition For example:

d
constintx =12; O
{enum{x=x};} a

Here, the enumerataris initialized with the value of the constantnamely 12. O

Each enumeration defines a type that is different from all other types. The type of an enumerator is ifs enu-
meration.

Theunderlying typeof an enumeration is an integral type, not gratuitously Iargeriﬂha:?‘l) that can rep- O
resent all enumerator values defined in the enumeration. Erthmerator-listis empty, the underlying O
type is as if the enumeration had a single enumerator with value 0. The valzeod() applied to an O
enumeration type, an object of enumeration type, or an enumerator, is the vsizenf(j applied to
the underlying type.

For an enumeration wheeg,, is the smallest enumerator a@g,, is the largest, the values of the enumert
ation are the values of the underlying type in the rdmgeto b, whereb,;, andb ., are, respectively, [
the smallest and largest values of the smallest bit-field that can etgreand e, On a two’s- O
complement machind,,,, is the smallest value greater than or equal to @ é,,i,) ;ab(emnax)) of the O
form 2Y = 1; by iS zero ifeq, is non-negative and (b, +1) otherwise. It is possible to define an enii
meration that has values not defined by any of its enumerators.

The value of an enumerator or an object of an enumeration type is converted to an integer by intedral pro-
motion (4.1). For example,

enum color { red, yellow, green=20, blue };
color col = red;

color* cp = &col;

if (*cp == blue) // ...

makescolor a type describing various colors, and then declzmksas an object of that type, aod as a
pointer to an object of that type. The possible values of an object octjpe arered , yellow ,
green , blue ; these values can be converted to the integral values20, and21. Since enumerations
are distinct types, objects of typelor may be assigned only values of tyqmdor . For example,

colorc=1; / error: type mismatch,
/I no conversion from int to color
inti = yellow; // ok: yellow converted to integral value 1
/ integral promotion

See also C.3.

An expression of arithmetic type or of typehar_t may be converted to an enumeration type explicitly.
The value is unchanged if it is in the range of enumeration values of the enumeration type; otherwise the
resulting enumeration value is unspecified.

ox 34 g
[0rhis means the program does not crdsh.

The enum-name and each enumerator declared by an enum-specifier is declared in the scope thatlimmedi-

ately contains the enum-specifier. These names obey the scope rules defined for all names in (813) and
O
“%)The type should be larger thamt only if the value of an enumerator won't fit in eut . O

7-12 Declarations DRAFT: 25 January 1994 7.2 Enumeration declarations

(10.5). For example,

class X {
public:
enum direction { left="", right="r' };
int f(int i)
{return i==left ? 0 : i==right 71 :2;}

h
void g(X* p) 0
{
direction d; /I error: ‘direction’ not in scope
inti;
i = p->f(left); /I error: ‘left’ not in scope
i = p->f(X::right); // ok
...
}
7.3 Namespaces [[basic.namespace]

A namespace is a kind of declarative region that effectively attaches an additional identifier to any Hames
declared inside it. Unlike other declarative regions, the definition of a namespace may be split over Several

parts of a single translation unit. O

The declarations in file scope of a translation unit behave as if they appeared in a namespace célled the
global namespace O

7.3.1 Namespace definition [([namespace.def]

The grammar for aamespace-definitiois

original-namespace-name:
identifier

namespace-definition:
original-namespace-definition
extension-namespace-definition
unnamed-namespace-definition

original-namespace-definition:
namespace identifier{ namespace-body

extension-namespace-definition:
namespace original-namespace-namg namespace-body

unnamed-namespace-definition:
namespace { namespace-body

namespace-body:
declaration-seg,

oo oo oo oo ooogo goo O

Theidentifierin anoriginal-namespace-definitioshall not have been previously defined in the declarative
region in which theoriginal-namespace-definitiomppears. Theadentifier in an original-namespace- [
definition is the name of the namespace. Subsequently in that declarative region, it is treatedCas an
original-namespace-name a

The original-namespace-nama anextension-namespace-definitishall have previously been defined il
anoriginal-namespace-defintion the same declarative region. a

Every namespace-definitiomust appear either at file scope or immediately within anatherespace- [
definition O

7.3.1 Namespace definition DRAFT: 25 January 1994 Declarations-I3

An unnamed-namespace-definitibehaves as if it were replaced by g
namespace unique { namespace-body a
using namespace unique; a

where, for each translation unit, all occurrencesrifiue in that translation unit are replaced by an identit

fier that differs from all other identifiers in the entire progl%ﬁ)rFor example: O
namespace {inti;} // unique:i O
void f() {i++; } I unigue:i++ a
namespace A { a

namespace { a
inti; Il A:: unique::i O

int j; IIA:: unique:j a

a

void f() {i++;} /[A: unique::i++ a

O

using namespace A, a
void h() { a
i++; Il error: unique::i or A:: unique:i a
A+ /I error: A::i undefined O
e A unique:j a

} a

The declarative region ofrmmespace-definitiois itsnamespace-bodyThe potential scope denoted by an
original-namespace-name the concatenation of the declarative regions established by each oflthe
namespace-definitianin the same declarative region with thagjinal-namespace-nameEntities declared [
in anamespace-bodre said to benembes of the namespace, and names introduced by these declardfions
into the declarative region of the namespace are saidreirder namesf the namespace. For example O

namespace N
{ - -
inti;
int g(int a) { return a; }
void k();
void q();
}
namespace { int k=1; }
namespace N

I

{
int g(char a) /I overloads N::g(int)
return k+a; I/ k is from unnamed namespace
}
inti; /Il error, duplicate definition
void k(); /I OK, duplicate function declaration
void k() { /I OK, definition of N::k()
return g(a); /I calls N::g(int)
int q(); /I error, different return type
}
Because aamespace-definitiocontainsdeclaratiors in itsnamespace-bodind anamespace-definitiois [
itself adeclaration it follows thatnamespace-definitiamay be nested. For example: O
O

23) Entities in an unnamed namespace have internal linkage, and can never be seen from another translation unit. |

7-14 Declarations DRAFT: 25 January 1994 7.3.1 Namespace definition

namespace Outer { a
inti; g
namespace Inner { O
void f() {i++; } // Outer::i a
inti; O
void g() { i++; }// Inner::i a
O
} O
8 The use of thestatic = keyword is deprecated when declaring objects that are not class members§l (see
_future.directions); theunnamed-namespagpeovides a superior alternative. O
9 Members of a namespace may be defined within that namespace. For example: O
namespace X { void f() { } } a
class Y {voidg(){}}; a
10 Members of a named namespace may also be defined outside that namespace by explicit qualification
(7.3.5) of the name being defined, provided that entity being defined was already declared in theChame-
space. For example: 0
namespace Q { a
namespace V { a
void f(); a
O
void V:f() {} // fine O
void V::g(){} // error, g() is not yet a member of V a
namespace V { a
void g(); a
} O
} O
11 Every name first declared in a namespace is a member of that namesp&iendA function first O

declared within a class is a member of the innermost enclosing non-class namespace. For example{]

/l Assume f and g have not yet been defined. a

namespace A { a

class X { O

friend void f(X); // declaration of f a

class Y { a

friend void g(); a

2 0

I3 0

void f(X) {} /I definition of f declared above a

X X; O

void g() { f(x); } // f and g are members of A a

} a

using A::x; a

main() { a

A:f(x); a

A Xf(X); /I error, fis not a member of A::X a

A:X:Y:g(); /I error, g is not a member of A::X::Y O

} a
ox 35 O O

O
[Ban Jose Motion 16: In "class X *p;" where is X introduced? This should be described here As well[T]

7.3.1 Namespace definition DRAFT: 25 January 1994 Declarations-I5

When an entity declared with tlextern specifier is not found to refer to some other declaration, ttién

that entity is a member of the innermost enclosing non-class namespace. For example: O

namespace X { a

void p() { a

q(); /I error: g not yet declared a

extern void q(); // q is a member of namespace X O

} g

void q() { } /I definition of q a

a

void q() {} /I some other, unrelated g a

g

7.3.2 Namespace or class alias [(Inamespace.alias]

A namespace-alias-definitiasieclares an alternate name for a namespace according to the following gtam-

mar: g

namespace-alias: a

identifier g

namespace-alias-definition: a

namespace identifier = qualified-namespace-specifier ; a

qualified-namespace-specifier: a

2 opt NESted-name-specifigy class-or-namespace-name a

Theidentifierin anamespace-alias-definitias a synonym for the name of the namespace denoted by the
qualified-namespace-specifiand becomes mamespace-alias O

A namespace-nanshall not be declared as the name of any other entity in the same declarative regidn. A
namespace-nangefined at global scope shall not be declared as the name of any other entity in any[global

scope of the program. O

7.3.3 Theusing declaration [(fnamespace.udecl]

A using-declaratiorintroduces a name into the declarative region in which it appears. That name is alsyn-

onym for the name of some entity declared elsewhere. O

using-declaration: a

using :: o, nested-name-specifier unqualifiedsid a
using :: unqualified-id; O

BBox 36 E 0

(There is still an open issue regarding the "opt" on the nested-name-spécifier. N

The member names specified irusing-declarationare declared in the declarative region in which thée
using-declaratiorappears. O

Every using-declarationis adeclarationand amember-declaratiomnd so may be used in a class defirli}
tion. For example: O

7-16 Declarations DRAFT: 25 January 1994 7.3.3 Thesing declaration

struct Base {
void f(char);
void g(char);
I3
struct Derived: Base
{
using Base:f;
void f(int) { f('c’); } // calls Base::f(char)
void g(int) { g(’c’); } // recursively calls Derived::g(int)

OOooooogoogano

An entity with the name of thenqualified-idshall be known to the nominated class or namespace atthe
point that theusing-declarationappears. Additional definitions added to the namespace afteisihg- [

declarationare not considered when a use of the name is made. O
H?:ox 37 B 0
[Please check this example carefully. N

For example: O

namespace A { a

void f(int); a

} O

using A:f; Il fis a synonym for A::f O

namespace A { a

void f(char); a

} 0

void foo() { a

fCa); // calls f(int), a

} /I even though f(char) exists a

void bar() { a

using A::f; O

fCa’); /I calls f(char) a

} O

The names thus defined are aliases for their original declarations so thaintealeclarationdoes not O

affect the type, linkage or other attributes of the members refered to. O

If the set of local declarations anging-declaratios for a single name are given in a declarative regian,

they shall all refer to the same entity, or all refer to functions. For example O
namespace B a
{ a

inti; g
void f(int); O
void f(double); a
} a
void g() a
{ O
inti; O
using B::i; [/l error: i declared twice O
void f(char); a
using B::f; I fine, each f is a function O
} a

7.3.3 Theusing declaration DRAFT: 25 January 1994 Declarations #17

m

HBOX 38
O
Orhis reflects paper 93-0105 but does not reflect the original namespace paper. According to therfriginal

aoaper, the previous example should read: El]
o voidg) %
o

O int i; d
g using B::i; I error: i declared twice ™
g void f(char); (o
0 using B::f; [/l error: f declared twice

o} %
O O

During overload resolution, a locally declared function is prefered over an injected one when both have the
same signature. If the signature with the best match refers to more than one function, an ambiguityl exists

and the program is ill-formed. O
HBox 39 El]
ETThis treatment is a mistake, but it was voted in San Jose. d
O
%ditorial proposal: if a local declaration conflicts with one introduced hysing-declarationthe programtid

s ill-formed. Thus, in the example below, the declaratiori(iof) in function h should render th
Cexample ill-formed.

it

For example: O
namespace C a
{ g

void f(int); O
void f(double); a
void f(char); a
} g
void h() a
{ a
using B::f; // B::f(int) and B::f(double) a
using C::f; a
f(1); /I ambiguity B::f(int) or C::f(int) O
void f(int); a
f(1); /I calls local f(int) a
fCh’); /I calls C::f(char) g
(2.0); /I ambiguity B::f(double) or C::f(double); O
} a

Omitting the name before implies a reference to the global namespace: O
void f(); a
namespace X { a

using ::f; // global f a

J3 O
main() a
O

X::f(); /I calls ::f a

} a

All instances of the name mentioned insing-declaratiormust be accessible. In particular, if a derived
class uses asing-declarationto access a non-static member of a base class, the member name milst be
accessible, and if the name is that of a non-static member function, then all functions named niust be

10

11

7-18 Declarations DRAFT: 25 January 1994 7.3.3 Thesing declaration

accessible.

The alias created by thesing-declaratiorhas the usual accessibility fomeember-declaratian For exam-
ple:

class A {
private:

void f(char);
public:

void f(int);
protected:

void g();

class B: public A {

using A::f; /] error, A::f(char) is inaccessible
public:

using A:.qg; // B::g is a public synonym for A::g

Oooooooooooooo oo o

h

O

Use of access specifiers is deprecated; menmirg-declaratios provide a better alternative.

7.3.4 Using directive [([namespace.udir]

using-directive: H
using namespace :: opt Nested-name-specifigrnamespace-name ; O

A using-directivespecifies that the names in the namespace with the gammespace-naméncluding O

those specified by anysing-directive in that namespace, can be used in the scope in whialsitige O
directiveappears after the using directive, exactly as if the names from the namespace had been déeclared
outside a namespace at the points where the namespace was defumdg-directivedoes not add any[
members to the declarative region in which it appears. If a namespace is extendeextgnded- [
namespace-definitioafter ausing-directiveis given, the additional members of the extended namespace
may be used after thextended-namespace-definition O

The using-directivels transitive: if a namespace containgsing-directivethat nominates a second namel
space that itself containsing-directivs, the effect is as if thesing-directive from the second namespace
also appeared in the first. In particular, a name in a namespace does not hide names in a second namespace

which is the subject of @sing-declaratiorin the first namespace. O
BBox 40 g O
CAn example would helpl] N

During overload resolution, all functions from the transitive search must be considered for argument fhatch-
ing. An ambiguity exists if the best match finds two functions with the same signature, even if one [thight
seem to “hide” the other in thesing-directivdattice. O

For example: ad

7.3.4 Using directive

DRAFT: 25 January 1994

namespace D

{

}

int di;
void f(int);
void f(char);

using namespace D;

int di;

/I OK: no conflict with D::d1

namespace E

{

}

namespace D

{

}
void f()

inte;
void f(int);

/I namespace extension

int d2;

using namespace E;

void f(int);

di++; /l ambiguous ::d1 or D::d1
ndl++ /I OK

D:.dl++; //OK

d2++; /I OK: D::d2

e++; /I OK: E::e

f(1); /l ambiguous D::f(int) or E::f(int)

f(a’); // OK D::f(char)

7.3.5 Explict qualification

Declarations—719

OOodoOOoooooooooooooooono o gogooooo

[(fnamespace.qual]

A name in a class or namespace may be accessed using qualification according to the grammar: 0O

id-expression a

unqualified-id a

qualified-id a

nested-name-specifier: a

class-or-namespace-name nested-name-specifigy a

class-or-namespace-name: O

class-name a

namespace-name O

namespace-name: O

original-namespace-name a

namespace-alias a

The namespace-narsein a nested-name-specifieshall have been previously defined bynamed- O

namespace-definitioor anamespace-alias-definition a
(Box 41 o

O
O believe "class-specifier* and "namespace-alias-definition" above should be replaced with "type-naime" to
Cinclude "original-namespace-specifier" and "typedef" as well. ™

Theclass-name in anested-namespace-specifgrall have been previously defined bglass-specifieor O
anamespace-alias-definition

O

7-20 Declarations DRAFT: 25 January 1994 7.3.5 Explict qualification

The search for the initial qualifier preceding any operator locates only the names of types or name-
spaces. The search for a name after docates only names members of a namespace or class. In pafficu-

lar, using-directive are ignored, as is any enclosing declarative region. O
7.4 Theasm declaration [Jdcl.asm]
An asm declaration has the form O

asm-definition:
asm (string-literal) ;

The meaning of aasm declaration is implementation dependent. Typically it is used to pass information
through the compiler to an assembler.

7.5 Linkage specifications [dcl.link]

Linkage (3.4) betweert€ and non-&+ code fragments can be achieved usiligkage-specification

linkage-specification:
extern string-literal { declaration-seg, }
extern string-literal declaration

declaration-seq:
declaration
declaration-seq declaration

The string-literal indicates the required linkage. The meaning of dtring-literal is implementation
dependent. Every implementation shall provide for inkage to functions written in the C programming lan-

guage,;'C" , and linkage to € function. "C++" . Default linkage iSC++" . For example, O
complex sqgrt(complex); /I C++ linkage by default
extern "C" {

double sqrt(double); // C linkage
}

[(Box 42
O

[This example may need to be revisited depending on what the rules ultimately are coneerfimgage
[fo standard library functions from the C library.

HE-E

Linkage specifications nest. A linkage specification does not establish a scdpeade-specification
may occur only irfile scope (3.3). Ainkage-specificatiorior a class applies to nonmember functions and
objects declared within it. Ainkage-specificatiorfor a function also applies to functions and objects
declared within it. A linkage declaration with a string that is unknown to the implementation is ill-formed.

If a function has more than otiakage-specificationthey must agree; that is, they must specify the same
string-literal. A function declaration without a linkage specification may not precede the first linkage spec-
ification for that function. A function may be declared without a linkage specification after an explicit link-
age specification has been seen; the linkage explicitly specified in the earlier declaration is not affected by
such a function declaration.

At most one of a set of overloaded functions (13) with a particular name can have C linkage. O

Linkage can be specified for objects. For example,

7.5 Linkage specifications DRAFT: 25 January 1994 Declarations—21

extern "C" {
...
_iobuf _iob[_NFILE];
...
int _flsbuf(unsigned,_iobuf*);
...

}

Functions and objects may be declastatic ~ within the{} of a linkage specification. The linkage
directive is ignored for such a function or object. Otherwise, a function declared in a linkage specification
behaves as if it was explicitly declarextern . For example,

extern "C" double f();
static double f(); Il error

is ill-formed (7.1.1). An object defined within an
extern "C" {/* ... */ }
construct is still defined (and not just declared).

Linkage from @+ to objects defined in other languages and to objects defined iindth other languages
is implementation and language dependent. Only where the object layout strategies of two language imple-
mentations are similar enough can such linkage be achieved.

When the name of a programming language is used to nhame a style of linkagestiintiibiteral in a
linkage-specificationit is recommended that the spelling be taken from the document defining that lan-
guage, for examplédda (not ADA andFORTRANnotFortran). O

8 Declarators [dcl.decl]

A declarator declares a single object, function, or type, within a declaration.inittteclarator-list [
appearing in a declaration is a comma-separated sequence of declarators, each of which may have an initial-
izer.

init-declarator-list:
init-declarator
init-declarator-list , init-declarator

init-declarator:
declarator initializeg,

The two components of declarationare the specifiersdécl-specifier-seq7.1) and the declaratoriif-
declarator-lis). The specifiers indicate the fundamental type, storage class, or other properties of the
objects and functions being declared. The declarators specify the names of these objects and functions and
(optionally) modify the type with operators such*a§ointer to) and) (function returning). Initial val-

ues can also be specified in a declarator; initializers are discussed in 8.5 and 12.6.

Eachinit-declaratorin a declaration is analyzed separately as if it was in a declaration b)genself.

Declarators have the syntax

declarator:
direct-declarator
ptr-operator declarator

direct-declarator:
declarator-id
direct-declarator (parameter-declaration-clausg¢ cv-qualifier-seg, exception-specificatiop
direct-declarator [constant-expressigg |
(declarator)

O
%) A declaration with several declarators is usually equivalent to the corresponding sequence of declarations each with(& single
declarator. That is O

T D1,D2,..Dn;]
is usually equvalent to]

T D1;TD2;..TDn; O
whereT is adecl-specifier-segnd eacli is ainit-declarator The exception occurs when one declarator modifies the name envitdn-
ment used by a following declarator, as in O

struct S{... }; O

S S, T; /ldeclare two instances of struct S O
which is not equivalent to a

struct S{... }; O

S S; O

S T; [lerror O

8-2 Declarators DRAFT: 25 January 1994 8 Declarators

ptr-operator:
* cv-qualifier-seg,
& cv-qualifier-segy
I optNESted-name-specifiet cv-qualifier-seg, O

cv-qualifier-seq:
cv-qualifier cv-qualifier-seg

cv-qualifier:
const
volatile

declarator-id:
id-expression
nested-name-specifigftype-name O

A class-naméhas special meaning in a declaration of the class of that name and when qualified by that
name using the scope resolution operator(12.1, 12.4). Thev-qualifierconst shall not appear morel]
than once in av-qualifier-segsimilarly for volatile

8.1 Type names [dcl.name]

To specify type conversions explicitly, and as an argumesizebf or new, the name of a type must be
specified. This can be done withygpe-id which is syntactically a declaration for an object or function of
that type that omits the name of the object or function.
type-id:
type-specifier-seq abstract-declaraggr

type-specifier-seq:
type-specifier type-specifier-sgg

abstract-declarator:
ptr-operator abstract-declaratgy
direct-abstract-declarator

direct-abstract-declarator:
direct-abstract-declaratqy, (parameter-declaration-claus¢ cv-qualifier-seg, exception-specificatiqp
direct-abstract-declaratqg, [constant-expressigp]
(abstract-declarator)

It is possible to identify uniquely the location in thiestract-declaratomwhere the identifier would appear
if the construction were a declarator in a declaration. The named type is then the same as the type of the
hypothetical identifier. For example,

int /linti

int * /lint *pi
int *[3] /l'int *p[3]
int (*)[3] I/l int (*p3i)[3]
int *() I'int *f()

int (*)(double) [l int (*pf)(double)

name respectively the typémteger, “pointer to integet, “array of 3 pointers to integets;pointer to
array of 3 integers,“function having no parameters and returning pointer to integed pointer to func-
tion ofdouble returning an integet.

A type can also be named (often more easily) by ustpgexief(7.1.3).

Note that anexception-specificatiodoes not affect the function type, so its appearance iabatract-
declaratorwill have empty semantics. a

8.2 Ambiguity resolution DRAFT: 25 January 1994 Declarators 83

8.2 Ambiguity resolution [Jdcl.ambig.res]

1 The ambiguity arising from the similarity between a function-style cast and a declaration mentioned in 6.8
can also occur in the context of a declaration. In that context, it surfaces as a choice between a function
declaration with a redundant set of parentheses around a parameter name and an object declaration with a
function-style cast as the initializer. Just as for statements, the resolution is to consider any construct that
could possibly be a declaration a declaration. A declaration can be explicitly disambiguated by a
nonfunction-style cast or=ato indicate initialization. For example,

struct S { ad

S(int); O

2 O

void foo(double a) O

{ O

S x(int(a)); / function declaration O

S y((int)a); /I object declaration O

Sz =int(a); /I object declaration ad

} O

2 The ambiguity arising from the similarity between a function-style cast symkadcan occur in many dif- O

ferent contexts. The ambiguity surfaces as a choice between a function-style cast expression and aldeclara-
tion of a type. The resolution is that any construct that could possiblyype-adin its syntactic context O

shall be consideredtgpe-id a

3 For example, ad
#include <stddef.h> g

char *p; O

void *operator new(size_t, int); a

void foo(int x) { a

new (int(*p)) int; /I new-placement expression a

new (int(*[x])); /I new type-id O

} a

4 For example, O
template <class T> a

struct S { a

T *p; a

I3 0

S<int()> x; I type-id a

S<int(1)>y; Il expression (ill-formed) a

5 For example, ad
void foo() O

{ 0

sizeof(int(1)); // expression a

sizeof(int()); // type-id (ill-formed) O

} O

6 For example, O
void foo() a

{ a

(int(2)); /I expression a

(int())1; Il type-id (ill-formed) O

} 0

8-4 Declarators DRAFT: 25 January 1994 8.3 Meaning of declarators

8.3 Meaning of declarators [dcl.meaning]

A list of declarators appears after an optionald@gl-specifier-se7.1). Each declarator contains exactly

one declarator-id it names the identifier that is declared. daclarator-id shall be a simpledentifier, [
except for the following cases: the declaration of some special functions (12.3, 12.4, 13.4), the definifion of
a member function (9.4), the definition of a static data member (9.5), the declaration of a friend fuiction
that is a member of another class (11.4). afuto , static , extern , register , friend ,inline

virtual , ortypedef specifier applies directly to eadeclarator-idin a init-declarator-list the type
specified for eacldeclarator-iddepends on both thiecl-specifier-se@nd itsdeclarator.

Thus, a declaration of a particular identifier has the form
TD

whereT is adecl-specifier-se@ndD is a declarator. The following subsections give an inductive proce-
dure for determining the type specified for the contadtealarator-idby such a declaration.

First, thedecl-specifier-sedetermines a type. For example, in the declaration

int unsigned i;
the type specifiersit unsigned determine the typeunsigned int . Or in general, in the declara{l
tion

TD

thedecl-specifier-sed@ determines the typer.”

In a declaratiolm DwhereDis an unadorned identifier the type of this identifiétTis

In a declaratiom DwhereD has the form
(D1)

the type of the containetkclarator-idis the same as that of the contaidedlarator-idin the declaration
TD1

Parentheses do not alter the type of the embedieledrator-id but they may alter the binding of complex
declarators.

8.3.1 Pointers [dcl.ptr]
In a declaratiom DwhereD has the form
* cv-qualifier-seg, D1

and the type of the identifier in the declarafioB1 is “type-modifiefT,” then the type of the identifier & O
is “type-modifier cv-qualifier-sepointer toT.” The cv-qualifiers apply to the pointer and not to the object
pointed to.

For example, the declarations

const int ci = 10, *pc = &ci, *const cpc = pc, **ppc;

inti, *p, *const cp = &i;
declareci , a constant integepc, a pointer to a constant integepc, a constant pointer to a constant
integer,ppc, a pointer to a pointer to a constant integeran integerp, a pointer to integer; anth, a
constant pointer to integer. The valuecdf cpc , andcp cannot be changed after initialization. The value
of pc can be changed, and so can the object pointed¢p b¥xamples of correct operations are

8.3.1 Pointers DRAFT: 25 January 1994 Declarators -&

i=ci

*Cp = Ci;
pct++;

pc = cpc;
pc = p;
ppc = &pc;

Examples of ill-formed operations are
ci=1, /I error
Ci++; /I error
*pe = 2; /I error
cp = &ci; I error
CpC++; Il error
p = pc; /I error

ppc = &p; /I error

Each is unacceptable because it would either change the value of an object deaktredr allow it to be
changed through an unqualified pointer later, for example:

*ppc = &ci; // okay, but would make p pointtoci ...
Il ... because of previous error
*p =5; /I clobber ci
volatile specifiers are handled similarly.
See also 5.17 and 8.5.

There can be no pointers to references (8.3.2) or pointers to bit-fields (9.7).

8.3.2 References [dcl.ref]
In a declaratiodm DwhereD has the form
& cv-qualifier-segy, D1

and the type of the identifier in the declarafioB1 is “type-modifiefT,” then the type of the identifier & O
is “type-modifier cv-qualifier-semeference td.” A declarator that specifies the tyfreference t@vvoid” O
is ill-formed.

EBox 43 g
%hould cv-qualifiers be allowed here? What dges
U int& const i=0; O
O a
[mean? =
For example,

void f(double& a) {a += 3.14; }
...

double d =0;

f(d);

declares to be a reference parameteif oo the calf(d) willadd3.14 tod.

int v[20];

...

int& g(int i) { return Vv[i]; }
1

9(5) =7,

declares the functiog() to return a reference to an integerg$8)=7 will assign7 to the fourth element
of the array.

8-6 Declarators DRAFT: 25 January 1994 8.3.2 References

struct link {
link* next;

J5

link* first;

void h(link*& p) // ‘p’ is a reference to pointer

p->next = first;

first = p;
p=0;

}

void k()

link* g = new link;
h(a);

declareg to be a reference to a pointedittk soh(g) will leave g with the value zero. See also 8.5.3.

There can be no references to references, no references to bit-fields (9.7), no arrays of references, and no
pointers to references. The declaration of a reference must contmiitiadizer (8.5.3) except when the
declaration contains an explieiktern specifier (7.1.1), is a class member (9.2) declaration within a class
declaration, or is the declaration of an parameter or a return type (8.3.5); see 3.1. A reference must be ini-
tialized to refer to a valid object. In particular, null references are prohibited; no diagnostic is required]

8.3.3 Pointers to members [dcl.mptr]

In a declaratiom DwhereD has the form
iI optNested-name-specifier * cv-qualifier-seg, D1 O

and thenested-name-specifieames a class, and the type of the identifier in the declarftixhis “type- O
modifier T,” then the type of the identifier @ is “type-modifier cv-qualifier-seqointer to member of O
class nested-name-specifier of type

For example,

class X {
public:
void f(int);
int a;
b

class Y;]

int X::* pmi = &X::a;

void (X::* pmf)(int) = &X::f;

double X::* pmd; O
char Y::* pmc; 0

declaregpmi, pmf, pmdandpmcto be a pointer to a memberXbf typeint , a pointer to a member & [
of typevoid(int) , & pointer to a member ofof typedouble and a pointer to a member 6fof type [0
char respectively. The declaration @imd is well-formed even thouglX has no members of type
double . Similarly, the declaration gdmc is well-formed even thoug¥ is an incomplete typepmi and [
pmf can be used like this:

8.3.3 Pointers to members DRAFT: 25 January 1994 Declarators—&

X obj;
/...
obj.*pmi =7; /[assign 7 to an integer
/I member of obj
(obj.*pmf)(7); // call a function member of obj
[/l with the argument 7

Note that a pointer to member cannot point to a static member of a class (9.5), a member with refference
type, or‘cv void .” There are no references to members. See also 5.5 and 5.3.

8.3.4 Arrays [dcl.array]

In a declaratiodm DwhereD has the form

D1 [constant-expressigg]

and the type of the identifier in the declarafioB1 is “type-modifiefT,” then the type of the identifier & O
is an array type. If theonstant-expressiofb.19) is present, it must be of enumeration or integral type and
have a value greater than zero. The constant expression specifiesitidef (number of elements in) thel
array. If the value of the constant expressioN,ithe array hadl elements numbere@d to N-1, and the O
type of the identifier oD is “type-modifierarray of N T.” If the constant expression is omitted, the type @f
the identifier ofD is “type-modifierarray of unknown bound ¢f,” an incomplete object type. Any cv{]
qualifiers that appear itype-modifierare applied to the typeand not to the array type, as in this examplél

typedef int A[5], AA[2][3]; a
const A x; I type is “array of 5 const int” a
const AAy; I/ type is “array of 2 array of 3 const int” a

An array may be constructed from one of the fundamentalzlop(esxceptvoid), from a pointer, from a O
pointer to member, from a class, or from another array.

When several'array of specifications are adjacent, a multidimensional array is created; the constant
expressions that specify the bounds of the arrays may be omitted only for the first member of the sequence.
This elision is useful for function parameters of array types, and when the array is external and the defini-
tion, which allocates storage, is given elsewhere. Thecfinsstant-expressiomay also be omitted when

the declarator is followed by anitializer (8.5). In this case the bound is calculated from the numbefJof
initial elements (say\) supplied (8.5.1), and the type of the identifieDa$ “array ofN T.”

The declaration
float fa[17], *afp[17];

declares an array fibat numbers and an array of pointerdle@t numbers. The declaration
static int x3d[3][5][7];

declares a static three-dimensional array of integers, with re¥73 In complete detaik3d is an array

of three items; each item is an array of five arrays; each of the latter arrays is an array of seven integers.
Any of the expressiong3d, x3d[i] , x3d[i][j] . x3d[i[I1k] may reasonably appear in an
expression.

Conversions affecting Ivalues of array type are described in 4.6. Except where it has been declaréd for a
class (13.4.5), the subscript operafpr is interpreted in such a way th&l[E2] is identical to
*((ED)+(E2)) . Because of the conversion rules that apply,tif E1 is an array an&?2 an integer,
thenE1[E2] refers to theE2-th member oE1l. Therefore, despite its asymmetric appearance, subscript-

ing is a commutative operation.

2)The enumeration types are included in the fundamental types. |

8-8 Declarators DRAFT: 25 January 1994 8.3.4 Arrays

A consistent rule is followed for multidimensional arrays. Hfis an n-dimensional array of rank
ixjx ---xk, thenE appearing in an expression is converted to a pointer tm ai \-dimensional array
with rankjx - - - xk. If the* operator, either explicitly or implicitly as a result of subscripting, is applied to
this pointer, the result is the pointed-to-1)-dimensional array, which itself is immediately converted
into a pointer.

For example, consider
int x[3][5];

Herex is a X5 array of integers. Whenappears in an expression, it is converted to a pointer to (the first

of three) five-membered arrays of integers. In the expres§ijon, which is equivalent t(x+i) , X is

first converted to a pointer as described; thein is converted to the type &f which involves multiplying

i by the length of the object to which the pointer points, namely five integer objects. The results are added
and indirection applied to yield an array (of five integers), which in turn is converted to a pointer to the first
of the integers. If there is another subscript the same argument applies again; this time the result is an inte-
ger.

It follows from all this that arrays in+€ are stored row-wise (last subscript varies fastest) and that the first
subscript in the declaration helps determine the amount of storage consumed by an array but plays no other
part in subscript calculations.

8.3.5 Functions [dcl.fct]

In a declaratiom DwhereD has the form

D1(parameter-declaration-clausg¢ cv-qualifier-seg,

and the type of the containeéclarator-idin the declaratiom D1 is “type-modifierT1,” the type of the
declarator-id in D is “type-modifier cv-qualifier-seg function with parameters of typparameter-
declaration-clausend returningr'l”; a type of this form is tunction typéB). O

parameter-declaration-clause:
parameter-declaration-ligf; ..
parameter-declaration-list, ...

opt

parameter-declaration-list:
parameter-declaration
parameter-declaration-list, parameter-declaration

parameter-declaration:
decl-specifier-seq declarator

decl-specifier-seq declarator assignment-expression O
decl-specifier-seq abstract-declaraggr
decl-specifier-seq abstract-declaratgr = assignment-expression ad

The parameter-declaration-clausdetermines the arguments that can be specified, and their processing,
when the function is called. If tiarameter-declaration-claugerminates with an ellipsis, the number of
arguments is known only to be equal to or greater than the number of parameters specified; if it is empty,
the function takes no arguments. The parametefM@t) is equivalent to the empty parameter list.
Except for this special cas®id may not be a parameter type (though types derived ¥mdh , such as

void* , may). Where syntactically corre¢t,... " is synonymous witlf... ”. The standard header
<stdarg.h> contains a mechanism for accessing arguments passed using the ellipsib,stdarg .

See 12.1 for the treatment of array arguments.

A single name may be used for several different functions in a single scope; this is function overloading
(13). All declarations for a function with a given parameter list must agree exactly both in the type of the

value returned and in the number and type of parameters; the presence or absence of the ellipsis is
O
28) ps indicated by the syntax, cv-qualifiers are a significant component in function return types. 0

8.3.5 Functions DRAFT: 25 January 1994 Declarators -&®

considered part of the function type. The type of each parameter is determined from iteecwm]
specifier-seq@nddeclarator After determining the type of each parameter, any parameter ofdyag of O

T” or “function returningT” is adjusted to bépointer toT” or “pointer to function returning,” respec- O
tively. After producing the list of parameter types, several transformations take place upon the type§l Any
cv-qualifier modifying a parameter type is deleted; e.g., the typ&l(const int) becomes [
void(int) . Suchcv-qualifiers affect only the definition of the parameter within the body of the funt-
tion. If the storage-class-specifieregister modifies a parameter type, the specifier is deleted; eld.,
register char* becomeschar* . Such storage-class-qualifier affect only the definition of thel
parameter within the body of the function. The resulting list of transformed parameter types is the
function’s lisparametetype O

ox 44 B |
Ossue: a definition fotsignaturé will be added as soon as the semantics are made precise. M

The return type and the parameter type list, but not the default arguments (8.3.6), are part of the function
type. If the type of a parameter includes a type of the f@wmter to array of unknown bound ©f “ref- [
erence to array of unknown boundTof the program is ill-formed® A cv-qualifier-seqcan only be part

of a declaration or definition of a nonstatic member function, and of a pointer to a member function; see
9.4.1. ltis part of the function type.

Functions cannot return arrays or functions, although they can return pointers and references to such things.
There are no arrays of functions, although there may be arrays of pointers to functions.

Types may not be defined in return or parameter types.

The parameter-declaration-claugs used to check and convert arguments in calls and to check pointer-to-
function and reference-to-function assignments and initializations.

An identifier can optionally be provided as a parameter name; if present in a function declaration, it cannot
be used since it goes out of scope at the end of the function declarator (3.3); if present in a function defini-
tion (8.4), it names a parameter (sometimes céfieanal argumerif). In particular, parameter names are
also optional in function definitions and names used for a parameter in different declarations and the defini-
tion of a function need not be the same.
The declaration
inti,

*pi,

f0,

*fpi(int),

(*pif)(const char*, const char*);

(*fpif(int))(int);

declares an integér, a pointempi to an integer, a functioh taking no arguments and returning an integer,

a functionfpi taking an integer argument and returning a pointer to an integer, a gfintés a function

which takes two pointers to constant characters and returns an integer, a ffpiictiotaking an integer
argument and returning a pointer to a function that takes an integer argument and returns an integer. It is
especially useful to compafigi andpif . The binding offpi(int) is *(fpi(int)) , S0 the decla-

ration suggests, and the same construction in an expression requires, the calling of affiinctime then

using indirection through the (pointer) result to yield an integer. In the decldrptf)(const

char*, const char*) |, the extra parentheses are necessary to indicate that indirection through a pointer
to a function yields a function, which is then called.

O
“I) This excludes parameters of tyfgr-arr-seq T2” whereT2 is “pointer to array of unknown bound ®f and whereptr-arr-seq 0O
means any sequence“@ointer td and“array of modifiers. This exclusion applies to the parameters of the function, and if a parame-
ter is a pointer to function then to its parameters also, etc. |

10

8-10 Declarators DRAFT: 25 January 1994 8.3.5 Functions

Typedefs are sometimes convenient when the return type of a function is complex. For example, the func-
tion fpif above could have been declared

typedefint IFUNC(int);
IFUNC* fpif(int);

The declaration
fseek(FILE*, long, int);

declares a function taking three arguments of the specified types. Since no return value type is specified it
is taken to bént (7.1.5). The declaration

printf(const char* ...);
declares a function that can be called with varying numbers and types of arguments. For example,

printf("hello world");
printf("a=%d b=%d", a, b);

It must always have a value, however, that can be convertembtesta char* as its first argument. O

8.3.6 Default arguments ([dcl.fct.default]

If an expression is specified in a parameter declaration this expression is used as a default argumiént. All
subsequent parameters must have default arguments supplied in this or previous declarations of this func-
tion. Default arguments will be used in calls where trailing arguments are missing. A default argiment
shall not be redefined by a later declaration (not even to the same value). A declaration may addCdefault
arguments, however, not given in previous declarations.

The declaration O
point(int = 3, int = 4);
declares a function that can be called with zero, one, or two arguments ioit typét may be called in any
of these ways:
point(1,2); point(1); point();
The last two calls are equivalentgoint(1,4) andpoint(3,4) , respectively.

Default argument expressions in non-member functions have their names bound and their types chétked at
the point of declaration, and are evaluated at each point of call. In member functions, names in [default
argument expressions are bound at the end of the class declaration, like names in inline member function

bodies (9.4.2). In the following examptewill be called with the valu§2) : O
inta=1;
int f(int);
int g(int x = f(a)); // default argument: f(::a) O
void h() {
a=2
{
inta=3;
90; 11'g(f(::a))
}

Local variables shall not be used in default argument expressions. For example, O

8.3.6 Default arguments DRAFT: 25 January 1994 Declarators-81

void f()

{
int i
extern void g(int x =i); // error
...

}

Note that default arguments are evaluated before entry into a function and that the order of evaluation of

function arguments is implementation dependent. Consequently, parameters of a function may not be used
in default argument expressions. Paramaters of a function declared before a default argument expression
are in scope and may hide global and class member names. For example,

int a;
int f(int a, int b = a); /l error: parameter ‘a’

/l used as default argument ad
typedefint [;

int g(float I, int b = [(2)); // error: ‘float’ called

Similarly, the declaration ok::mem1() in the following example is undefined because no object is sup-
plied for the nonstatic membxr:a used as an initializer.

int b;
class X {
int a;
meml(int i = a); // error: nonstatic member ‘a’
I/ used as default argument O
mem2(inti = b); // ok; use X::b
static b;
2

The declaration oX::mem2() is meaningful, however, since no object is needed to access the static
memberX::b . Classes, objects, and members are described in 9.

A default argument is not part of the type of a function. O
int f(int = 0);

void h()

{

intj =f(1);

int k = (); /I fine, means f(0)
}

int (*pl)(int) = &f;
int (*p2)() = &f; /I error: type mismatch

An overloaded operator (13.4) shall not have default arguments. a

8.4 Function definitions [dcl.fct.def]
Function definitions have the form

function-definition:
decl-specifier-segj, declarator ctor-initializegy, function-body

function-body:
compound-statement

Thedeclaratorin afunction-definitionmust contain a declarator with the form
D1 (parameter-declaration-claus¢ cv-qualifier-segy,

as described in 8.3.5.

8-12 Declarators DRAFT: 25 January 1994 8.4 Function definitions

The parameters are in the scope of the outermost block fofritton-body

A simple example of a complete function definition is

int max(int a, int b, int c)

{
intm=(@a>b)?a:b;
return (m>c) ? m:c;
}
Hereint is thedecl-specifier-segmax(int a, int b, int c) is thedeclarator {/* ... */ } is

thefunction-body
A ctor-initializer is used only in a constructor; see 12.1 and 12.6.

A cv-qualifier-seccan be part of a non-static member function declaration, non-static member function def-
inition, or pointer to member function only; see 9.4.1. It is part of the function type.

Note that unused parameters need not be named. For example,

void print(int a, int)

{
}

printf("a = %d\n",a);

8.5 Initializers [dcl.init]

A declarator may specify an initial value for the identifier being deciifed. a
initializer:
= initializer-clause
(expression-list)

initializer-clause:
assignment-expression
{ initializer-list , o }

{} 0

initializer-list:
initializer-clause
initializer-list , initializer-clause

Automatic, register, static, and external variables at file scope may be initialized by arbitrary expressions
involving constants and previously declared variables and functions.

int f(int);

inta=2;

intb = f(a);

int c(b);

An expression of typépointer tocvl T can initialize a pointer of typépointer tocv2 T” if the set of O
cv-qualifierscvlis a subset afv2 An expression of typ&cvl T” can initialize an object of typev2 T”
independently of the cv-qualifiecylandcv2 For example, O

YU The syntax provides for empty initializer clauses, but nonethelesdo€s not have zero length arrays. a

8.5 Initializers DRAFT: 25 January 1994 Declarators 813

int a;
constintb =a;
intc=b;

const int* p0 = &a;
const int* pl = &b;
int* p2 = &b; Il error: makes a pointer to
// nonconst point to a const

int *const p3 = p2;
int *const p4 = pl; // error: makes a pointer to

// nonconst point to a const
const int* p5 = p1;

The declarations gf2 andp4 are ill-formed for the same reason: had those initializations been allowed,
they would have allowed the value of something declamtt to be changed through an unqualified
pointer.

Default argument expressions are more restricted; see 8.3.6. a

Initialization of objects of classes with constructors is described in 12.6.1. Copying of class objects is
described in 12.8. The order of initialization of static objects is described in 3.5 and 6.7.

Variables with storage class static (3.7) that are not initialized and do not have a constructor are guaranteed
to start off as zero converted to the appropriate type. If the objeciass or struct , its data mem-

bers start off as zero converted to the appropriate type. If the objamisna, its first data member starts

off as zero converted to the appropriate type. The initial values of automatic and register variables that are
not initialized are indeterminate.

When an initializer applies to a pointer or an object of enumeration or arithmetic type, it consists of a single
expression, perhaps in braces. The initial value of the object is taken from the expression; the same conver-
sions as for assignment are performed.

Note that sincé) is not an initializer,
X a();

is not the declaration of an object of clagsbut the declaration of a function taking no argument and
returning anX.

An initializer for a static member is in the scope of the member’s class. For example,

int a;
struct X {
static int a;
static int b;
3
int X::a=1;
intX:b=a; [/ X:b=X:a
See 8.3.6 for initializers used as default arguments. O
8.5.1 Aggregates [dcl.init.aggr]

An aggregates an array or an object of a class (9) with no user-declared constructors (12.1), no private or
protected members (11), no base classes (10), and no virtual functions (10.3). When an aggregate is initial-
ized theinitializer may be annitializer-clauseconsisting of a brace-enclosed, comma-separated list of ini-
tializers for the members of the aggregate, written in increasing subscript or member order. If the aggregate
contains subaggregates, this rule applies recursively to the members of the subaggregate. If there are fewer
initializers in the list than there are members of the aggregate, then the aggregate is padded with zeros of
the appropriate types.

8-14 Declarators DRAFT: 25 January 1994 8.5.1 Aggregates

For example,

struct S { int a; char* b; int c; };
Sss={1, "asdf" };

initializesss.a with 1, ss.b with ,asdf" andss.c with zero.

An aggregate that is a class may also be initialized with an object of its class or of a class publicly derived
from it (12.8).

Braces may be elided as follows. If thtializer-clausebegins with a left brace, then the succeeding
comma-separated list of initializers initializes the members of the aggregate; it is erroneous for there to be
more initializers than members. If, however, ithiializer-clauseor a subaggregate does not begin with a

left brace, then only enough elements from the list are taken to account for the members of the aggregate;
any remaining members are left to initialize the next member of the aggregate of which the current aggre-
gate is a part.

For example,

intx[]={1,3,5}
declares and initializes as a one-dimensional array that has three members, since no size was specified
and there are three initializers.

float y[4][3] = {
{1,3,5},
{2,4,6},
{3,5,7},
I3
is a completely-bracketed initialization: 1, 3, and 5 initialize the first row of the &y, namely
y[0][0] ,y[O][1] ,andy[O][2] . Likewise the nexttwo lines initializg1l] andy[2] . The initial-
izer ends early and therefoy§3] is initialized with zeros. Precisely the same effect could have been
achieved by
float y[4][3] = {
1,3,52,4,6,3,5,7
I3
The last (rightmost) index varies fastest (8.3.4).

The initializer fory begins with a left brace, but the one y§0] does not, therefore three elements from
the list are used. Likewise the next three are taken successivg|¢]forandy[2] . Also,

float y[4][3] = {
{1h{2}{3}L{4}

initializes the first column of (regarded as a two-dimensional array) and leaves the rest zero.

Initialization of arrays of objects of a class with constructors is described in 12.6.1.

The initializer for a union with no constructor is either a single expression of the same type, or a brace-
enclosed initializer for the first member of the union. For example,

union u {int a; char* b; };

ua={1}

ub=a;

uc=1; /I error
ud={0, "asdf"}; [/ error
ue={"asdf"}; Il error

There may not be more initializers than there are members or elements to initialize. For example,

10

8.5.1 Aggregates DRAFT: 25 January 1994 Declarators—-85

charcv[4]={'a,’'s’,'d,'f,0}; /lerror
is ill-formed.
A POD-struct? is an aggregate structure that contains neither references nor pointers to membersSimi-
larly, aPOD-unionis an aggregate union that contains neither references nor pointers to members.
8.5.2 Character arrays [dcl.init.string]

A char array (whether signed or unsigned) may be initialized by a stringhar_t array may be ini- O
tialized by a wide-character string; successive characters of the string initialize the members of the array.
For example,

char msg[] = "Syntax error on line %s\n";

shows a character array whose members are initialized with a string. Note that Betause a single
character and because a trailifj is appendedsizeof(msg) is 25.

There may not be more initializers than there are array elements. For example,
char cv[4] = "asdf"; /I error

is ill-formed since there is no space for the implied traiNdg .

8.5.3 References [dcl.init.ref]

A variable declared to be B, that is“reference to typd” (8.3.2), must be initialized by an object, arl
function, of typeT or by an object that can be converted info &or example,

void f()
{
inti;
int&r=1i; //‘rrefersto V'
r=1; // the value of ‘i’ becomes 1

int* p = &r; // 'p’ points to ‘'
int& rr =r; // ‘rr’ refers to what ‘r’ refers to,
/I that is, to ‘I’
}

A reference cannot be changed to refer to another object after initialization. Note that initialization of a ref-
erence is treated very differently from assignment to it. Argument passing (5.2.2) and function value return
(6.6.3) are initializations.

The initializer may be omitted for a reference only in a parameter declaration (8.3.5), in the declaration of a
function return type, in the declaration of a class member within its class declaration (9.2), and where the
extern specifier is explicitly used. For example,

int& ri; /I error: initializer missing
extern int& r2; // ok

If the initializer for a reference to typeis an Ivalue of typd or of a type derived (10) frorh for which T

is an unambiguous accessible base (4.6), the reference will refer Topgag 6f the) initializer; otherwise,

if and only if the reference is tocanst and an object of typ€ can be created from the initializer, such an
object will be created. The reference then becomes a name for that object. For example,

3 The acronym POD stands ftplain ol’ data O

8-16 Declarators

A reference to @onst object is required to beonst .
object is required to beolatile orconst volatile

volatile
volatile

double d = 2.0;

double& rd = d; /I rd refers to ‘d’
const double& rcd = d; // rcd refers to ‘d’
double& rd2 = 2.0; /Il error: not an Ivalue
int i=2;

double& rd3 = i; /I error: type mismatch

const double& rcd2 = 2; // rcd2 refers to temporary
/I with value ‘2’

DRAFT: 25 January 1994

8.5.3 References

Similarly a reference towolatile or const

(respectively). However, @onst ,

, orconst volatile reference can refer to a plain object. For example,

const double d = 2.0;

double& rd = d; /I error: non-const reference to const

const volatile double& rcvd =d; // okay: rcvd refers to ‘d’
/I error: non-volatile reference to volatile

const double& rcd = rcvd;

The lifetime of a temporary object created in this way is the scope in which it is created (3.7).

O

9 Classes [class]
0
A class is a type. Its name becometaas-nam€9.1), that is, a reserved word within its scope. a
class-name:
identifier
template-id ad

Class-specifies andelaborated-type-specifier(7.1.5.3) are used to malass-nams. An object of a classU
consists of a (possibly empty) sequence of members.

class-specifier:
class-head{ member-specificatiqp, }

class-head:
class-key identifigf, base-clausgy,
class-key nested-name-specifier identifier base-clguse d

class-key:
class
struct
union

The name of a class can be used dass-nameven within thenember-specificatioof the class specifier
itself. A class-specifieis commonly referred to as a class definition. A class is considered defined [after
the closing brace of itslass-specifiehas been seen even though its member functions are in general not
yet defined.

Objects of an empty class have a nonzero size.

Class objects may be assigned, passed as arguments to functions, and returned by functions (except objects
of classes for which copying has been restricted; see 12.8). Other plausible operators, such as equality
comparison, can be defined by the user; see 13.4.

A structureis a class declared with tletass-keystruct ; its members and base classes (10) are public by
default (11). Aunionis a class declared with tietass-keynion ; its members are public by default and it
holds only one member at a time (9.6).

9.1 Class names [class.name]

A class definition introduces a new type. For example,

struct X {int a; };
struct Y {inta; };
X al;

Y az;

int a3;

declares three variables of three different types. This implies that

al = az; [/ error: Y assigned to X O
al = ag3; [l error: int assigned to X O

are type mismatches, and that

9-2 Classes DRAFT: 25 January 1994 9.1 Class names

int f(X);
int f(Y);

declare an overloaded (13) functiifh and not simply a single functid) twice. For the same reason,

struct S {inta; };
struct S {inta; }; // error, double definition

is ill-formed because it definé&stwice.

A class definition introduces the class name into the scope where it is defined and hides any class, object,
function, or other declaration of that name in an enclosing scope (3.3). If a class name is declared in a
scope where an object, function, or enumerator of the same name is also declared the class can be referred
to only using arelaborated-type-specifi€r.1.5.3). For example, O

struct stat {
...

h

stat gstat; /I use plain ‘stat’ to 0
/I define variable

int stat(struct stat*); // redefine ‘stat’ as function

void f()
{
struct stat* ps; /I ‘struct’ prefix needed
/I to name struct stat
...
stat(ps); /I call stat()
...
}

A declarationconsisting solely ofclass-keidentifier; is a forward declaration of the identifier as a claSs
name. It introduces the class name into the current scope. For example,

struct s {inta; };
void g()

struct s; // hide global struct ‘s’
s* p; // refer to local struct ‘s’
struct s { char* p; }; // declare local struct ‘s’

}
Such declarations allow definition of classes that refer to each other. For example,

class vector;

class matrix {
...
friend vector operator*(matrix&, vector&);

h

class vector {
...
friend vector operator*(matrix&, vector&);

I3
Declaration ofriend s is described in 11.4, operator functions in 13.4.
An elaborated-type-specifi€i7.1.5.3) can also be used in the declarations of objects and functions. Ifldif-

fers from a class declaration in that if a class of the elaborated name is in scope the elaborated name will
refer to it. For example,

9.1 Class names DRAFT: 25 January 1994 Classes®

struct s {inta; };

void g(int s)
struct s* p = new struct s; /l global ‘s’
p->a=s; /l'local ‘s’
}

A name declaration takes effect immediately afteidbatifieris seen. For example,

class A*A;

first specifiesA to be the name of a class and then redefines it as the name of a pointer to an object of that
class. This means that the elaborated folass A must be used to refer to the class. Such artistry with
names can be confusing and is best avoided.

A typedef-namé7.1.3) that names a class islass-namgsee also 7.1.3.

9.2 Class members [class.mem]

member-specification:
member-declaration member-specificatipn
access-specifier member-specificatiqp,

member-declaration:
decl-specifier-seg, member-declarator-ligf; ;
function-definition ;
qualified-id ;
using-declaration O

opt

member-declarator-list:
member-declarator
member-declarator-list, member-declarator

member-declarator:
declarator pure-specifigy,
identifier,,, : constant-expression
pure-specifier:
=0

Themember-specificatiom a class definition declares the full set of members of the class; no member can

be added elsewhere. Members of a class are data members, member functions (9.4), nested types, and
member constants. Data members and member functions are static or nonstatic; see 9.5. Nested types are
classes (9.1, 9.8) and enumerations (7.2) defined in the class, and arbitrary types declared as members by
use of a typedef declaration (7.1.3). The enumerators of an enumeration (7.2) defined in the class are mem-
ber constants of the class. Except when used to declare friends (11.4) or to adjust the access to a member of
a base class (11.3nember-declarationdeclare members of the class, and each mechber-declaration
must declare at least one member name of the class. A member may not be declared twicentbére
specification except that a nested class may be declared and then later defined.

Note that a single name can denote several function members provided their types are sufficiently different
(13). Note that anember-declaratocannot contain amitializer (8.5). A member can be initialized using
a constructor; see 12.1.

A member may not bauto , extern , orregister

The decl-specifier-segan be omitted in function declarations only. Thember-declarator-listan be
omitted only after aclass-specifier an enum-specifier or a decl-specifier-sepf the form friend
elaborated-type-specifierA pure-specifiemay be used only in the declaration of a virtual function (10.3).

10

11

12

13

14

9-4 Classes DRAFT: 25 January 1994 9.2 Class members

Nonstatic (9.5) members that are class objects must be objects of previously declared classes. In par-
ticular, a clas€l may not contain an object of clasls, but it may contain a pointer or reference to an
object of classl . When an array is used as the type of a nonstatic member all dimensions must be speci-
fied.

A simple example of a class definition is

struct thode {
char tword[20];
int count;
tnode *left;
tnode *right;
kh
which contains an array of twenty characters, an integer, and two pointers to similar structures. Once this
definition has been given, the declaration

tnode s, *sp;

declares to be atnode andsp to be a pointer to tnode . With these declarationsp->count refers
to thecount member of the structure to whislp points;s.left refers to thdeft subtree pointer of
the structures; ands.right->tword[0] refers to the initial character of tthword member of the
right subtree of.

Nonstatic data members of a class declared without an intervaooegs-specifieare allocated so that

later members have higher addresses within a class object. The order of allocation of nonstatic data mem-
bers separated by asrcess-specifiers implementation dependent (11.1). Implementation alignment
requirements may cause two adjacent members not to be allocated immediately after each other; so may
requirements for space for managing virtual functions (10.3) and virtual base classes (10.1); see also 5.4.

If two typesT1 andT2 are the same type, th@&il andT2 arelayout-compatibleypes.

Two POD-struct (8.5.1) types are layout-compatible if they have the same number of members, and corre-
sponding members (in order) have layout-compatible types.

Two POD-union (8.5.1) types are layout-compatible if they have the same number of members, and corre-
sponding members (in any order) have layout-compatible types.

BBox 45 g
[(Bhouldn't this be the sansetof types?[]

Two enumeration types are layout-compatible if they have the same sets of enumerator values.

%ox 46 B
[(Bhouldn’t this be the sammderlying typ& [

If a POD-union contains several POD-structs that share a common initial sequence, and if the POD-union
object currently contains one of these POD-structs, it is permitted to inspect the common initial part of any
of them. Two POD-structs share a common initial sequence if corresponding members have layout-
compatible types (and, for bit-fields, the same widths) for a sequence of one or more initial members.

A pointer to a POD-struct object, suitably converted, points to its initial member (or if that member is a
bit-field, then to the unit in which it resides) and vice versa. There may therefore be unnamed padding
within a POD-struct object, but not at its beginning, as necessary to achieve appropriate alignment.

The range of nonnegative values of a signed integral type is a subrange of the corresponding unsigned inte-
gral type, and the representation of the same value in each type is the same.

15

16

17

18

19

20

21

9.2 Class members DRAFT: 25 January 1994 Classes-®

Even if the implementation defines two or more basic types to have the same representation, they are never-
theless different types.

The representations of integral types shall define values by use of a pure binary numeration system.

ox 47 E
[Does this mean two's complement? Is there a definitidpwfe binary numeration systetn?l

The qualified or unqualified versions of a type are distinct types that have the same representation and
alignment requirements.

A qualified or unqualifiedroid* shall have the same representation and alignment requirements as a qual-
ified or unqualifiedchar* .

Similarly, pointers to qualified or unqualified versions of layout-compatible types shall have the same rep-
resentation and alignment requirements.

If the program attempts to access the stored value of an object other than through an lvalue of one of the
following types:

the declared type of the object,
a qualified version of the declared type of the object,
a type that is the signed or unsigned type corresponding to the declared type of the object,

a type that is the signed or unsigned type corresponding to a qualified version of the declared type of the
object,

an aggregate or union type that includes one of the aforementioned types among its members (includ-
ing, recursively, a member of a subaggregate or contained union), or

a character typ%z.)

the result is undefined.

A function member (9.4) with the same name as its class is a constructor (12.1). A static data member, enu-
merator, member of an anonymous union, or nested type may not have the same name as its class.[]

9.3 Scope rules for classes [Jclass.scope0]

The following rules describe the scope of names declared in classes.

1) The scope of a name declared in a class consists not only of the text following the name’s dedlarator,
but also of all function bodies, default arguments, and constructor initializers in that class (including
such things in nested classes). O

2) A nameNused in a clasS must refer to the same declaration when re-evaluated in its context and
in the completed scope of S. O

3) If reordering member declarations in a class yields an alternate valid program under (1) and (2), the
program’s meaning is undefined. O

4) A declaration in a nested declarative region hides a declaration whose declarative region contains
the nested declarative region. O

5) A declaration within a member function hides a declaration whose scope extends to or past the end
of the member function’s class. O

6) The scope of a declaration that extends to or past the end of a class definition also extends to the
O

32)The intent of this list is to specify those circumstances in which an object may or may not be aliased. O

9-6 Classes DRAFT: 25 January 1994 9.3 Scope rules for classes

regions defined by its member definitions, even if defined lexically outside the class (this indlides
both function member bodies and static data member i nitializations).

For example:
typedefint c;
enum{i=1}
class X {

char V[i]; // error: '’ refers to :i
// but when reevaluated is X::i
int f() { return sizeof(c); } // okay: X::c
char c;
enum{i=2}

h

typedef char* T,;
struct Y {
T a /I error: 'T' refers to ;T
/I but when reevaluated is Y::T
typedeflong T,;

T b;
I3
struct Z {
int f(const R); /I error: 'R’ is parameter name
// but swapping the two declarations
/I changes it to a type
typedefint R;
2
9.4 Member functions [class.mfct]

A function declared as a member (without thend specifier; 11.4) is called a member function, and is
called for an object using the class member syntax (5.2.4). For example,

struct tnode {
char tword[20];
int count;
tnode *left;
tnode *right;
void set(char*, tnode* |, thode* r);

3

Hereset is a member function and can be called like this:

void f(tnode n1, tnode n2)

{
nl.set("abc",&n2,0);

n2.set("def",0,0);
}

The definition of a member function is considered to be within the scope of its class. This means that (pro-
vided it is nonstatic 9.5) it can use names of members of its class directly. Such names then refer to the
members of the object for which the function was called.

A static local variable in a member function always refers to the same object. A static member function can
use only the names of static members, enumerators, and nested types directly. If the definition of a member
function is lexically outside the class definition, the member function name must be qualified by the class
name using the operator. For example,

9.4 Member functions DRAFT: 25 January 1994 Classes-9

void tnode::set(char* w, tnode* |, tnode* r)

{
count = strlen(w+1);
if (sizeof(tword)<=count)
error("tnode string too long");
strcpy(tword,w);
left=1;
right =r;
}

The notationtnode::set specifies that the functioset is a member of and in the scope of class
tnode . The member naméword , count , left , andright refer to members of the object for which
the function was called. Thus, in the call.set(abc",&n2,0)"tword referstonl.tword, and inthe
call n2.set(def",0,0)" it refers tm2.tword . The functionsstrlen , error , andstrcpy must be
declared elsewhere.

Members may be defined (3.1) outside their class definition if they have already been declared but not
defined in the class definition; they may not be redeclared. See also 3.4. Function members may be men-
tioned in friend declarations after their class has been defined. Each member function that is calléd must
have exactly one definition in a program, (no diagnostic required).

The effect of calling a nonstatic member function (9.5) of a ¢fafss something that is not an object of
classXis undefined.

9.4.1 Thethis pointer [class.this]

In a nonstatic (9.4) member function, the keywthis is a non-lvalue expression whose value is the
address of the object for which the function is called. The typlei®f in a member function of a cla¥s

is X* unless the member function is declaoeshst or volatile ; in those cases, the typetbis is
const X* orvolatile X*, respectively. A function declarednst andvolatile has ahis with

the typeconst volatile X*. See also C.3.3. For example,

struct s {
int a;
int f() const;
int g() { return a++; }
int h() const { return a++; } // error

I3
int s::f() const { return a; }

The a++ in the body ofs::h s ill-formed because it tries to modify (a part of) the object for which
s::h() is called. This is not allowed in@nst member function wherthis is a pointer taconst |,
that is,*this is aconst .

A const member function (that is, a member function declared witltdimst qualifier) may be called
for const and noneonst objects, whereas a n@monst member function may be called only for a
nonconst object. For example,

void k(s& x, const s& y)

{
x.f0;
x.90);
y.f0;
y.90; /I error O

}

The cally.g() is ill-formed becausg is const ands:g() is a noneonst member function that
could (and does) modify the object for which it was called.

9-8 Classes DRAFT: 25 January 1994 9.4.1 Thiis pointer

Similarly, only volatile member functions (that is, a member function declared witlvaretile
specifier) may be invoked fovolatile objects. A member function can be botbnst and
volatile

Constructors (12.1) and destructors (12.4) may be invokeddonst or volatile object. Construc-
tors (12.1) and destructors (12.4) cannot be dectarest or volatile

9.4.2 Inline member functions [class.inline]

A member function may be defined (8.4) in the class definition, in which cagalines (7.1.2). Defin-
ing a function within a class definition is equivalent to declaririglihe and defining it immediately
after the class definition; this rewriting is considered to be done after preprocessing but before syntax analy-
sis and type checking of the function definition. Thus
int b;
struct x {
char* f() { return b; }
char* b;

b
is equivalent to

int b;

struct x {
char* f();
char* b;

2
inline char* x::f() { return b; } // moved
Thus theb used inx::f() is X::b and not the globdl. See alsoclass.local.type

Member functions can be defined even in local or nested class definitions where this rewriting would be
syntactically incorrect. See 9.9 for a discussion of local classes and 9.8 for a discussion of nested classes.

9.5 Static members [class.static]

A data or function member of a class may be declsratic in the class definition. There is only one
copy of a static data member, shared by all objects of the class and any derived classes in a program. A
static member is not part of objects of a class. Static members of a global class have external linkage (3.4).
The declaration of a static data member in its class definitiontia definition and may be of an incom-
plete type. A definition is required elsewhere; see also C.3. A static data member cannot be mutablél

A static member function does not havihia pointer so it can access nonstatic members of its class only
by using. or->. A static member function cannot bigtual . There cannot be a static and a nonstatic
member function with the same name and the same parameter types.

Static members of a local class (9.9) have no linkage and cannot be defined outside the class definition. It
follows that a local class cannot have static data members.

A static membemenof classcl can be referred to a&:mem (5.1), that is, independently of any object.

It can also be referred to using theand-> member access operators (5.2.4). When a static member is
accessed through a member access operator, the expression on the left sideoofthés not evaluated.

The static membeanemexists even if no objects of clads have been created. For example, in the follow-
ing, run_chain ,idle , and so on exist even if poocess objects have been created:

9.5 Static members DRAFT: 25 January 1994 Classes-9

class process {
static int no_of_processes;
static process* run_chain;
static process* running;
static process* idle;
...

public:
...
int state();
static void reschedule();
...

I3
andreschedule can be used without reference tpracess object, as follows:
void f()

process::reschedule();

}

Static members of a global class are initialized exactly like global objects and only in file scope. For exam-
ple,

void process::reschedule() { /* ... */ };

int process::no_of_processes = 1;

process* process::running = get_main();

process* process::run_chain = process::running;

Static members obey the usual class member access rules (11) except that they can be initialized (in file
scope). The initializer of a static member of a class has the same access rights as a member function, as in
process::run_chain above.

The type of a static member does not involve its class name; thus the typeceks :
no_of processes isint and the type o&process : reschedule isvoid(*)()

9.6 Unions [class.union]

A union may be thought of as a class whose member objects all begin at offset zero and whose size is suffi-
cient to contain any of its member objects. At most one of the member objects can be stored in a union at
any time. A union may have member functions (including constructors and destructors), but not virtual
(10.3) functions. A union may not have base classes. A union may not be used as a base class. An object
of a class with a constructor or a destructor or a user-defined assignment operator (13.4.3) cannot be a
member of a union. A union can havestatic = data members.

HBOX 48 g
[Bhouldn’t we prohibit references in unionsr

A union of the form
union { member-specificatior} ;

is called an anonymous union; it defines an unnamed object (and not a type). The names of the members of
an anonymous union must be distinct from other names in the scope in which the union is declared; they are
used directly in that scope without the usual member access syntax (5.2.4). For example,

9-10 Classes DRAFT: 25 January 1994 9.6 Unions

void f()
{
union {int a; char* p; };
a=1;
...
p = "Jennifer";

...
}

Herea andp are used like ordinary (nonmember) variables, but since they are union members they have
the same address.

A global anonymous union must be declaséatic . An anonymous union may not hapevate or
protected members (11). An anonymous union may not have function members.

A union for which objects or pointers are declared is not an anonymous union. For example,

union { int aa; char* p; } obj, *ptr = &obj;
aa=1, /I error
ptr->aa=1; // ok

The assignment to plaiaa is ill formed since the member name is not associated with any particular
object.

Initialization of unions that do not have constructors is described in 8.5.1.

9.7 Bit-fields [class.hit]

A member-declaratoof the form

identifier,, : constant-expression

specifies a bit-field; its length is set off from the bit-field name by a colon. Allocation of bit-fields within a
class object is implementation dependent. Fields are packed into some addressable allocation unit. Fields
straddle allocation units on some machines and not on others. Alignment of bit-fields is implementation
dependent. Fields are assigned right-to-left on some machines, left-to-right on others.

An unnamed bit-field is useful for padding to conform to externally-imposed layouts. Unnamed fields are
not members and cannot be initialized. As a special case, an unnamed bit-field with a width of zero speci-
fies alignment of the next bit-field at an allocation unit boundary.

A bit-field may not be a static member. A bit-field must have integral or enumeration type (3.8.1). It is
implementation dependent whether a plain (neither explicitly signed nor unsighedield is signed or
unsigned. The address-of operatanay not be applied to a bit-field, so there are no pointers to bit-fields.
Nor are there references to bit-fields.

9.8 Nested class declarations [class.nest]

A class may be defined within another class. A class defined within another is caistedclass. The
name of a nested class is local to its enclosing class. The nested class is in the scope of its enclosing class.
Except by using explicit pointers, references, and object names, declarations in a nested class can use only
type names, static members, and enumerators from the enclosing class.

int x;

inty;

class enclose {
public:
int x;
static int s;

class inner {

9.8 Nested class declarations DRAFT: 25 January 1994
void f(int i)
{
X =i; [l error: assign to enclose::x
s=1i; [/ ok: assign to enclose::s
=X =i; /] ok: assign to global x
y=i /I ok: assign to global y
}
void g(enclose* p, int i)
{
p->x=i; [/l ok: assign to enclose::x
}

h

inner* p=0; // error ‘inner’ not in scope

Classesl12

g

Member functions of a nested class have no special access to members of an enclosing class; they obey the
usual access rules (11). Member functions of an enclosing class have no special access to members of a

nested class; they obey the usual access rules. For example,

class E {
int x;

class I {
inty;
void f(E* p, int i)
p->x=i; [l error: E::x is private
b
int g(I* p)
{

return p->y; [l error: I::y is private

h

Member functions and static data members of a nested class can be defined in the global scope. For exam-

ple,

class enclose {
class inner {
static int x;
void f(int i);

h

typedef enclose::inner ei;
intei:x =1;

void enclose::inner:f(int i) { /* ... */ }

A nested class may be declared in a class and later defined in the same or an enclosing scope. For example:

class E {
class 11; /I forward declaration of nested class
class 12;
class 11 {}; /I definition of nested class

5

class E:12 {}; /I definition of nested class

9-12 Classes DRAFT: 25 January 1994 9.8 Nested class declarations

Like a member function, a friend function defined within a class is in the lexical scope of that class; it
obeys the same rules for name binding as the member functions (described above and in 10.5) and like
them has no special access rights to members of an enclosing class or local variables of an enclosing func-
tion (11).

9.9 Local class declarations [class.local]

A class can be defined within a function definition; such a class is cdbedlalass. The name of a local

class is local to its enclosing scope. The local class is in the scope of the enclosing scope. Declarations in a
local class can use only type names, static variabldsrn variables and functions, and enumerators

from the enclosing scope. For example,

int x;
void f()
{ . .
staticints ;
int x;
extern int g();
struct local {
intg() { return x; } I error: X’ is auto
inth() {returns;} Il ok
intk() {return ::x; } // ok
intl() {return g(); } // ok
I3
...
}
local* p=0; // error: ‘local’ not in scope O

An enclosing function has no special access to members of the local class; it obeys the usual access rules
(11). Member functions of a local class must be defined within their class definition. A local class may not
have static data members.

9.10 Nested type names [class.nested.type]

Type names obey exactly the same scope rules as other names. In particular, type names defined within a
class definition cannot be used outside their class without qualification. For example,

class X {

public:
typedefint [;
classY {/*...*};
| a;

kh

| b; /I error
Y c; /I error
XY d; //ok
X:le; Il ok

10 Derived classes [class.derived]
O
A list of base classes may be specified in a class declaration using the notation: a
base-clause:
base-specifier-list
base-specifier-list:
base-specifier
base-specifier-list, base-specifier
base-specifier:
X opt NESted-name-specifigyclass-name ad
virtual access-specifigy; :: o, N€sted-name-specifigyclass-name O
access-specifier virtug), :: . nested-name-specifigy class-name ad

access-specifier:
private
protected
public

Theclass-namén abase-specifiemust denote a previously declared class (9), which is catléect base

classfor the class being declared. A cld&ss a base class of a cld3sdf it is a direct base class &for a

direct base class of one D base classes. A class isiadirect base class of another if it is a base class

but not a direct base class. A class is said to be (directly or indirdetiypdfrom its (direct or indirect)

base classes. For the meaningaofess-specifiesee 11. Unless redefined in the derived class, members

of a base class can be referred to in expressions as if they were members of the derived class. The base
class members are said toibberitedby the derived class. The scope resolution operatdb.1) may be

used to refer to a base member explicitly. This allows access to a name that has been redefined in the

derived class. A derived class can itself serve as a base class subject to access control; see 11.2. A pointer
to a derived class may be implicitly converted to a pointer to an accessible unambiguous base class (4.6). A

reference to a derived class may be implicitly converted to a reference to an accessible unambiguous base
class (4.7).

For example,

class Base {
public:

inta, b, c;
b

class Derived : public Base {
public:

int b;
h

class Derived2 : public Derived {
public:

intc;
b

10-2 Derived classes DRAFT: 25 January 1994 10 Derived classes

Here, an object of clad3erived2 will have a sub-object of clad3erived which in turn will have a
sub-object of clasBase. A derived class and its base classes can be represented by a directed acyclic
graph DAG) where an arrow mearislirectly derived fronf. A DAG of classes is often referred to as a
“class lattic€. For example,

Base

|

Derived

Derived?2

Note that the arrows need not have a physical representation in memory and the order in which the sub-
objects appear in memory is unspecified.

Name lookup proceeds from the original class (the named class in the casealified-id along the

edges of the lattice until the name is found. If a name is found in more than one class in the lattice, the
access is ambiguous (see 10.2) unless one occurrence of the namd flidée others. A nams::f

hidesa nameA::f if its classB hasA as a base and the instancéBafontainingB::f has the instance of

A containingA::f as a sub-object. The second part of this definition is trivially satisfied when multiple
inheritance is not used. For example,

void f()
{
Derived2 x;
x.a=1; /| Base::a
x.b=2; /I Derived::b
X.c=3; /I Derived2::.c
x.Base::b = 4; /I Base::b
x.Derived::c = 5; // Base:.c
Base* bp = &x; /I standard conversion:
/I Derived2* to Base*
}

assigns to the five membersyand makebp point tox.

Note that in thelass-name: id-expressiomotation,id-expressiomeed not be a member dass-namg
the notation simply specifies a class in which to start lookinglfexpression

Initialization of objects representing base classes can be specified in constructors; see 12.6.2.

10.1 Multiple base classes [class.mi]

A class may be derived from any number of base classes. For example,

classA{/*..*},
classB {/*...* };
classC{/*...* };
class D : public A, public B, public C { /* ... */ };

The use of more than one direct base class is often called multiple inheritance.

The order of derivation is not significant except possibly for default initialization by constructor (12.1), for
cleanup (12.4), and for storage layout (5.4, 9.2, 11.1).

A class may not be specified as a direct base class of a derived class more than once but it may be an indi-
rect base class more than once.

classB {/*...* };
class D : public B, public B{/*...*/}; /lillegal

33) This criterion is calleddominancgin the ARM. O

10.1 Multiple base classes DRAFT: 25 January 1994 Derived classes-30

classL{/*...*};

class A: publicL{/*...*};

class B : public L {/*...*};

class C : public A, publicB{/*...*/}; Il legal

Here, an object of clagdwill have two sub-objects of claksas shown below.

L L

| |
.

The keywordvirtual may be added to a base class specifier. A single sub-object of the virtual base
class is shared by every base class that specified the base class to be virtual. For example,

classV {/*...*};

class A : virtual public V { /* ... */ };
class B : virtual public V { /* ... */ };
class C : public A, public B{/* ... */ };

Here clas< has only one sub-object of clagsas shown below.
\Y
A/ \B
\ C/

A class may have both virtual and nonvirtual base classes of a given type.

classB {/*...* };

class X : virtual public B { /* ... */ };

class Y : virtual public B { /* ... */ };

class Z : public B {/* ... */ };

class AA : public X, public Y, public Z { /* ... */ };

Here clas®\A has two sub-objects of claBsZ’'s B and the virtuaB shared by andY, as shown below.

10.2 Ambiguities [class.ambig]

Access to base class members must be unambiguous. Access to a base class member is ambiguous if the
id-expressiornor qualified-id used does not refer to a unique function, object, type, or enumerator. The
check for ambiguity takes place before access control (11). For example,

10-4 Derived classes DRAFT: 25 January 1994 10.2 Ambiguities

class A {
public:
int a;
int (*b)();
int f();
int f(int);
int g();
I3
class B {
int a;
int b();
public:
int f();
int g;
int h();
int h(int);
I3

class C : public A, public B {};
void g(C* pc)
{

pc->a=1; /[l error: ambiguous: A::a or B::a
pc->b(); /I error: ambiguous: A::b or B::b
pc->f(); /Il error: ambiguous: A::f or B::f
pc->f(1); // error: ambiguous: A::f or B::f
pc->g(); // error: ambiguous: A::g or B::g
pc->g =1; // error: ambiguous: A::g or B::g
pc->h(); 1l ok

pc->h(1); // ok

}

If the name of an overloaded function is unambiguously found overloading resolution also takes place
before access control. Ambiguities can be resolved by qualifying a name with its class name. For example,

class A {
public:

int f();
I3

class B {
public:
int f();
I3
class C : public A, public B {
int f() { return A::f() + B::f(); }
I3
A single function, object, type, or enumerator may be reached through more than one path through the
directed acyclic graph of base classes. This is not an ambiguity. For example,

10.2 Ambiguities DRAFT: 25 January 1994 Derived classes 48

class V { public: int v; };
class A {
public:
int a;
staticint s;
enum{e};
I3
class B : public A, public virtual V {};
class C : public A, public virtual V {};

class D : public B, public C {};

void f(D* pd)

pd->v++; Il ok: only one ‘v’ (virtual)
pd->s++; I/ ok: only one ‘s’ (static)
inti=pd->e; // ok: only one ‘e’ (enumerator)
pd->a++; [error, ambiguous: two ‘a’s in ‘D’
} d

When virtual base classes are used, a hidden function, object, or enumerator may be reached along a path
through the inheritance DAG that does not pass through the hiding function, object, or enumerator. This is
not an ambiguity. The identical use with nonvirtual base classes is an ambiguity; in that case there is no
unique instance of the name that hides all the others. For example,

class V { public: int f(); intx;};
class W { public: int g(); inty;};
class B : public virtual V, public W

{

public:
intf(); intx;
intg(); inty;

c'lass C : public virtual V, public W { };

class D : public B, public C { void g(); };

The names defined i and the left hand instance Wfare hidden by those B, but the names defined in
the right hand instance @are not hidden at all.

void D::g()
{
X++; /I ok: B::x hides V::x
fQ); I/ ok: B::f() hides V::f()
y++; /I error: B::y and C’'s W::y
g(); I/l error: B::g() and C's W::g()
} O

An explicit or implicit conversion from a pointer to or an Ivalue of a derived class to a pointer or refefénce
to one of its base classes must unambiguously refer to a unique object representing the base class. For
example,

10-6 Derived classes DRAFT: 25 January 1994 10.2 Ambiguities

classV {};

class A{};

class B : public A, public virtual V { };
class C : public A, public virtual V { };
class D : public B, public C { };

void g()
{

Dd;

B* pb = &d;

A* pa = &d; /I error, ambiguous: C's AorB'sA?
V* pv = &d; // fine: only one V sub-object

10.3 Virtual functions [class.virtual]

Virtual functions support dynamic binding and object-oriented programming. A class that declares or
inherits a virtual function is calledpolymorphic class

If a virtual member functionf is declared in a clad3ase and in a clas®erived , derived directly or
indirectly fromBase, a member functiomf with the same name and same parameter |Baas::vf is

declared, therDerived::vf is also virtual (whether or not it is so declared) anavierride$?

Base::vf . For convenience we say that any virtual function overrides itself. Then in any well-formed
class, for each virtual function declared in that class or any of its direct or indirect base classes there is a
uniquefinal overriderthat overrides that function and every other overrider of that function.

A program is ill-formed if the return type of any overriding function differs from the return type of the
overridden function unless the return type of the latter is pointer or reference (possibly cv-qualified) to a
classB, and the return type of the former is pointer or reference (respectively) to ® slasls thaB is an
unambiguous direct or indirect base clas®phccessible in the class of the overriding function, and the
cv-qualification in the return type of the overriding function is less than or equal to the cv-qualification in
the return type of the overridden function. In that case when the overriding function is called as the final
overrider of the overridden function, its result is converted to the type returned by the (statically chosen)
overridden function. See 5.2.2. For example,

class B {};
class D : private B { friend class Derived; };
struct Base {
virtual void vf1();
virtual void vf2();
virtual void vf3();
virtual B* vf4();
void f();
I3

struct No_good : public Base {
D* vf4(); Il error: B (base class of D) inaccessible

h

O
3%) A function with the same name but a different parameter list (see 13) as a virtual function is not necessarily virtual and dbes not
override. The use of thertual specifier in the declaration of an overriding function is legal but redundant (has empty semartics).
Access control (11) is not considered in determining overriding. |

10.3 Virtual functions DRAFT: 25 January 1994

struct Derived : public Base {

void vf1(); [virtual and overrides Base::vf1()
void vf2(int); /I not virtual, hides Base::vf2()
char vf3(); /I error: invalid difference in return type only
D* vf4(); /I okay: returns pointer to derived class
void f();
2
void g()
{
Derived d;
Base* bp = &d; /l standard conversion:
/I Derived* to Base*
bp->vfl(); /I calls Derived::vf1()
bp->vf2(); /I calls Base::vf2()
bp->f(); Il calls Base::f() (not virtual)
B* p = bp->vf4(); // calls Derived::pf() and converts the
/I result to B*
Derived* dp = &d;
D* q = dp->vf4(); // calls Derived::pf() and does not
/I convert the result to B*
dp->vf2(); /I ill-formed: argument mismatch
}

Derived classes 10

That is, the interpretation of the call of a virtual function depends on the type of the object for which it is
called (the dynamic type), whereas the interpretation of a call of a nonvirtual member function dépends
only on the type of the pointer or refe rence denoting that object (the static type). See 5.2.2.

Thevirtual

specifier implies membership, so a virtual function cannot be a global (nonmember) (7.1.2)
function. Nor can a virtual function be a static member, since a virtual function call relies on a specific
object for determining which function to invoke. A virtual function can be declafédral in another

class. A virtual function declared in a class must be defined or declared pure (10.4) in that class.

Following are some examples of virtual functions used with multiple base classes:
struct A {

h

virtual void f();

struct B1: A{ // note non-virtual derivation

h

void f();

struct B2 : A {

h

void f();

struct D : B1, B2 { // D has two separate A sub-objects

h

void foo()

{

D d;

/I A* ap = &d; // would be ill-formed: ambiguous
B1* blp = &d;

A* ap=blp;

D* dp=4&d;

ap->f(); // calls D::BL::f

dp->f(); //ill-formed: ambiguous

10-8 Derived classes DRAFT: 25 January 1994 10.3 Virtual functions

In classD above there are two occurrences of clasmnd hence two occurrences of the virtual member
function A::f . The final overrider oB1::A::f is B1::f and the final overrider oB2::A::f is
B2::f

The following example shows a function that does not have a unique final overrider:

struct A {
virtual void f();

h

struct VBL1 : virtual A{ // note virtual derivation
void f();
2

struct VB2 : virtual A {
void f();
I3

struct Error : VB1, VB2 { //ill-formed
h

struct Okay : VB1, VB2 {
void f();
2

BothVB1::f andVB2::f overrideA::f butthere is no overrider of both of them in clesor . This
example is therefore ill-formed. Cla€kay is well formed, however, becauS€kay::f is a final over-
rider.

The following example uses the well-formed classes from above.
struct VB1la : virtual A { // does not declare f
|3
struct Da : VB1la, VB2 {
b

void foe()

VBla* vblap = new Da;
vblap->f(); // calls VB2:f

}
Explicit qualification with the scope operator (5.1) suppresses the virtual call mechanism. For example,
class B { public: virtual void f(); };
class D : public B { public: void f(); };
void D::f() { /* ... */ B::f(); }

Here, the function call iD::f really does calB::f and notD::f

10.4 Abstract classes [class.abstract]

The abstract class mechanism supports the notion of a general concept, sgblaes,aof which only
more concrete variants, suchcxle andsquare , can actually be used. An abstract class can also be
used to define an interface for which derived classes provide a variety of implementations.

An abstract clasds a class that can be used only as a base class of some other class; no objects of an
abstract class may be created except as sub-objects of a class derived from it. A class is abstract if it has at
least ongoure virtual function(which may be inherited: see below). A virtual function is specfigme by

using apure-specifiel(9.2) in the function declaration in the class declaration. A pure virtual function need

10.4 Abstract classes DRAFT: 25 January 1994 Derived classes—20

be defined only if explicitly called with thgualified-id syntax (5.1). For example, O

class point{ /* ... */ };

class shape { Il abstract class
point center;
...

public:
point where() { return center; }
void move(point p) { center=p; draw(); }
virtual void rotate(int) = 0; // pure virtual
virtual void draw() = 0; I/ pure virtual
...

h

An abstract class may not be used as an parameter type, as a function return type, or as the type of an
explicit conversion. Pointers and references to an abstract class may be declared. For example,

shape x; /I error: object of abstract class
shape* p; Il ok

shape f(); I error

void g(shape); I error

shape& h(shape&); // ok

Pure virtual functions are inherited as pure virtual functions. For example,

class ab_circle : public shape {
int radius;
public:
void rotate(int) {}
/I ab_circle::draw() is a pure virtual

kh

Sinceshape::draw() is a pure virtual functiorab_circle::draw() is a pure virtual by default.
The alternative declaration,

class circle : public shape {
int radius;
public:
void rotate(int) {}
void draw(); // must be defined somewhere

I3
would make classircle nonabstract and a definition aifcle::draw() must be provided.

An abstract class may be derived from a class that is not abstract, and a pure virtual function may override a
virtual function which is not pure.

Member functions can be called from a constructor of an abstract class; the effect of calling a pure virtual
function directly or indirectly for the object being created from such a constructor is undefined.

10.5 Summary of scope rules [class.scope]

The scope rules for+#€ programs can now be summarized. These rules apply uniformly for all names
(including typedef-name§7.1.3) andclass-name$9.1)) wherever the grammar allows such names in the
context discussed by a particular rule. This section discusses lexical scope only; see 3.4 for an explanation
of linkage issues. The notion of point of declaration is discussed in (3.3).

Any use of a name must be unambiguous (up to overloading) in its scope (10.2). Only if the name is found
to be unambiguous in its scope are access rules considered (11). Only if no access control errors are found
is the type of the object, function, or enumerator named considered.

A name used outside any function and class or prefixed by the unary scope opefatd not qualified
by the binary:: operator or the> or. operators) must be the name of a global object, function, or enu-
merator.

10-10 Derived classes DRAFT: 25 January 1994 10.5 Summary of scope rules

A name specified afteX:: , afterobj. , whereobj is anX or a reference t, or afterptr-> , where
ptr is a pointer taX must be the name of a member of clfsw be a member of a base class<ofln
addition, ptr in ptr-> may be an object of a cla¥that hasoperator->() declared satr-
>operator->() eventually resolves to a pointerXq13.4.6).

A name that is not qualified in any of the ways described above and that is used in a function that is not a
class member must be declared before its use in the block in which it occurs or in an enclosing block or
globally. The declaration of a local name hides previous declarations of the same name in enclosing blocks
and at file scope. In particular, no overloading occurs of names in different scopes (13.4).

A name that is not qualified in any of the ways described above and that is used in a function that is a non-
static member of clas€ must be declared in the block in which it occurs or in an enclosing block, be a
member of clasX or a base class of claXsor be a global name. The declaration of a local name hides
declarations of the same name in enclosing blocks, members of the function’s class, and global names. The
declaration of a member name hides declarations of the same name in base classes and global names.

A name that is not qualified in one of the ways described above and is used in a static member function of a
classX must be declared in the block in which it occurs, in an enclosing block, be a static member of class
X, or a base class of classor be a global name.

A function parameter name in a function definition (8.4) is in the scope of the outermost block of the func-
tion (in particular, it is a local name). A function parameter name in a function declaration (8.3.5) that is
not a function definition is in a local scope that disappears immediately after the function declaration. A
default argument is in the scope determined by the point of declaration (3.3) of its parameter, but may not
access local variables or nonstatic class members; it is evaluated at each point of call (8.3.6).

A ctor-initializer (12.6.2) is evaluated in the scope of the outermost block of the constructor it is specified
for. In particular, it can refer to the constructor’'s parameter names. O

11 Member access control [class.access]

ad

A member of a class can be a

— private ; that is, its name can be used only by member functions and friends of the class in
which it is declared.

— protected ; that is, its name can be used only by member functions and friends of the class in
which it is declared and by member functions and friends of classes derived from this class (see
11.5).

— public ; thatis, its name can be used by any function.

Members of a class declared with the keywdabs areprivate by default. Members of a class
declared with the keywordsdruct orunion arepublic by default. For example,

class X {
inta; // X:ais private by default

h

struct S {
inta; // S:ais public by default

h

11.1 Access specifiers [class.access.spec]

Member declarations may be labeled byaaocess-specifigil0):
access-specifier. member-specificatiqp,

An access-specifiespecifies the access rules for members following it until the end of the class or until
anotheraccess-specifids encountered. For example,

class X {
inta; // X:ais private by default: ‘class’ used
public:
intb; // X:bis public
intc; // X::cis public
h
Any number of access specifiers is allowed and no particular order is required. For example,

struct S {
inta; // S:ais public by default: ‘struct’ used
protected:
intb; // S:bis protected
private:
intc; // S:cis private
public:
intd; //S:dis public
2

11-2 Member access control DRAFT: 25 January 1994 11.1 Access specifiers

The order of allocation of data members with separetess-specifidabels is implementation dependent
(9.2).

11.2 Access specifiers for base classes [class.access.base]

If a class is declared to be a base class (10) for another class usimgplice access specifier, the
public members of the base class are accessiblpuatic members of the derived class and
protected members of the base class are accessibpeoscted members of the derived class (but
see 13.1). If a class is declared to be a base class for another class ysiotpthed access specifier,
thepublic andprotected members of the base class are accessibgatiscted = members of the
derived class. If a class is declared to be a base class for another class ymingtthe access specifier,

the public and protected members of the base class are accessibl@ieste members of the O
derived clas®).

In the absence of aaccess-specifiefor a base clasquublic is assumed when the derived class is
declaredstruct andprivate is assumed when the class is declatads . For example,

classB {/*...* };

class D1 : private B {/* ... */ };

class D2 : public B {/* ... */ };
classD3:B{/*...*} /[‘B’ private by default
struct D4 : public B { /* ... */ };

struct D5 : private B {/* ... */ };

struct D6 : B{/*...*/'}; [/ ‘B’ public by default
class D7 : protected B { /* ... */ };

struct D8 : protected B { /* ... */ };

HereB is a public base db2, D4, andD6, a private base dd1, D3, andD5, and a protected base BY
andD8.

Because of the rules on pointer conversion (4.6), a static member of a private base class may be inaccessi-

ble as an inherited name, but accessible directly. For example,

class B {
public:
int mi; /I nonstatic member
static int si; // static member
2
lass D : private B {
I3
class DD : public D {
void f();
2
void DD::f() {
mi = 3; [error: mi is private in D
si=3; /I error: si is private in D
B b;
b.mi=3; /I okay (b.mi is different from this->mi)
b.si =3; // okay (b.si is the same as this->si)
B:si=3; I/ okay
B* bpl = this; // error: B is a private base class
B* bp2 = (B*)this; // okay with cast
bp2->mi =3; // okay and bp2->mi is the same as this->mi
}

O
S as specified previously in 11, private members of a base class remain inaccessible even to derived clasdesdinledsclara- O
tions within the base class declaration are used to grant access explicitly. |

11.2 Access specifiers for base classes DRAFT: 25 January 1994 Member access contreB 11

Members and friends of a clasgan implicitly convert aiX* to a pointer to a private or protected immedi-
ate base class of

11.3 Access declarations [class.access.dcl]

The access of public or protected member of a private or protected base class can be restored to the same
level in the derived class by mentioning dpsalified-id in the public (for public members of the base

class) omprotected (for protected members of the base class) part of a derived class declaration. Such
mention is called aaccess declaratian

For example,

class A {
public:
int z;
int z1;

h

class B : public A {
int a;
public:
intb, c;
int bf();
protected:
int x;
inty;
h

class D : private B {
int d;

public:
B::c; // adjust access to ‘B::C’
B::z; /Il adjust access to ‘A::z’
A::z1; // adjust access to ‘A::z1’
inte;
int df();

protected:
B::x; // adjust access to ‘B::x’
int g;

b

class X : public D {
int xf();
3

int ef(D&);
int ff(X&);

The external functioef can use only the namesz, z1, e, anddf . Being a member dd, the function
df can use the namésc, z, z1, bf , x,y, d, e, df , andg, but nota. Being a member d, the function
bf can use the membeas b, c, z, z1, bf , x, andy. The functionxf can use the public and protected
names fronD, that is,c, z, z1, e, anddf (public), andx, andg (protected). Thus the external function
ff has access only m z, z1, e, anddf . If Dwere a protected or private base clasX,off would have
the same privileges as before, ffutwould have no access at all.

An access declaration may not be used to restrict access to a member that is accessible in the base class, nor
may it be used to enable access to a member that is not accessible in the base class. For example,

11-4 Member access control DRAFT: 25 January 1994 11.3 Access declarations

class A {
public:
int z;
3
class B : private A {
public:
int a;
int x;
private:
int b;
protected:
intc;
b
class D : private B {
public:
B::a; // make ‘a’ a public member of D
B::b; [/l error: attempt to grant access
/I can’t make ‘b’ a public member of D
A::z; [l error: attempt to grant access
protected:
B::c; /I make ‘c’ a protected member of D
B::x; // error: attempt to reduce access
/I can’'t make ‘X’ a protected member of D
h

class E : protected B {
public:
B::a; // make ‘a’ a public member of E
2
The names andx are protected membersBby virtue of its protected derivation froB1 An access dec-
laration for the name of an overloaded function adjusts the access to all functions of that name in the base
class. For example,

class X {
public:
f0;
f(int);
I3

class Y : private X {
public:
X:f; [/ makes X:f() and X::f(int) public in Y
2 O

The access to a base class member cannot be adjusted in a derived class that also defines a member of that
name. For example,

class X {
public:
void f();

class Y : private X {
public:
void f(int);
X::f; [l error: two declarations of f

11.4 Friends DRAFT: 25 January 1994 Member access control 4%

11.4 Friends [class.friend]

A friend of a class is a function that is not a member of the class but is permitted to use the private and pro-
tected member names from the class. The name of a friend is not in the scope of the class, and the friend is
not called with the member access operators (5.2.4) unless it is a member of another class. The following
example illustrates the differences between members and friends:

class X {

int a;

friend void friend_set(X*, int);
public:

void member_set(int);
2

void friend_set(X* p, inti) { p->a=1i; }
void X::member_set(inti) {a=i;}

void f()

{
X obj;
friend_set(&obj,10);
obj.member_set(10);

}

When afriend declaration refers to an overloaded name or operator, only the function specified by the
parameter types becomes a friend. A member function of aXleams be a friend of a cla¥ For exam-
ple,
class Y {
friend char* X::foo(int);
...
h

All the functions of a clasX can be made friends of a clagdy a single declaration using ataborated-
type—specifiegi'e) (9.2):
class Y {

friend class X;
...

h

Declaring a class to be a friend also implies that private and protected names from the class granting friend-
ship can be used in the class receiving it. For example,

class X {
enum { a=100 };
friend class Y;

h

class Y {
int v[X::a]; // ok, Y is a friend of X
5

class Z {
intv[X::a]; [/l error: X::ais private

h

3% Note that thelass-keyf theelaborated-type-specifiés required. |

11-6 Member access control DRAFT: 25 January 1994 11.4 Friends

If a class or function mentioned as a friend has not been declared, see 7.3.1. O
A function first declared in a friend declaration is equivalent texa@ern declaration (3.4, 7.1.1).

A global (but not a membefijliend function may be defined in a class definition other than a local class
definition (9.9). The function is theénline and the rewriting rule specified for member functions (9.412)
is applied. Afriend function defined in a class is in the (lexical) scope of the class in which it is defined.
A friend function defined outside the class is not.

Friend declarations are not affecteddrgess-specifier®.2).

Friendship is neither inherited nor transitive. For example,

class A {
friend class B;
int a;
3
class B {
friend class C;
b
classC {
void f(A* p)
{
p->a++; [/ error: Cis not a friend of A
I/ despite being a friend of a friend
}
b

class D : public B {
void f(A* p)
{

p->a++; [/l error: D is not a friend of A
/I despite being derived from a friend

11.5 Protected member access [class.protected]

A friend or a member function of a derived class can access a protected static member of a base class. A
friend or a member function of a derived class can access a protected nonstatic member of one of its base
classes only through a pointer to, reference to, or object of the derived class itself (or any class derived from

that class). When a protected member of a base class appeaysalifiad-id in a friend or a member
function of a derived class, tnested-name-specifiarust name the derived class. For example,

class B {
protected:
inti;

h

class D1 : public B {
I3

class D2 : public B {
friend void fr(B*,D1*,D2*);
void mem(B*,D1*);

11.5 Protected member access DRAFT: 25 January 1994 Member access contro+ 711

void fr(B* pb, D1* p1, D2* p2)

{
pb->i=1; //illegal
pl->i=2; //illegal
p2->i = 3; [/ ok (access through a D2)
intB::* pmi_B = &B::i; Il illegal
int D2::* pmi_D2 = &D2:i; // ok
}
void D2::mem(B* pb, D1* p1)
{
pb->i=1; //illegal
pl->i=2; /lillegal
i=3; /I ok (access through ‘this’)
}

void g(B* pb, D1* p1, D2* p2)

pb->i=1; //illegal
pl->i=2; /lillegal
p2->i=3; /lillegal

11.6 Access to virtual functions [class.access.virt]

The access rules (11) for a virtual function are determined by its declaration and are not affected by the
rules for a function that later overrides it. For example,

class B {
public:
virtual f();

h

class D : public B {
private:

f0;
h

void f()

{
Dd;
B* pb = &d;
D* pd = &d;

pb->f(); // ok: B::f() is public,
/I D::A() is invoked
pd->f(); // error: D::f() is private
}

Access is checked at the call point using the type of the expression used to denote the object for which the
member function is called{ in the example above). The access of the member function in the class in
which it was defined¥in the example above) is in general not known.

11.7 Multiple access [class.paths]

If a name can be reached by several paths through a multiple inheritance graph, the access is that of the path
that gives most access. For example,

11-8 Member access control DRAFT: 25 January 1994 11.7 Multiple access

class W { public: void f(); };
class A : private virtual W { };
class B : public virtual W { };
class C : public A, public B {
void f() { W::f(); } /] ok

SinceW::f() is available taC::f() along the public path throud?) access is allowed. O

12 Special member functions [speciall

Some member functions are special in that they affect the way objects of a class are created, copied, and
destroyed, and how values may be converted to values of other types. Often such special functions are
called implicitly. Also, the compiler may generate instances of these functions when the programmer does
not supply them. Compiler-generated special functions may be referred to in the same ways that
programmer-written functions are.

These member functions obey the usual access rules (11). For example, declaring a constructor
protected ensures that only derived classes and friends can create objects using it.

12.1 Constructors [class.ctor]

A member function with the same name as its class is called a constructor; it is used to construct values of
its class type. An object of class type will be initialized before any use is made of the object; see 12.61

A constructor can be invoked forcanst or volatile object.37) A constructor may not be declared]
const orvolatile (9.4.1). A constructor may not betual . A constructor may not bstatic

Constructors are not inherited. Default constructors and copy constructors, however, are generated (by the
compiler) where needed (12.8). Generated constructommiblie

A default constructofor a classX is a constructor of classthat can be called without an argument. If nd
constructor has been declared for cldsa default constructor is implicitly declared. The definition for an
implicitly-declared default constructor is generated only if that constructor is called. An implicitly-declared
default constructor is non-trivial if and only if either the class has direct virtual bases or virtual functidns or
if the class has direct bases or members of a class (or array thereof) requiring non-trivial initialization
(12.6).

A copy constructofor a classX is a constructor whose first parameter is of t)jgeor const X& and
whose other parameters, if any, all have defaults, so that it can be called with a single argumeix of type
For exampleX::X(const X&) andX::X(X&, int=0) are copy constructors. If no copy constructor [is
declared in the class definition, a copy constructor is implicitly ded®edhe definition for an O
implicitly-declared copy constructor is generated only if that copy constructor is called. a

The body of a destructor is executed before the destructors for member or base objects. Destructors for
nonstatic member objects are executed in reverse order of their declaration before the destructors for base
classes. Destructors for nonvirtual base classes are executed in reverse order of their declaration in the

3 y/olatile semantics might or might not be used.
Thus the class definition

struct X {
X(const X&, int);
h

causes a copy constructor to be generated and the member function definition
X::X(const X& x, inti=0){...}

i39i||-f0rmed because of ambiguity.
)Volatile semantics might or might not be used.

OO0 O 0o ooo ooo

12-2 Special member functions DRAFT: 25 January 1994 12.4 Destructors

derived class before destructors for virtual base classes. Destructors for virtual base classes are executed in
the reverse order of their appearance in a depth-first left-to-right traversal of the directed acyclic graph of
base classesjeft-to-right’ is the order of appearance of the base class names in the declaration of the
derived class. Destructors for elements of an array are called in reverse order of their construction.

A destructor may be declaretttual or purevirtual . In either case if any objects of that class or
any derived class are created in the program the destructor must be defined.

Member functions may be called from within a destructor; see 12.7.
An object of a class with a destructor cannot be a member of a union.

Destructors are invoked implicitly (1) when an automatic variable (3.7) or temporary (12.2, 8.5.3) abject
goes out of scope, (2) for constructed static (3.7) objects at program termination (3.5), and (3) through use
of a delete-expressio(b.3.5) for objects allocated byrew-expressioli5.3.4). Destructors can also be
invoked explicitly. A delete-expressioinvokes the destructor for the referenced object and passes the
address of its memory to a dealloation function (5.3.5, 12.5). For example,

class X {
...

public:
X(int);
~X();

void g(X*);

void f() /l common use: O

{

X* p =new X(111); // allocate and initialize

9(p);
delete p; I/ cleanup and deallocate

} O

Explicit calls of destructors are rarely needed. One use of such calls is for objects placed at specific
addresses using mew-expressiorwith the placement option. Such use of explicit placement and
destruction of objects can be necessary to cope with dedicated hardware resources and for writing memory
management facilities. For example,

void* operator new(size_t, void* p) { return p; }

void f(X* p);

static char buf[sizeof(X)];

void g() / rare, specialized use: O

X* p = new(buf) X(222); // use buf[]
/I and initialize

f(p);
p->X::~X(); Il cleanup

}

Invocation of destructors is subject to the usual rules for member functions, e.g., an object of the appropri-
ate type is required (except invokimiglete on a null pointer has no effect). When a destructor is
invoked for an object, the object no longer exists; if the destructor is explicitly invoked again for the same
object the behavior is undefined. For example, if the destructor for an automatic object is explicitly
invoked, and the block is subsequently left in a manner that would ordinarily invoke implicit destruction of
the object, the behavior is undefined.

10

12.4 Destructors DRAFT: 25 January 1994 Special member functions 42

The notation for explicit call of a destructor may be used for any simple type name. For example, 0O

int* p;
...
p->int::~int();

Using the notation for a type that does not have a destructor has no effect. Allowing this enables people to
write code without having to know if a destructor exists for a given type.

12.5 Free store [class.free]

When an object is created witmaw-expressigranallocation function(operator new() for non-array

objects oroperatornew(]() for arrays) is (implicitly) called to get the required storage. Allocation
functions may be static class member functions or global functions. They may be overloaded, but the
return type must always bgoid* and the first parameter type must always $ire t , an
implementation-defined integral type defined in the standard heatiddef.h> . Overloading resolu-

tion is done by assembling an argument list from the amount of space requested (the first argument) and the
expressions in theew-placemenpart of thenew-expressignif used (the second and succeeding argu-
ments). When a non-array object or an array of dasscreated by aew-expressigrthe allocation func-

tion is looked up in the scope of classsing the usual rules.

The default::operatornew(size_t) and ::operatornew[](size_t) are always declared
and definitions are provided in the libranjif.free). If a program contains a definition nbperator
new(size_t) or ::operatornew[](size_t) , that definition is used in preference to the library
version.

When anew-expressiois executed, the selected allocation function will be called with the amount of space
requested (possibly zero) as its first argument. The function may return the address of a block of available
storage (suitably aligned) of the requested size or, if it is unable to allocate such a block, it may throw an
exception (15) of classalloc (17.3.3.1) or a class derived froralloc . For a request for a block of

zero size, the pointer returned should be non-null and distinct from the address of any currently allocated
object or zero-sized block. If the allocation function returns the null pointer the result is implementation
defined. Any other result is undefined.

BBox 51 E
[Can a user-supplied allocation function call the currently instaé@d handler ? How? [

Any X::operator new() or X::operator new[]() for a classX is a static member (even if not
explicitly declaredstatic). For example,

class Arena; class Array_arena;
struct B {

void* operator new(size_t, Arena*);
}.

truct D1 : B {
I3

Arena* ap; Array_arena* aap;
void foo(int i)

{ new (ap) D1; // calls B::operator new(size_t, Arena*)
new D1]i]; /I calls ::operator newl[](size_t)
new D1; /l'ill-formed: ::operator new(size_t) hidden
}
When an object is deleted withdelete-expressigra deallocation functionoperatordelete() for
non-array objects ooperatordelete[]() for arrays) is (implicitly) called to reclaim the storage

occupied by the object. Like allocation functions, deallocation functions may be static class member func-
tions or global functions.

12-4 Special member functions DRAFT: 25 January 1994 12.5 Free store

The return type of each deallocation function musvdid and its first parameter must beid* . For
class member deallocation functions (only) a second parameter cfizgoé may be added but deallo-
cation functions may not be overloaded. When an object is deleteddigta-expressigrithe deallocation
function is looked up in the scope of class of the executed destructor (see 5.3.5) using the usual rules.

Default versions of:operator delete(void*) and::operator delete[](void*) , are pro-
vided in the library (lib.free). If a program contains a definition nbperator delete(void*) or
::operator delete[](void*) , that definition is used in preference to the library version. When a

delete-expressiois executed, the selected deallocation function will be called with the address of the block
of storage to be reclaimed as its first argument and (if the two-parameter style is used) the size of the
block*? as its second argument.

An X::operator delete() or X:operator delete[]() for a classX is a static member (even
if not explicitly declaredstatic). For example,

class X {
...
void operator delete(void*);
void operator delete[](void*, size_t);

I3

class Y {
...
void operator delete(void*, size_t);
void operator delete[](void*);

2

Since member allocation and deallocation functionsstac they cannot be virtual. However, the
deallocation function actually called is determined by the destructor actually called, so if the destructor is
virtual the effect is the same. For example,

struct B {
virtual ~B();
void operator delete(void*, size_t);
2
struct D : B {
void operator delete(void*);
void operator delete[](void*, size_t);
2
void f(int i)
{
B* bp = new D;
delete bp; // uses D::operator delete(void*)
D* dp = new DIi];
delete dp; // uses D::operator delete[](void*, size_t)
}

Here, storage for the non-array object of class deallocated byD::operator delete() , due to the

virtual destructor. Access to the deallocation function is checked statically. Thus even though a different
one may actually be executed, the statically visible deallocation function must be accessible. In the exam-
ple above, ifB::operator delete() had beerprivate , the delete expression would have been illt
formed.

O
200t the static class in thdelete-expressiois different from the dynamic class and the destructor is not virtual the size mightlbe
incorrect, but that case is already undefined. O

12.6 Initialization DRAFT: 25 January 1994 Special member functions 5

12.6 Initialization [class.init]

A class having a user-defined constructor or having a non-trivial implicitly-declared default construdfor is
said to require non-trivial initialization. O

An object of a class (or array thereof) with no private or protected non-static data members and that does
not require non-trivial initialization can be initialized using an initializer list; see 8.5.1. An object of a Elass
(or array thereof) with a user-declared constructor must either be initialized or have a default condfructor
(12.1) (whether user- or compiler-declared). The default constructor is used if the object (or array thelreof) is
not explicitly initialized.

12.6.1 Explicit initialization [class.expl.init]

Objects of classes with constructors (12.1) can be initialized with a parenthesized expression list. This list
is taken as the argument list for a call of a constructor doing the initialization. Alternatively a single value
is specified as the initializer using theoperator. This value is used as the argument to a copy constructor.
Typically, that call of a copy constructor can be eliminated. For example,

class complex {
...

public:
complex();
complex(double);
complex(double,double);
...

I3
complex sqgrt(complex,complex); ad
complex a(); [l initialize by a call of
/I complex(double)
complex b = a; /l initialize by a copy of ‘a’

complex ¢ = complex(1,2); // construct complex(1,2)
/I using complex(double,double)
I/l copy itinto ‘c’

complex d = sqrt(b,c); /I call sgrt(complex,complex)

/I and copy the result into ‘d’
complex e; [l initialize by a call of

/I complex()
complex f = 3; /I construct complex(3) using

/I complex(double)
I/l copy itinto ‘f’

Overloading of the assignment operatdras no effect on initialization.
The initialization that occurs in argument passing and function return is equivalent to the form
Tx=a;

The initialization that occurs inew expressions (5.3.4) and in base and member initializers (12.6.2) is
equivalent to the form

T x(a);

Arrays of objects of a class with constructors use constructors in initialization (12.1) just as do individual
objects. If there are fewer initializers in the list than elements in the array, a default constructor (12.1) must
be declared (whether by the compiler or the user), and it is used; otherwisgidleer-clausemust be
complete. For example,

complex cc ={ 1, 2 }; // error; use constructor
complex v[6] = { 1,complex(1,2),complex(),2 };

Here,v[0] andv[3] are initialized withcomplex::complex(double) , V[1] s initialized with

12-6 Special member functions DRAFT: 25 January 1994 12.6.1 Explicit initialization

complex::complex(double,double) , and v[2] , Vv[4] , and v[5] are initialized with
complex::complex()

An object of classvican be a member of a cla¥nly if (1) Mhas a default constructor, or (Rhas a O
user-declared constructor and if every user-declared constructor ofXclggscifies actor-initializer

(12.6.2) for that member. In case 1 the default constructor is called when the aggregate is creatét. If a
member of an aggregate has a destructor, then that destructor is called when the aggregate is destroyed.

Constructors for nonlocal static objects are called in the order they occur in a file; destructors are called in
reverse order. See also 3.5, 6.7, 9.5.

12.6.2 Initializing bases and members [class.base.init]

Initializers for immediate base classes and for members not inherited from a base class may be specified in
the definition of a constructor. This is most useful for class objects, constants, and references where the
semantics of initialization and assignment differctér-initializer has the form
ctor-initializer:
meme-initializer-list

meme-initializer-list:
meme-initializer
meme-initializer , meme-initializer-list

meme-initializer:
i1 optNEsted-name-specifigrclass-name(expression-ligf,) ad
identifier (expression-ligf,)

The argument list is used to initialize the named nonstatic member or base class object. This (or for an
aggregate (8.5.1), initialization by a brace-enclosed list) is the only way to initialize noostetic and
reference members. For example,

struct B1 { B1(int); /* ... */ };
struct B2 { B2(int); /* ... */ };

struct D : B1, B2 {

D(int);
B1 b;
const c;
I3
D::D(int a) : B2(a+1), B1(at+2), c(at+3), b(at4)
{rF..*}%
D d(10);

First, the base classes are initialized in declaration order (independent of the ander-ofitializes), then

the members are initialized in declaration order (independent of the ordeerofinitializes), then the

body ofD::D() is executed (12.1). The declaration order is used to ensure that sub-objects and members
are destroyed in the reverse order of initialization.

Virtual base classes constitute a special case. Virtual bases are constructed before any nonvirtual bases and
in the order they appear on a depth-first left-to-right traversal of the directed acyclic graph of base classes;
“left-to-right’ is the order of appearance of the base class names in the declaration of the derived class.

The class of aomplete objedfl.5) is said to be thmost deriveatlass for the sub-objects representing base
classes of the object. All sub-objects for virtual base classes are initialized by the constructor of the most
derived class. If a constructor of the most derived class does not spewfp-énitializerfor a virtual base

class then that virtual base class must have a default constructomeknyinitializes for virtual classes [
specified in a constructor for a class that is not the class of the complete object are ignored. For example,

12.6.2 Initializing bases and members DRAFT: 25 January 1994 Special member functions—¥2

class V {

public:
V()
V(int);
...

h

class A : public virtual V {
public:

AQ;

A(int);

...
I3

class B : public virtual V {
public:

B();

B(int);

...
2

class C : public A, public B, private virtual V {
public:

CO;

C(int);

...
I3

AzAGNti) 2 Q) {7 ...}
B::B(int i) { /* ... */ }
cuc(inti) { ... %/}

V v(1); /] use V(int)
A a(2); /l use V(int)
B b(3); // use V()
C c(4); Il use V()

OoOooo

A mem-initializeris evaluated in the scope of the constructor in which it appears. For example,

class X {
int a;
public:
constint&r;
X0:r(@) {}

initializesX::r to refer toX:;:a for each object of clasé

12.7 Constructors and destructors [class.cdtor]

Member functions may be called in constructors and destructors. This implies that virtual functions may be
called (directly or indirectly). The function called will be the one defined in the constructor’'s (or
destructor’s) own class or its bases, hotany function overriding it in a derived class. This ensures that
unconstructed parts of objects will not be accessed during construction or destruction. For example,

12-8 Special member functions DRAFT: 25 January 1994 12.7 Constructors and destructors

class X {

public:
virtual void f();
XO){fO;} [calls X:f()
~X(0) {f(;} /I calls X::f()

class Y : public X {
int&r;

public:
void f()

r++; [/ disaster if ‘r’ is uninitialized

}
Y(int& rr) :r(rr) {} // calls X::X() which calls X::f()
h

The effect of calling a pure virtual function directly or indirectly for the object being constructed from a
constructor, except using explicit qualification, is undefined (10.4).

12.8 Copying class objects [class.copy]

A class object can be copied in two ways, by assignment (5.17) and by initialization (12.1, 8.5) including
function argument passing (5.2.2) and function value return (6.6.3). Conceptually, for 4 ttlase two
operations are implemented by an assignment operator and a copy constructor (12.1). If not declared by the
programmer, they will if possible be automatically defintyfthesizet) as memberwise assignment and
memberwise initialization of the base classes and non-static data memBergsgectively. An explicit
declaration of either of them will suppress the synthesized definition.

If all bases and members of a claslsave copy constructors accepticmnst parameters, the synthesized
copy constructor foX will have a single parameter of typenst X&, as follows:

X::X(const X&)
Otherwise it will have a single parameter of tyf#
X X(X&)
and programs that attempt initialization by copyingarfist X objects will be ill-formed. a

Similarly, if all bases and members of a clXslsave assignment operators acceptingst parameters,
the synthesized assignment operatop{arill have a single parameter of typenst X&, as follows:

X& X::operator=(const X&)
Otherwise it will have a single parameter of tyf#
X& X::operator=(X&)

and programs that attempt assignment by copyir@po$t X objects will be ill-formed. The synthesized]
assignment operator will return a reference to the object for which is invoked.

Objects representing virtual base classes will be initialized only once by a generated copy constructor.
Objects representing virtual base classes will be assigned only once by a generated assignment operator.

Memberwise assignment and memberwise initialization implies that if axXlags a member or base of a
classM Ms assignment operator afdis copy constructor are used to implement assignment and initial-
ization of the member or base, respectively, in the synthesized operations. The default assignment opera-
tion cannot be generated for a class if the class has:

— a non-static data member that isamst or a reference,

— a non-static data member or base class whose assignment operator is inaccessible to the class, or

9

10

12.8 Copying class objects DRAFT: 25 January 1994 Special member functions—92

— a non-static data member or base class with no assignment operator for which a default assign-
ment operation cannot be generated.

Similarly, the default copy constructor cannot be generated for a class if a non-static data member or a
base of the class has an inaccessible copy constructor, or has no copy constructor and the default copy
constructor cannot be generated for it.

The default assignment and copy constructor will be declared, but they will not be defined (that is, a
function body generated) unless needed. ThaX:igperator=() will be generated only if no
assignment operation is explicitly declared and an object of Xl@sassigned an object of clas®r an

object of a class derived frokor if the address of::operator= is taken. Initialization is handled
similarly.

If implicitly declared, the assignment and the copy constructor will be public members and the assign-
ment operator for a class will be defined to return a reference of tyl& referring to the object
assigned to.

If a classX has anyX::operator=() that has a parameter of cla§she default assignment will not
be generated. If a class has any copy constructor defined, the default copy constructor will not be gen-
erated. For example,

class X {
...
public:
X(int);
X(const X&, int = 1);
h
X a(d); /I calls X(int);
X b(a, 0); /I calls X(const X&, int);
Xc=b; /I calls X(const X&, int);
Assignment of class objec¥is defined in terms oX::operator=(const X&). This implies (12.3)
that objects of a derived class can be assigned to objects of a public base class. For example,
class X {
public:
int b;
h
class Y : public X {
public:
int c;
2
void f()
{
X x1;
Y yi;
x1 =vyl; /1 ok O
yl=x1; 1 error O
}

Hereyl.b is assigned tal.b andyl.c is not copied.

Copying one object into another using the default copy constructor or the default assignment operator does
not change the structure of either object. For example,

12-10 Special member functions DRAFT: 25 January 1994 12.8 Copying class objects

struct s {
virtual f();
...
3
struct ss : public s {
f0;
...
b
void f()
{
s a;
ss b;
a=b; I really a.s::operator=(b)
b=a; /I error
a.f(); /I calls s::f
b.f(); /I calls ss::f

(s&)b =a; //assignto b’s s part
I really ((s&)b).s::operator=(a)
b.f(); /1 still calls ss::f
}

The calla.f() will invoke s::f() (as is suitable for an object of clas$10.3)) and the cabh.f() will
call ss::f() (as is suitable for an object of class). a

13 Overloading [over]

(Box 52 ?
gThis intro and section 13.1 need to be rewritten. | would introduce the notiowadif grofile, which is {J
[related to a full parameter type profile, but is defined such that two functions with the same call profilg can-
[hot be overloaded. 0

When several different function declarations are specified for a single name in the same scope, thatihame is
said to beoverloaded When that name is used, the correct function is selected by comparing the types of
the arguments with the types of the parameters. For example,

double abs(double);

int abs(int);
abs(1); /I call abs(int);
abs(1.0); /I call abs(double);

Since for any typd, aT and aT& accept the same set of initializer values, functions with parameter types
differing only in this respect may not have the same name. For example,

int f(int i)
{
}

int f(int& r) // error: function types
/I not sufficiently different
{

}

It is, however, possible to distinguish betweenst T&, volatile T&, and plainT& so functions that O
differ only in this respect may be defined. Similarly, it is possible to distinguish bewoestT*
volatile T*, and plainT* so functions that differ only in this respect may be defined.

...

...

Functions that differ only in the return type may not have the same name.

Member functions that differ only in that one istatic = member and the other isn’'t may not have the
same name (9.5).

A typedef is not a separate type, but only a synonym for another type (7.1.3). Therefore, functions that
differ by typedef‘types only may not have the same name. For example,

typedef int Int;

void f(inti) {/*...*/}
void f(Inti) { /* ... */ } /I error: redefinition of f 0

Enumerations, on the other hand, are distinct types and can be used to distinguish overloaded functions.
For example,

13-2 Overloading DRAFT: 25 January 1994 13 Overloading

enumE{a};

void f(int i) { /* ... */ }
void ((E1) {/*...*/}

Parameter types that differ only in a poirtterersus an arralj are identical, that is, the array declaration
is adjusted to become a pointer declaration (8.3.5). Note that only the second and subsequent array dimen-
sions are significant in parameter types (8.3.4).

f(char*);

f(char[]); /I same as f(char*); O
f(char[7]); /I same as f(char*); O
f(char[9]); /I same as f(char*); O
g(char(*)[10]);

g(char[5][10]); // same as g(char(*)[10]);
g(char[7][10]); // same as g(char(*)[10]);
g(char(*)[20]); // different from g(char(*)[10]);

Parameter types that differ only in the presence or absewcoasif and/orvolatile are identical. That O
is, theconst andvolatile type-specifiers for each parameter type are ignored when determining which

intf(int) {...} /I definition of f (int)
intf(cint){...} /I error: redefinition of f (int)

function is being declared, defined, or called. For example, O
typedef const int cint; a

int f (int); O

int f (const int); /l redeclaration of f (int); a

a

g

Only theconst andvolatile type-specifiers at the outermost level of the parameter type specificdfion
are ignored in this fashiogpnst andvolatile type-specifiers buried within a parameter type specifi-
cation are significant and may be used to distinguish overloaded function. In particular, for ahyTd/pe O
constT* |, andvolatile T* are considered distinct parameter types, asT&econstT& , and O
volatile T&

13.1 Declaration matching [over.dcl]

Two function declarations of the same name refer to the same function if they are in the same scope and
have identical parameter types (13). A function member of a derived clagsiristhe same scope as a
function member of the same name in a base class. For example,

class B {
public:

int f(int);
2

class D : public B {
public:

int f(char®);
I3

HereD::f(char*) hidesB::f(int) rather than overloading it.

void h(D* pd)
{

pd->f(1); /I error:

/I D::f(char*) hides B::f(int)

pd->B::f(1); /I ok
pd->f("Ben"); /I ok, calls D::f

13.1 Declaration matching DRAFT: 25 January 1994 Overloading 13

A locally declared function is not in the same scope as a function in a containing scope. O

int f(char*);
void g()

extern f(int);
f("asdf"); /I error: f(int) hides f(char*)
/I so there is no f(char*) in this scope

}
void caller () a
a
void callee (int, int); a
{ O
void callee (int); // hides callee (int, int) a
callee (88, 99); /Il error: only callee (int) in scope a
} 0
) O
2 Different versions of an overloaded member function may be given different access rules. For examfle,
class buffer {
private:
char* p;
int size;
protected:
buffer(int s, char* store) { size = s; p = store; }
...
public:
buffer(int s) { p = new char[size = s]; }
...
2
13.2 Overload resolution [Jover.match]

1 Recall from 5.2.2, that a function call ispastfix-expressioriollowed by an optionakxpression-list [
enclosed in parentheses. Of interest in this section are only those function calls in whidstfixe O
expressiorhas the following forms: O

postfix-expression:]
primary-expression a
postfix-expression id-expression a
postfix-expression> id-expression a

In these cases, tipostfix-expressionltimately contains a name that must be resolved against visible détla-
rations to identify which function is being called.

2 Since, through overloading declarations, a name may refer to more than one function, the functiofrefer-
enced by a function call is determined not only by the name, but also by the kind of function call, thé_ hum-
ber of arguments present, and their types. The name and the kind of function call determine alset of
candidate functionthat could be referenced by the name. From this set of candidate functions a funcfion is

chosen whose parameters best match the arguments in the call in number and type. O
13.2.1 Candidate functions [Jover.match.funcs]
1 There are two kinds of function calls: member function calls and ordinary (or non-member) function dalls.
2 In member function calls, the name to be resolved id-axpressiorand is preceded by an or. opera- O

tor. Since the construét.B is generally equivalent {@&A) -> B, the rest of this chapter assumes, witholt
loss of generality, that all member function calls have be@malizedto the form that uses an object]

13-4 Overloading DRAFT: 25 January 1994 13.2.1 Candidate functions

pointer and the> operator. Furthermore, the left operand of-theoperator has typ&* , whereT denotes [
some clasX optionally qualified byconst and/orvolatile A Thus, in @ member function call, the]
id-expressiornin the call is looked up as a member functioXé6llowing the rules for looking up hames il
classes (10). If a member function is found, that function and its overloaded declarations (in thélsame
scope) constitute the set of candidate functions submitted to argument matching (13.2.2). O

In non-member calls, the name is not qualified by>aror . operator and has the more general form of’a
primary-expression The name is looked up in the context of the function call following the normal riles
for name lookup. If the name resolves to a function declaration, that function and its overloaded déclara-
tions (in the same scope) constitute the set of candidate functions submitted to argument matching (IB.2.2).

If the name in the ordinary function call resolves to a member function and the keingords in scope O

and refers to the class of that member function, then the ordinary-looking function call is actually a niémber
function call using an implicithis pointer. In this case, the function call is put into normalized membler
call form using an explicthis pointer. O

In either kind of function call, the name may resolve to something other than a function name. This géction,
13.2, will not consider this case further since such a name cannot be overloaded. O

Section 13.4.8 describes the set of candidate functions constructed for the resolution of an overloadéd oper-
ator in an expression. O

13.2.2 Argument matching [Jover.match.args]

From the set of candidate functions constructed for a function call (13.2.1) or an operator in an expression
(13.4.8), a function is chosen whose parameters best match the arguments in the call according to the rules
described in this section. O

To be considered at all, a candidate function must have enough parameters to satisfy the argumenis in the
call. If there aranarguments in the call, all candidate functions having exatfigrameters remain candit]

dates unconditionally. A candidate function having fewer thggzarameters remains a candidate only iflit

has an ellipsis in its parameter list (8.3.5). For the purposes of argument matching, its parameter list is
extended to the right with ellipses so that there are exactfhjarameters. A candidate function having

more thanm parameters remains a candidate only if tivelst parameter has a default initializer (8.3.6)1

For the purposes of argument matching, the parameter list is truncated on the right, so that there aré&lexactly
m parameters.

From the subset of candidate functions with the correct number of parameters a function is chosen that best
matches the arguments in the call. The choice is made in two steps. First, for each individual argument in
the call, the subset of the candidate functions that best match that argument is determined according to the
rules forbest-matchdescribed below. Then, the function that best matches the call is obtained by fofthing
the intersection of the subsets obtained for each argument. Unless this intersection has exactly ohe func-
tion, the call is ill-formed. O

The function thus selected must be a better match to the call than any other candidate function. Othéerwise,
the call is ill-formed. One function is a better match to the call than another if for each argument in the call,
the first function is at least as good a match as the second function, and for some argument the first finction
is a better match. O

For purposes of argument matching, a non-static member function is considered to have an extra parameter,
which must match the pointer specified in the normalized member function call (13.2.1) as if the @ointer
were also an argument in the call. No temporaries will be introduced for this extra parameter and no user-
defined conversions will be applied to achieve a type match. The type of this extra parameter is thelfype of
the keywordthis (9.4.1) within the member function. For example, farxomst member function of O
classX, the extra parameter is assumed to havedgpst X*. g

O
*Note thatcv-qualifierson the type of objects are significant in overload resolution for both Ivalue and rvalue objects. |

10

11
12

13.2.2 Argument matching DRAFT: 25 January 1994 Overloading 3%

How well a functionmatchesan argument is based on the sequence of implicit conversions that cah be
applied to the argument to yield a value of the type required by the corresponding parameter of thg func-

tion. For the purposes of argument matching, no sequence of conversions is considered that O
(a) does not lead to the type required by the parameter, or O
(b) contains more than one user-defined conversion, or O

(c) can be shortened into another considered sequence by deleting one or more conversiohs. (For
examplejnt —float -double is a sequence of conversions frath to double , butitis O
not considered because it contains the shorter sequrtncedouble) O

Some sequences of conversions are better than others according to rules that are given below. If,
according to these rules, there is a single sequence of conversions that is uniquely better than allithe rest,
it is called the function’®est-matchingequence for the argument. One function matches an argurient
better than another if it has a best-matching sequence for that argument and its best-matching séquence
is better than the best-matching sequence of the other function. A function is a best match for an argu-
ment if it has a best-matching sequence for that argument and no other function is a better matchifor the

argument. g

B Box53 El]

g | feel I've gone out on a limb with the preceding paragraph. | don’t honestly believe that earlier{drafts
0 actually explained how a best-matching function is derived from best-matching sequences. Nafldid it
0 explain what happens if there is more than one best-matching sequence. O [

An ellipsis in a parameter list (8.3.5) is a match for an argument of any type. O

Except as mentioned below, the followitnyial conversiongnvolving a typeT do not affect which of O
two conversion sequences is better: the conversion of an argument 6ptypeer tocvl T” to the O
type“pointer tocv2 T” if the set of cv-qualifiersvlis a subset ofv2(7.1.5 see also 8.5). Where nec-
essaryconst andvolatile are used as tie-breakers as described in rule [1] below. O

Box 54 h

The table was removed. "B"-T&", "T&"- >"T", "T&"- >"const T&", "T&"->"volatile T&", "T&"- ED
>"const volatile T&" were removed because a reference initialization is considered a binding aridnot a
conversion. As well, expressions of reference type are transformed into Ivalue expressions vemy early
during expression processing, before argument matching takes place.>"TH]'- "T(args)"-
>"(*T)(args)" were removed because expressions of type "array of" and of type "function of" areJians-
formed into expressions of type "pointer to" and "pointer to function of" very early during expregsion
processing, before argument matching takes place.>"8¢nst T", "T">"volatile T", "T"->"const (1]
volatile T" were removed because the cv-qualifiers of pass-by-value parameters do not participatélin the
function type. O

Oooooooooooooo

If a parameter is of typeonst T&, the effect of binding the reference to a temporary (8.5.3) doeslhot
affect argument matching. Any function that would require initializing a non-const reference with a
temporary (8.3.2) is excluded as a match during overload resolution.

Sequences of conversions are considered according to these rules:

[1] Exact match: Sequences of zero or more trivial conversions are better than all other sequehktes.

[2] Match with promotions: Of sequences not mentioned in [1], those that contain only integral pro-
motions (4.1), conversions froffoat to double , and trivial conversions are better than all
others.

[3] Match with standard conversions: Of sequences not mentioned in [2], those with only standard
(4) and trivial conversions are better than all others. Of thesB,isf derived directly or

13-6 Overloading DRAFT: 25 January 1994 13.2.2 Argument matching

indirectly fromA, converting 88* to A* is better than converting twid* orconst void* . [O
Further, if C is publicly derived directly or indirectly frorB, converting aC* to B* is better
than converting té* and converting &€ to B&is better than converting #8& Similarly, con- O
verting anA::* to B::* is better than converting a:* to C::*.

[4] Match with user-defined conversions: Of sequences not mentioned in [3], those that involve only
user-defined conversions (12.3), standard (4) and trivial conversions are better than all other
sequences.

[5] Match with ellipsis: Sequences that involve matches with the ellipsis are worse than all others.

13 User-defined conversions are selected based on the type of variable being initialized or assignedfib.
14 0
B Box55 El]
g Where did this come from? It relates to conversion sequences and ambiguities therein, but it [gInot in
0 the context of overload resolution. Are there other places that these conversion sequences ardlsed in
O the lanquage? O [
15 class 'Y { O
...
public:

operator int();
operator double();

h

void f(Y y)
inti=vy; /I call Y::operator int()
double d;
d=y; /I call Y::operator double()
float f =y; [/ error: ambiguous

}

16 Standard conversions (4) may be applied to the argument of a user-defined conversion, and to the résult of a

user-defined conversion.
struct S { S(long); operator int(); };
void f(long), f(char*);

void g(S), g(char*);
void h(const S&), h(char*);

void k(S& a)

{
f(a); Il f(long(a.operator int())) ad
g(1); 11'9(S(long(1))) 0
h(1); /I'h(S(long(1))) O

}

Except when one conversion sequence is a subsequence of another, if two conversion sequences each con-
tain a user-defined conversion, any standard conversions also used in the sequences do not affédt which
sequence is better. For example,

17

13.2.2 Argument matching DRAFT: 25 January 1994 Overloading 137

class X {
public:

X(int);
I3

class Y {
public:
Y(long);

c’Iass Z{
public:
operator int();

h

void f(X);

void f(Y);

void g(int);
void g(double);

void g() 0

f(1); /I ambiguous
Z z
9(2); I okay -- g(int(z))

The call f(1) is ambiguous despit§y(long(1))) needing one more standard conversion than
f(x(1)) , and the calg(z) is unambiguous even thougj{double(int(z)) has only one user-
defined conversion. The difference is that the two conversion sequences fouifd faontain two
differentuser-defined conversions and neither sequence is a subsequence of the other, while the two con-
version sequences found fpf) contain the same user-defined conversion and one is a subsequencelof the
other.

No preference is given to conversion by constructor (12.1) over conversion by conversion function (12.3.2)
or vice versa.

struct X {
operator int();

h

struct Y {
Y(X);
2

Y operator+(Y,Y);
void f(X a, X b)

atb; // error, ambiguous:
I operator+(Y(a), Y(b)) or
I a.operator int() + b.operator int()

13.3 Address of overloaded function [over.over]

A use of a function name without arguments selects, among all functions of that name that are in scope, the
(only) function that exactly matches the target. The target may be

— an object being initialized (8.5)

— the left side of an assignment (5.17)

13-8 Overloading DRAFT: 25 January 1994 13.3 Address of overloaded function

— a parameter of a function (5.2.2)
— a parameter of a user-defined operator (13.4)
— the return value of a function, operator function, or conversion (6.6.3) O

— an explicit type conversion (5.2.3, 5.4)

Note that iff() andg() are both overloaded functions, the cross product of possibilities must be con-
sidered to resolvi&g) , or the equivalent expressié(g)

For example,
int f(double);
int f(int);
(int (*)(int))&f; Il cast expression as selector O
int (*pfd)(double) = &f; /I selects f(double) O
int (*pfi)(int) = &f; /I selects f (int) ad
int (*pfe)(...) = &f; /I error: type mismatch O
The last initialization is ill-formed because f) with type int(...) has been defined, and not

because of any ambiguity.

Note also that there are no standard conversions (4) of one pointer to function type into another (4.6). In
particular, even iBis a public base ddwe have

D* f();
B* (*p1)() = &f; /I error

void g(D*);
void (*p2)(B*) = &g; /I error

13.4 Overloaded operators [over.oper]

A function declaration having one of the followingerator-function-ig as its name declares aperator [
function An operator function is said implementhe operator named in itgperator-function-id

operator-function-id:
operator operator

operator: one of ad
new delete new(] delete[]
+ - * / % A & | ~
| = < > += = *= /= %=
N= &= [= << >> >>= <= == 1=
<= >= && || ++ - S>* >
0 0

The last two operators are function call (5.2.2) and subscripting (5.2.1).
Both the unary and binary forms of
+ - * & O
can be overloaded.
The following operators cannot be overloaded:
Fooon ?: t
nor can the preprocessing symbland## (16).

Operator functions are usually not called directly; instead they are invoked to evaluate the operatdrs they
implement (13.4.1 - 13.4.7). They can be explicitly called, though. For example,

13.4 Overloaded operators DRAFT: 25 January 1994 Overloading 3

complex z = a.operator+(b); // complex z = a+b;
void* p = operator new(sizeof(int)*n);

The allocation and deallocation functiormgeratornew , operatornew[] , operatordelete O
andoperator delete[]] , are described completely in 12.5. The attributes and restrictions found iflthe
rest of this section do not apply to them unless explicitly stated in 12.5.

An operator function must either be a non-static member function or have at least one parametefiwhose
type is a class, a reference to a class, an enumeration, or a reference to an enumeration. It is not possible to
change the precedence, grouping, or number of operands of operators. The meaning of the mperators
(unary)&, and, (comma), predefined for each type, may be changed for specific types by defining operator
functions that implement these operators. Excepofmrator= , operator functions are inherited; se@

12.8 for the rules fooperator= . O

The identities among certain predefined operators applied to basic types (for exaraptea+=1) need O
not hold for operator functions. Some predefined operators, suech asquire an operand to be an Ivalue
when applied to basic types; this is not required by operator functions. O

An operator function cannot have default arguments (8.3.6). O
Operators not mentioned explicitly below in 13.4.3 to 13.4.7 act as ordinary unary and binary operators
obeying the rules of section 13.4.1 or 13.4.2.

13.4.1 Unary operators [over.unary]

A prefix unary operator may be implemented by a non-static member function (9.4) with no parametéis or a
non-member function with one parameter. Thus, for any prefix unary op&@a@xcan be interpreted as
eitherx.operator@() or operator@(x) . If both forms of the operator function have been declaréd,

the rules in 13.4.8 determine which, if any, interpretation is used. See 13.4.7 for an explanation of the post-
fix unary operators+ and-- .

13.4.2 Binary operators [over.binary]

A binary operator may be implemented either by a non-static member function (9.4) with one paramgter or
by a non-member function with two parameters. Thus, for any binary op@ai@ycan be interpreted as

either x.operator@(y) or operator@(x,y) . If both forms of the operator function have been
declared, the rules in 13.4.8 determines which, if any, interpretation is used. O
13.4.3 Assignment [over.ass]

The assignment functiooperator= must be a non-static member function with exactly one paraméier.
It implements the assigment operater, It is not inherited (12.8). Instead, unless the user defines

operator= for a classX, operator= is defined, by default, as memberwise assignment of the members
of classX.

X& X::operator=(const X& from)

{
/I copy members of X
13.4.4 Function call [over.call]
operator() must be a non-static member function. It implements the function call syntax O

postfix-expression(expression-ligf,)

where thepostfix-expressiopvaluates to a class object and the possibly esygyession-listnatches the O
parameter list of anperator() member function of the class. Thus, a sérgl,arg2,arg3) is
interpreted ag.operator()(argl,arg2,arg3) for a class object. O

2

13-10 Overloading DRAFT: 25 January 1994 13.4.5 Subscripting

13.4.5 Subscripting [over.sub]
operator(] must be a non-static member function. It implements the subscripting syntax O
postfix-expressior] expression]

Thus, a subscripting expressixiiy] is interpreted az.operator[](y) for a class object. a

13.4.6 Class member access [over.ref]

operator-> must be a non-static member function taking no parameters. It implements class member
access usingr

postfix-expression> primary-expression

An expressiornx->m is interpreted agx.operator->())->m for a class objeck. It follows that O
operator-> must return either a pointer to a class that has a memirean object of or a reference to a
class for whicloperator-> s defined. O
13.4.7 Increment and decrement [over.inc]

The prefix and postfix increment operators can be implemented by a functionogadtador++ . If this O
function is a member function with no parameters, or a non-member function with one class parameter, it
defines the prefix increment operater for objects of that class. If the function is a member function with

one parameter (which must be of tyipé) or a non-member function with two parameters (the second
must be of typént), it defines the postfix increment operatar for objects of that class. When the post-

fix increment is called, thmt argument will have value zero. For example,

class X {

public:
const X& operator++(); /I prefix ++a
const X& operator++(int); // postfix a++

h

class Y {
public:
2
const Y& operator++(Y&); /I prefix ++b
const Y& operator++(Y&, int); // postfix b++

void f(X a, Y b)

{
++a; I/l a.operator++(); O
at+; /l a.operator++(0); O
++Db; /I operator++(b); t
b++; /Il operator++(b, 0); O
a.operator++(); Il explicit call: like ++a;
a.operator++(0); // explicit call: like a++;
operator++(b); I explicit call: like ++b;
operator++(b, 0); // explicit call: like b++;

}

The prefix and postfix decrement operatersare handled similarly. O

13.4.8 DRAFT: 25 January 1994 Overloading 1311
Overloaded operators in expressions
13.4.8 Overloaded operators in expressions [Jover.oper.funcs]

To determine which operator function is to be invoked to implement an expression involving an opé&rator,
the operator notation is first transformed to the equivalent function-call notation as summarized in théITable

12 (where @ denotes one of the operators covered in the specified section). O
0

Table 12—relationship between operator and function call notation 0

O

[Section U Expression ' Member function U Non-member functiont i
A341 @a (&a)->operator@ () operatei@ (a) S 0
13.4.2 a@b (&@)->operator@ (b) operatgn@ (a, b) 0 ad
(13.4.3 azb (&3d)->operator= (b) O a ad
t13.4.4 ,...) (&a)->dperator()(b,...) --- g g 0
3.45 (&ax>operator[|(b) g g 0
346 ap (&a)->operator-> () 0 0 ad
13.4.7 a@ (&a)->operator@ (1) operatgr@ (a, 1) 0 g8

If the first operand of the operator is an object or reference to an object oKclthgsoperator could beld
implemented by a member operator functiorKofA set of candidate member functions is constructed for
the operator-function-idas if it were named in a member call as a member of the first operand according to
the rules in 13.2.1. O

If the operator is either a unary or binary operator (sections 13.4.1, 13.4.2, or 13.4.7) and either opefand has
a type that is a class, reference to a class, an enumeration, or a reference to an enumeration, theloperator
could be implemented by a non-member operator function. A set of candidate functions is construdied for
the operator-function-idas if it were named in an ordinary call according to the rules in 13.2.1. O

If both sets of candidate functions described above are empty, the operator is assumed to be a builttin oper-
ator and interpreted accordingly. Otherwise, the two sets are combined into one set of candidate functions
from which an appropriate function is selected according to the argument matching rules defined in 13.2.2.

14 Templates [temp]

A classtemplatedefines the layout and operations for an unbounded set of related types. For example, a
single class templateist might provide a common definition for list oft , list of float , and list of
pointers toShapes. A functiontemplatedefines an unbounded set of related functions. For example, a
single function templateort() might provide a common definition for sorting all the types defined by
theList class template. a

A templatedefines a family of types or functions. a

template-declaration:
template < template-parameter-list- declaration

template-parameter-list:
template-parameter
template-parameter-list template-parameter

Thedeclarationin atemplate-declaratiomust declare or define a function or a class, or define a static data
member of a template class. témplate-declarations adeclaration A template-declaratioms a defini- [0

tion (also) if itsdeclarationdefines a function, a class, or a static data member of a template class. There
must be exactly one definition for each template in a program. There can be many declarations.

The names of a template obeys the usual scope and access control rtéesplaie-declaratiormay O

appear only as a global declaration or as a member of a namespace. O
HBOX 56 B |
(T his restriction is unnecessary and constraining. See §1 of NO4TR/24. [N
A vector class template might be declared like this: O
template<class T> class vector {
T*v;
int sz;
public:

vector(int);

T& operator[](int);

T& elem(int i) { return v[i]; }
...

h

The prefixtemplate <class T> specifies that a template is being declared and thateaid T will be

used in the declaration. In other wordector is a parameterized type wilhas its parameter. A clasg]
template specifies how individual classes can be constructed much as a class declaration specifies how indi-
vidual objects can be constructed. O

14-2 Templates DRAFT: 25 January 1994 14.1 Template names

14.1 Template names [(Jtemp.names]

A template can be referred to byeanplate-id
template-id: ad
template-name< template-argument-list>

template-name:
identifier

template-argument-list:
template-argument
template-argument-list template-argument

template-argument:

assignment-expression ad
type-id
A template-icthat names a template class dass-namg9). O
A template-idthat names a defined template class can be used exactly like the names of other defined
classes. For example: O
vector<int> v(10); a
vector<int>* p = &v; O

Template-id that name functions are discussed in 14.9.

A template-idthat names a template class that has been declared but not defined can be used exddtly like
the names of other declared but undefined classes. For example: O

template<class T> class X; // X is a class template

O
X<int>* p; // ok: pointer to undefined class X<int> a
X<int> x; /I error: object of undefined class X<int> O

The name of a template followed byads always taken as the beginning ofeaplate-idand never as all
name followed by the less-than operator. Similarly, the first non-nestisdtaken as the end of thd]

template-argument-ligather than a greater-than operator. For example: O
template<int i> class X { /* ... */ } a
X< 1>2 >x1; // syntax error O
X<(1>2)>x2; /I ok a
template<class T>class Y {/* ... */ } a
X< Y<1> > x3; /] ok O

BBox 57 g 0

[Bhould we bless a hack allowiXgY<1>>? [] |

The name of a class template may not be declared to refer to any other template, class, function{Jobject,
namespace, value, or type in the same scope. A global template name shall be unique in a program(]
14.2 Name resolution [(Jtemp.res]

A name used in a template is assumed not to name a type unless it has been explicitly declared to féfer to a
type in the context enclosing the template declaration or in the template itself before its use. For example:

14.2 Name resolution DRAFT: 25 January 1994 Templates 438

/I no B declared here a
class X; O
template<class T> class Y { a
class Z; I/ forward declaration of member class a
typedef T::A; /[A is a type name a
void f() { a
X* a; I/ declare pointer to X a
T* a; // declare pointerto T a
Y* b; /I declare pointer to Y O
Z* c; // declare pointer to Z O
T::A* d; // declare pointer to A a
B* e; /I B is not a type name: a
/I multiply B by e a
} ad
b O
The construct: ad
typedef qualified-name; O
states thatjualified-namemust name a type, but gives no clue to what that type might be. The leftmost
identifier of thequalified-namemust be daemplate-argumenmtame. O
EBox 58 ED
r have chosen the most restrictive variant of this idea. We ought to consider if the construct shadld be
Callowed for a nonqualified name, and if the construct would be useful outside templates. N

Knowing which names are type names allows the syntax of every template declaration to be checked. Syn-

tax errors in a template declaration can therefore be diagnosed at the point of the declaration exactly as

errors for non-template constructs. Other errors, such as type errors, cannot be diagnosed until latér; such
errors may be diagnosed at the point of instantiation or at the point where member functions are generated.

Errors that can be diagnosed at the point of a template declaration, may be diagnosed there or later(fogether
with the type errors. 0

Three kinds of names can be used within a template definition: ad

— The name of the template itself, the names of the template parameters, and names declared within
the template itself. O

— Names from the scope of the template definition. O
— Names dependent on a template argument from the scope of a template instantiation. O
O

For example:

14-4 Templates DRAFT: 25 January 1994 14.2 Name resolution

#include<iostream.h> a
template<class T> class Set { a
T p; O
int cnt; O
public: a
Set(); a
Set<T>(const Set<T>&); a
void printall() a
O
for (int i = 0; i<cnt; i++) O
cout << p[i] << \n’; a
} O
... 0
J5 0
When looking for the declaration of a hame used in a template definition the usual lookup rules (93) are
first applied. Thus, in the example,is the local variablé declared irprintall, cnt is the member O
cnt declared inSet , andcout is the standard output stream declareibgtream.h . However, not [

every name can be found this way, the resolution of some names must be postponed until the actiial tem-
plate argument is known. For example, tiperator<< needed to prinp[i] cannot be known until it O
is known what typd is (14.2.3). O

14.2.1 Locally declared names [(Jtemp.local]

Within the scope of a template the name of the template is equivalent to the name of the template dualified
by the template parameter. Thus, the constructoSé&r can be referred to &8et() or Set<T>() . O
Other specializations (14.5) of the class can be referred to by explicitly qualifying the template nameé with
appropriate template arguments. For example:

template<class T> class X {
X*p; /l meaning X<T>
X<T>* p2;
X<int>* p3;

OoOoOooogo d

14.2.2 Names from the template’s enclosing scope (temp.encl]

If a name used in a template isn’t defined in the template definition itself, names declared in thellscope
enclosing the template are considered. If the name used is found there, the name used refers to thélname in

void g(int); // not in scope at the point of the template
/I definition, not considered for the call g(1)

the enclosing context. For example: O
void g(double); a
void h(); a
template<class T> class Z { a
public: a

void f() { g

g(1); // calls g(double) a

h++; // error: cannot increment function O

} a

2 O
a

a

g

In this, a template definition behaves exactly like other definitions. For example:

14.2.2 DRAFT: 25 January 1994 Templates 46
Names from the template’s enclosing scope

void g(double); a
void h(); a
class ZZ { a
public: a
void f() { g

g(1); // calls g(double) a

h++; // error: cannot increment function O

} a

h 0
void g(int); // not in scope at the point of class ZZ a
/I definition, not considered for the call g(1) a

Note that if an implementation somehow replicates class or template definitions so that names used in the
class or template bind to different names in different compilations, the one-definition rule has been violated
and any use of the class or template is an error. Violation of the one-definition rule by template indiantia-

tion is a non-required diagnostic. a
ox 59 g 0

[Are violations of the one-definition rule required if violation is in a single file? (o) |

14.2.3 Dependent names [(qtemp.dep]

Some names used in a template are neither known at the point of the template definition nor declared within
the template definition. Such names shall depend on a template argument and shall be in scope at fhe point
of the template instantiation (14.3). For example: a

class Horse {
...

|3
operator<<(ostream&,const Horseg&);

void hh(Set<Horse>& h)
{

}

In the call ofSet<Horse>::printall() , the meaning of the< operator used to primg[i] in the
definition of Set<T>::printall() (14.2), is

operator<<(ostream&,const Horse&);

h.printall();

OO0 Oooo ooogono

O

This function takes an argument of tyjgerse and is called from a template for which the template ardgu-
ment isHorse . Because this function depends on a template argument for the template pafatimetelr]
call is legal. O

A function calldepends om template argument if the call would have a different resolution or no reddlu-
tion if the actual template type were missing from the program. Examples of calls that depend on ai argu-
ment typer are: g

— The function called has a parameter that dependsamcording to the type deduction rules (14.9.2).
For examplef(T) , f(Vector<T>) , andf(const T*) . g

— The type of the actual argument dependsTonFor examplef(T(1)) , f(t) , f(g(t)) ,and O
f(&t) assuming that is aT. O

— A call is resolved by the use of a conversio teithout either an argument or a parameter of the
called function being of a type that dependedToas specified in [1] and [2]. For exampleld
f(a(t) andf(T(1)) wheref() takes an argument of claBghat is a public base af. O

14-6 Templates DRAFT: 25 January 1994 14.2.3 Dependent hames

Box 60 h

O
It has been suggested that a full list of cases would be a better definition than the generaliule we
decided on in San Jose. | strongly prefer a general rule, but we should be open to clarifications iffpeople
feel the need for them. 0 /@

OoOooom

This incorrect template instantiation uses a function that does not depend on a template argumenis:
void h();

template<class T> class Z {
public:
void f() {
g(2); // g() not found in Z's context.
/I Look again at point of instantiation

Oooooooogo 4

I3
void g(int);
void h(const Z<Horse>& h)

h.f(); // error: g(int) called by g(1) do not depend
/l on template parameter “Horse”

}
The callh.f() gives raise to the specialization:
Z<Horse>::f() { 9(1); }

The callg(1) would callg(int) , but since that call in no way depends on the template argiinese
and becausg(int) wasn’t in scope at the point of the definition of the template, thehd@ll is an
error.

On the other hand:
void h(const Z<int>& h)

h.f(); // fine: g(int) called by g(1) depend
// on template parameter “int”

Oooooo o oogo o o ooooo o4

Here, the calh.f() gives raise to the specialization:
Z<int>:f() { g(2); }

The callg(1) callsg(int) , and since that call depends on the template arguntentthe callh.f() is
acceptable eventhougffint) wasn't in scope at the point of the definition of the template.

I I B

14.2.4 Non-local names declared within a template [(temp.inject]

Names that are not template members can be declared within a template class or function. Howewvar, such
declarations must match names in the scope at the point of their declaration. Such declarations carifot give
raise to injection of names into the scope surrounding the template declaration or any other scopé. For
example: O

14.2.4 DRAFT: 25 January 1994 Templates 4
Non-local names declared within a template

class X; O
void f(); a
/I'noY, Z, org here O
template<class T> class X { a
friend class Y; // error: No Y in scope a
class Z*p; [/l error: No Z in scope a
friend X operator+(const X&, const X&); // overloads + a
friend void f(T); // overloads f a
friend void g(T); // error: no g in scope a
2 a
class Z; O
/I no R here 0
template<class T> void f(class Z*, class R*); // error: no R in scope a
A function can be declared a friend within a template definition only provided a function of that namélis in
scope. The operators are always in scope. O
EBox 61 El]
[This is new, but | could find no reasonable rule allowing general name injection. This section shpuld be
[reviewed. See issue 2.10 in NO40A9620. ™
14.3 Template instantiation [(Jtemp.inst]

A class generated from a class template is called a generated class. A function generated from a [function
template is called a generated function. A static data member generated from a static data member femplate
is called a generated static data member. A class defined teithpdate-idas its name is called an explict]
itly specialized class. A function defined witlteanplate-idas its name is called an explicitly specialized
function. A static data member defined withemplate-idas its name is called an explicitly specialized
static data member. A specialization is a class, function, or static data member that is either genelfated or
explicitly specialized; seetemp.dcls. O

The act of generating a class, function, or static data member from a template is commonly referréd to as
template instantiation. O

The point of instantiation of a template is the point where names dependent on the template argurhént are
bound. That point is immediately before the non-local (not local to a class or a function) declarationl con-
taining the first use of the template requiring its definition. This implies that names used in a templatg defi-
nition cannot be bound to local names. For example: O

/l void g(int); not declared here

template<class T> class Y {
public:

void () { g(1); }
h

void k(const Z<int>& h)

{
void g(int);
h.f(); // error: g(int) called by g(1) not found

OooOoooo ooogo d

}

Each compilation unit in which the definition of a template is used has a point of instantiation for thel¢lass.
If this causes names used in the template definition to bind to different names in different compilationis, the
one-definition rule has been violated and any use of the template is an error. Such violation is @ non-
required diagnostic. O

14-8 Templates DRAFT: 25 January 1994 14.3 Template instantiation

A template can be either explicitly instantiated for a given argument list or be implicitly instantiated. A
template that has been used in a way that require a specialization of its definition will have the speCializa-
tion implicitly generated unless it has either been explicitly instantiated (14.4) or explicitly specidlized
(14.5) A specialization will not be implicitly generated unless the definition of a template specialization is

required. For example: O
template<class T> class Z { a

void f(); g

void g(); O

I3 0

void h() a

g

Z<int> a; / instantiation of class Z<int> required a

Z<char>* p; // instantiation of class Z<char> not required a

Z<double>* q; // instantiation of class Z<double> not required a

a.f(); //instantiation of Z<int>::f() required O

p->g(); // instantiation of class Z<char> required, and a

/l instantiation of Z<char>::g() required a

} g

Nothing in this example requiretass Z<double> , Z<int>::g() , orZ<char>::f() to be instan- O

tiated. An implementation may not instantiate a function or a class that does not require instantiatioril

If a template for which a definition is in scope is used in a way that involves overload resolution the defini-
tion is of a template specialization is required. For example: O

template<class T>class B {/* ... */ };
template<class T> class D : public B { /* ... */ };

void f(void*);
void f(B<int>*);

void g(D<int>* p)

f(p); // instantiation of D<int> required: call f(B<int>*)

Ooooo oo ogoo

}

The result of an infinite recursion in instantiation is undefined. In particular, an implementation is alldwed

to report an infinite recursion as being ill-formed. For example: O
template<class T> class X { a

X<T>*p; // ok a

X<T*> a; /l instantiation of X<T> requires O

/I the instantiation of X<T*> which requires a

/I the instantiation of X<T**> which ... a

h 0

No program shall explicitly instantiate any template more once, both explicitly instantiate and explicitly
specialize a template, or specialize a template more than once for a given set of template arguments.
Explicitly specializing or explicitly instantiating the same function or class twice for the same template
arguments in different translation units is a non-required diagnostic. O

An explicit specialization or explicit instantiation of a template must be in the namespace that the template
was defined in. Implicitly generated template classes, functions, and static data members are placéd in the
namespace where the template was defined. O

14.4 Explicit instantiation DRAFT: 25 January 1994 Templates 149

14.4 Explicit instantiation (qtemp.explicit]
The syntax for explicit instantiation is:

instantiation:
template specialization

A specializationis a declaration or a definition where the name being declare@ispate-idqualified by
atemplate-argument-list

template-id < template-argument-list-

A trailing template argument may be left unspecified in an explicit instantiation or explicit specialization of

a template function provided it can be deduced from the function argument type. For example:

/l instantiate vector<char>:
template class vector<char> { /* ... */ };

/l instantiate sort(vector<char>&):
template void sort<char>(vector<char>&);

/l instantiate sort(vector<int>&):
template void sort<>(vector<int>&);

oo oo oo Dg]l:lljlj oo O

/I declare specialized vector<unsigned char>:
class vector<unsigned char> { /* ... */ };

/I declare specialized sort(vector<double>&):
void sort<double>(vector<double>&);

/I declare specialized sort(vector<float>&):
/I deduce template argument:
void sort<>(vector<float>&);

Oooo oo oo

[Box 62
O

[Can we instantiate if there is no definition in scope? Yes, but answering this question requires a nradlel for
Ctompilation of templates. See 84 of N0413/6826. [l

=

The explicit instantiation of a class implies the instantiation of all of its members. Thus, it is not possible to
both explicitly instantiate a class and to specialize some of its members for segingate-argument-list [

BBox 63 h

0
an we instantiate a class if the definition of some of its member functions are not in scope? Yk, but
ranswering this question requires a model for compilation of templates. See 84 of ANSI X3J16/94FD026,
0SO WG21/N0413. =N

14.5 Template specialization [(Jtemp.spec]

- . . O
A specialized template function, template class, or static member of a template can be declared by @ decla-
ration where the declared name template-id that is: O

template-id < template-argument-list-
For example:

template<class T> class stream { /* ... */ };

O oo d

class stream<char>{ /* ... */ };

14-10 Templates DRAFT: 25 January 1994 14.5 Template specialization

template<class T> void sort(vector<T>& v) { /* ... */ } a
void sort<char>(vector<char*>& v) {/*...*/} a
Given these declarationstream<char> will be used as the definition of streams affar s; other O
streams will be handled by template classes generated from the class template. Ssonitadiar> O
will be used as the sort function for arguments of typetor<char*> ; othervector types will be O
sorted by functions generated from the template. O
A declaration of the template being specialized must be in scope at the point of declaration of a spéddializa-
tion. For example: O
class X<int> { /* ... */ }; /] error: X not a template a
template<class T> class X { ... }; a
class X<char*> { /* ... */ }; // fine: X is a template a

An explicitly specialized class or an explicitly specialized function must be declared before it can bdused.
Specializing a class or a function after it has been used or in another translation unit in an error. Foflexam-

void sort<String>(vector<String>& v); // error: specialize after use
void sort<>(vector<char*>& v); // fine sort<char*> not yet used

ple: O
template<class T> void sort(vector<T>& v) { /* ... */ } a

void f(vector<String>& v) O

{ a

sort(v); // use general template a

/I sort(vector<T>&), T is String a

} O

a

g

If a function or class template has been explicitly specialized for template argument list no specialization
will be implicitly generated for that template argument list. O

Note that a function with the same name as a template and a type that exactly matches that of a teimplate is
not a specialization (14.3). O
14.6 Template parameters [(Jtemp.param]

The syntax for template parameters is:

template-parameter:
type-parameter
parameter-declaration

I R |

type-parameter:
class identifier,y,
class identifier,,, = type-name
typedef identifier,,
typedef identifier,,, = type-name

OooOood

[Box 64
O

Orhis grammar unnecessarily leaves out two kinds of ugefuplate-parameter namespace template]
[parameters and template template parameters. See §2 and 83 of ANSI X3J16/94-0026, ISO WG21/N0413.

A type-parametedefines itsidentifier to be atype-idin the scope of the template declaration.type- 0O
parametermay not be redeclared within its scope (including nested scopes). A notypgsparameter [
may not be assigned to or in any other way have its value changed. For example: O

14.6 Template parameters DRAFT: 25 January 1994 Templates 141

template<class T, inti> class Y {
int T; // error: template parameter redefined
void f() {
char T; // error: template parameter redefined
i++; I error: change ot template argument value

h

O Ooogoogooo

template<class X> class X; // error: template parameter redefined

A template-parametethat could be interpreted as either garameter-declaratioror a type-parameter O
(because itientifieris the name of an already existing class) is takertygseaparameter For example: [0

classT{/*..*}; a
template<class T> void f(T); O

Here, the templatk has atype-parametecalledT, rather than an unnamed non-type parameter of Tlassl
There is no semantic difference betwetass andtypedef in atemplate-parameter O

There are no restrictions on what can lemaplate-argumertype beyond the constraints imposed by thé
set of legal argument types (14.7). In particular, reference types and types comtaigiraifiers
are allowed. A non-referentemplate-argumertannot have its address taken. For example:

template<const X& x, int i> void f()

{
&x; /Il ok

&i; I/ error: address of non-reference template argument

OoOooogo oo

}

A default template argument is a type or a value specified=afteatemplate-parameterA default tem- O

plate argument may be specified in a template declaration or a template definition. A function tefmplate
may not have default template arguments. The set of default template arguments available for usélwith a
template declaration or definition is obtained by merging the default arguments from the definitionl{if in
scope) and all declarations in scope in the same way default function arguments are (8.3.6). For exdample:

template<class T1, class T2 = int> class A; O
template<class T1 = int, class T2> class A; a

is equivalent to O
template<class T1 = int, class T2 = int> class A, a

After merging default template arguments a parameter with a default argument may not be followed by a

parameter without a default argument. For example: O
template<class T1 = int, class T2> class B; // error O

A template parameter may not be given default arguments by two different declarations in the same Stope.

template<class T = int> class X; O
template<class T = int> class X { /*... */ }; /] error a

The scope of a template argument extends from its point of declaration until the end of its template. h par-
ticular, a template argument can be used in the declaration of subsequent template parameter and their

default arguments. For example: O
template<class T, T* p, class U = T>class X { /* ... */ }; a
template<class T> void f(T* p = new T); a

A template parameter cannot be used in preceding template parameters or their default arguments. [

Similarly, a template argument may be used in the specification of base classes. For example: O

14-12 Templates DRAFT: 25 January 1994 14.6 Template parameters

template<class T> class X : public vector<T> { /* ... */ }; a
template<class T>class Y : public T {/* ... */ }; a
Note that the use of a template parameter as a base class implies that a class used as a templateCargument
must be defined and not just declared. O
14.7 Template arguments (Jtemp.arg]

The types of théeemplate-argumentspecified in demplate-idmust match the types specified for the tera}
plate in itstemplate-parameter-listFor exampleyector s as defined in 14 can be used like this: O

vector<int> v1(20);
vector<complex> v2(30);

typedef vector<complex> cvec; // make cvec a synonym
/I for vector<complex>
cvec v3(40); //v2 and v3 are of the same type

v1[3] =7;
v2[3] = v3.elem(4) = complex(7,8);

Non-typetemplate-argumestmust beconstant-expressienor addresses of objects or functions with extét-
nal linkage. In particular, a string literal (2.9.4ni®t an acceptable template argument because a stringit-
eral is the address of an object with static linkage. For example:

template<class T, char* p> class X { a
... O
X(const char* q) q(p) { /* ... */ } ad
I3 O
X<int,"Studebaker"> x1; // error: string literal as template argument a
char* p = "Vivisectionist"; ad
X<int,p> x2; // ok O
Nor is a local type or an unnamed type an acceptable template argument. For example: 0
void f() ad
{ O
struct S {/*...* }; ad
O
X<S,p> x3; /I error: local type used as template argument a
} O
A template has no special access rights to its template argument types. However, often a templateddoesn’t
need any. For example: O
class Y { O
private: g
struct S {/* ... */ }; O
X<S> x; /I most operations by X on S do not lead to errors t
2 O
X<Y::S>y; // most operations by X on Y::S leads to errors g

The templateX can useY::S without violating any access rules as long as it uses only the access through a

template argument that does not explicitly menton O
ox 65 B |
rhis is new, but appears to follow directly from accepted principlestin’C M

A template type parameter can be used in an elaborated type specifier. However, a specializatidn of a

14.7 Template arguments DRAFT: 25 January 1994 Templates 143

template for which a type parameter used this way is not in agreement with the elaboration (7.1.5)is ill-
formed. For example: O

template<class T> class X {
class T* p;

OooOoo

h

struct S {/* ... */ };
union U {/* ... */'};
enumE{/*..*};

X<S>s; [l fine

X<int> i; // error: template argument must be a class
X<U> i; // error: template argument must be a class

X<E>i; // error: template argument must be a class

OooOoo OoOod

An argument for demplate-parametenf reference type must becanstant-expressioran object or func- O
tion with external linkage, or a static class member. A temporary object is not an acceptable argumént to a
template-parametesf reference type.

When default template arguments are used, a template argument list can be empty. In that case<helempty
> brackets must still be used. For example: O

template<class T = char> class String;
String<>* p; // ok: String<char>
String* q; // syntax error

The notion of “array type decay” does not apply to template parameters. For example:

template<int a[5]> struct S;
int v[5];

int* p=v;

S<v> x; // fine

S<p>y; /l error

Ooooogo o ogo

14.8 Type equivalence (temp.type]

Two template-id refer to the same class or function if themplatenames are identical and their argu:
ments have identical values. For example,

template<class E, int size> class buffer;

buffer<char,2*512> x;
buffer<char,1024> vy;

declares< andy to be of the same type, and
template<class T, void(*err_fct)()>
classlist{/*...*/ };

list<int,&error_handlerl> x1;
list<int,&error_handler2> x2;
list<int,&error_handler2> x3;
list<char,&error_handler2> x4;

declare2 andx3 to be of the same type. Their type differs from the typed aindx4 . a

14.9 Function templates (temp.fct]

A function template specifies how individual functions can be constructed. A family of sort functions, for
example, might be declared like this:

template<class T> void sort(vector<T>);

14-14 Templates DRAFT: 25 January 1994 14.9 Function templates

A function template specifies an unbounded set of (overloaded) functions. A function generated from a
function template is called a template function, as is a function defined with a type that matches a function
template; seetemp.dcls. Template arguments can either be explicitly specified in a call or be dediced
from the function arguments. O

14.9.1 Explicit template argument specification [(Jtemp.arg.explicit]

Template arguments can be specified in a call by qualifying the template function name by the list af tem-
plate arguments exactly as template arguments are specified in uses of a class template. For example:

void f(vector<complex>& cv, vector<int>& ci) a
{ O
sort<complex>(cv); // sort(vector<complex>) ad
sort<int>(ci); /I sort(vector<int>) ad
} O
and 0
template<class U, class V> U convert(V v); ad
void g(int double) ad
g
inti = convert<int,double>(i); //int convert(double) ad
int ¢ = convert<char,double>(i); // char convert(double) ad
} O
Standard conversions (4) are accepted for a function argument for which the formal parameter has been
fixed by explicit specification of eemplate-argumentFor example: O
template<class T> void f(T); a
class complex { O
... O
complex(double); ad
2 O
void g() g
a
f<complex>(1); // ok, means f<complex>((complex(1)) a
} 0
14.9.2 Template argument deduction [[temp.deduct]
Template arguments that can be deduced from the function arguments need not be explicitly specified. For
example,]
void f(vector<complex>& cv, vector<int>& ci)
{
sort(cv); // sort(vector<complex>) ad
sort(ci); /I sort(vector<int>) O
}
and O
void g(int double) a
{ a
inti = convert<int>(i); // int convert(double) a
int ¢ = convert<char>(i); // char convert(double) a
} a

A template type argumeiitor a template non-type can be deduced from a function argument composéd
from these elements:

14.9.2 Template argument deduction DRAFT: 25 January 1994 Templates 445

T
cv-list T
T*
T&
T[integer-constarjt
class-template-namd >
type (*)(T)
type T::*
(0
identifieri]
class-template-namé>
where theT in argument list form
type (*)(T)

includes argument lists with more than one arguments where at least one argument contéilse athe [
identifierfi] and class-template-narse> forms can be used in the same wayl as for further composition O

O 0O Ooooooooooo

of types. O
%ox 66 E |
Orhe formT::id _may be added to the list. See issue 3.7 in N04610920. [N

Note that a major array bound is not part of parameter type so it can't be deduced from an argumentf]
template<int i> void f1(int a[10][i]);

template<int i> void f2(int a[i][10]);

void g(int v[10][10])
{

f1(v); // ok: i deduced to be 10

fl<int v[10][10]>(v); // ok

f2(v); /I error: cannot deduce template argument i
f2<int v[10][10]>(v); // ok

Ooooooooo o d

}

Nontype parameters may not be used in expressions in the function declaration. The type of the function

template parameter must match the type of the template argument exactly. For example: O
template<char i> class A { /* ... */ }; a
template<int ¢> void f(A<i>); // error: conversion not allowed a
template<int i> void f(A<i+1>); // error: expression not allowed O

Every template-parametespecified in thetemplate-parameter-listnust be either explicitly specified or]
deduced from a function argument. If function template arguments are specified in a call they are specified
in declaration order. Trailing arguments can be left out of a list of explicit template arguments. For Exam-
ple, O

template<class X, class Y, class 2> X f(Y,2);
void g()

f<int,char*,double>("aa",3.0);
f<int,char*>("aa",3.0); // Z is deduced to be double
f<int>("aa",3.0); // Y is deduced to be char*, and

/I Z is deduced to be double
f("aa",3.0); // error X cannot be deduced

Ooooooogooo o4

14-16 Templates DRAFT: 25 January 1994 14.9.2 Template argument deduction

A template parameter cannot be deduced from a default function argument. For example:
template <class T> void f(T =5, T =7);
void g()
f(1); /I fine: call f<int>(1,7)

f(); Il error: cannot deduce T
f<int>(); // fine: call f<int>(5,7)

Ooooooo o O

14.9.3 Overload resolution [(Jtemp.over]

A template function may be overloaded either by (other) functions of its name or by (other) templatéfunc-
tions of that same name. Overloading resolution for template functions and other functions of the same
name is done in three steps:

[1] Look for an exact match (13.2) on functions; if found, call it.

[2] Look for a function template from which a function that can be called with an exact match can
be generated; if found, call it.

[3] Try ordinary overloading resolution (13.2) for the functions; if a function is found, call it.
If no match is found the call is ill-formed. In each case, if there is more than one alternative in the first
step that finds a match, the call is ambiguous and is ill-formed.

A match on a template (step [2]) implies that a specific template function with parameters that exactly
match the types of the arguments will be generatesinp.dcls). Not even trivial conversions (13.2)

will be applied in this case. O

B8 Box67 El]

g This is too strict. To match existing usage, a proposal for allowing at least some conversigns will
0 undoubtedly be accepted. See the proposal for a more general overloaded mechanism in
O NO407/94-0020 (issue 3.9). 0 /@

The same process is used for type matching for pointers to functions (13.3).

Here is an example:

template<class T> T max(T a, T b) { return a>b?a:b; };

void f(int a, int b, char c, char d)

{

int m1 = max(a,b); // max(int a, int b)

char m2 = max(c,d); // max(char a, char b)

int m3 = max(a,c); // error: cannot generate max(int,char) O
}

For example, adding
int max(int,int);

to the example above would resolve the third call, by providing a function that could be called for
max(a,c) after using the standard conversiorcoér toint forc.

A function template definition is needed to generate specific versions of the template; only a function tem-
plate declaration is needed to generate calls to specific versions.

In case a call has explicitly qualified template arguments and requires overload resolution, the explicif qual-
ification is used first to determine the set of overloaded functions to be considered and overload resélution
then takes place for the remaining arguments. For example:

14.9.3 Overload resolution DRAFT: 25 January 1994 Templates 347

template<class X, class Y, class Z> f(X,Y*,2);
template<class X, class Y, class Z> f(X*,Y,2);

OO

void g(char* pc, int* pi)

(0,0,0); // error: ambiguous: f<int,int,int>(int,int*,int)

/! or f<int,int,int>(int*,int,int) ?
f<char>(pc,pi,0); /I f<char,int*,int>(char*,int*,int)
f<char*>(pc,pi,0); // f<char*,int*,int>(char*,int*,int)

OoOoooood

14.9.4 Overloading and specialization [(Jtemp.over.spec]

A template function can be overloaded by a function with the same type as a potentially generated flhction.
For example:

template<class T> T max(T a, T b) { return a>b?a:b; } O
int max(int a, int b); O
int min(int a, int b); O
template<class T> T min(T a, T b) { return a<b?a:b; } a

Such an overloaded function is not a specialization. The declaration simply guides the overload resolution.
This implies that a definition ahax(int,int) andmin(int,int) will be implicitly generated from O
the templates. If such implicit instantiation is not wanted, the specialization syntax should be used instead:

template<class T> T max(T a, T b) { return a>b?a:b; } ad
int max<int>(int a, int b); O

Defining a function with the same type as a template specialization that is called is an error. For example:

template<class T> T max(T a, T b) { return a>b?a:b; } t
int max(int a, int b) { return a>b?a:b; } O
void f(int x, int y) O
{ O
max(x,y); // error: double definition of max() O

} O
0

If the two definitions omax() are not in the same translation unit the diagnostic is optional.

14.10 Member function templates (ftemp.mem.func]

A member function of a template class is implicitly a template function with the template parametergbf its
class as its template parameters. For example,

template<class T> class vector {
T*v;
int sz;

public:
vector(int);
T& operator[](int);
T& elem(int i) { return v[i]; }
...

I3
declares three function templates. The subscript function might be defined like this:

template<class T> T& vector<T>::operator[](int i)

if (i<0 || sz<=i) error("vector: range error");
return v[i];

14-18 Templates DRAFT: 25 January 1994 14.10 Member function templates

The template argument feector<T>::operator[]() will be determined by the vector to which the
subscripting operation is applied.

vector<int> v1(20);
vector<complex> v2(30);

v1[3] =7; I vector<int>::operator[]()
v2[3] = complex(7,8); [/ vector<complex>::operator[]()

14.11 Friends ({temp.friend]

A friend function of a template may or may not be a template function. For example,

template<class T> class task {
...
friend void next_time();
friend task<T>* preempt(task<T>*);
friend task* prmt(task®); // task is task<T> g
friend class task<int>; 0
...

h

Here,next_time() andtask<int> become friends of athsk classes, and eathsk has an appro-
priately typed functionpreempt() andprmt() as friends. Thereempt functions might be defined
as a template.

template<class T>
task<T>* preempt(task<T>*t) { /* ... */ }

14.12 Static members and variables (temp.static]

Each template class or function generated from a template has its own copies of any static variables or
members. For example,

template<class T> class X {
static T s;
...

2

X<int> aa;

X<char*> bb;
HereX<int> has a static membsrof typeint andX<char*> has a static memberof typechar* .
Static class member templates are defined similarly to member function templates. For example,

template<class T> T X<T>::s = 0;
int X<int>::s = 3;

Similarly,

template<class T> f(T* p)

{
static T s;
...

14.12 Static members and variables DRAFT: 25 January 1994 Templates -1

void g(int a, char* b)

{
f(&a);
f(&b);
}
Here f(int*) has a static member of typeint and f(char**) has a static member of type

char* . a

15 Exception handling [except]

The exception handling design is a variant of the scheme presented in Andrew Koenig and Bjarne Strous-
trup: Exception Handling for € (revised) Proc. USENIX &+ Conference, San Francisco, April 1990. O

15.1 Exception handling [{except.intro]

Exception handling provides a way of transferring control and information from a point in the execution of
a program to aexception handleassociated with a point previously passed by the execution. A handler
will be invoked only by ahrow-expressiomvoked in code executed in the handlersblockor in func-

tions called from the handlerts/-block

try-block:

try compound-statement handler-seq
handler-seq:

handler handler-seg
handler:

catch (exception-declaration) compound-statement

exception-declaration:
type-specifier-seq declarator
type-specifier-seq abstract-declarator
type-specifier-seq

throw-expression:
throw assignment-expressigp

A try-block is a statement6). A throw-expressions of typevoid . A throw-expressions sometimes
referred to as &hrow-point” Code that executestrow-expressiofis said to“throw an exceptiofi;code
that subsequently gets control is call€dhandler”

A goto statement may be used to transfer control out of a handler, but not into one. O

15.2 Throwing an exception [(Jexcept.throw]

Throwing an exception transfers control to a handler. An object is passed and the type of that object deter-
mines which handlers can catch it. For example,

throw "Help!";
can be caught bylendlerof somechar* type:
try {

}

catch(const char* p) {
/I handle character string exceptions here
}

...

and

15-2 Exception handling DRAFT: 25 January 1994 15.2 Throwing an exception

class Overflow {
...

public:
Overflow(char,double,double);

h

void f(double x)

{
...

throw Overflow('+',x,3.45e107);
}

can be caught by a handler

try {
...

f(1.2);
i..

catch(Overflow& 00) {
/I handle exceptions of type Overflow here
}

When an exception is thrown, control is transferred to the nearest handler with an appropriatearpe;
est means the handler whossy-block was most recently entered by the thread of control and not yet
exited;“appropriate tygeis defined in 15.4.

A throw-expressiolinitializes a temporary object of the static type of the operantdrofv and uses that
temporary to initialize the appropriately-typed variable named in the handler. Except for the restrictions on
type matching mentioned in 15.4 and the use of a temporary variable, the opetaravofis treated
exactly as a function argument in a call (5.2.2) or the operancetdra statement.

If the use of the temporary object can be eliminated without changing the meaning of the program except
for the execution of constructors and destructors associated with the use of the temporary object (12.2), then
the exception in the handler may be initialized directly with the argument of the throw expression.

A throw-expressiomwith no operand rethrows the exception being handledhréw-expressiomwith no

operand may appear only in a handler or in a function directly or indirectly called from a handler. For
example, code that must be executed because of an exception yet cannot completely handle the exception
can be written like this:

try {
...

catch (...) { // catch all exceptions

I/l respond (partially) to exception

throw; Il pass the exception to some
I other handler
}
15.3 Constructors and destructors [(Jexcept.ctor]

As control passes from a throw-point to a handler, destructors are invoked for all automatic objects con-
structed since thieey-blockwas entered.

An object that is partially constructed will have destructors executed only for its fully constructed sub-
objects. Also, should a constructor for an element of an automatic array throw an exception, only the con-
structed elements of that array will be destroyed.

15.3 Constructors and destructors DRAFT: 25 January 1994 Exception handling 13

The process of calling destructors for automatic objects constructed on the path tieivioak to a
throw-expressiois called” stack unwinding O

15.4 Handling an exception [(Jexcept.handle]

A handlerwith typeT, const T, T&, orconst T&is a match for ahrow-expressiomwith an object of
typeE if

[1] T andE are the same type, or
[2] T is an accessible (4.6) base clask at the throw point, or

[3] T is a pointer type anB is a pointer type that can be converted tby a standard pointer con-
version (4.6) at the throw point.

For example,

class Matherr { /* ... */ virtual vf(); };

class Overflow: public Matherr { /* ... */ };
class Underflow: public Matherr { /* ... */ };
class Zerodivide: public Matherr { /* ... */ };

void f()
{
try {
90);
}

catch (Overflow 00) {
...

catch (Matherr mm) {
...
}

}

Here, theOverflow handler will catch exceptions of tyg@verflow and theMatherr handler will
catch exceptions of typdatherr and all types publicly derived frodatherr including Underflow
andZerodivide

The handlers for &ry-blockare tried in order of appearance. A program is ill-formed if it places a handler

for a base class ahead of a handler for its derived class (or a handler for a pointer or reference to base ahead
of a handler for a pointer or reference to derived) since that would ensure that the handler for the derived
class would never be invoked. The processor shall diagnose this error if the classes are defined at the
beginning of the try block.

A ... in a handler'sexception-declaratioiunctions similarly to... in a function parameter declara-
tion; it specifies a match for any exception. If present, a handler must be the last handler fortris
block

If no match is found among the handlers fdryablock the search for a matching handler continues in a
dynamically surroundingtry-block If no matching handler is found in a program, the function
terminate() (15.6.1) is called.

An exception is considered handled upon entry to a handler. The stack will have been unwound at that
point. O

15-4 Exception handling DRAFT: 25 January 1994 15.5 Exception specifications

15.5 Exception specifications [(Jexcept.spec]

A function declaration may list exceptions that its function might directly or indirectly throw by usingl an
exception-specificatioas a suffix of its declarator. O

exception-specification:
throw (type-id-lis,)

type-id-list:
type-id
type-id-list , type-id

If any declaration of a function has arception-specificatiqrall declarations, including the definition, ofl

that function shall have axception-specificatiowith the same set aype-ics. a
If a classX is in thetype-id-listof the exception-specificationf a function, that function is said &low [
exception objects of classor any class publicly derived frodd Similarly, if a pointer typeér* is in the O
type-id-listof the exception-specificationf a function, the function allows exceptions of type or that O
are pointers to any type publicly derived frafh. a
%ox 68 B 0
[(This still needs to deal wittonst _andvolatile O ™

Whenever an exception is thrown and the search for a handler (15.4) encounters the outermost black of a
function with anexception-specificatigrthe functionunexpected() s called (15.6.2) if thexception- O
specificationdoes not allow the exception. For example, a

class Z: public X { };
class W {};

void f() throw (X,Y)
{

intn=0;

if (n) throw X(); /l OK

if (n) throw Y(); /[also OK

throw W(); I/ will call unexpected()

OooOoooooo ogodg

}

An implementation shall not reject an expression merely because when executed it throws or mighflthrow
an exception that the containing function does not allow. For example,

O

extern void f() throw(X,Y);
void g() throw(X)
{

f0); /1 OK
}

the call tof is well-formed even though when callédmight throw exceptiorY thatg does not allow.

A function with noexception-specificatiomallows all exceptions. A function with an emptyception-
specificationthrow() , does not allow any exceptions.

O OO0 o ooogo d

An exception-specificatiois not considered part of a function’s type.

15.6 Special functions [{except.special]

The exception handling mechanism relies on two functimrsjinate() and unexpected() , for
coping with errors related to the exception handling mechanism itself. a

15.6.1 Theterminate() function DRAFT: 25 January 1994 Exception handling 155

15.6.1 Theterminate() function [Jexcept.terminate]

Occasionally, exception handling must be abandoned for less subtle error handling techniques. For exam-
ple,

— when the exception handling mechanism cannot find a handler for a thrown exception,
— when the exception handling mechanism finds the stack corrupted, or

— when a destructor called during stack unwinding caused by an exception tries to exit using an

exception.
In such cases, O
void terminate(); a
is called;terminate() calls the function given on the most recent caliedf terminate() a
typedef void(*PFV)(); a
PFV set_terminate(PFV); O
The previous function given &et_terminate() will be the return value; this enables users to implé-
ment a stack strategy for usingrminate() . The default function called bterminate() is
abort()
Selecting a terminate function that does not in fact terminate but tries to return to its caller either with
return or by throwing an exception is an error. O
15.6.2 Theunexpected() function [(Jexcept.unexpected]

If a function with anexception-specificatiothrows an exception that is not listed in teeception-
specification the function

void unexpected();
is called;unexpected() calls the function given on the most recent calieif unexpected()

typedef void(*PFV)();
PFV set_unexpected(PFV);

The previous function given &et_unexpected() will be the return value; this enables users to imple-
ment a stack strategy for usingexpected() . The default function called bynexpected() is
terminate() . Since the default function called rminate() is abort() , this leads to immedi-
ate and precise detection of the error.

Theunexpected() function may not return, but it may throw an exception. Handlers for this exception
will be looked for starting at the call of the function wheseeption-specificatiowas violated. Thus an
exception-specificatiodoes not guarantee that only the listed classes will be thrown. For example,

void pass_through() { throw; }
void f(PFV pf) throw() /I f claims to throw no exceptions

*pNO; // but the argument function might
}
void g(PFV pf)
{

set_unexpected(&pass_through);

f(pf);
}

After the call ing() to set_unexpected() ,f() behaves as if it had rexception-specificatioat all. [

15-6 Exception handling DRAFT: 25 January 1994 15.7 Exceptions and access

15.7 Exceptions and access [Jexcept.access]

The parameter of a catch clause obeys the same access rules as a parameter of the function in which the
catch clause occurs.

An object may be thrown if it can be copied and destroyed in the context of the function in which the throw
occurs. g

16 Preprocessing directives [cpp]

A preprocessing directive consists of a sequence of preprocessing tokens that begikspnéfracessing [

token that is either the first character in the source file (optionally after white space containing no new-line
characters) or that follows white space containing at least one new-line character, and is ended by the next
new-line charactet?)

preprocessing-file:

group,,
group:
group-part
group group-part
group-part:
pp-tokeng,, new-line
if-section
control-line
if-section:
if-group elif-groupg,, else-group,, endif-line
if-group:
#if constant-expression new-line grouyp
ifdef identifier new-line groug,
ifndef identifier new-line groug,
elif-groups:
elif-group
elif-groups elif-group
elif-group:
elif constant-expression new-line grgyp
else-group:
else new-line group,
endif-line:
endif new-line

O
42) Thus, preprocessing directives are commonly cédlieds’” These'lines’ have no other syntactic significance, as all white spaces
equivalent except in certain situations during preprocessing (s#eti@acter string literal creation operator in 16.3.2, for example)

16-2 Preprocessing directives DRAFT: 25 January 1994 16 Preprocessing directives

control-line:
include pp-tokens new-line
define identifier replacement-list new-line
define identifier Iparen identifier-lisy,,) replacement-list new-line
undef identifier new-line
line pp-tokens new-line
error pp-tokeng,, new-line
#pragma pp-tokeng, new-line
new-line
Iparen:
the left-parenthesis character without preceding white-space ad

replacement-list:
pp-tokeng,

pp-tokens:
preprocessing-token
pp-tokens preprocessing-token

new-line:
the new-line character O

The only white-space characters that shall appear between preprocessing tokens within a preprocessing
directive (from just after the introducimgpreprocessing token through just before the terminating new-line
character) are space and horizontal-tab (including spaces that have replaced comments or possibly other
white-space characters in translation phase 3).

The implementation can process and skip sections of source files conditionally, include other source files,
and replace macros. These capabilities are callegrocessingbecause conceptually they occur before
translation of the resulting translation unit.

The preprocessing tokens within a preprocessing directive are not subject to macro expansion unless other-
wise stated.

16.1 Conditional inclusion [cpp.cond]

The expression that controls conditional inclusion shall be an integral constant expression except that: it
shall not contain a cast; identifiers (including those lexically identical to keywords) are interpreted as
described belovfi?’) and it may contain unary operator expressions of the form

defined identifier
or O
defined (identifier)

which evaluate td if the identifier is currently defined as a macro name (that is, if it is predefined or if it
has been the subject oftdefine preprocessing directive without an intervenihgndef directive with
the same subiject identifier), zero if it is not.

Each preprocessing token that remains after all macro replacements have occurred shall be in the lexical
form of a token (2.5).

Preprocessing directives of the forms

#if constant-expression new-line grgyp
elif constant-expression new-line group

check whether the controlling constant expression evaluates to nonzero.

O
#3)Because the controlling constant expression is evaluated during translation phase 4, all identifiers either are or are not magto names
— there simply are no keywords, enumeration constants, and so on. O

16.1 Conditional inclusion DRAFT: 25 January 1994 Preprocessing directives 48

Prior to evaluation, macro invocations in the list of preprocessing tokens that will become the controlling
constant expression are replaced (except for those macro names modifiedéfingee unary operator),

just as in normal text. If the toketefined is generated as a result of this replacement process or use of
thedefined unary operator does not match one of the two specified forms prior to macro replacement,
the behavior is undefined. After all replacements due to macro expansion deflrited unary operator

have been performed, all remaining identifiers are replaced with the pp-nOmémed then each prepro-
cessing token is converted into a token. The resulting tokens comprise the controlling constant expression
which is evaluated according to the rules of 5.19 using arithmetic that has at least the ranges specified in
< ??P>>>>>, except thaint andunsigned int act as if they have the same representation as,
respectively,long and unsignedlong . This includes interpreting character constants, which may
involve converting escape sequences into execution character set members. Whether the numeric value for
these character constants matches the value obtained when an identical character constant occurs in an
expression (other than within#f or #elif directive) is implementation-define‘lé? Also, whether a
single-character character constant may have a negative value is implementation-defined.

Preprocessing directives of the forms

ifdef identifier new-line groug,
ifndef identifier new-line grougy

check whether the identifier is or is not currently defined as a macro name. Their conditions are equivalent
to#if defined identifierand#if !defined identifierrespectively.

Each directive’s condition is checked in order. If it evaluates to false (zero), the group that it controls is
skipped: directives are processed only through the name that determines the directive in order to keep track
of the level of nested conditionals; the rest of the directives’ preprocessing tokens are ignored, as are the
other preprocessing tokens in the group. Only the first group whose control condition evaluates to true
(nonzero) is processed. If none of the conditions evaluates to true, and thetfelse adirective, the

group controlled by théelse is processed; lacking#else directive, all the groups until théendif

are skipped.

16.2 Source file inclusion [cpp.include]
A #include directive shall identify a header or source file that can be processed by the implementation.
A preprocessing directive of the form

#include < h-char-sequence new-line

searches a sequence of implementation-defined places for a header identified uniquely by the specified
sequence between thkeand> delimiters, and causes the replacement of that directive by the entire contents
of the header. How the places are specified or the header identified is implementation-defined.

A preprocessing directive of the form
include " g-char-sequence new-line

causes the replacement of that directive by the entire contents of the source file identified by the specified
sequence between tHedelimiters. The named source file is searched for in an implementation-defihed
manner. If this search is not supported, or if the search fails, the directive is reprocessed as if it read

#include < h-char-sequence new-line

with the identical contained sequence (includingharacters, if any) from the original directive.

O

44) Thus, the constant expression in the follow#ily directive andf statement is not guaranteed to evaluate to the same valug in
these two contexts. O
#if'z - = =25 O
if (z-'a’ = = 25) 0

45) As indicated by the syntax, a preprocessing token shall not folleisa or #endif directive before the terminating new-lined
character. However, comments may appear anywhere in a source file, including within a preprocessing directive. O

16-4 Preprocessing directives DRAFT: 25 January 1994 16.2 Source file inclusion

A preprocessing directive of the form

include pp-tokens new-line

(that does not match one of the two previous forms) is permitted. The preprocessing tokartduafeer

in the directive are processed just as in normal text. (Each identifier currently defined as a macro name is
replaced by its replacement list of preprocessing tokens.)The directive resulting after all replacements shall
match one of the two previous for . The method by which a sequence of preprocessing tokens between
a< and a> preprocessing token pair or a pair'ofharacters is combined into a single header name prefiro-
cessing token is implementation-defined.

There shall be an implementation-defined mapping between the delimited sequence and the external source
file name. The implementation shall provide unique mappings for sequences consisting of one orl more
nondigits (2.7) followed by a period | and a singl@ondigit The implementation may ignore the distindd

tions of alphabetical case and restrict the mapping to six significant characters before the period. O

%ox 69 g 0
[Does this restriction still make sense fe+€ [M

A #include preprocessing directive may appear in a source file that has been read because of a
#include directive in another file, up to an implementation-defined nesting limit{see??2>>>).

The most common uses#ihclude preprocessing directives are as in the following:

#include <stdio.h>
#include "myprog.h"

This example illustrates a macro-repladéttiude directive:

#if VERSION= =1

#define INCFILE "versl.h"
#elif VERSION= =2

#define INCFILE "vers2.h" [* and so on*/
#else

#define INCFILE "versN.h"
#endif
#include INCFILE

16.3 Macro replacement [cpp.replace]

Two replacement lists are identical if and only if the preprocessing tokens in both have the same number,
ordering, spelling, and white-space separation, where all white-space separations are considered identical.

An identifier currently defined as a macro without use of Iparemifgect-likemacro) may be redefined by
another#define preprocessing directive provided that the second definition is an object-like macro defi-
nition and the two replacement lists are identical.

An identifier currently defined as a macro using Iparefufation-likemacro) may be redefined by another
#define preprocessing directive provided that the second definition is a function-like macro definition
that has the same number and spelling of parameters, and the two replacement lists are identical.

The number of arguments in an invocation of a function-like macro shall agree with the number of parame-
ters in the macro definition, and there shall existseprocessing token that terminates the invocation.

A parameter identifier in a function-like macro shall be uniquely declared within its scope.
O

%) Note that adjacent string literals are not concatenated into a single string literal (see the translation phases in 2.1); thus, Bn expan-
sion that results in two string literals is an invalid directive. |

10

16.3 Macro replacement DRAFT: 25 January 1994 Preprocessing directives 1%

The identifier immediately following thdefine is called themacro name There is one name space for
macro names. Any white-space characters preceding or following the replacement list of preprocessing
tokens are not considered part of the replacement list for either form of macro.

If a # preprocessing token, followed by an identifier, occurs lexically at the point at which a preprocessing
directive could begin, the identifier is not subject to macro replacement.

A preprocessing directive of the form

define identifier replacement-list new-line

defines an object-like macro that causes each subsequent instance of the ma@am@meeplaced by
the replacement list of preprocessing tokens that constitute the remainder of the directive. The replacement
list is then rescanned for more macro names as specified below.

A preprocessing directive of the form

define identifier Iparen identifier-lis,,) replacement-list new-line

defines a function-like macro with parameters, similar syntactically to a function call. The parameters are
specified by the optional list of identifiers, whose scope extends from their declaration in the identifier list
until the new-line character that terminates #taefine preprocessing directive. Each subsequent
instance of the function-like macro name followed by as the next preprocessing token introduces the
sequence of preprocessing tokens that is replaced by the replacement list in the definition (an invocation of
the macro). The replaced sequence of preprocessing tokens is terminated by the natiepngcessing

token, skipping intervening matched pairs of left and right parenthesis preprocessing tokens. Within the
sequence of preprocessing tokens making up an invocation of a function-like macro, new-line is considered
a normal white-space character.

The sequence of preprocessing tokens bounded by the outside-most matching parentheses forms the list of
arguments for the function-like macro. The individual arguments within the list are separated by comma
preprocessing tokens, but comma preprocessing tokens between matching inner parentheses do not separate
arguments. If (before argument substitution) any argument consists of no preprocessing tokens, the behav-
ior is undefined. If there are sequences of preprocessing tokens within the list of arguments that would oth-
erwise act as preprocessing directives, the behavior is undefined.

16.3.1 Argument substitution [cpp.subst]

After the arguments for the invocation of a function-like macro have been identified, argument substitution
takes place. A parameter in the replacement list, unless precedetidné preprocessing token or fol-

lowed by a## preprocessing token (see below), is replaced by the corresponding argument after all macros
contained therein have been expanded. Before being substituted, each argument’s preprocessing tokens are
completely macro replaced as if they formed the rest of the translation unit; no other preprocessing tokens
are available. O

16.3.2 Thet operator [[cpp.stringize]

Each# preprocessing token in the replacement list for a function-like macro shall be followed by a parame-
ter as the next preprocessing token in the replacement list.

If, in the replacement list, a parameter is immediately preceded thyraprocessing token, both are
replaced by a single character string literal preprocessing token that contains the spelling of the preprocess-
ing token sequence for the corresponding argument. Each occurrence of white space between the
argument’s preprocessing tokens becomes a single space character in the character string literal. White
space before the first preprocessing token and after the last preprocessing token comprising the argument is
deleted. Otherwise, the original spelling of each preprocessing token in the argument is retained in the

character string literal, except for special handling for producing the spelling of string literals and character

O
41) Since, by macro-replacement time, all character constants and string literals are preprocessing tokens, not sequences poSsibly con-
taining identifier-like subsequences (see 2.1.1.2, translation phases), they are never scanned for macro names or parameters.(]

16-6 Preprocessing directives DRAFT: 25 January 1994 16.3.2 THeoperator

constants: & character is inserted before edctand\ character of a character constant or string litefal
(including the delimiting" characters). If the replacement that results is not a valid character string litéral,
the behavior is undefined. The order of evaluatiot ahd## operators is unspecified. O

16.3.3 The## operator [Jcpp.concat]

A ## preprocessing token shall not occur at the beginning or at the end of a replacement list for either form
of macro definition.

If, in the replacement list, a parameter is immediately preceded or followed#bypeeprocessing token,
the parameter is replaced by the corresponding argument’s preprocessing token sequence.

For both object-like and function-like macro invocations, before the replacement list is reexamined for
more macro names to replace, each instance##f greprocessing token in the replacement list (not from

an argument) is deleted and the preceding preprocessing token is concatenated with the following prepro-
cessing token. If the result is not a valid preprocessing token, the behavior is undefined. The resulting
token is available for further macro replacement. The order of evaluatighaferators is unspecified.

16.3.4 Rescanning and further replacement [cpp.rescan]

After all parameters in the replacement list have been substituted, the resulting preprocessing token
sequence is rescanned with all subsequent preprocessing tokens of the source file for more macro names to
replace.

If the name of the macro being replaced is found during this scan of the replacement list (not including the
rest of the source file’s preprocessing tokens), it is not replaced. Further, if any nested replacements
encounter the name of the macro being replaced, it is not replaced. These nonreplaced macro name prepro-
cessing tokens are no longer available for further replacement even if they are later (re)examined in con-
texts in which that macro name preprocessing token would otherwise have been replaced.

The resulting completely macro-replaced preprocessing token sequence is not processed as a preprocessing
directive even if it resembles one.

16.3.5 Scope of macro definitions [cpp.scope]

A macro definition lasts (independent of block structure) until a corresporflindef directive is
encountered or (if none is encountered) until the end of the translation unit.

A preprocessing directive of the form

undef identifier new-line

causes the specified identifier no longer to be defined as a macro name. Itis ignored if the specified identi-
fier is not currently defined as a macro name.

The simplest use of this facility is to definéraanifest constaritas in
#define TABSIZE 100
int table[TABSIZE];

The following defines a function-like macro whose value is the maximum of its arguments. It has the
advantages of working for any compatible types of the arguments and of generating in-line code without the
overhead of function calling. It has the disadvantages of evaluating one or the other of its arguments a sec-
ond time (including side effects) and generating more code than a function if invoked several times. It also
cannot have its address taken, as it has none.

#define max(a, b) ((a) > (b) ? (a) : (b))

The parentheses ensure that the arguments and the resulting expression are bound properly.

16.3.5 Scope of macro definitions DRAFT: 25 January 1994 Preprocessing directives-16

5 To illustrate the rules for redefinition and reexamination, the sequence
#define x 3
#define f(a) f(x * (a))
#undef x
#define x 2
#define g f
#define z z[0]
#define h o(~

#define m(a) a(w)
#define w 0,1
#define t(a) a

fly+1) + f(f(2)) % t(t(g)(0) + t)(1);
g(x+(3,4)-w) | h5) & m

(f*m(m);
results in
f2* (y+1)) + (2 * (2 * (z[0])))) % #(2 * (0)) + t(2);
f(2* (2+(3,4)-0,1)) [f(2 * (~5)) & f(2*(0,1))"m(0,1);
6 To illustrate the rules for creating character string literals and concatenating tokens, the sequence
#define str(s) #s
#define xstr(s) str(s)
#define debug(s, t) printf("x" # s "= %d, x" # t "= %s", \
X ## s, X #i# 1)
#define INCFILE(n) vers##n [* from previoustinclude example*/

#define glue(a, b) a##b
#define xglue(a, b) glue(a, b)

#define HIGHLOW "hello"
#define LOW LOW ", world"
debug(1, 2);

fputs(str(strncmp("abc\0d”, "abc", \4’) /* this goes away */
==0) str(: @\n), s);

#include xstr(INCFILE(2).h)

glue(HIGH, LOW);

xglue(HIGH, LOW)

results in
printf("x" "1" "= %d, x" "2" "= %s", x1, x2);
fputs("strncmp(\"abc\0d\", \"abc\", '\\4') = =0"" @\n", s);
#include "vers2.h" (after macro replacement, before file access)

"hello";
"hello" ", world"

or, after concatenation of the character string literals,
printf("x1= %d, x2= %s", x1, x2);

fputs("strncmp(\"abc\0d\", \"abc\", '\\4’) = =0: @\n", s);
#include "vers2.h" (after macro replacement, before file access)
"hello”;

"hello, world"

Space around theand## tokens in the macro definition is optional.

7 And finally, to demonstrate the redefinition rules, the following sequence is valid.

16-8 Preprocessing directives DRAFT: 25 January 1994 16.3.5 Scope of macro definitions

#define OBJ_LIKE (1-1)
#define OBJ_LIKE [* white space */ (1-1) /* other */
#define FTN_LIKE(@) (a)
#define FTN_LIKE(a)([* note the white space */\
a /* other stuff on this line
*/)
But the following redefinitions are invalid:
#define OBJ_LIKE 0) I* different token sequenc¥
#define OBJ_LIKE @a-1)r different white space/
#define FTN_LIKE(b) (a) /* different parameter usagé/
#define FTN_LIKE(b) (b) /* different parameter spelling/
16.4 Line control [cpp.line]

The string literal of &line directive, if present, shall be a character string literal.

The line numberof the current source line is one greater than the number of new-line characters read or
introduced in translation phase 1 (2.1) while processing the source file to the current token.

A preprocessing directive of the form
#line digit-sequence new-line

causes the implementation to behave as if the following sequence of source lines begins with a source line
that has a line number as specified by the digit sequence (interpreted as a decimal integer). The digit
sequence shall not specify zero, nor a number greater than 32767.

A preprocessing directive of the form
line digit-sequence” s-char-sequengg’ new-line

sets the line number similarly and changes the presumed name of the source file to be the contents of the
character string literal.

A preprocessing directive of the form
line pp-tokens new-line

(that does not match one of the two previous forms) is permitted. The preprocessing tokdins aftar

the directive are processed just as in normal text (each identifier currently defined as a macro name is
replaced by its replacement list of preprocessing tokens). The directive resulting after all replacements
shall match one of the two previous forms and is then processed as appropriate.

16.5 Error directive [cpp.error]
A preprocessing directive of the form
error pp-tokeng,, new-line
causes the implementation to produce a diagnostic message that includes the specified sequence of prepro-
cessing tokens.
16.6 Pragma directive [cpp.pragma]
A preprocessing directive of the form
pragma pp-tokeng, new-line

causes the implementation to behave in an implementation-defined manner. Any pragma that is not recog-
nized by the implementation is ignored.

16.7 Null directive DRAFT: 25 January 1994 Preprocessing directives 16

16.7 Null directive [cpp.null]

A preprocessing directive of the form

new-line

has no effect.

16.8 Predefined macro names [cpp.predefined]

The following macro names shall be defined by the implementation: a
__LINE_ _The line number of the current source line (a decimal constant). a
__FILE_ _The presumed name of the source file (a character string literal). a

__DATE__The date of translation of the source file (a character string literal of the fdrm
"Mmm dd yyyy" , where the names of the months are the same as those generated by the
asctime function, and the first character ddl is a space character if the value is less than 10). If
the date of translation is not available, an implementation-defined valid date shall be supplied.O]

__TIME_ _The time of translation of the source file (a character string literal of the faim
"hh:mm:ss" as in the time generated by thectime function). If the time of translation is not
available, an implementation-defined valid time shall be supplied. a

__STDC__Whether__STDC__is defined and if so, what its value is, are implementation dependént.

__cplusplus The name__cplusplus is defined (to an unspecified value) when compiling-a (1
translation unit.

The values of the predefined macros (except fotINE_ _and__FILE_) remain constant throughout
the translation unit.

None of these macro names, nor the identdfifined , shall be the subject oftalefine or a#undef
preprocessing directive. All predefined macro names shall begin with a leading underscore followed by an
uppercase letter or a second underscore. a

17 Library [lib.library]

FBox 70
H_ibrary WG issue: Michael Vilot, January 14, 1994

HEEs

]
[his section ordering has not been discussed by the Library Working Group. Once they do have <hance
[fo discuss it, the section order, munbering, and names are likely to be changed. En

BBox 71 g 0

a_ibrary WG issue: Charles Allison, December 22, 1993 0 ad

O 0

[Long monocase class names without underscores are hard téread. ™

BBox 72 g 0

a_ibrary WG issue: Charles Allison, December 22, 1993 ad

O 0

OWe must do something about tyipeol . g ™

17.1 Introduction (lib.introduction]

HBox 73 ED

El_ibrary WG issue: Bjarne Stroustrup, January 14, 1994 n
0

BThe standard € library contains components for: language support, predefined exceptions, iostrfEams,
[strings, bitsets, bitstrings, dynamic arrays, and complex numbers. The language support compongnts are
Crequired by certain parts of thetdanguage, such as memory allocation (5.3.4, 5.3.5) and exceptionpipro-
Ltessing (15.1); the predefined exceptions provide support for a uniform error reporting from the stahdard

ibrary; the iostreams components are the primary mechanism+fg@r@yram input/output; the strings andl
rpther containers provide some of the most commonly-used data types not directly defined+nine
[guage; and the complex components provide support for numeric processing. This library als akes
Cavailable the facilities of the Standard C library, suitably adjusted to ensure static type safety.

FBox 74
H_ibrary WG issue: Beman Dawes, December 19, 1993

HEEs

0
rlLast sentence; Does this need an “as if?” We don’t want to prohibit dynamic linking. We will hdi@ to
Crevisit this once linkage is defined more precisely.

17-2 Library DRAFT: 25 January 1994 17.1 Introduction

Box 75 B O
aibrary WG issue: Beman Dawes, December 19, 1983 O
O 0

[Last sentence; “link time” is not previously defined! & M
HBOX 76 El]
[Library WG issue: Michael Vilot, November 22, 1993 d
O O

ow much of “Introduction” section has to be made global to the entire clasue? The various C rulelsfabout
feserved identifiers could be made irrelevant if C # @rograms were prohibited from defining mac
[{except, presumably, for a few things ligesert) If we don’t define the standard namespace in a way
[that obviates the need for so many rules, then we haven't used the language feature effectively. [

A C+ implementation provides$tandard &+ library that defines various entities: types, macros, objedis,
and functions. Each of these entities is declared or defined (as appropridtepoeawhose contents arel]
made available to a translation unit when it contains the approgimaiede preprocessing directv® O
Objects and functions defined in the library and required by+apfbgram are included in the prograrl
prior to program startup. O

17.1.1 Standard C library (lib.intro.standard.c]

This International Standard includes by reference clause 7 of the C Standard and clause 4 of Amendment 1
to the C Standard (1.2). The combined library described in those clauses is hereinafter catkutitrel O

C library. With the qualifications noted in this subclause 17.1 and in subclause 17.2, the Standard Clibrary
is a subset of the Standargr@brary. O

17.1.2 Headers (lib.headers]

O
#5) A header is not necessarily a source file, nor are the sequences delimitatidby in header names necessarily valid source filé
names. O

17.1.2 Headers DRAFT: 25 January 1994 Library 173

EBox 77 B

aibrary WG issue: Michael Vilot, January 14, 1994 I
O

O
[At the San Jose meeting, the Library WG modified the proposal 93-0136/N0343, Namespaces for tHeé Stan-

Lhard Library. Through an oversight, these modifiactions were not written down and presented as paff of the
§<3J16/WG21 vote on the proposal. This section should be revised as follows:
O d
[The elements of the standard library are declared or defined (as appropridteadepwhose contents argl]
Cmade available to a translation unit when it contains the approgimalade preprocessing directive. ED
O
Footnote: A header is not necessarily source file, not are the sequences delimiteddy in headerH]
rhames necessarily valid source file names.] I
0 O
(Orhe Standard library provides the following headers: ED
O
O g
O <bits> <istream> <cassert> <csignal> g
O <bitstring> <new> <cctype> <cstdarg>
g <complex> <ostream> <cerrno> <cstddef>
0 <defines> <ptrdynarray> <cfloat> <cstdio> H
0 <dynarray> = <sstream> <ciso646> <cstdlib> ™
O <exception> <streambuf> <climits> <cstring> L0
g <fstream> <string> <clocale> <ctime>
g <iomanip> <strstream> <cmath> <cwchar>
0 <ios> <typeinfo> <csetjmp> <cwctype> H
O <iostream> <wstring> <all> ™
0 0
O d
For compatibility with the Standard C library, the Standardl®rary provides the followin@ headers 11
O g
O
[rassert.h> <iso646.h> <setjmp.h> <stdio.h> <wchar.h> ™
[kctype.h> <limits.h> <signal.h> <stdlib.h> <wctype.h> L0
Lkerrno.h> <locale.h> <stdarg.h> <string.h>
tfloath> <math.h> <stddefh> <time.h>
HBox 78 El]
El_ibrary WG issue: Michael Vilot, November 22, 1993 n
O
gThe issue of global names isn't stricthhaaderinclusion problem-it's a namespace organization isstél
[The headers are just convenient packagings of names. This will become more apparent as the %tails of
[CH's namespace mechanism percolate throughout the library.
EBOX 79 El]
CLibrary WG issue: Michael Vilot, November 22, 1993 n
O O
Urhe rule that “any of the € headers can include any of the other Beaders” imposes a restriction ¢fll
+ programmers beyond any that C programmers must endure. Since we are changing the na of the

eaders from current usage anyway (by droppinghhe we can be unambiguous about the declaratf@ns
[used across components in the standard library. Implementations that support precompiled headerglwill do
Qust fine with a more precise specification. M

17-4 Library DRAFT: 25 January 1994 17.1.2 Headers
EBox 80 E O
aibrary WG issue: Michael Vilot, November 22, 1993 g O
O O
[The description of “C headers” is a good candidate for either 17.1.1, C Library, or€2n€ISO C.H ™
The Standard € library provides 3%rimary headerseach with a correspondirgecondary headeas 0O
shown in Table 13: O
O
Table 13—library headers O

PRIMARY SECONDARY PRIMARY SECONDARY O

O
<all.ns> <all> <bits.ns> <bits> O
<cassert.ns> <assert.h> <bitstring.ns> <bitstring> g
<cctype.ns> <ctype.h> <defines.ns> <defines> g
<cerrno.ns> <errno.h> <dynarray.ns> <dynarray> g
<cfloat.ns> <float.h> <exception.ns> <exception> g
<cis0646.ns> <iso646.h> <fstream.ns> <fstream> g
<climits.ns> <limits.h> <iomanip.ns> <iomanip> g
<clocale.ns> <locale.h> <ios.ns> <ios> O
<cmath.ns> <math.h> <iostream.ns> <iostream> g
<complex.ns> <complex> <istream.ns> <istream> O
<csetjmp.ns> <setjmp.h> <new.ns> <new> g
<csignal.ns> <signal.h> <ostream.ns> <ostream> g
<cstdarg.ns> <stdarg.h> <ptrdynarray.ns> <ptrdynarray> g
<cstddef.ns> <stddef.h> <sstream.ns> <sstream> O
<cstdio.ns> <stdio.h> <streambuf.ns> <streambuf> O
<cstdlib.ns> <stdlib.h> <string.ns> <string> g
<cstring.ns> <string.h> <strstream.ns> <strstream> g
<ctime.ns> <time.h> <typeinfo.ns> <typeinfo> g
<cwchar.ns> <wchar.h> <wstring.ns> <wstring> O
<cwctype.ns> <wctype.h> a

If the name (enclosed in angle brackets) of a secondary header eimdghat header and its correspond4
ing primary header are associated with the Standard C library and areQG&léatlersAll other headers [0
are calledC+ headers.

If a header is implemented as a source file, the derivation of the file name from the header n@me is
implementation-defined. If a file has a name equivalent to the derived file name for one of the abovélhead-
ers, is not provided as part of the implementation, and is placed in any of the standard places for alsource
file to be included, the behavior is undefined. O

The headexall.ns> includes all other primary headers. The hea@ddl> includes all other secondary]
headers. O

A translation unit may include these headers in any order. Each may be included more than once, Mith no
effect different from being included exactly once, except that the effect of including -either
<cassert.ns> or<assert.h> depends each time on the lexically current definitioNDEBUG A [
translation unit shall include a header only outside of any external declaration or definition, andlshall
include the header lexically before the first reference to any of the entities it declares or first defineslih that
translation unit. O

17.1.2 Headers DRAFT: 25 January 1994 Library 145

Certain types, macros, and namespace aliases are defined in more than one header. For such amlentity, a
second or subsequent header that also defines it may be included after the header that provides ifs initial
definition. O

None of the C headers includes any of the other headers, except that each secondary C header includes its
corresponding primary C header. Except for the headdlsis> and<all> , none of the & headers [
includes any of the C headers. However, any of theh€aders can include any of the othex Beaders, O
and must include at€ header that contains any needed definitioh. O

17.1.3 Namespaces (lib.namespaces]

O
) Including any one of the#€ headers can introduce all of ther@eaders into a translation unit, or just the one that is named inlthe
#include preprocessing directive. |

17-6 Library DRAFT: 25 January 1994

HBox 81
HJbrary WG issue: Beman Dawes, January 16, 1994

O
Nathan Myers in message c++std-lib-1532 writes:
O
LbIn Message c++std-lib-1517, Beman writes:
> B. If the program supplies an alternate implementation of a library

7> component then the program shall also supply a header which declare

P> that component.
>

Lb> Comment: In other words, the compiler has to be told of the alternate
> implementation at compile time. You can’t wait and later just tell the

7> linker. Thus compilers can still generate in-line code for their

P> implementation of standard library components. This also means alter

[(>> implementations can have inline’s in their headers.
>
| would like to register an exception to this rule: the global
rpoperators new and delete are usable without declaration, and
Cpmust be replaceable without a header.
O
Uves, you are right - new and delete are exceptions. They are
overed by 17.3 and section E of the proposal (see below).
ection 17.3 of the library chapter draft talks about
}'...the function signatures that are called
Cimplicitly, and the types of objects generated implicitly...”, in
Lbther words, the things likeew anddelete that are usable without
%}Ieclaration.

O
g

[(>The rule has interesting implications: binary-only libraries
L (for which you have no access to the source code) can only

operate with the vendor’s library, not the user’s preferred
rplibrary, unless you can persuade somebody to recompile with your
rpPheaders. Is this what we want? Or is it a "quality of
[(»implementation" issue, where no serious vendor would enforce such
Eba rule?

BTO me this is very much a quality-of-implementation. In some markets
[t is of critical importance to vendors, while in other markets it

fust doesn’'t matter. Not an area where a language standard should
Etread.

Eﬁy the way, | am now pretty well convinced Jerry Schwarz’s suggested wartding

n

te

Oo0oO000Oo00000Do00oooo00ooooooooDoooooopoooooo®oooooooog

('independent implementation” is clearer than “alternate implementation” U

Cand will probably change the proposal accordingly.

17.1.3 Namespaces

O

Oooooooooooooodg

ooooooo

ooooooog

oooOoo

E’I:ll:l

17.1.3 Namespaces DRAFT: 25 January 1994 Library 7

HBox 82

El_ibrary WG issue: Nathan Myers, January 15, 1994

Hn Message c++std-lib-1517, Beman writes:

[P B. If the program supplies an alternate implementation of a library

> component then the program shall also supply a header which declares
b that component.

7 Comment: In other words, the compiler has to be told of the alternate

[P implementation at compile time. You can't wait and later just tell the

(> linker. Thus compilers can still generate in-line code for their

L implementation of standard library components. This also means alternate
% implementations can have inline’s in their headers.

5 would like to register an exception to this rule: the global operatssanddelete are usable withou
[declaration, and must be replaceable without a header.

O

Crhe rule has interesting implications: binary-only libraries (for which you have no access to the[$burce
rfode) can only operate with the vendor’s library, not the user’s preferred library, unless you can pdisuade
rsomebody to recompile with your headers. Is this what we want? Or is it a “quality of implementafion”
Ossue, where no serious vendor would enforce such a rule?

D YT B RS P R

17-8 Library DRAFT: 25 January 1994 17.1.3 Namespaces

EBOX 83 El]
rLibrary WG issue (continued): Beman Dawes, January 14, 1994 d
O O

Un message c++std-lib-1396, several improvements to standard library namespaces were discusset]lbut two
assued remained open. This message addresses those issues.

O

[The proposal:

O

%ﬁ\. The program can supply alternate implementations of standard library components including lafiguage
upport.

S

O O

[B. If the program supplies an alternate implementation of a library component then the program shall also
Csupply a header which declares that component.
O

Eb. How the program supplies an alternate header is implementation defined.

ED. 17.1.2 Headers, now reads in part:

O

Lk<If a file has a name equivalent to the derived file name for one of the above headers, is not proMitied as
art of the implementation, and is placed in any of the standard places for a source file to be included, the
ehavior is undefined>

O O

[Change the wording to reflect that the behavior is no longer undefined, but rather the behavior is tol$upply

Ebn alternate header.

i e e

O
%. 17.3 Language support, now reads: a]
O O

[k<This subclause describes the function signatures that are called implicitly, and the types of objecidigener-
Lated implicitly, during the execution of somer@rograms. It also describes the headers that declare these
a‘unction signatures and define any related types.

0 O
(Add words to the effect: d
0 0

UA program that calls any of these functions or uses these types without first including a header declafing the
unction signature or defining the types behaves as if it first included the appropriate header namedin this

rpubclause. Such a implicit header is found according to the same rules as explicitly included heagdérs and

[may be an alternate implementation.

O

LF. 17.1.4 Reserved identifiers, now specifies #alertain identifiers and function signatures are rese

%Nhether or not a translation unit includes a header. . Cases include:

d

SisralS[als:u e

O

f Each identifier declared as an object with external linkage...

[* Each global function signature declared with external linkage...
Ux Each identifier declared with external linkage in a C header...

El* Each function signature declared with external linkage in a C hdr...

HHEEE

O 0
Change the wording to the effect that in these four cases these identifiers are allowed in alternatg{fieaders
Cand that these identifiers are allowed if in a different namespace.

H

17.1.3 Namespaces

DRAFT: 25 January 1994

HBox 84 El]
El_ibrary WG issue: Michael Vilot, January 14, 1994 d
O
Eﬁll declarations and definitions in the Standare+ Qibrary are members of th@amespace L[
riso_standard_library , Which has the alternative nastel . That is, a]
O
O
g namespace std = iso_standard_library; d
O
SNithin this namespace, the library defines namespamsiseams and c. Within the namespaces]
[std::iostreams andstd::c , each header declares or defines entities in the library, as follows: a]
. 0
Header Namespace Header Namespace %
O
Ckpits> bits <istream> iostreams::istream H
Cepitstring> — bitstrin <new> new N
g g
rrcomplex> complex <ostream> (o
rdefines> defines <ptrdynarray> ptrdynarray
[kdynarray> dynarray <sstream> iostreams::sstream
Lkexception> exception <streambuf> iostreams::streambuf H
fstream> iostreams::fstream <string> string ™
rriomanip> iostreams::iiomanip ~ <strstream> iostreams::strstream L
[Kios> iostreams::ios <typeinfo> typeinfo
[kiostream> iostreams::iostream <wstring> wstring
= H
Lecassert> c::assert <csignal> c::signal ™
[fcctype> c::ctype <cstdarg> c::stdarg L
[Kcerrno> c.:ermo <cstddef> c::stddef
Ckcfloat> c::float <cstdio> c::stdio
Lkciso646> C::is0646 <cstdlib> c::stdlib H
Ceclimits> c::limits <cstring> c::strin N
g g
(fclocale> c::locale <ctime> c::time L
[Kcmath> c::math <cwchar> c::wchar
[kcsetjmp> c::setmp <cwctype> c::wctype
. 0
[(Each of the C headers of namethmeh> #include s the corresponding headername», followed by a]

Lthe using-declarations(_basic.scope.namespace.udpdhat make the declarations available at globa

%cope.

0
rIFootnote: Including a C header permits references of the:foixn |

O

[LHeaders that declare operator functions (13.4) pravsiteg-declarationshat make the declarations avaj

0
[[Footnote: For example, including the heageomplex> permits references of the forol + c2

|
N
0
[
%ible at global scope. ™
0
Cwhere ¢l and c2 are instanceglaks complex .] %

17-10 Library DRAFT: 25 January 1994 17.1.3 Namespaces

HBox 85

El_ibrary WG issue: Beman Dawes, December 18, 1993

HEES

%:ince the San Jose meeting there has been additional discussion on the reflectors leading towardreduced
rstandard library namespace complexity in general.
O

EHere are some suggestions to fix these problems:

S

E* The original proposal talked about allowing portable “replacement” of the standard library. “Indepen-
dent implementation” (suggested by Jerry Schwarz) or “alternate implementation” would be a thétter
Cchoice of words.
O

El* The using-formlibrary headers should give explicising s for each name.
O

f Eliminate inner (nested) library namespaces.

O

L¥ Use the same naming convention for both both C amch€aders Namespace-formeaders should be ip[J
She form<name> andusing-formheaders should be in the forname.h> . ™

DI:EDBD

O
[f Use the nameatd rather thariso_standard_library for the standard library namespace. Eli
Chate the alias headestd> .

E}:EFD

Except for the headetall.ns> , each &€+ header whose name has the feramens declares or definesl]
all entities within the namespais®_standard_library:: name> O

Except for the headetall> , each &+ header whose name has the farame includes its corresponding]
primary headenamens , followed by the declaration:

using namespace iso_standard_library:: name ad
In addition, the heademew> contains the declaration® O
using iso_standard_library::new::operator delete a
using iso_standard_library::new::operator new a

Each C header whose name has the foramens declares or defines all entities within the namespdde
iso_standard_library::c:: name.

Each C header whose name has the foameh includes its corresponding primary heademmens , [
followed by the declaration O

using namespace iso_standard_library::c:: name a

In addition, for each function or objeXtdeclared with external linkage in its corresponding primary header
cnamens , the headenameh contains the declaratiofl O

using iso_standard_library::c:: name: X a

Descriptions of header contents in this clause name the secondary headers instead of the primaryheaders.
A statement such aXis defined or declared ios> is equivalent toXis defined or declared by includ{]

ing <ios> , which includesios.ns> to obtain the actual declaration or definition. a
O

2Y)Macro definitions nevertheless occupy a disjoint name space. O
Including the headesnew> permits references of the formoperator new O
Including the C secondary header permits references of the:fakin |

17.1.4 Reserved names DRAFT: 25 January 1994 Library 271

17.1.4 Reserved names [(lib.reserved.names]

HBox 86
HJbrary WG issue: Michael Vilot, January 14, 1994

I:II_I___L,DI:I

O
[This section has not been discussed by the Library Working Group. Once they do have a chance tddiscuss
0t, the contents are likely to be removed or changed.

[(Box 87
O

rLibrary WG issue: Mark Terribile, December 20, 1993
O
LbReserved identifiers

A translation unit that includes a header shall not contain

Cpany macros that define identifiers declared or defined in that header.
[>Nor shall such a translation unit define macros for identifiers lexically
Ebidentical to keywords.

g B i e e e

Hs this strong enough? Under this, one standard header could contain a macro conflicting with an i@éntifier
defined (and required) in another standard header. Shouldn’t the standard headers be required to p& consis-
(tent when taken as a group?

H

A translation unit that includes a header shall not contain any macros that define names declared orfdefined
in that header. Nor shall such a translation unit define macros for names lexically identical to keywords.

Each header defines the namespaoestandard_library and its aliastd . Each header declares]
or defines all names listed in its associated subclause. Each header also optionally declares ordefines
names which are always reserved to the implementation for any use and names reserved to the implémenta-

tion for use at file scope. O
Each name defined as a macro in a header is reserved to the implementation for any use if the tramslation
unit includes the heada?) O
Certain sets of hames and function signatures are reserved whether or not a translation unit indluides a
header: O
— Each name that begins with an underscore and either an uppercase letter or another undefScore is
reserved to the implementation for any use. O
— Each name that begins with an underscore is reserved to the implementation for use as a name With file
scope or within the namespadse_standard_library in the ordinary name name spaces. O
— Each name declared as an object with external linkage in a header is reserved to the implementation to
designate that library object with external Iinké@%. O
— Each global function signature declared with external linkage in a header is reserved to the implehenta-
tion to designate that function signature with external linkage. O
— Each name having two consecutive underscores is reserved to the implementation for use asfa name
with bothextern "C" andextern "C++" linkage. O
— Each name declared with external linkage in a C header is reserved to the implementation for use as a
O
>3t is not permissible to remove a library macro definition by usingttimelef directive. O
The list of such reserved names includasio , declared or defined ierrno.h> . O
The list of such reserved function signatures with external linkage incketgap(jmp_buf) , declared or defined in O

<setjmp.h> , andva_end(va_list) , declared or defined instdarg.h> . O

17-12 Library DRAFT: 25 January 1994 17.1.4 Reserved names

name withextern "C" linkage. O
— Each function signature declared with external linkage in a C header is reserved to the implemdntation

for use as a function signature with bettiern "C" andextern "C++" linkage. 56) g
It is unspecified whether a name declared with external linkage in a C header hasxéittmetC" or O
extern "C++" Iinkage.57) O
If the program declares or defines a name in a context where it is reserved, other than as explicitly allowed
by this clause, the behavior is undefined. O
No other names or global function signatures are reserved to the implemer‘ﬁ%?tion. O
17.1.5 Restrictions and conventions (lib.res.and.conventions]
HBox 88 B
HJbrary WG issue: Michael Vilot, January 14, 1994 I

O

O
[This section has not been discussed by the Library Working Group. Once they do have a chance tddiscuss
0t, the contents of this section and its subsections are likely to be removed or changed.

17.1.5.1 Restrictions on macro definitions (lib.res.on.macro.definitions]

All object-like macros defined by the Standarg Gbrary and described in this clause as expanding to infe-
gral constant expressions are also suitable for ug#d inpreprocessing directives, unless explicitly statéd
otherwise. O

17.1.5.2 Restrictions on arguments (lib.res.on.arguments]

Each of the following statements applies to all arguments to functions defined in the Starddmhg, O
unless explicitly stated otherwise in this clause. O

— If an argument to a function has an invalid value (such as a value outside the domain of the funcfion, or
a pointer invalid for its intended use), the behavior is undefined. O

— If a function argument is described as being an array, the pointer actually passed to the functidn shall
have a value such that all address computations and accesses to objects (that would be valid if the

pointer did point to the first element of such an array) are in fact valid. O
17.1.5.3 Restrictions on exception handling [(lib.res.on.exception.handling]
O
9%) The function signatures declareddiwchar.h> and<wctype.h> are always reserved, notwithstanding the restrictions impoded
in §ubclause 4.5.1 of Amendment 1 to the C Standard for their corresponding secondary headers. O
o7 The only reliable way to declare an object or function signature from the Standard C library is by including the header that declares
gg?otwithstanding the latitude granted in subclause 7.1.7 of the C Standard. |

A global function cannot be declared by the implementation as taking additional default arguments. Also, the use of maskifig mac-
ros for function signatures declared in C headers is disallowed, notwithstanding the latitude granted in subclause 7.1.7 of th&lC Stan-
dard. The use of a masking macro can often be replaced by defining the function signaline as |

17.1.5.3 DRAFT: 25 January 1994 Library 1#13
Restrictions on exception handling

HBOX 89

[Library WG issue: Dag Biick, January 23, 1994
O

% Jerry Schwarz writes:

P> | think this should be changed to allow any function
[(>> to throwxalloc
>
“Any of the functions defined in the StandarétQibrary
[can report a failure to allocate storage by calling ex.raise()
P for an object ex of type xalloc.
O
Lpardon me for being picky and generally difficult, but | think Jerry’s wording is significantly superior,[@hd |
%isk for a change.

e R i e

=

O
d think the current wording is circuitous, and the prevailing terminology is "throw an exception” Whe%]alk-

Cing about the concept, not the actual implementation. I
O 0
aﬁere’s my suggested wording: ED
O
r'Any of the functions defined in the Standaret-Cibrary can report a failure to allocate storage by thr%ﬂ-
Ong xalloc.” O
HBox 90 %D
HJbrary WG issue: Charles Allison, December 22, 1993 I
O

O
’'m a little unclear on 17.1.5.3. Aren’t most of the exceptions intended to be caught outside the fuiiction
[that throws them? | guess | have a fundamental confusion about exceptions.

Any of the functions defined in the Standard Gbrary can report a failure to allocate storage by calling
ex.raise() for an objectex of typexalloc . Otherwise, none of the functions defined in the Standard
C+ library throw an exception that must be caught outside the function, unless explicitly stated otheriise.

None %g)the functions defined in the Standaré Iibrary catch any exceptions, unless explicitly stated off-
erwise: O

17.1.5.4 Alternate definitions for functions [(lib.alternate.definitions.for.functions]

This clause describes the behavior of numerous functions defined by the Stand@énh§. Under some O
circumstances, however, certain of these function descriptions also apply to functions defined in thé pro-
gram: g

— Four function signatures defined in the Standaﬁdllbrargﬂ]may be displaced by definitions in the prad
gram. Such displacement occurs prior to program startup. O

— Certain handler functions are determined by the values stored in pointer objects within the Stendard C
library. Initially, these pointer objects store null pointers or designate functions defined in the Stdndard
Ctt library. Other functions, however, when executed at run time, permit the program to alter(these
stored values to point at functions defined in the program. O

— Virtual member function signatures defined for a base class in the Stangardibr@y may be O

Zg)A function can catch an exception not documented in this clause provided it rethrows the exception.
)The function signatures, all declarec<imew>, areoperator delete(void*) , operator delete[](void*) , oper-
ator new(size_t) , andoperator newf[](size_t)

OoooOoo

17-14 Library DRAFT: 25 January 1994 17.1.5.4
Alternate definitions for functions

overridden in a derived class by definitions in the program.

In all such cases, this clause distinguishes two behaviors for the functions in question: O

— Required behaviodescribes both the behavior provided by the implementation and the behaviotlthat
shall be provided by any function definition in the program. O

— Default behaviordescribes any specific behavior provided by the implementation, within the scopé of
the required behavior. O

Where no distinction is explicitly made in the description, the behavior described is the required behavior.

If a function defined in the program fails to meet the required behavior when it executes, the behavior is
undefined. O

17.1.5.5 Objects within classes [lib.objects.within.classes]

Objects of certain classes are sometimes required by the external specifications of their classes to stdre data,
apparently in member objects. For the sake of exposition, this clause provides representative declatations,

and semantic requirements, for private member objects of classes that meet the external specificafions of

the classes. The declarations for such member objects and the definitions of related member typed in this

clause are enclosed in a comment that endsexjtbsition only as in:

I streambuf* sb; exposition only ad
Any alternate implementation that provides equivalent external behavior is equally acceptable. a
17.1.5.6 Optional members [{lib.optional.members]
The definitions of some member types and the declarations of some member functions in this clailse are
enclosed in a comment that ends vaftional, as in: O

I void clear(io_state state_arg =0); optional a
Whether such definitions and declarations are actually present is implementation-defined. ad
17.1.5.7 Functions within classes ({lib.functions.within.classes]
HBox 91 B
H_ibrary WG issue: Beman Dawes, January 2, 1994 -

O

E{L?.l.S.? lists three cases where “An implementation can declare additional non-virtual member fdfction
Ckignatures within a class.”
o O

Il three cases are for adding members with the same name as a member function which is part offthie class
(@s described. What about adding a member function with a name not already a member of the class?

O

ad

[Beems like it should be explicitly allowed or disallowed. H

HBox 92 El]

H_ibrary WG issue: Mats Henricson, December 31, 1993 -
g

O
it bugs me a bit that implementations are allowed to add a virtual destructor, since that is not what ishener-
Cated by default. The default destructor is not virtual.

17.1.5.7 Functions within classes DRAFT: 25 January 1994 Library 215

HBox 93

in
0
El_ibrary WG issue: Charles Allison, December 22, 1993 d
0
d-ny

aast paragraph onlib.functions.within classes mentions “virtual destructors that can be generate
default.” The ARM, page 278, specifically states that destructors are not virtual by default. Is thereqsSome-
[thing in the WP that | missed?

For the sake of exposition, this clause repeats in a derived class declarations for all the virtual member
functions inherited from a base class. All such declarations are enclosed in a comment that ends with
inherited, as in: a

1 virtual void do_raise(); inherited a
If a virtual member function in the base class meets the semantic requirements of the derived class, it is
unspecified whether the derived class provides an overriding definition for the function signature. [0
An implementation can declare additional non-virtual member function signatures within a class: ad
— by adding arguments with default values to a member function signature described in thglltlause;D

— by replacing a member function signature with default values by two or more member function Signa-
tures with equivalent behavior; a

— by adding a member function signature for a member function name described in this clause.

A call to a member function signature described in this clause behaves the same as if the implemEéhtation
declares no additional member function signatﬁ?és. a

For the sake of exposition, this clause describes no copy constructors, assignment operators, @r (non-
virtual) destructors with the same apparent semantics as those that can be generated by defadlt. It is
unspecified whether the implementation provides explicit definitions for such member function signaiures,

or for virtual destructors that can be generated by default. a
17.1.5.8 Global functions [lib.global.functions]
A call to a global function signature described in this clause behaves the same as if the impleméntation
declares no additional global function signatl?r?’és. a
17.1.5.9 Unreserved names ({lib.unreserved.names]

O
°LHence, taking the address of a member function has an unspecified type. The same latituntegi@esl to the implementation O
of virtual or global functions, however. O

A valid C+ program always calls the expected library member function, or one with equivalent behavior. An implementatiah may

also define additional member functions that would otherwise not be called by atgbicbGram. O

A valid C+ program always calls the expected library global function. An implementation may also define additional globalfunc-
tions that would otherwise not be called by a valitl @ogram. O

17-16 Library DRAFT: 25 January 1994 17.1.5.9 Unreserved names

HBox 94 B
HJbrary WG issue: Uwe Steinniiller, September 2, 1993 I
O
O
[l dislike the approach to have these private mempiers len , res , because we specify only the publiEl
Cinterface. | understand, this only should help to get a better description. a]
O
O
%et me try a differnet way (a more ADT like approach) I
O
O
[A string can be thought of being a sequence of bytes (this does not imply it to be implemented this way)
Cand has three properties: a]
O
O
g len: number of bytes of this sequence I
O
O
] res (res>= len) hint to implementation to keep more byte than len to do some growth in place. ED
O
g string content: sequence of bytes counted from O to len - 1 H]
O
B\Iow every function can be described to what it does to these properties and nothing is said how thége prop-

[erties are implemented.
res (res>= len) hint to implementation to keep more byte than len to do some growth in place.

odooo

string content: sequence of bytes counted from O to len - 1

B e

O
Now every function can be described to what it does to these properties and nothing is said how thége prop-
Certies are implemented.

Certain types defined in C headers are sometimes needed to express declarations in other headers, Wwhere the
required type names are neither defined nor reserved. In such cases, the implementation provides a syn-
onym for the required type, using a name reserved to the implementation. Such cases are explicitly stated
in this clause, and indicated by writing the required type nane@nstant-width italic charac- O

ters.

Certain names are sometimes convenient to supply for the sake of exposition, in the descriptiondTin this
clause, even though the names are neither defined nor reserved. In such cases, the implementatian either
omits the name, where that is permitted, or provides a name reserved to the implementation. Such ¢ases are

also indicated in this clause by writing the convenient narserstant-width italic characters. [
For example: O
The clasdilebuf |, defined in<fstream> , is described as containing the private member object: [

FILE* file ; |

This notation indicates that the memifié&¢ is a pointer to the typEILE , defined in<stdio.h> , but O
the namedile andFILE are neither defined nor reservediistream> . An implementation need not(]
implement classilebuf with an explicit member of typEILE* . If it does so, it can choose 1) tdl
replace the naméle with a name reserved to the implementation, and 2) to repldde with an O
incomplete type whose name is reserved, such as in: a

struct _Filet* _Fname; a

If the program needs to have typH.E defined, it must also includestdio.h> , which completes the
definition of _Filet . O

17.1.5.10 Implementation types DRAFT: 25 January 1994 Library 717

17.1.5.10 Implementation types [lib.implementation.types]
Certain types defined in this clause are based on other types, but with added constraints. O
17.1.5.10.1 Enumerated types [lib.enumerated.types]
EBOX 95 B

CLibrary WG issue: Charles Allison, December 22, 1993 0 O
O O

84) I know you've used the notation in 17.1.5.10.1 before: B O
g static const enumerated CO(VO0); B O
O O

[just don’t understand it. Is bitmask a type that requires an initializer?

Several types defined in this clause anemerated type&ach enumerated type can be implemented ad-an
enumeration or as a synonym for an enumeration. The enumerateghtyperated can be written:

enum secret { ad
Vo, Vi, V2, V3 ...} ad

typedef secret enumerated ; O
static const enumerated CO (V0); O
static const enumerated C1 (V1); ad
static const enumerated C2 (V2); O
static const enumerated C3 (V3); O
O

Here, the name€0, C1, etc. represergnumerated elementsr this particular enumerated type. All suchl
elements have distinct values.

O

17.1.5.10.2 Bitmask types (lib.bitmask.types]

HBOX 96

[Library WG issue: Mark Terribile, December 20, 1993
O

%Bitmask types

D...

PThe following terms apply to objects and values of bitmask
[Htypes:

O

To set a value Y in an object X is
pto evaluate the expressionx Y.
O
[>To clear a value Y in an object X is
Ebto evaluate the expression X &="Y.

E The value Y is set in the object
pX if the expression X & Y

S HYHHY P HRP A PR P RS

O
CjIf the expression ... is non-zero’ or ‘if the expression ... is equal to Y’ ? The former only works if thq%Zﬁlue
LI is restricted to a single bit. | think that the I/O system requires multibit values (but | could be mistaken).

17-18 Library DRAFT: 25 January 1994 17.1.5.10.2 Bitmask types

Several types defined in this clause lsitsmask typesEach bitmask type can be implemented as an enuniér-
ated type that overloads certain operators. The bitmaskfyypask can be written:

enum secret {
VO =1<<0, Vi =1<<1], V2 =1<<2, V3 =1<<3, ...}
typedef secret bitmask ;

static const bitmask CO (VO);
static const bitmask C1 (V1),
static const bitmask C2 (V2);
static const bitmask C3 (V3),

bitmask & operator&=(bitmask & X, bitmaskyY)
{X =(bitmask)(X & Y); return (X); }

bitmask & operator|=(bitmask & X, bitmaskY)
{X =(bitmask)(X | Y);return(X); }

bitmask & operator’=(bitmask & X, bitmaskyY)
{X =(bitmask)(X ™ Y); return (X); }

bitmask operator&(bitmask X , bitmaskY)
{return ((bitmask)(X & Y));}

bitmask operator|(bitmask X , bitmaskY)
{return ((bitmask)(X | Y);}

bitmask operator™(bitmask X , bitmaskY)
{return ((bitmask)(X * Y));}

bitmask operator~(bitmask X)
{return ((bitmask)~ X); }

OOoooooooooooooooooooono

Here, the name€0, C1, etc. represerthitmask elementfor this particular bitmask type. All such elef]
ments have distinct values such that, for any @aiandCj, Ci & Ci is nonzero and’i & Cj is zero.

The following terms apply to objects and values of bitmask types:
— Toseta valueYin an objectXis to evaluate the expressign|= Y.
— Tocleara valueYin an objectXis to evaluate the expressigné&= ~ Y.

— The valueYis setin the objectXif the expressiotX & Yis nonzero.

17.1.5.10.3 Derived classes ({lib.derived.classes]
Certain classes defined in this clause are derived from other classes in the StanltilaranZ O

— It is unspecified whether a class described in this clause as a base class is itself derived from other base
classes (with names reserved to the implementation). O

— It is unspecified whether a class described in this clause as derived from another class is derivéd from
that class directly, or through other classes (with names reserved to the implementation) that are(derived

from the specified base class. O
In any case: 0
— A base class described as virtual in this clause is always virtual; O
— A base class described as non-virtual in this clause is never virtual; O
— Unless explicitly stated otherwise, types with distinct names in this clause are distinéfl}ypes. O

|

°%) An implicit exception to this rule are types described as synonyms for basic integral types s&eht asandstreamoff

17.1.5.11 Protection within classes DRAFT: 25 January 1994 Library ¥29

17.1.5.11 Protection within classes [(lib.protection.within.classes]

It is unspecified whether a member described in this clause as private is private, protected, or publid. It is
unspecified whether a member described as protected is protected or public. A member described a3 public

is always public. O

It is unspecified whether a function signature or class described in this clause is a friend of anothé&r class
described in this clause. O
17.1.5.12 Definitions [(lib.definitions]

EBox 97 g

aibrary WG issue: Michael Vilot, November 22, 1993 0 O

O O
[(Bubclause 17.1.5.12, Definitions, should be merged with Sectioiid1.4.

The Standard € library makes widespread use of characters and character sequences that followa few
uniform conventions: O

— A letteris any of the 26 lowercase or 26 uppercase letters in the basic execution character set. [

— The decimal-point characteis the (single-byte) character used by functions that convert betweéh a
(single-byte) character sequence and a value of one of the floating-point types. It is used in the tharac-
ter sequence to denote the beginning of a fractional part. It is represented in this clause by alperiod,
", which is also its value in tH&" locale, but may change during program execution by a calllto
setlocale(int, const char*) , declared irclocale.h> . g

— A character sequends an array objecfl that can be declared &A[N , whereT is any of the types [
char , unsigned char , orsigned char , optionally qualified by any combination obnst or O

volatile . The initial elements of the array have defined contents up to and including an elément
determined by some predicate. A character sequence can be designated by a poir§¢haapents [
to its first element. O
— A null-terminated byte stringgr NTBS is a character sequence whose highest-addressed elementiwvith
defined content has the value zero (dreninating nullcharacterf.S) O
— Thelength of arnTBSis the number of elements that precede the terminating null charactempgty [
NTBshas a length of zero. O
— Thevalue of amnTBSis the sequence of values of the elements up to and including the terminatinglnull
character. O
— A staticNTBsis anNTBsS with static storage duratidt O
— A null-terminated multibyte stringyr NTMBS is anNTBS that constitutes a sequence of valid multibyte
characters, beginning and ending in the initial shift &te. O
— A staticNTMBSis anNTMBS with static storage duration. O
— A wide-character sequends an array objeci that can be declared &8 A[N, whereT is type O
wchar_t , optionally qualified by any combination obnst or volatile . The initial elements of O
the array have defined contents up to and including an element determined by some predicate. [A char-
acter sequence can be designated by a pointer Sahat designates its first element. O
O
09) Many of the objects manipulated by function signatures declarestiimg.h> are character sequencesvoess. The size of O
some of these character sequences is limited by a length value, maintained separately from the character sequence. O
A string literal, such a&bc" | is a statiovTss. O

67) An nTBs that contains characters only from the basic execution character set is mis@&nEach multibyte character then contd
sists of a single byte. a0

17-20 Library DRAFT: 25 January 1994 17.1.5.12 Definitions

— A null-terminated wide-character stringgr NTWCS is a wide-character sequence whose highelst-
addressed element with defined content has the valué®ero. O

— Thelength of amnTwcsis the number of elements that precede the terminating null wide character] An

emptynTwcshas a length of zero. O
— Thevalue of amnTwcsis the sequence of values of the elements up to and including the terminating! null
character. O
— A staticNTWCSIs anNTWCS with static storage duratidt? O
17.2 Standard C library [(lib.standard.c.library]

This subclause summarizes the explicit changes in definitions, declarations, or behavior within the Standard
C library when it is part of the StandarétQibrary. (Subclause 17.2 imposes samelicit changes in the [

behavior of the Standard C library.) O
17.2.1 Moadifications to headers [({lib.mods.to.headers]
Each C header whose name has the formamens declares or defines those entities declared or defiriéd
in the corresponding headeameh in the C Standard’? O
17.2.2 Modifications to definitions [lib.mods.to.definitions]
17.2.2.1 Typewchar_t (lib.wchar.t]
wchar_t is a keyword in this International Standard. It does not appear as a type name defined infany of
<stddef.h> | <stdlib.h> | or<wchar.h> . g
17.2.2.2 MacroNULL (lib.null]
The macroNULL, defined in any of<locale.h> , <stddef.h> , <stdio.h> , <stdlib.h> , O
<string.h> | <time.h> , or <wchar.h> , is an implementation-definedHCnull-pointer constant in [
this International Standard’ O
17.2.2.3 Headekis0646.h> [lib.header.is0646.h]
The tokensand, and_eq , bitand , bitor , compl , not_eq , not , or,or_eq , xor , andxor_eq are 0O
keywords in this International Standard. They do not appear as macro names defise@46.h> . g
17.2.3 Moadifications to declarations [({lib.mods.to.declarations]
17.2.3.2 memchr(const void*, int, size_t) (lib.memchr]
The function signaturmemchr(const void*, int, size_t) , declared irxstring.h> inthe C O
Standard, does not have the declaration

void* memchr(const void* s, int c, size t ny; O
in this International Standard. Its declaratiorgtring.h> is replaced by the two declarations: ad

O
o8) Many of the objects manipulated by function signatures declareddhar.h> are wide-character sequencesioncss. O
69)A wide string literal, such ds'abc" , is a statiovtwcs. O
The headekstdlib.n> | for example, makes all declarations and definitions available in the global name space, much aflin the

C Standard. The headekcstdlib.ns> provides the same declarations and definitions within the namesgdace
iso_standard_library::c::stdlib 0

Possible definitions include andOL, but not(void*)0 . |

17.2.3.1 DRAFT: 25 January 1994 Library 1#21
memchr(const void*, int, size_t)

const void* memchr(const void* s, int c, size t ny;
void* memchr(void* s, int c, size_t ny;

both of which have the same behavior as the original declaration.

17.2.3.2 strchr(const char*, int) (lib.strchr]

The function signaturstrchr(const char*, int) , declared irgstring.h> in the C Standard,
does not have the declaration:

char* strchr(const char* s, int c);

in this International Standard. Its declaratiorgtring.h> is replaced by the two declarations:
const char* strchr(const char* s, int c);
char* strchr(char* s, int c);

both of which have the same behavior as the original declaration.

17.2.3.3 strpbrk(const char*, const char*) (lib.strpbrk]

The function signaturstrpbrk(const char*, const char*) , declared irsstring.h> in the
C Standard, does not have the declaration:

char* strpbrk(const char* s1, const char* s2);

in this International Standard. Its declaratiorgtring.h> is replaced by the two declarations:
const char* strpbrk(const char* s1, const char* s2);
char* strpbrk(char* s1, const char* s2);

both of which have the same behavior as the original function signature.

17.2.3.4 strrchr(const char?*, int) (lib.strrchr]

The function signaturstrrchr(const char*, int) , declared ircstring.h> in the C Standard,
does not have the declaration:

char* strrchr(const char* s, int c);

in this International Standard. Its declaratiorgtring.h> is replaced by the two declarations:
const char* strrchr(const char* s, int c);
char* strrchr(char* s, int c);

both of which have the same behavior as the original declaration.

17.2.3.5strstr(const char*, const char*) (lib.strstr]

The function signaturstrstr(const char*, const char*) , declared ircstring.h> in the C
Standard, does not have the declaration:

char* strstr(const char* s1, const char* s2);

in this International Standard. Its declaratiorgtring.h> is replaced by the two declarations:

const char* strstr(const char* s1, const char* s2);
char* strstr(char* s1, const char* s2);

both of which have the same behavior as the original declaration.

OO

OO

OO

O

OO

17-22 Library DRAFT: 25 January 1994 17.2.4 Modifications to behavior

17.2.4 Madifications to behavior [({lib.mods.to.behavior]

17.2.4.1 Macrooffsetof [lib.offsetof]

The macromffsetof(type , member-designator), defined in<stddef.h> , accepts a restricted]
set oftype arguments in this International Standatgpe shall be a POD structure or a POD union. [

17.2.4.2 longjmp(jmp_buf, int) [lib.longjmp]

The function signaturengjmp(jmp_buf Jbuf | int val) , declared ircsetjmp.h> |, has more [
restricted behavior in this International Standard. If any automatic objects would be destroyed by a fhrown
exception transferring control to another (destination) point in the program, then a cdll to
longjmp(jbuf , val) atthe throw point that transfers control to the same (destination) point has whde-

fined behavior. O
17.2.4.3 Storage allocation functions [lib.storage.allocation.functions]
The function signaturesalloc(size_t) , malloc(size_t) , andrealloc(void*, size t) , O
declared in<stdlib.h> |, do not attempt to allocate storage by callopgerator new(size_t) , O
declared ircnew>. g
17.2.4. 4 exit(int) lib.exit]
The function signaturexit(int status), declared ir<stdlib.h> | has additional behavior in thid]
International Standard: O
— First, all functionsf registered by callingtexit(f), are called, in the reverse order of their registra-
tion.”? The function signaturatexit(void (*)()) , is declared irstdlib.h> . O
— Next, all static objects are destroyed in the reverse order of their construction. (Automatic objeCts are
not destroyed as a result of calliexjt(int) .)73) O
— Next, all open C streams (as mediated by the function signatures declastdionh>) with unwrit- O
ten buffered data are flushed, all open C streams are closed, and all files created byngdila{y O
are removed™ The function signaturempfile() is declared ircstdio.h> O
— Finally, control is returned to the host environment.stfitus is zero orEXIT_SUCCESS an [
implementation-defined form of the statusiccessful terminationis returned. |If status is O
EXIT_FAILURE, an implementation-defined form of the statusuccessful terminatiois returned. O
Otherwise the status returned is implementation-defined. The mdexd$_FAILURE and 0O
EXIT_SUCCESSare defined ircstdlib.h> O
The function signaturexit(int) never returns to its caller. O
17.3 Language support (lib.language.support]
EBox 98 g
aibrary WG issue: Michael Vilot, November 22, 1993 O O
O g
[This text should be moved to an example or other non-normative explardtion.
O
"2) A function is called for every time it is registered. |
Automatic objects are all destroyed in a program whose funoi@n contains no automatic objects and executes the calldo
exit . Control can be transferred directly to suchan by throwing an exception that is caughtmain . O

Any C streams associated wiim , cout , etc. are flushed and closed when static objects are destroyed in the previous phage.

17.3 Language support DRAFT: 25 January 1994 Library 1%#23

This subclause describes the function signatures that are called implicitly, and the types of objectdigener-
ated implicitly, during the execution of somet@rograms. It also describes the headers that declare these

function signatures and define any related types. O
17.3.1 Headerdefines> ({lib.header.defines]
The headekdefines> defines a constant and several types used widely throughout the Stawdard C
library. Some are also defined in C headers. O
The constant is: O
const size_t NPOS = (size_t)(-1); ad
which is the largest representable value of sipe t . a
17.3.1.1 Typévoid_t lib.fvoid.t]
typedef void fvoid_t(); a

The typefvoid_t is a function type used to simplify the writing of several declarations in this clause.d

17.3.1.2 Typeptrdiff t (lib.ptrdiff.t]
typedef T ptrdiff_t; O
The typeptrdiff_t is a synonym forT, the implementation-defined signed integral type of the resulCof
subtracting two pointers. O
17.3.1.3 Typesize_t (lib.size.t]
typedef T size_t; a

The typesize_t is a synonym forT, the implementation-defined unsigned integral type of the resulfof

thesizeof operator. O
17.3.1.4 Typewint_t [lib.wint.t]
typedef T wint_t; a

The typewint t is a synonym forT, the implementation-defined integral type, unchanged by intedtal
promotions, that can hold any value of typehar t as well as at least one value that does not correspand
to the code for any member of the extended charactéPset. a

17.3.1.5 Typecapacity [lib.capacity]

typedef T capacity; a
static const capacity default_size; O
static const capacity reserve; a

The typecapacity is an enumerated type (indicated her&awwith the elements: O
— default_size , as an argument value indicates that no reserve capacity argument is present’in the
argument list; O

— reserve , as an argument value indicates that the preceding argument specifies a reserve capacity.

O
") The extra value is denoted by the ma@/&OFdefined in<wchar.h> . It is permissible foWEORo be in the range of valuesO
representable bychar_t . O

17-24 Library DRAFT: 25 January 1994 17.3.2 Headekexception>

17.3.2 Headexexception> [(lib.header.exception]
EBox 99 g

aibrary WG issue: Mats Henricson, December 31, 1993 O
O 0

OWhy is the what-part removed from this exception clags?

HBox 100 E O
[Library WG issue: Mats Henricson, December 31, 1993 O
O O

Bs the behavior of this code unspecified: g O
o) O

O invalidargument myl; 0 a
0 cout << myl.what() << endl; O M
HBox 101 El]
El_ibrary WG issue: Charles Allison, December 22, 1993 d

O

aboint 1in 17.1.5.2 says, “If an argument to a function has an invalid value (such as a value outside the
rdomain of the function or a pointer invalid for its intended use), the behavior is undefined.” Wed{have
[designed many of the member functions to throw exceptions in these cases. Is that undefined beh r?

(Box 102 El]
aibrary WG issue: Michael Vilot, November 22, 1993 d
O 0

(The real issue at stake revolves around exception specifications, not the names of exceptions thrén from
Ethe library. That's a different topic entirely.

O
gThe San Diego rewrite dropped all uses of exception specifications, but that was not (as far as | cgfl tell) a
decision the Library WG reached. They need to be retained until we make an explicit decision to Emove

[(them. =N
EBox 103 El]
CLibrary WG issue: Michael Vilot, November 22, 1993 d
0 0

UAlso, the introduction of class “reraise” should be removed. First of all, it's not needed globally] so
hould be localized where needed. Secondly, it's not needed even in your woridisigsefstate

rhe semantics of exception propagation, together with the usual rules of inheritance and virtual fyAgtions,

ralready cover the semantics you were trying to introduce. Leave this class out. If it turns out to bepigéeded,

Cve can consider a separate proposal for it. M

The headekexception> defines several types and functions related to the handling of exceptionddin a
CH program. g

17.3.2.1 Classmsg DRAFT: 25 January 1994 Library 17-25

17.3.2.1 Classmsg [lib.xmsg]

HBox 104
HJbrary WG issue: Charles Allison, January 3, 1994

O
[What is the current state ofiar * vs.string arguments to xmsg and xalloc constructors. Did we
Ctially decide that we shouldn’t use string? | notice that 17 use null-terminated strings.

P& oo

class xmsg {

public:
typedef void(*raise_handler)(xmsg&);
static raise_handler set_raise_handler(raise_handler handler_arg);
xmsg(const char* what_arg =0, const char* where_arg =0,

const char* why_arg =0);
virtual ~xmsg();
void raise();
const char* what() const;
const char* where() const;
const char* why() const;

protected:
virtual void do_raise();
xmsg(const char* what_arg , const char* where_arg ,
const char* why_arg , int copyfl),
private:
I static raise_handler handler ; exposition only
I const char* what ; exposition only
I const char* where ; exposition only
I const char* why; exposition only
I int alloced ; exposition only
2

The clasxmsg defines the base class for the types of objects thrown as exceptions by Standibrdrg

functions, and certain expressions, to report errors detected during program execution. Every excepiion

OOooooOooooooooooodgoono

ad

thrown by a function defined within the Standare Gbrary is thrown by evaluating an expression of the

form ex.raise() . The class defines a member typése _handler and maintains several kinds ofl

data. For the sake of exposition, the stored data is presented here as:]

— static raise_handler handler , points to the function called by the member functian

raise . Its initial value is a null pointer;]

— const char* what , stores a null pointer or points to mrvBs intended to briefly describe the gengl

eral nature of the exception thrown;]

— const char* where , stores a null pointer or points to 8mvBsS intended to briefly describe thed

point at which the exception is thrown;]

— const char* why, stores a null pointer or points to mnvBsS intended to briefly describe any spes

cial circumstances behind the exception;]

— int alloced |, stores a nonzero value if storage for the thmeésss has been allocated by the object

of classxmsg.]
17.3.2.1.1 Typexmsg::raise_handler [lib.xmsg::raise.handler]

typedef void(* raise_handler)(xmsg&); d

The typeraise_handler describes a pointer to a function called by the member funetise to per- O

form operations common to all objects of classg. 0

17-26 Library DRAFT: 25 January 1994 17.3.2.1.2
xmsg::set_raise_handler(raise_handler)

17.3.2.1.2xmsg::set_raise_handler(raise_handler) [lib.xmsg::set.raise.handler]
static raise_handler set_raise_handler(raise_handler handler_arg); a
Assignshandler_arg to handler and then returns the previous value storegaindler . O
17.3.2.1.3xmsg::xmsg(const char*, const char*, lib.cons.xmsg.sss]
const char®) 0
xmsg(const char* what_arg =0, const char* where_arg =0, ad
const char* why_arg =0); O
Behaves the same awisg(what_arg , where_arg , why arg,1) . O
17.3.2.1.4xmsg::~xmsg() (lib.des.xmsg]
virtual ~xmsg(); ad

Destroys an object of clagmsg. If alloced is nonzero, the function frees storage pointed twbgt , O

where , andwhy. 0
17.3.2.1.5xmsg::raise() [{lib.xmsg::raise]
void raise(); ad
If handler is nonzero, call§* handler)(*this) . The function then calldo_raise() , theneval- O
uates the expressidnrow *this . O
17.3.2.1.6xmsg::what() lib.xmsg::what]
const char* what() const; ad

If what is not a null pointer, returnghat . Otherwise, the function returns a pointer to an empls;s.m) O

17.3.2.1.7xmsg::where() [{lib.xmsg::where]

const char* where() const; ad

If where is not a null pointer, returnghere . Otherwise, the function returns a pointer to an empgg. O

17.3.2.1.8xmsg::why() ({lib.xmsg::why]
const char* why() const; ad
If why is not a null pointer, returnghy. Otherwise, the function returns a pointer to an empsg. 0
17.3.2.1.9xmsg::do_raise() (lib.xmsg::do.raise]
HBox 105 Eh
El_ibrary WG issue: Michael Vilot, November 22, 1993 =
O

gThe use of a virtuaraise() member function, instead of actually throwing exceptions, is a signifidant
departure from the intent of the language. The rationale, “to provide a central point for debugging ks,
[seems to be inappropriate overspecification. It precludes other options that would achieve the sameélgoal.

|

) an emptyNTBs is also an emptyT™mBs.

17.3.2.1.9xmsg::do_raise() DRAFT: 25 January 1994 Library 17-27

virtual void do_raise(); ad

Called by the member functioaise to perform operations common to all objects of a class derived fiom

xmsg. The default behavior is to return. O
17.3.2.1.10xmsg::xmsg(const char*, const char*, [lib.cons.xmsg.sssi]
const char*, int) O
xmsg(const char* what_arg , const char* where_arg , ad
const char* why_arg , int copyfl); O

Constructs an object of clasmsg and initializeswhat to what_arg , where to where_arg , whyto O
why _arg , andalloced to copyfl . 0

If alloced is nonzero, for each of the three stored pointersrkess that is not a null pointer the funct
tion allocates storage for thermBs, copies thenTmes to the allocated storage, and replaces the stored
pointer with a pointer to the allocated storage. Otherwise, the three pointers shall either be null poimters or

point toNTMBSS that have static lifetimes or lifetimes that exceed that of the constructed object. 0
17.3.2.2 Clasxlogic (lib.xlogic]

class xlogic : public xmsg { ad

public: ad

xlogic(const char* what_arg =0, const char* where_arg =0, ad

const char* why_arg =0); O

virtual ~xlogic(); ad

protected: ad

I virtual void do_raise(); inherited ad

2 O

The clasxlogic defines the type of objects thrown as exceptions by the implementation to report érrors

presumably detectable before the program executes, such as violations of logical preconditions. 0

17.3.2.2.1xlogic::xlogic(const char*, const char*, {lib.cons.xlogic]
const char*) O
xlogic(const char* what_arg =0, const char* where_arg =0, ad
const char* why_arg =0); ad

Constructs an object of clasgic , initializing the base class wittmsg(what arg , where_arg , O

why arg). O
17.3.2.2.2xlogic::~xlogic() [{lib.des.xlogic]
virtual ~xlogic(); ad
Destroys an object of clagkgic . O
17.3.2.2.3xlogic::do_raise() ({lib.xlogic::do.raise]
I virtual void do_raise(); inherited ad

Behaves the same assg::do_raise() . O

1

17-28 Library DRAFT: 25 January 1994 17.3.2.3 Clasgruntime

17.3.2.3 Clasgruntime (lib.xruntime]
class xruntime : public xmsg { ad
public: ad
xruntime(const char* what_arg =0, const char* where_arg =0, ad
const char* why _arg =0); ad
virtual ~xruntime(); ad
protected: ad
I virtual void do_raise(); inherited ad
xruntime(const char* what_arg , const char* where_arg ad
const char* why_arg , int copyfl); ad
2 O
The classxruntime defines the type of objects thrown as exceptions by the implementation to report
errors presumably detectable only when the program executes.]
17.3.2.3.1xruntime::xruntime(const char*, const char*, [{lib.cons.xruntime.sss]
const char*) 0
xruntime(const char* what_arg =0, const char* where_arg =0, ad
const char* why _arg =0); ad
Constructs an object of classruntime , initializing the base class withkmsg(what arg , O
where_arg , why arg). 0
17.3.2.3.2xruntime::~xruntime() ({lib.des.xruntime]
virtual ~xruntime(); ad
Destroys an object of clagsuntime . O
17.3.2.3.3xruntime::do_raise() [{lib.xruntime::do.raise]
I virtual void do_raise(); inherited ad
Behaves the same amsg::do_raise() . O
17.3.2.3.4xruntime::xruntime(const char*, const char*, [{lib.cons.xruntime.sssi]
const char*, int) 0
xruntime(const char* what_arg =0, const char* where_arg =0, ad
const char* why _arg =0, int copyfl); ad
Constructs an object of classruntime , initializing the base class withkmsg(what arg , O
where_arg , why arg, copyfl). 0
17.3.2.4 Clasbadcast ({lib.badcast]
class badcast : public xlogic { ad
public: ad
badcast(); ad
virtual ~badcast(); ad
protected: ad
I virtual void do_raise(); inherited ad
2 O

The classhadcast defines the type of objects thrown as exceptions by the implementation to report the
execution of an invalidynamic-casexpression. 0

17.3.2.4.1badcast::badcast() DRAFT: 25 January 1994 Library 17-29

17.3.2.4.1badcast::badcast() [lib.cons.badcast]
badcast(); ad

Constructs an object of clabadcast , initializing the base clasdogic with an unspecified construc-O

tor. O
17.3.2.4.2badcast::~badcast() [lib.des.badcast]
virtual ~badcast(); ad
Destroys an object of clabadcast . O
17.3.2.4.3badcast::do_raise() [{lib.badcast::do.raise]
I virtual void do_raise(); inherited ad
Behaves the same asisg::do_raise() . O
17.3.2.5 Classnvalidargument (lib.invalidargument]
class invalidargument : public xlogic { ad
public: ad
invalidargument(const char* where_arg , const char* why_arg); ad
virtual ~invalidargument(); g
protected: ad
1 virtual void do_raise(); inherited ad
2 O

The classnvalidargument defines the base class for the types of all objects thrown as exceptiors, by
functions in the Standard+-Clibrary, to report an invalid argument.

17.3.25.1 [lib.cons.invalidargument]
invalidargument::invalidargument(const char*,]
const char*)]
invalidargument(const char* where_arg =0, const char* why_arg =0); ad
Constructs an object of claswalidargument , initializing the base class wittlogic(what _arg , O
where_arg , why arg), where thesTMBS pointed to bywhat _arg is unspecified. 0
17.3.2.5.2invalidargument::~invalidargument() ({lib.des.invalidargument]
virtual ~invalidargument(); ad
Destroys an object of classalidargument . 0
17.3.2.5.3invalidargument::do_raise() (lib.invalidargument::do.raise]
1 virtual void do_raise(); inherited ad
Behaves the same amsg::do_raise() . O

17.3.2.6 Clas$engtherror [lib.lengtherror]

17-30 Library DRAFT: 25 January 1994 17.3.2.6 Claskengtherror

class lengtherror : public xlogic { ad
public: ad

lengtherror(const char* where_arg , const char* why_arg); ad

virtual ~lengtherror(); ad
protected: ad
I virtual void do_raise(); inherited ad
2 O

The clasdengtherror defines the base class for the types of all objects thrown as exceptions, byfunc-
tions in the Standard+€ library, to report an attempt to produce an object whose length equals or exteeds

NPOS 0
17.3.2.6.1lengtherror::lengtherror(const char*, (lib.cons.lengtherror]
const char*) 0
lengtherror(const char* where_arg =0, const char* why_arg =0); ad
Constructs an object of classngtherror , initializing the base class witklogic(what arg , O
where_arg , why_arg), where theaTMBS pointed to bywhat _arg is unspecified. 0
17.3.2.6.2lengtherror::~lengtherror() ({lib.des.lengtherror]
virtual ~lengtherror(); ad
Destroys an object of claEngtherror . O
17.3.2.6.3lengtherror::do_raise() lib.lengtherror::do.raise]
I virtual void do_raise(); inherited ad
Behaves the same amsg::do_raise() . O
17.3.2.7 Classutofrange [{lib.outofrange]
class outofrange : public xlogic { O
public: ad
outofrange(const char* where_arg , const char* why_arg); ad
virtual ~outofrange(); ad
protected: ad
I virtual void do_raise(); inherited ad
I3 O
The clasoutofrange defines the base class for the types of all objects thrown as exceptions, byfunc-
tions in the Standard+Elibrary, to report an out-of-range argument. O
17.3.2.7.1outofrange::outofrange(const char*, [{lib.cons.outofrange]
const char*) O
outofrange(const char* where_arg =0, const char* why_arg =0); ad
Constructs an object of clagsitofrange , initializing the base class witklogic(what arg , O
where_arg , why arg), where thesTMBS pointed to bywhat _arg is unspecified.]
17.3.2.7.2outofrange::~outofrange() [{lib.des.outofrange]

virtual ~outofrange(); ad

17.3.2.7.2 DRAFT: 25 January 1994 Library 1%#31
outofrange::~outofrange()

Destroys an object of classitofrange . O
17.3.2.7.3outofrange::do_raise() ({lib.outofrange::do.raise]
I virtual void do_raise(); inherited ad
Behaves the same amsg::do_raise() . O
17.3.2.8 Classverflow [{lib.overflow]
EBox 106 g
%ibrary WG issue: Mats Henricson, December 31, 1983 O
O 0
[Bhould we have a clagsderflow _as well???? g ™
class overflow : public xruntime { a
public: O
overflow(const char* where_arg , const char* why_arg); a
virtual ~overflow(); a
protected: a
I virtual void do_raise(); inherited a
I3 0
The clasoverflow defines the base class for the types of all objects thrown as exceptions, by funttions
in the Standard+ library, to report an arithmetic overflow. O
17.3.2.8.1overflow::overflow(const char*, const char*) [lib.cons.overflow]
overflow(const char* where_arg =0, const char* why_arg =0); a
Constructs an object of clagwerflow , initializing the base class witkruntime(what arg , O
where_arg , why _arg), where thesTMBS pointed to bywhat _arg is unspecified. a
17.3.2.8.20overflow::~overflow() [{lib.des.overflow]
virtual ~overflow(); a
Destroys an object of classerflow . ad
17.3.2.8.3overflow::do_raise() (lib.overflow::do.raise]
I virtual void do_raise(); inherited a
Behaves the same assg::do_raise() . O
17.3.2.9 Clasxdomain [{lib.xdomain]
class xdomain : public xlogic { a
public: a
xdomain(const char* what_arg =0, const char* where_arg =0, a
const char* why _arg =0); O
virtual ~xdomain(); a
protected: a
I virtual void do_raise(); inherited a
2 a

The clasxdomain defines the type of objects thrown as exceptions by the implementation to report Viola-
tions of a precondition. O

1

17-32 Library DRAFT: 25 January 1994 17.3.29.1
xdomain::xdomain(const char*, const char*, const char*)

rthat all are thrown if a function argument is invalid, i.e. precondition violation. We are not checking for

Cpreconditions in all functions, and therefore | think we should skip the xdomain class.
O

17.3.2.9.1xdomain::xdomain(const char*, const char*, [lib.cons.xdomain]
const char*) O
xdomain(const char* what_arg =0, const char* where_arg =0, a
const char* why _arg =0); a
Constructs an object of classdomain , initializing the base class witkxlogic(what arg , O
where_arg , why arg). O
17.3.2.9.2xdomain::~xdomain() [lib.des.xdomain]
virtual ~xdomain(); O
Destroys an object of clagdomain . O
17.3.2.9.3xdomain::do_raise() (lib.xdomain::do.raise]
I virtual void do_raise(); inherited a
Behaves the same amsg::do_raise() . O
17.3.2.10 Clasgrange (lib.xrange]
HBox 107 El]
El_ibrary WG issue: Mats Henricson, December 31, 1993 g
O
SNe have three classes: (o
O
O
0 invalidargument a]
U outofrange il
g xdomain ™
: EE
O

ome arguments are checked at run time, for example op[] for a string, but we have explicitly said($o. It is

(ot default to check arguments. a

O
0 also think we should rething the what, where and why char*. It is too much information to be usequ]

class xrange : public xruntime { 0
public: 0
xrange(const char* what_arg =0, const char* where_arg =0, 0

const char* why _arg =0); 0

virtual ~xrange(); 0

protected: 0
I virtual void do_raise(); inherited 0
3 O

The classrange defines the type of objects thrown as exceptions by the implementation to report Viola-
tions of a postcondition. O

17.3.2.10.1 DRAFT: 25 January 1994 Library 1433
xrange::xrange(const char*, const char*, const char*)

17.3.2.10.1xrange::xrange(const char*, const char*, [lib.cons.xrange]
const char*) O
xrange(const char* what_arg =0, const char* where_arg =0, a
const char* why _arg =0); a
Constructs an object of clasgange , initializing the base class witlkruntime(what arg , O
where_arg , why arg). O
17.3.2.10.2xrange::~xrange() [{lib.des.xrange]
virtual ~xrange(); g
Destroys an object of clagsange .]
17.3.2.10.3xrange::do_raise() ({lib.xrange::do.raise]
I virtual void do_raise(); inherited ad
Behaves the same amsg::do_raise() 0
17.3.2.11set_terminate(fvoid_t*) ({lib.set.terminate]
HBox 108 Eh
HJbrary WG issue: Mats Henricson, December 31, 1993 =
0 O
What happens if set_terminate() is passed a null pointer? The same question Lfor
ket _unexpected() En
EBox 109 E O
CLibrary WG issue: Michael Vilot, November 22, 1993 0
O O
%7.3.2.11 seterminate “The function stores newin a static objecg 0
817.3.2.12 ditto for unexpectelandler. g 0
O O
[17.3.3.2 ditto for newhandler. O N
fvoid_t* set_terminate(fvoid_t* new_p); a
Establishes a new handler for terminating exception processing. The functionrs&mrgs in a static O
object that, for the sake of exposition, can be declared as: O
fvoid_t* terminate_handler = &abort;
where the function signatuedort() is defined in<stdlib.h> . new_p shall not be a null pointer. O
The function returns the previous contentgesfninate handler . O
17.3.2.12set_unexpected(fvoid_t*) {lib.set.unexpected]
fvoid_t* set_unexpected(fvoid_t* new_p); ad

Establishes a new handler for an unexpected exception thrown by a function wiRkception- O
specification.The function storemew _p in a static object that, for the sake of exposition, can be declared
as: O

17-34 Library DRAFT: 25 January 1994 17.3.2.12
set_unexpected(fvoid_t*)

fvoid_t* unexpected_handler = &terminate; a
new_p shall not be a null pointer. O
The function returns the previous contentsieéxpected _handler . O
17.3.2.13terminate() lib.terminate]

void terminate(); ad

Called by the implementation when exception handling must be abandoned for any of several reasohs, such

as: u
— when a thrown exception has no corresponding handler; O
— when a thrown exception determines that the the execution stack is corrupted; O

— when a thrown exception calls a destructor that tries to transfer control to a calling function by thrawing
another exception. O

Using the notation of subclause 17.3.2.11, the function evaluates the expression:

(* terminate_handler)0 O

The required behavior of any function called by this expression is to terminate execution of the pridgram

without returning to the caller. The default behavior is toatadrt() , declared irstdlib.h> . O
17.3.2.14unexpected() (lib.unexpected]
EBox 110 § 0
a_ibrary WG issue: Mats Henricson, December 31, 1993 E d
Elsn’t this something that should be in chapter 15 on exception hant%ng? N
void unexpected(); a

Called by the implementation when a function witheageption-specificatiothrows an exception that is[]
not listed in theexception-specificationUsing the notation of subclause 17.3.2.12, the function evaluates
the expression: O

(* unexpected_handler)() a

The required behavior of any function called by this expression is to throw an exception or terminate Execu-
tion of the program without returning to the caller. The called function may perform any of the folloling
operations: a

— rethrow the exception;
— throw another exception;

— callterminate() ;

o o o o

— call eitherabort() or exit(int) , declared ircstdlib.h>

The default behavior is to caéirminate() . ad

17.3.3 Headexnew> DRAFT: 25 January 1994 Library 17-35

17.3.3 Headexnew> (lib.header.new]
HBox 111 B
HJbrary WG issue: Michael Vilot, November 22, 1993 I
0 O
[fThe wording has disappeared that required an implementation that uses the global vecgpierataf L[]

Chew anddelete to pick up program-supplied versions that replace them.

The headexnew> defines a type and several functions that manage the allocation of storage in a pragram,

as described in subclauses 5.3 and 12.5. O
17.3.3.1 Clasxalloc (lib.xalloc]
[Box 112 El]
aibrary WG issue: John Max Skaller, January 1, 1994 d
O O
[(>Even if | have called semew handler(0) | cannot (o
Lbbe sure to get the implementation to let new return 0 on failure. | cannot
%help but get a very uneasy feeling about how new handles failures.
O a
] have the same gut feeling. The whole interaction of memory allocation and exception handling seeiis a bit
Csuspect. &
HBox 113 E 0
HJbrary WG issue: John Max Skaller, January 1, 1994 O a
0 O
PHas anyone tried to use an xalloc class? If so, what have they sugplied a
[as arguments to the constructor? What is why, what and where? 0 a
O
O
Eéorland G+ version 4.0 has xalloc. The constructor supplied is: a
0 O
0 xalloc(const string&, sizd); g a
O
as also supplies g |
O
g size t requested()const O a
O
O
Owhich returns the amount of store requested that causes the failur&l M
HBox 114 El]
HJbrary WG issue: Mats Henricson, December 31, 1993 d
0 O

rHas anyone tried to use an xalloc class? If so, what have they supplied as arguments to the cohgtructor?
COWhat is why, what and where?

17-36 Library DRAFT: 25 January 1994 17.3.3.1 Classgalloc

class xalloc : public xruntime { ad
public: O
xalloc(const char* where_arg =0, const char* why_arg =0); O
virtual ~xalloc(); O
protected: ad
I virtual void do_raise(); inherited O
2 O
The clasxalloc defines the type of objects thrown as exceptions by the implementation to report &lfail-
ure to allocate storage. O
17.3.3.1.1xalloc::xalloc(const char*, const char*) [lib.cons.xalloc]
xalloc(const char* where_arg =0, const char* why _arg =0); a
Constructs an object of clasalloc , initializing the base class witlkruntime(_what arg , 0O
where_arg , why arg ,0) ,where theNTMBS pointed to bywhat _arg is unspecifiecf.7 O
17.3.3.1.2xalloc::~xalloc() [lib.des.xalloc]
virtual ~xalloc(); a
Destroys an object of clagalloc . ad
17.3.3.1.3xalloc::do_raise() [(lib.xalloc::do.raise]
I virtual void do_raise(); inherited a
Behaves the same amsg::do_raise() . ad
17.3.3.2set_new_handler(fvoid_t*) (lib.set.new.handler]
HBox 115 B
El_ibrary WG issue: Michael Vilot, November 22, 1993 -
O

eeping a separate subsection for the handlers in 93-0148/N0355 also served two other purposes.IFirst, it
[pave us a place to introduce a appropriate typedefs. As indicated, “the typd fwédis to be defined
Creplaced.” And actually, the use of fvoidis less precise than the use of the three handler typedefs 3-
LD148/N0355. Second, it gave us a place to describe the default implementation: the descriptigniof the
a"uew—handler in 93-0108 section 17.3.2.5 seems out of place, and artifically removed from 17.3.2.2. [1J

O
O
We should retain the wording in 93-0148/N0355, because it avoids another global name and it cor@éys the
[semantics of each handler more succinctly.

O
T Note thatwhere_arg andwhy_arg must either be null pointers or point tavess whose lifetime exceeds that of the conl
structed object. |

17.3.3.2 DRAFT: 25 January 1994 Library 1#37
set_new_handler(fvoid_t*)

EBox 116 El]
CLibrary WG issue: Michael Vilot, November 22, 1993 d
0 0

Ut took us 9 months or so to work out the wording in 93-0148/N0355 to describe “installing” handlerdnc-
ions in such a way as to get reasonably clear semantics without overly constraining a multithreded imple-

rnentation. There is no reason to discard that work lightly, although | would like to see a more cise

rdescription of “installing” and “invoking” a handler function that doesn’t involve the overspecification of

[requiring a global pointer. M
EBox 117 El]
CLibrary WG issue: Michael Vilot, November 22, 1993 d
0 0

Un particular, the following changes added in 93-0108 should be removed: 17.1.4.3 “Certain handléFfunc-
ions are determined by the values stored in pointer objects within the StamdditdaCy. Initially, these

rpointer objects designate functions defined in the StanderdiCary. Other functions, however, wh

Cexecuted at run time, permit the program to alter these stored values to point at functions defined irfhe pro-

Cgram.” [N

HBox 118 El]

El_ibrary WG issue: Michael Vilot, November 22, 1993 d
0

gThe treatment of all 3 handlers in 93-0148/N0355 was simpler and clearer. The San Diego rewrite Biounts
[fo overspecification, particularly in light of the ongoing interest in keeping this library viable in Iti-
[threaded environments.

fvoid_t* set_new_handler(fvoid_t* new_p); a
Establishes a new handler to be called by the default versiapeaftor new(size t) andoper- [
ator new[](size_t) when they cannot satisfy a request for additional storage. The function stores

new_p in a static object that, for the sake of exposition, can be cadled handler and can be declared]
as:

fvoid_t* new_handler =& new_hand; O

where, in turnnew_hand can be defined as: ad
static void new_hand () O

{ // raise xalloc exception O

static const xalloc ex("operator new"); ad

ex.raise(); O

} O

The function returns the previous contentgiefy_handler . ad

17.3.3.3 operator delete(void*) (lib.op.delete]

17-38 Library DRAFT: 25 January 1994 17.3.3.30operator delete(void*)

HBox 119
El_ibrary WG issue: Mats Henricson, December 31, 1993

O

Hs the behavior of this program unspecified?

O
O
O
O
O
: :
U T*t=new T[1]; 0
U delete t[O]; O
O 0
0}
0 O
0 think it should be legal, even though | call delete without [] on memory allocated with new WIEH 0.

OoooOono

void operator delete(void* ptr); a

Called by adelete expression to render the valuemf invalid. The program can define a functionl
with this function signature that displaces the default version defined by the Standdiora®y. The O
required behavior is to accept a valugotf that is null or that was returned by an earlier caijera- [

tor new(size_t) . a
The default behavior for a null value pfr is to do nothing. Any other value gfr shall be a value O
returned earlier by a call to the defaofterator new(size t) . "® The default behavior for such &1
non-null value ofptr is to reclaim storage allocated by the earlier call to the detmdtator a
new(size_t) . Itis unspecified under what conditions part or all of such reclaimed storage is allotated
by a subsequent call tperator new(size t) or any ofcalloc(size_t) , malloc(size_t) , O
or realloc(void*, size t) , declared ircstdlib.h> . a
17.3.3.4 operator delete[](void*) [({lib.op.delete.array]

void operator delete[](void* ptr); O

Called by adelete]] expression to render the valuegsf invalid. The program can define a functionl

with this function signature that displaces the default version defined by the Stasidhbda®y. O
The required behavior is to accept a valugotsf that is null or that was returned by an earlier call o
operator new[](size_t) . O
The default behavior for a null value pfr is to do nothing. Any other value pfr shall be a value O
returned earlier by a call to the defapiiterator new[](size_t) . " The default behavior for suchi]
a non-null value ofptr is to reclaim storage allocated by the earlier call to the defqdtator O
new[](size_t) . It is unspecified under what conditions part or all of such reclaimed storage is @llo-
cated by a subsequent call toperator new(size t) or any of calloc(size t) , O
malloc(size _t) , orrealloc(void*, size_t) , declared ircstdlib.h> . O
17.3.3.50perator new(size_t) [lib.op.new]

O
"8) The value must not have been invalidated by an intervening caflei@tor delete(size_t) , or it would be an invalid O
aggument for a Standare=dibrary function call. O
! The value must not have been invalidated by an intervening aget@tor delete[](size_t) , or it would be an invalid O

argument for a Standard~ibrary function call. O

17.3.3.5 operator new(size_t) DRAFT: 25 January 1994 Library 17-39

EBox 120 E
rLibrary WG issue: Jonathan Shopiro, January 20, 1994 0 O
O O
CMats Henricson, in c++std-lib-1629 -- 0 0
g 0
g _ o 0 -
P The September 28 version of the WP says in section 5.3.3: 0 O
> O O
Lb When the value of the first array dimension is zero, an array with nd’ O
elements is allocated. The pointer returned by the new-expression will O
7 be non-null and distinct from the pointer to any other object. 0 O
Eg 0 O
> The wording is different from what is written in ARM page 59. Maybe(the O
Lb new WP in the pre San Diego mailing will be different. I'd like to knov% O
O
7 1. Why have we chosen this behaviour? What is wrong with returning?p? O
O O
(Orhis was the outcome of a long battle/discussion. Briefly, zero was alréady O
Lused as indicating allocation failure (this decidion was taken before U O
llocation failure threw an exception) and returning a non-zero pointer g O
0 an array of no elements was seen as the most natural result. 0 O
Eg 0 O
[> 2. Is the pointer returned from new[0] different at each call to new[0],O O
O O
g/es. O O
s O
T e 5 O
Eg 0 O
(> char* cpl = new char[O]; O O
> char* cp2 = new char[0]; g 0
O
hen E O
Eg 0 O
> cpl!=cp2 O O
Box 121 El]
aibrary WG issue: Michael Vilot, November 22, 1993 d
O O

(The words in 93-0148/N0355 section 17.1.1.1, paragraph 4, were intentionally copied, in order, froridthe C
Lstandard. The Rationale statement clearly expresses our intent to pattern our description of storageJmhanage-
anent after the same words for malloc/calloc/free.

O

O
[The concept of “invalidating” is probably more appropriate wording. Let's see if we can't keep the adivan-

[fages of the wording of 93-0148/N0355 with this suggested improvement. &

HBox 122 El]

El_ibrary WG issue: Michael Vilot, November 22, 1993 d
O

gThe change to split these out and reorder them is counterproductive. By repeating the description§[Jyou've
rintroduced a lot of wordiness and potential for error. In particular, the wording about storage alloca and
[reclamation lost something in the translation.

17-40 Library DRAFT: 25 January 1994 17.3.3.50perator new(size_t)

[Box 123 E 0

aibrary WG issue: Michael Vilot, November 22, 1993 O O

O O

[The 3 paragraphs of 93-0148/N0355 section 17.1.1 should be ret8ined. M
void* operator new(size_t size); a

Called by anew expression to allocateize bytes of storage suitably aligned to represent any objectiof
that size. The program can define a function with this function signature that displaces the default ‘&rsion
defined by the Standard-Clibrary. a

The required behavior is to return a non-null pointer only if storage can be allocated as requested] Each
such allocation shall yield a pointer to storage disjoint from any other allocated storage. The order afAd con-
tiguity of storage allocated by successive callsgerator new(size_t) is unspecified. The initial O
stored value is unspecified. The returned pointer points to the start (lowest byte address) of the allbcated
storage. Ifsize is zero, the value returned shall not compare equal to any other value retuoped-by O
ator new(size_t) 80 a

The default behavior is to execute a loop. Within the loop, the function first attempts to allocaté the
requested storage. Whether the attempt involves a call to the Standard C library foradtean is O
unspecified. If the attempt is successful, the function returns a pointer to the allocated storage. Otherwise
(using the notation of subclause 17.3.3.2), néw _handler is a null pointer, the result isO
implementation—defineﬁ?) Otherwise, the function evaluates the expres¢tonew _handler)() . If O

the called function returns, the loop repeats. The loop terminates when an attempt to allocate the rédquested

storage is successful or when a called function does not return. a
The required behavior of a function called @bynew_handler)() is to perform one of the following
operations: a
— make more storage available for allocation and then return; a
— execute an expression of the foax.raise() , whereex is an object of typealloc , declared in O

<exception> ; a
— call eitherabort() or exit(int) , declared ircstdlib.h> . a

The default behavior of a function called Iy new handler)() is described by the functiond

new_hand, as shown in subclause 17.3.3.2. a
The order and contiguity of storage allocated by successive cabipei@tor new(size t) is O
unspecified, as are the initial values stored there. a
17.3.3.6 operator new[](size_t) [(lib.op.new.array]
void* operator new[](size_t size); ad

Called by anew[] expression to allocateize bytes of storage suitably aligned to represent any artay
object of that size or smalleP? The program can define a function with this function signature that dis-

places the default version defined by the Standardiliary.]
O

8Y) The value cannot legitimately compare equal to one that has been invalidated by epmthtor delete(size_t) ,since 0O
68123/ such comparison is an invalid operation.]
A common extension whemew_handler is a null pointer is fooperator new(size_t) to return a null pointer, in accor- 0
dance with many earlier implementations of.C g
82) It is not the direct responsibility @fperator new[](size_t) or operator delete[](void*) to note the repetition O
count or element size of the array. Those operations are performed elsewhere in thevaemagidelete expressions. The arrayd
new expression, may, however, increasedfr® argument tmperator new[](size_t) to obtain space to store supplemental

information.]

17.3.3.6 operator new[](size_t) DRAFT: 25 January 1994 Library 17-41

O

The required behavior is the same asofoerator new(size_t)

The default behavior is to retuoperator new(size).

O

17.3.3.7 operator new(size_t, void*) [lib.placement.op.new]

HBox 124 Elj

[Library WG issue: Anthony Scian, January 12, 1994 g

O 0
at’

here was a placement version ofr@gw [] in the original proposal 92-0093. Consider this a requestfor
ra library document fix to properly reflect the contents of the original proposal foewyj] /op delete

] .

a received some mail from one of the authors ofribe [J/delete [] extension. He claimed th

zuls:a

HBox 125 El]

[Library WG issue: Anthony Scian, January 10, 1994 d

O 0
s the lack of a placement version agerator new [] an oversight or an intended omission? This

rWill break existing code that used the placement syntax to initialize an array of classes into a spec{gdllmem-
(pry location (it just broke some code here).

0 0
Uf we have a special placemeperator new() , | think we should have a placement versioomér- 11
%itor new []() for consistency. (o
0 O
CWill this be an editorial change (assuming we vote in the current lib doc) or is there more to this is%@ than
[can see? 0
void* operator new(size_t size , void* ptr); a
Returnsptr . a
17.3.3.8 operator new[](size_t, void*) [(lib.placement.op.new.array]
void* operator new[](size_t size , void* ptr); a
Returnsptr . 0
17.3.4 Headertypeinfo> [(lib.header.typeinfo]
The headektypeinfo> defines two types associated with type information generated by the impleiden-
tation. O
17.3.4.1 Clasbadtypeid [(lib.badtypeid]
class badtypeid : public xlogic { [l
public: 0
badtypeid(); 0
virtual ~badtypeid(); 0
protected: 0
I virtual void do_raise(); inherited 0
I3

The classadtypeid defines the type of objects thrown as exceptions by the implementation to report a
null pointerp in an expression of the fortypeid (* p) . a

17-42 Library DRAFT: 25 January 1994 17.34.1.1
badtypeid::badtypeid()

17.3.4.1.1badtypeid::badtypeid() [(lib.cons.badtypeid]
badtypeid(); a

Constructs an object of clabadtypeid , initializing the base clasdogic with an unspecified con-O

structor. g
17.3.4.1.2badtypeid::~badtypeid() [{lib.des.badtypeid]
virtual ~badtypeid(); a
Destroys an object of clabadtypeid . ad
17.3.4.1.3badtypeid::do_raise() [(lib.badtypeid::do.raise]
I virtual void do_raise(); inherited a
Behaves the same asisg::do_raise() . O
17.3.4.2 Classypeinfo (lib.typeinfo]
FBox 126 g
H_ibrary WG issue: Mats Henricson, December 31, 1993 0 O
0 O
it should be explicit that the first part of the class header is private, i.e. add private Before O
0 const char *name; [/l exposition only
class typeinfo { a
public: a
virtual ~typeinfo(); a
int operator==(const typeinfo& rhs) const; a
int operator!=(const typeinfo& rhs) const; a
int before(const typeinfo& rhs); a
const char* name() const; a
private: O
I const char* name, exposition only a
I const T desc ; exposition only a
typeinfo(const typeinfo& rhs); a
typeinfo& operator=(const typeinfo& rhs); a
I3 0

The classtypeinfo describes type information generated within the program by the implementafion.
Objects of this class effectively store a pointer to a nhame for the type, and an encoded value suitable for
comparing two types for equality or collating order. The names, encoding rule, and collating sequefkte for

types are all unspecified and may differ between programs. O
For the sake of exposition, the stored objects are presented here as: O
— const char* name, points at a statigTMBS; O

— T desc , an object of a typd that has distinct values for all the distinct types in the program, stares
the value corresponding tame. O

17.3.4.2.1typeinfo::~typeinfo() DRAFT: 25 January 1994 Library 17-43

17.3.4.2.1typeinfo::~typeinfo() (lib.des.typeinfo]
virtual ~typeinfo(); ad

Destroys an object of tyggpeinfo . ad

17.3.4.2.2typeinfo::operator==(const typeinfo&) (lib.typeinfo::op==

BBox 127

g
0
%ibrary WG issue: Mats Henricson, December 31, 1993 O O
g
=

O
Cbperator==, operator!= andbefore() should returrbool .

int operator==(const typeinfo& rhs) const; O

Compares the value storeddiasc with rhs . desc. Returns a nonzero value if the two values represént

the same type. O
17.3.4.2.3typeinfo::operator!=(const typeinfo&) (lib.typeinfo::op!=]

int operator!=(const typeinfo& rhs) const; a
Returns a nonzero valuel!{fthis == rhs) . ad
17.3.4.2.4typeinfo::before(const typeinfo&) (lib.typeinfo::before]

int before(const typeinfo& rhs) const; a

Compares the value storeddasc with rhs . desc . Returns a nonzero value*this precedeshs in [

the collation order. O
17.3.4.2.5typeinfo::name() (lib.typeinfo::name]
const char* name() const; a
Returnsname. a
17.3.4.2.6typeinfo::typeinfo(const typeinfo&) [({lib.cons.typeinfo]
typeinfo(const typeinfo& rhs); a

%?nstructs an object of claggeinfo and initializesname to rhs . name and desc to rhs . desc. O

O

17.3.4.2.7typeinfo::operator=(const typeinfo&) (lib.typeinfo::op=]
typeinfo& operator=(const typeinfo& rhs); a
Assignsrhs . nameto nameandrhs . desc to desc . O
O

85) Since the copy constructor and assignment operatdygeinfo are private to the class, objects of this type cannot be copiéd,
but objects of derived classes possibly can be. O

17-44 Library DRAFT: 25 January 1994 17.4 Input/output

17.4 Input/output [lib.input/output]

HBox 128
El_ibrary WG issue: Nobuo Saito, January 17, 1994

I:II_I___L,DI:I

Hn the current library draft, there is nothing about the 1/O functions for wide characters. For Asian Hations
rlike Japan, it is crucial to be able to use the multibyte characters flexibly in all the areas like 1/0O funtiions.
(OTherefore, it is very important to prepare 1/O functions for the wide characters in the current library graft.

O

O

Hve understand that there is no decisions made at San Jose, and then we would like to know thiéllibrary
rorking group plan and the pocily to deal with this problems. ED

O
[At least, we would like to avoid to be delayed like C (included in the first ammendment). We also \@Ent to

repare the sophisticated solutions using the high functionalities in-tHar@uage(like the overloading){’
O hen, the following design policy will be reasonable.

O

] 1) Use the overloaded function names both for characters and wide
O characters.

O

g 2) Use the character base buffers in the streambuf.

O
rAnyway, we would like to know the future plan for dealing with I/O functions for wide characters, a

Cexpect to hear from Mike, Bill and Jerry, especially.

we

g OHE AP0

EBox 129 B
aibrary WG issue: Jerry Schwarz, January 3, 1994 0 a
0 O
OWe should deprecatmen mode, seek dir, andio state . O M
EBox 130 E O
aibrary WG issue: Jerry Schwarz, January 3, 1994 0 a
O O
[A. | have given a preliminary review to the latest draft. Several of! a
U the points of the critique (including some non-trivial issues) ha\% a
g not been addressed. I've attached the list of remaining issues a
below. 0 O
O
O O
O In several cases Bill has clearly tried to address the U a
g issue, but has come up with something that doesn’t work. g a
O
Eﬁ. | looked at the description of stringbuf. | found a couple of ernars. O
O O
[C. The draft doesn’t properly incorporate the "uflow" decisions. g a
O
ai). | didn't give it all a thorough review, but | did notice some "ne o a
[problems. (I don't know if these existed in the earlier draft and I a
0 missed them or whether they are the result of recent edits.) I've] a
O listed them below. 5] HN

17.4 Input/output DRAFT: 25 January 1994 Library 17-45

HBox 131
HJbrary WG issue: Mats Henricson, December 31, 1993

HEES

O
Jwas 17.3.2.1]: Is it meaningful to have the member data alloced as negative, i.e. shouldn’t itibe an
Cunsigned int ? The same guestion applys to topyfl argument to the protected constructor.

EBox 132 E |
aibrary WG issue: Jerry Schwarz, September 28, 1993 O a
O O

Qwas 17.4.1.7]: editorial concern about multiple uses of “stredm” M

This subclause describes a number of headers that together support input, output, and internal datdlconver-
sions. O

17.4.1 Headekxios> (lib.header.ios]

The Headekios> defines a type and several function signatures for controlling how to interpret text idput
from a sequence of characters and how to generate text output to a sequence of characters. O

17.4.1.1 Class$os (lib.ios]

17-46 Library DRAFT: 25 January 1994 17.4.1.1 Clas®s

class ios {
public:
class failure public: xmsg {
public:
failure(const char* where_val =0, const char* why val =0);
virtual ~failure();
protected:
I virtual void do_raise(); inherited
I3
typedef T1 fmtflags;
static const fmtflags dec;
static const fmtflags fixed;
static const fmtflags hex;
static const fmtflags internal;
static const fmtflags left;
static const fmtflags oct;
static const fmtflags right;
static const fmtflags scientific;
static const fmtflags showbase;
static const fmtflags showpoint;
static const fmtflags showpos;
static const fmtflags skipws;
static const fmtflags unitbuf;
static const fmtflags uppercase;
static const fmtflags adjustfield;
static const fmtflags basefield;
static const fmtflags floatfield;
typedef T2 iostate;
static const iostate badbit;
static const iostate eofbit;
static const iostate failbit;
static const iostate goodbit;
typedef T3 openmode;
static const openmode app;
static const openmode ate;
static const openmode binary;
static const openmode in;
static const openmode out;
static const openmode trunc;
typedef T4 seekdir;
static const seekdir beg;
static const seekdir cur;
static const seekdir end;
I typedef T5 io_state; optional
I typedef T6 open_mode; optional
I typedef T7 seek_dir; optional
class Init {
public:
Init();
~Init();
private:
I static int init_cnt exposition only
I3
ios(streambuf* sb_arg);
virtual ~ios();
operator void*() const
int operator!() const

ios& copyfmt(const ios& rhs);
ostream* tie() const;
ostream* tie(ostream* tiestr_arg);

streambuf* rdbuf() const;
streambuf* rdbuf(streambuf* sb_arg);

| O
O

e e e

17.4.1.1 Classos

DRAFT: 25 January 1994

Library 17-47

iostate rdstate() const; ad
void clear(iostate state_arg =0); O
I void clear(io_state state_arg =0); optional O
void setstate(iostate state_arg); O
1 void setstate(io_state state_arg); optional O
int good() const; O
int eof() const; O
int fail() const; O
int bad() const; ad
iostate exceptions() const; O
void exceptions(iostate except_arg); O
I void exceptions(io_state except_arg); optional O
fmtflags flags() const; ad
fmtflags flags(fmtflags fmtfl_arg); O
fmtflags setf(fmtflags fmtfl_arg); ad
fmtflags setf(fmtflags fmtfl_arg , fmtflags mask); O
void unsetf(fmtflags mask); ad
int fill() const; O
int fill(int ch); g
int precision() const; O
int precision(int prec_arg), ad
int width() const; O
int width(int wide_arg); g
static int xalloc(); O
long& iword(int index_arg); ad
void*& pword(int index_arg); O
protected: O
ios(); O
init(streambuf* sb_arg); ad

private:
I streambuf* sb; exposition only O
I ostream* tiestr exposition only O
I iostate state ; exposition only ad
I iostate except ; exposition only O
I fmtflags fmtfl ; exposition only ad
I int prec ; exposition only O
I int wide ; exposition only ad
I char fillch exposition only O
I static int index ; exposition only ad
I int* iarray exposition only O
I void** parray ; exposition only ad

2

The clasdos serves as a base class for the clastesam andostream . It defines several member]
types: 0
— aclasdailure derived fromxmsg; O
— aclasdnit ; O
— three bitmask typeémtflags , iostate , andopenmode; O
— an enumerated typseekdir O
It maintains several kinds of data: O
— a pointer to astream bufferan object of classtreambuf , that controls sources (input) and sinks
(output) of character sequences; O
— state information that reflects the integrity of the stream buffer; O

— control information that influences how to interpret (format) input sequences and how to generaté (for-
mat) output sequences; O

1

17-48 Library DRAFT: 25 January 1994 17.4.1.1 Clas®s

— additional information that is stored by the program for its private use. O
For the sake of exposition, the maintained data is presented here as: O
— streambuf* sb, points to the stream buffer; O
— ostream* tiestr , points to an output sequence thattied to (synchronized with) an input

sequence controlled by the stream buffer; O
— iostate state , holds the control state of the stream buffer; O

— iostate except , holds a mask that determines what elements shie cause exceptions to be]
thrown; O

— fmtflags fmtfl , holds format control information for both input and output; O
— int wide , specifies the field width (humber of characters) to generate on certain output conversions;

— int prec , specifies the precision (number of digits after the decimal point) to generate on certain out-

put conversions; O

— char fillch , specifies the character to use to pad (fill) an output conversion to the specifiedfield
width; O

— static int index , specifies the next available unique index for the integer or pointer arrays main-
tained for the private use of the program, initialized to an unspecified value; O

— int* jarray , points to the first element of an arbitrary-length integer array maintained for theJri-
vate use of the program; O

— void** parray , points to the first element of an arbitrary-length pointer array maintained forthe
private use of the program. O

17.4.1.1.1 Classs::failure (lib.ios::failure]

[Box 133 B

aibrary WG issue: Jerry Schwarz, September 28, 1993 0 O

O g

[was 17.4.1.8.23Library assumes that all exceptions derive from xnidg

CBox 134 E 0
aibrary WG issue: Jerry Schwarz, September 28, 1993 0 a
O 0
Owas 17.4.1.2]Library drops theos component fromos::failure . g M
class failure : public xmsg { ad
public: O
failure(const char* where_arg =0, const char* why_arg =0); ad
virtual ~failure(); ad
protected: ad
I virtual void do_raise(); inherited ad
b O

The clasdailure defines the base class for the types of all objects thrown as exceptions, by functidns in
the Standard€ library, to report errors detected during stream buffer operations. 0

1741111 DRAFT: 25 January 1994 Library 1749
ios::failure::failure(const char*, const char*)

17.4.1.1.1.1ios::failure::failure(const char*, (lib.cons.ios::failure]
const char*) O
failure(const char* where_arg =0, const char* why_arg =0); ad
Constructs an object of claskilure , initializing the base class withkmsg(what arg , O
where_arg , why arg), where thesTMBS pointed to bywhat _arg is unspecified. O
17.4.1.1.1.2ios::failure::~failure() [lib.des.ios::failure]
virtual ~failure(); ad
Destroys an object of clasilure . O
17.4.1.1.1.3ios::failure::do_raise() [{lib.ios::failure::do.raise]
I virtual void do_raise(); inherited ad
Behaves the same asisg::do_raise() . O
17.4.1.1.2 Typeos::fmtflags (lib.ios::fmtflags]
typedef T1 fmtflags; ad
The typefmtflags is a bitmask type (indicated here & with the elements: 0
— dec, set to convert integer input or to generate integer output in decimal base; 0
— fixed , setto generate floating-point output in fixed-point notation; 0
— hex, set to convert integer input or to generate integer output in hexadecimal base; 0
— internal , set to add fill characters at a designated internal point in certain generated output; 0O
— left , setto add fill characters on the left (initial positions) of certain generated output; 0
— oct , set to convert integer input or to generate integer output in octal base; 0
— right , set to add fill characters on the right (final positions) of certain generated output; 0
— scientific , Set to generate floating-point output in scientific notation; 0
— showbase , set to generate a prefix indicating the numeric base of generated integer output; 0
— showpoint , set to generate a decimal-point character unconditionally in generated floating-pointiout-
put; O
— showpos , set to generate+asign in non-negative generated numeric output; 0
— skipws , set to skip leading white space before certain input operations; 0
— unitbuf , set to flush output after each output operation; 0

— uppercase , set to replace certain lowercase letters with their uppercase equivalents in generated out-
put. O

Typefmtflags also defines the constants:
— adjustfield , the valudeft | right | internal ;

— basefield , the valualec | oct | hex ;

O o o o

— floatfield , the valuescientific | fixed

17-50 Library DRAFT: 25 January 1994 17.4.1.1.3 Typéos::iostate

17.4.1.1.3 Typeos::iostate (lib.ios::iostate]
typedef T2 iostate; ad
The typeiostate is a bitmask type (indicated here B8 with the elements: O
— badbit , set to indicate a loss of integrity in an input or output sequence (such as an irrecoverabie read
error from a file); O
— eofbit , set to indicate that an input operation reached the end of an input sequence; O
— failbit , Set to indicate that an input operation failed to read the expected characters, or that arCoutput
operation failed to generate the desired characters. 0
Typeiostate also defines the constant: O
— goodbit , the value zero. 0
17.4.1.1.4 Typeos:.openmode [lib.ios::openmode]
FBox 135 g
HJbrary WG issue: Jerry Schwarz, January 3, 1994 0 a
0]
0 O
O [was 17.4.1.4ppenmode’s are used in contexts that have nothing to do \@th a
g files (or open for that matter). The name is obviously a mis- 0 ad
g nomer (as are many of the names in iostreams). 0 a
0]
0 O
[Not fixed. g ™
EBox 136 E 0
%ibrary WG issue: Jerry Schwarz, September 28, 1993 ad
O 0
[Jwas 17.4.1.4]lopenmode is a misnomer. g ™
typedef T3 openmode; a
The typeopenmode is a bitmask type (indicated here &) with the elements: O
— app, set to seek to end-of-file before each write to the file; O
— ate , set to open a file and seek to end-of-file immediately after opening the file; O
— binary , set to perform input and output in binary mode (as opposed to text mode); O
— in , set to open a file for input; O
— out , set to open a file for output; O
— trunc , setto truncate an existing file when opening it. O

17.4.1.1.5 Typeos::seekdir DRAFT: 25 January 1994 Library 17-51

17.4.1.1.5 Typeos::seekdir [(lib.ios::seekdir]
typedef T4 seekdir; a
The typeseekdir is an enumerated type (indicated herddswith the elements: ad
— beg, to request a seek (positioning for subsequent input or output within a sequence) relativelio the
beginning of the stream; a
— cur , to request a seek relative to the current position within the sequence; a
— end, to request a seek relative to the current end of the sequence. a
17.4.1.1.6 Typeos:io_state [(lib.ios::io.state]
I typedef T5 io_state; optional 0

The typeio_state is a synonym for an integer type (indicated her&Zsthat permits certain membei]

functions to overload others on parameters of tgpeate and provide the same behavior. O
17.4.1.1.7 Typeos::open_mode [(lib.ios::open.mode]
I typedef T6 open_mode; optional a

The typeopen_mode is a synonym for an integer type (indicated her&@@sthat permits certain membei]

functions to overload others on parameters of ggEnmode and provide the same behavior. O
17.4.1.1.8 Typeaos::seek_dir (lib.ios::seek.dir]
I typedef T7 seek_dir; optional a

The typeseek_dir is a synonym for an integer type (indicated her& @sthat permits certain membei]

functions to overload others on parameters of igpete and provide the same behavior. O
17.4.1.1.9 Clasgs::Init (lib.ios::init]
class Init { 0
public: 0
Init(); U
~Init(); 0
private:
I static int init_cnt exposition only O
I3

The classinit describes an object whose construction ensures the construction of the four dbjects
declared irciostream> that associate file stream buffers with the standard C streams provided for iy the
functions declared imstdio.h> . For the sake of exposition, the maintained data is presented here &s:

— static int init_cnt , counts the number of constructor and destructor calls forlcliass, ini- [0
tialized to zero. O
17.4.1.1.9.1ios::Init:Init() (lib.cons.ios::init]
Init(); a
Constructs an object of classt . If init_cnt is zero, the function stores the value onfnihcnt , O

then constructs and initializes the four objecits (17.4.9.1),cout (17.4.9.2),cerr (17.4.9.3), and O
clog (17.4.9.4). In any case, the function then adds one to the value stotgdant . g

17-52 Library DRAFT: 25 January 1994 17.4.1.1.9.2i0s::Init::~Init()

17.4.1.1.9.2ios::Init::~Init() (lib.des.ios::init]
~Init(); a
Destroys an object of classit . The function subtracts one from the value storeincnt and, if O
the resulting stored value is one, calisit.flush() , cerr.flush() , andclog.flush() . a
17.4.1.1.10io0s::ios(streambuf*) [({lib.cons.ios.sb]
ios(streambuf* sb_arg); a

Constructs an object of clasi®s , assigning initial values to its member objects by callifg

init(sb arg). O
17.4.1.1.11ios::~ios() (lib.des.ios]
virtual ~ios(); a
Destroys an object of clagss . ad
17.4.1.1.12io0s::0operator void*() [(lib.ios::operator.void*]
operator void*() const a
Returns a non-null pointer (whose value is otherwise unspecifidd)lbit | badbit is set in O
state . g
17.4.1.1.13ios::operator!() [(lib.ios::operator!]
int operator!() const a
Returns a nonzero valuef#ilbit | badbit is set instate . O
17.4.1.1.14ios::copyfmt(const ios&) [(lib.ios::copyfmt]
ios& copyfmt(const ios& rhs); a

Assigns to the member objects*tifis the corresponding member objectsfo , except that:
— sb andstate are left unchanged;

— except is altered last by callingxception(rhs.except).

If any newly stored pointer values itthis point at objects stored outside the objets , and those O
objects are destroyed whehs is destroyed, the newly stored pointer values are altered to point at nEwly

constructed copies of the objects. O

The function returnsthis . ad

17.4.1.1.15io0s::tie() (lib.ios::tie]
ostream* tie() const; a

Returnstiestr . 0

17.4.1.1.16ios::tie(ostream*) DRAFT: 25 January 1994 Library 17-53

17.4.1.1.16i0s::tie(ostream*) [lib.ios::tie.os]

ostream* tie(ostream* tiestr_arg);
Assignstiestr_arg to tiestr ~ and then returns the previous value storefiestr

17.4.1.1.17ios::rdbuf() [lib.ios::rdbuf]

streambuf* rdbuf() const;
Returnssb.

17.4.1.1.18ios::rdbuf(streambuf*) [lib.ios::rdbuf.sb]

streambuf* rdbuf(streambuf* sb_arg);
Assignssb_arg to sb, then callslear() . The function returns the previous value storesbin

17.4.1.1.19io0s::rdstate() [(lib.ios::rdstate]

iostate rdstate() const;

Returnsstate
17.4.1.1.20ios::clear(iostate) [lib.ios::clear.ios]
EBox 137 O
aibrary WG issue: Jerry Schwarz, September 28, 1993 E
Efwas 17.4.1.2]: the base bitdec, oct, hex) affect output too.%
[Box 138 0
aibrary WG issue: Jerry Schwarz, September 28, 1993 B
Swas 17.4.1.2]Library addsxmsg arguments t@os::clear andios::setstate . E
void clear(iostate state_arg =0);

Assignsstate_arg to state . If sb is a null pointer, the function then sdtadbit in state . If

state & except is zero, the function returns. Otherwise, the function dalls .raise() for an

objectfail of classfailure , constructed with argument values that are implementation-defined.

17.4.1.1.21ios::clear(io_state) [(lib.ios::clear.ios.old]
I void clear(io_state state_arg =0); optional

Callsclear((iostate) State_arg).

17.4.1.1.22i0s::setstate(iostate) [(lib.ios::setstate.ios]
void setstate(iostate state_arg);

Callsclear(state | state arg).

OooOo

17-54 Library DRAFT: 25 January 1994

17.4.1.1.23ios::setstate(io_state)

I void setstate(io_state State_arg),
Callsclear((iostate)(state | state_arg)) .

17.4.1.1.24ios::good()

int good() const;
Returns a nonzero valuesfate is zero.

17.4.1.1.25i0s::e0f()

int eof() const;
Returns a nonzero valuegbfbit is set instate

17.4.1.1.26ios::fail()

17.4.1.1.23

ios::setstate(io_state)

[(lib.ios::setstate.ios.old]

optional

[(lib.ios::good]

(lib.ios::eof]

(lib.ios::fail]

BBox 139

a_ibrary WG issue: Jerry Schwarz, September 28, 1993
O

g
U
g
g

(Jwas 17.4.1.8.13lLibrary should sefailbit when the input can’t be represented in the objgkt.

int fail() const;
Returns a nonzero valuefdilbit is set instate

17.4.1.1.27ios::bad()

int bad() const;
Returns a nonzero valuebdbit is set instate

17.4.1.1.28ios::exceptions()

iostate exceptions() const;
Returnsexcept .

17.4.1.1.29i0s::exceptions(iostate)

void exceptions(iostate except_arg);
Assignsexcept_arg to except ,then calllear(state).

17.4.1.1.30ios::exceptions(io_state)

I void exceptions(io_state except_arg);

Callsexceptions((iostate) except_arg).

(lib.ios::bad]

[(lib.ios::exceptions]

[(lib.ios::exceptions.ios]

[(lib.ios::exceptions.ios.old]

optional

17.4.1.1.31ios::flags() DRAFT: 25 January 1994 Library 17-55

17.4.1.1.31ios::flags() (lib.ios::flags]
fmtflags flags() const; a
Returnsfmtfl . O
17.4.1.1.32ios::flags(fmtflags) (lib.ios::flags.f]
fmtflags flags(fmtflags fmtfl_arg); a
Assignsfmtfl_arg to fmtfl and then returns the previous value storeftitfl . ad
17.4.1.1.33ios::setf(fmtflags) (lib.ios::setf.f]
fmtflags setf(fmtflags fmtfl_arg); O
Setsfmtfl_arg in fmtfl and then returns the previous value storefditfl . ad
17.4.1.1.34ios::setf(fmtflags, fmtflags) (lib.ios::setf.ff]
fmtflags setf(fmtflags fmtfl_arg , fmtflags mask); a

Clearsmask in fmtfl , setsfmtfl_arg & maskin fmtfl | and then returns the previous value storét

in fmtfl . O
17.4.1.1.35i0s::unsetf(fmtflags) (lib.ios::unsetf]

void unsetf(fmtflags mask); a
Clearsmaskin fmtfl . O
17.4.1.1.36ios::fill() (lib.ios::fill]

int fill() const; g
Returnsfill . O
17.4.1.1.37ios::fill(int) lib.ios::fill.i]

int fill(int fillch_arg); O
Assignsfillch_arg tofillch and then returns the previous value storefdfah . ad
17.4.1.1.38ios::precision() (lib.ios::precision]

int precision() const; a
Returnsprec . a
17.4.1.1.39ios::precision(int) (lib.ios::precision.i]

int precision(int prec_arg), a

Assignsprec_arg to prec and then returns the previous value storegret . ad

17-56 Library DRAFT: 25 January 1994 17.4.1.1.40i0s::width()

17.4.1.1.40ios::width() [lib.ios::width]

int width() const; a
Returnswide . O
17.4.1.1.4%ios::width(int) (lib.ios::width.i]

int width(int wide_arg); a
Assignswide_arg to wide and then returns the previous value storegioe . ad
17.4.1.1.42ios::xalloc() (lib.ios::xalloc]
EBox 140 B 0
H_ibrary WG issue: Jerry Schwarz, September 28, 1993 O a
O O
(Qwas 17.4.1.1.34]: is it clear thaalloc doesn’t have to start at zeré? ™

static int xalloc(); O
Returnsindex ++. O
17.4.1.1.43ios::iword(int) (lib.ios::iword]

long& iword(int idx); a

If iarray is a null pointer, allocates an arrayinf of unspecified size and stores a pointer to its first
element iniarray . The function then extends the array pointed aabyy as necessary to include thél
elementiarray [idx]. Each newly allocated element of the array is initialized to zero. The funciion

returnsiarray [idx]. After a subsequent call tvord(int) for the same object, the earlier returfl

value may no longer be vaffd O

17.4.1.1.44ios::pword(int) (lib.ios::pword]
void* & pword(int idx); a

If parray is a null pointer, allocates an array of pointersa@ of unspecified size and stores a pointér
to its first element iparray . The function then extends the array pointed gbdryay as necessary told
include the elemenparray [idx]. Each newly allocated element of the array is initialized to a riull
pointer. The function returngarray [idx]. After a subsequent call foword(int) for the same O

object, the earlier return value may no longer be valid. a

17.4.1.1.45i0s::i0s() [lib.cons.ios]

EBox 141 B 0

%ibrary WG issue: Jerry Schwarz, September 28, 1993 0 a

O O

[was 17.4.1.2]: default addeditus::ios(streambuf * = 0) . B ™
ios(); a

0

8%) An implementation is free to implement both the integer array pointediatiay and the pointer array pointed at bgrray O
as sparse data structures, possibly with a one-element cache for each.

17.4.1.1.45i0s::i0s() DRAFT: 25 January 1994 Library 17-57

Constructs an object of cla®gs , assigning initial values to its member objects by calhiit¢0)

17.4.1.1.46i0s::init(streambuf*) [(lib.ios::init.sb]
init(streambuf* sb_arg);

Assigns:

— sb_arg tosb;

— anull pointer tatiestr

— zero tostate if sb_arg is not a null pointer, otherwidmdbit to state ;
— zero toexcept ;

— skipws | dec to fmtfl ;

— zero towide ;

— 6 toprec ;

— the space characterfiich ;

— anull pointer tqarray ;

— anull pointer tqparray .

17.4.1.2dec(ios&) [(lib.dec]
ios& dec(ios& str);

Callsstr .setf(ios::dec, ios::basefield) and then returnstr &%

17.4.1.3fixed(ios&) (lib.fixed]
ios& fixed(ios& str);

Callsstr .setf(ios::fixed, ios::floatfield) and then returnstr .

17.4.1.4hex(ios&) (lib.hex]
i0s& hex(ios& str);

Callsstr .setf(ios::hex, ios::basefield) and then returnstr .

17.4.1.5internal(ios&) [lib.internal]
ios& internal(ios& str);

Callsstr .setf(ios::internal, ios::adjustfield) and then returnstr .

17.4.1.6left(ios&) (lib.left]
i0s& left(ios& str);

Callsstr .setf(ios::left, ios::adjustfield) and then returnstr .

85) The function signaturdec(ios&) can be called by the function signatostream& stream::operator<<(ostream&
(*)(ostream&)) to permit expressions of the forwout << dec to change the format flags storeccout .

O

O

O o oo0oo0oo0ooooo o

17-58 Library DRAFT: 25 January 1994 17.4.1.7noshowbase(ios&)

17.4.1.7 noshowbase(ios&) [lib.noshowbase]

ios& noshowbase(ios& Str);
Callsstr .unsetf(ios::showbase) and then returnstr .

17.4.1.8 noshowpoint(ios&) [({lib.noshowpoint]

ios& noshowpoint(ios& str);
Callsstr .unsetf(ios::showpoint) and then returnstr .

17.4.1.9 noshowpos(ios&) [({lib.noshowpos]

i0s& noshowpos(ios& str);
Callsstr .unsetf(ios::showpos) and then returnstr .

17.4.1.10noskipws(ios&) (lib.noskipws]

i0s& noskipws(ios& str);
Callsstr .unsetf(ios::skipws) and then returnstr .

17.4.1.11nouppercase(ios&) [lib.nouppercase]

i0s& nouppercase(ios& str);
Callsstr .unsetf(ios::uppercase) and then returnstr .

17.4.1.120ct(ios&) (lib.oct]

i0s& oct(ios& str);
Callsstr .setf(ios::oct, ios::basefield) and then returnstr .

17.4.1.13right(ios&) (lib.right]
i0s& right(ios& str);

Callsstr .setf(ios::right, ios::adjustfield) and then returnstr .

17.4.1.14scientific(ios&) [(lib.scientific]

ios& scientific(ios& str);
Callsstr .setf(ios::scientific, ios::floatfield) and then returnstr .

17.4.1.15showbase(ios&) (lib.showbase]

ios& showbase(ios& str);
Callsstr .setf(ios::showbase) and then returnstr .

17.4.1.16showpoint(ios&) lib.showpoint]

ios& showpoint(ios& str);

Callsstr .setf(ios::showpoint) and then returnstr .

17.4.1.17 showpos(ios&) DRAFT: 25 January 1994 Library 17-59

17.4.1.17 showpos(ios&) [(lib.showpos]
i0s& showpos(ios& str); a
Callsstr .setf(ios::showpos) and then returnstr . ad
17.4.1.18skipws(ios&) [lib.skipws]
ios& skipws(ios& str); a
Callsstr .setf(ios::skipws) and then returnstr . ad
17.4.1.19uppercase(ios&) (lib.uppercase]
i0s& uppercase(ios& str); a
Callsstr .setf(ios::uppercase) and then returnstr . ad
17.4.2 Headerxstreambuf> (lib.header.streambuf]
The headexstreambuf> defines a macro and three types that control input from and output to chardcter
sequences. O
The macro is: O

— EOF, which expands to a negative integral constant expression, representable i typeat is [0
returned by several functions to indicate end-of-file (no more input from an input sequence or nalmore

output permitted to an output sequence), or to indicate an invalid returrt¥alue. O
17.4.2.1 Typestreamoff (lib.streamoff]
EBox 142 0 0O
a_ibrary WG issue: Jerry Schwarz, September 28, 1993 B a
Efwas 17.4.1.6.2]: the reference tetfeamoff that represents the positionfin” doesn’t make senselg N

typedef T1 streamoff, a

The typestreamoff is a synonym for one of the signed basic integral tyfffesrhose representation hagl

at least as many bits as typag . It is used to represent: O
— a signed displacement, measured in bytes, from a specified position within a sequence; O
— an absolute position within a sequence, not necessarily measured in uniform units. O
In the second case, the valigreamoff)(-1) indicates an invalid position, or a position that cannat
be represented as a value of tgpreamoff . O
17.4.2.2 Classtreampos (lib.streampos]

8%) This macro is also defined, with the same value and meaniggtdin.h>

17-60 Library DRAFT: 25 January 1994 17.4.2.2 Classtreampos

HBox 143
El_ibrary WG issue: Jerry Schwarz, January 3, 1994

Swas 17.4.1.6.2]:

Bill has a lot more experience withos_t than | do, but the

reference tostreamoff that represents the positionfin"

doesn’t make sense to me. | thought fhas_t ’s could be

magic cookies. What is important is the identity
long(streampos(n)) ==

Is it really possible in general to add an offset tdpas_t

without having a file to which it is attached?

Even if it is possible to do this arithmetic fipos_t , itisn't
necessarily the case for arbitratyeambuf ’s. In particular it
isn't possible for thenbstreambuf class proposed in x3j16/93-
0125.

Oooooooooooogooog

gThe immediate problem is solved, but there is still a lot of discussion of adding offfats tb 's. This
[isn’t an operation that the C standard allows, and | think it is a mistake to go beyond the C stand
0’m not sure of the operational consequence of what Bill is doing.

here.

e el L el s e e o

EBox 144 El]
rLibrary WG issue: Jerry Schwarz, January 3, 1994 d
O O
awas 17.4.1.6] streampos:This is a substantial change from rev 7. El]
O

0 | think what Rev 7 is trying to say is more like a]
0 class streampos { d
O O
g union { fpos_t fp; long n; }; (o
g friend class filebuf ; // so it can get at fp

0 public:

0 streampos(long i) {n=1i; } d
O operator long() { return n; } ™
= % iy
O O
gThe draft usesstreamoff where | havelong . | don't think there is a guarantee tf%ﬁﬂ
rsizeof(streamoff) is at leastsizeof(long) so there is a problem. (E.gtringbuf stores {1
[kize t 'sin streampos 's) M

In this subclause, the type narfp@s_t is a synonym for the tygpos_t defined in<stdio.h> . g

17.4.2.2 Classtreampos DRAFT: 25 January 1994 Library 17-61

class streampos { a
public: a
streampos(streamoff off =0); a
streamoff offset() const; a
streamoff operator-(streampos& rhs); a
streampos& operator+=(streamoff off); a
streampos& operator-=(streamoff off); a
streampos operator+(streamoff off); a
streampos operator-(streamoff off); a
int operator==(streampos& rhs) const; a
int operator!=(streampos& rhs) const; a
private: a
I streamoff pos; exposition only a
1 foos tfp exposition only a
J5 0

The classstreampos describes an object that can store all the information necessary to restore amlarbi-
trary sequence, controlled by the Standatdét library, to a previoustream positionand conversion [

state®”) For the sake of exposition, the data it stores is presented here as: O
— streamoff ~ pos, specifies the absolute position within the sequence; O
— fpos tfp , specifies the stream position and conversion state in the implementation-dependeniil form
required by functions declared<stdio.h> . O
It is unspecified how these two member objects combine to represent a stream position. O
17.4.2.2.1streampos::streampos(streamoff) [(lib.cons.streampos]
EBox 145 E O
a_ibrary WG issue: Jerry Schwarz, September 28, 1993 0 a
O O
[Jwas 17.4.1.6.1]streampos::streampos talks about conversion states for multibyke. ™
streampos(streamoff off =0); a

Constructs an object of clasgeampos , initializing pos to zero andfp to the stream position at thel
beginning of the sequence, with the conversion state at the beginning of a new multibyte sequencé in the

initial shift state®® The constructor then evaluates the expresghog += pos. O
17.4.2.2.2streampos::offset() [(lib.streampos::offset]
streamoff offset() const; a

Determines the value of tymereamoff that represents the stream position storgabism andfp , if pos- 0

sible, and returns that value. Otherwise, the function re{atreamoff)(-1) . For a sequence requir{]
ing a conversion state, even a representable value oftyggamoff may not supply sufficient informa-0O
tion to restore the stored stream position. a

8/) The conversion state is used for sequences that translate between wide-character and generalized multibyte encoding, agldescribed
in Amendment 1 to the C Standard.
The next character to read or write is the first character in the sequence. O

17-62 Library DRAFT: 25 January 1994 17.4.2.2.3
streampos::operator-(streamposé&)

17.4.2.2.3streampos::operator-(streampos&) [lib.streampos::op-.sp]

streamoff operator-(streampos& rhs); ad

Determines the value of typstreamoff that represents the difference in stream positions betwEen
*this andrhs , if possible, and returns that value. *fhiis is a stream position nearer the beginning of

the sequence thaihis , the difference is negative.) Otherwise, the function ret(gtneamoff)(-1) . O
For a sequence that does not represent stream positions in uniform units, even a representable value may
not be meaningful. a
17.4.2.2.4streampos::operator+=(streamoff) [(lib.streampos::op+=]
EBox 146 g 0
%ibrary WG issue: Jerry Schwarz, January 3, 1994 OO
0 [l
[At any rate, the wording needs to be clarified. E.g. 0o
U streamposé& streampos::operator+=(streamposé& rhs) E a
Uadds off to the stream offset storedpios andfp , if possible, 0o
rjand replaces the stored value. Otherwise ... OO
O 0

[The problem is that this wording seems to say that if you can’t add the offset to fp you take the othEnise.

streampos& operator+=(streamoff off); a

Adds off to the stream position stored s andfp , if possible, and replaces the stored values. Othar-
wise, the function stores an invalid stream positiopds andfp . For a sequence that does not represént
stream positions in uniform units, the resulting stream position may not be meaningful. The fufktion

returns*this . O
17.4.2.2.5streampos::operator-=(streamoff) [(lib.streamos::op-=]
streampos& operator-=(streamoff off); a

Subtractsoff from the stream position stored fros and fp , if possible, and replaces the stored valug.
Otherwise, the function stores an invalid stream positiggosrandfp . For a sequence that does not rept
resent stream positions in uniform units, the resulting stream position may not be meaningful. The flhction

returns*this . O
17.4.2.2.6streampos::operator+(streamoff) (lib.streampos::op+]

streampos operator+(streamoff off); a
Returnsstreampos(*this) += off . O
17.4.2.2.7streampos::operator-(streamoff) [lib.streampos::op-.off]

streampos operator-(streamoff off); a
Returnsstreampos(*this) -= off . ad
17.4.2.2.8streampos::operator==(streampos&) [({lib.streampos::op==

int operator==(streampos& rhs) const; a

Compares the stream position storedtiis to the stream position storedsihs , and returns a nonzerd]
value if the two correspond to the same position within a file or if both store an invalid stream positiofl

17.4.2.2.9 DRAFT: 25 January 1994 Library 1763
operator!=(streampos&)

17.4.2.2.90perator!=(streampos&) (lib.op!=.streampos]

int operator!=(streampos& rhs) const; a
Returns a nonzero value!{fthis == rhs). ad
17.4.2.3 Classtreambuf (lib.streambuf]
%ox 147 ED
[Library WG issue: Jerry Schwarz, January 3, 1994 n
O O

ev 7 also contained an explicit statement that except where explicitly noted none of the istream rd@mbers
reall pbackfail, seekoff, or seekpos . This is an important constraint.
O 0
The draft now says “All input characters are obtained or extracted by calls to the function sigpatures
E*sb.sbumpC(), sb.sgetc(), sputbacke()

the vir-
om

EPerhaps that sentence is intended to address this issue, but it doesn’t. Note that what is important
[fuals that might be called, not the non-virtuals. And note that Rev 7 explicitly prohibit pbackfai
[being called. That was deliberate.

HZ# 28

FBox 148
HJbrary WG issue: Jerry Schwarz, January 3, 1994

HEEE

E[was 17.4.1.8.]: Rev 7 defined a bunch of terms like “extracting a character.” | can't find the equiMalent
Chere. In specifying members of istrednyrary use phrases like “characters are read .. until end-of-fier’
Lyithout ever defining them (at least as far as | can find.) In particular Rev 7’s definitions specifiegihat
Epappens when a virtual throws an exception, and | can't find thabrary. n

0

]
Orhis is still not fixed. As far as | can determine, the draft doesn’t say what happens when a virtualdhrows
Can exception.

HBox 149 ED

ELibrary WG issue: Jerry Schwarz, January 3, 1994 n
0
Ny

Swas 17.4.1.7] streambuf: This is only an editorial point, but | think it is importabtary says “stream
[classes whose object each control two character sequences or streams”. It then uses “strea Imost
Cexclusively in the sequel. 1 think this is wrong. We already have two notions of “stream” in the standard.
Urhe one we inherited from the C discussion of files, and the classes istream and ostream. Especiglly since
ibrary generally expands the class names (e.g. it refers to “stream buffers” where | would have Mititten
rstreambuf) there is bound to be confusion

and istream associated with the streambuf.
| prefer using “sequence” instead of “stream”.

ooooo

]
The more | look at this, the less | like this method of describing streambuf's. My point about the Hise of

O‘stream’ has not been addressed.

Hg PP

17-64 Library DRAFT: 25 January 1994 17.4.2.3 Classtreambuf

class streambuf {

public:
virtual ~streambuf();
streampos pubseekoff(streamoff off , ios::seekdir way,
ios::openmode which =ios::in | ios::out);
I streampos pubseekoff(streamoff off ,ios::seek_dir way,
I ios::open_mode which =ios:in | ios::out);
streampos pubseekpos(streampos sp,
ios::openmode which =ios::in | ios::out);
I streampos pubseekpos(streampos sp,
I ios::open_mode which =ios:in | ios::out);
streambuf* pubsetbuf(char* s, int ny;
int pubsync();
int sbumpc();
int sgetc();
int sgetn(char* s, int n;
int snetxc();
int sputbackc(char c);
int sungetc();
int sputc(int c);
int sputn(const char* s, int ny;
protected:
streambuf();
char* eback() const;
char* gptr() const;
char* egptr() const;
void gbump(int ny;
void setg(char* gbeg_arg , char* gnext_arg , char* gend_arg);
char* pbase() const;
char* pptr() const;
char* epptr() const;
void pbump(int n;
void setp(char* pbeg_arg , char* pend_arg);
virtual int overflow(int ¢ =EOF);
virtual int pbackfail(int ¢ = EOF);
virtual int underflow();
virtual int uflow();
virtual int xsgetn(char* s, int ny;
virtual int xsputn(const char* s, int ny;
virtual streampos seekoff(streamoff off ,ios::seekdir
ios::openmode which =ios::in | ios::out);
virtual streampos seekpos(streampos sp,
ios::openmode which =ios::in | ios::out);
virtual streambuf* setbuf(char* s, int n;
virtual int sync();
private:
I char* gbeg; exposition only
I char* gnext ; exposition only
I char* gend; exposition only
I char* pbeg; exposition only
I char* pnext ; exposition only
I char* pend; exposition only
I3

The classstreambuf serves as an abstract base class for deriving vastoeem buffersvhose objects

each control two character sequences:
— a (single-byte) character input sequence;

— a (single-byte) character output sequence.

e Y

O O oo

17.4.2.3 Classtreambuf DRAFT: 25 January 1994 Library 17-65

Stream buffers can impose various constraints on the sequences they control. Some constraints ardZ]

— The controlled input sequence can be not readable. O

— The controlled output sequence can be not writable. O

— The controlled sequences can be associated with the contents of other representations for dharacter
sequences, such as external files. O

— The controlled sequences can support operatimastly to or from associated sequences. g

— The controlled sequences can impose limitations on how the program can read characters from a
sequence, write characters to a sequence, put characters back into an input sequence, or alter the stream
position. O

Each sequence is characterized by three pointers which, if non-null, all point into the same array [@bject.
The array object represents, at any moment, a (sub)sequence of characters from the sequence. Qperations
performed on a sequence alter the values stored in these pointers, perform reads and writes diredily to or
from associated sequences, and alter the stream position and conversion state as needed to maintain this

subsequence relationship. The three pointers are: O

— thebeginning pointeror lowest element address in the array (catleely here); O

— the next pointer,or next element address that is a current candidate for reading or writing (called
xnext here); O

— theend pointerpr first element address beyond the end of the array (cadied here). g

The following semantic constraints shall always apply for any set of three pointers for a sequence, using the
pointer names given immediately above: O

— If xnext is not a null pointer, therbeg andxend shall also be non-null pointers into the same array,
as described above. O

— If xnext is not a null pointer angnext < xend for an output sequence, therwate positionis [
available. In this casé,xnext shall be assignable as the next element to write (to put, or to stdre a
character value, into the sequence). O

— If xnext is not a null pointer angbeg < xnext for an input sequence, therpatback positioris [
available. In this caseqnext [-1] shall have a defined value and is the next (preceding) element to
store a character that is put back into the input sequence. O

— If xnext is not a null pointer ananext < xend for an input sequence, thenr@ad positionis [
available. In this caséxnext shall have a defined value and is the next element to read (to get, @r to
obtain a character value, from the sequence). O

For the sake of exposition, the maintained data is presented here as:
— char* gbeg, the beginning pointer for the input sequence;

— char* gnext , the next pointer for the input sequence;

— char* gend, the end pointer for the input sequence;

— char* pbeg, the beginning pointer for the output sequence;

— char* pnext , the next pointer for the output sequence;

O 0o o ooo o

— char* pend, the end pointer for the output sequence.

17-66 Library DRAFT: 25 January 1994 17.4.23.1
streambuf::~streambuf()

17.4.2.3.1streambuf::~streambuf() [(lib.des.streambuf]
virtual ~streambuf(); a
Destroys an object of clastreambuf . ad
17.4.2.3.2streambuf::pubseekoff(streamoff, [lib.streambuf::pubseekoff]
ios::seekdir, ios::openmode) a
streampos pubseekoff(streamoff off , ios::seekdir way, a
ios::openmode which =ios:in | ios::out); O
Returnsseekoff(off , way, which). ad
17.4.2.3.3streambuf::pubseekoff(streamoff, [(lib.streambuf::pubseekoff.old]
ios::seek_dir, ios::open_mode) O
I streampos pubseekoff(streamoff off ,ios::seek_dir way, a
I ios::open_mode which =ios:in | ios::out); optional a
Returnspubseekoff(off , (ios::seekdir) way, (ios::openmode) which) . ad
17.4.2.3.4streambuf::pubseekpos(streampos, [(lib.streambuf::pubseekpos]
ios::openmode) O
streampos pubseekpos(streampos sp, a
ios::openmode which =ios:in | ios::out); O
Returnsseekpos(sp, which). O
17.4.2.3.5streambuf::pubseekpos(streampos, [(lib.streambuf::pubseekpos.old]
ios::open_mode) O
I streampos pubseekpos(streampos sp, a
I ios::open_mode which =ios:in | ios::out); optional a
Returnspubseekpos(sp, (ios::openmode) which) . ad
17.4.2.3.6streambuf::pubsetbuf(char*, int) [lib.streambuf::pubsetbuf]
streambuf* pubsetbuf(char* s, int ny; a
Returnssetbuf(s, n). ad
17.4.2.3.7 streambuf::pubsync() [lib.streambuf::pubsync]
int pubsync(); a
Returnssync() . ad
17.4.2.3.8streambuf::sbumpc() (lib.streambuf::sbumpc]
int sbumpc(); a

If the input sequence does not have a read position available, retiomn§ . Otherwise, the function
returns(unsigned char)* gnext ++. O

17.4.2.3.9streambuf::sgetc() DRAFT: 25 January 1994 Library 17-67

17.4.2.3.9streambuf::sgetc() [(lib.streambuf::sgetc]

int sgetc(); a
If the input sequence does not have a read position available, netdierfiow() . Otherwise, the func- O
tion returngunsigned char)* gnext . a
17.4.2.3.10streambuf::sgetn(char?*, int) [({lib.streambuf::sgetn]

int sgetn(char* s, int ny; a
Returnsxsgetn(s, n). ad
17.4.2.3.11streambuf::snextc() [{lib.streambuf::snextc]

int snetxc(); a

Calls sbumpc() and, if that function return&€OF, returns EOFE Otherwise, the function returnd]
sgetc() . O

17.4.2.3.12streambuf::sputbackc(char) (lib.streambuf::sputbackc]
int sputbackc(char c); a

If the input sequence does not have a putback position available,cor'# gnext [-1] , returns O

pbackfail(¢) . Otherwise, the function returfisnsigned char)*-- gnext . O
17.4.2.3.13streambuf::sungetc() [(lib.streambuf::sungetc]

int sungetc(); a
If the input sequence does not have a putback position available, natbacidail() . Otherwise, the O
function returngunsigned char)*-- gnext . a
17.4.2.3.14streambuf::sputc(int) [lib.streambuf::sputc]

int sputc(int c); a

If the output sequence does not have a write position available, retterflow(¢). Otherwise, the O

function returngunsigned char)(* pnext ++= ¢). d
17.4.2.3.15streambuf::sputn(const char*, int) [({lib.streambuf::sputn]

int sputn(const char* s, int ny; O
Returnsxsputn(s, n). O
17.4.2.3.16streambuf::streambuf() [lib.cons.streambuf]
EBox 150 B
a_ibrary WG issue: Jerry Schwarz, September 28, 1993 0 d
O O
Qwas 17.4.1.7.17Jstreambuf __copy constructor explicitly undefinedd

streambuf(); a

17-68 Library DRAFT: 25 January 1994 17.4.2.3.16
streambuf::streambuf()

Constructs an object of clasteambuf() and initializes all its pointer member objects to null poirnt

ers® g
17.4.2.3.17streambuf::eback() [(lib.streambuf::eback]

char* eback() const; a
Returnsgbeg . a
17.4.2.3.18streambuf::gptr() ({lib.streambuf::gptr]

char* gptr() const; 0
Returnsgnext . 0
17.4.2.3.19streambuf::egptr() [(lib.streambuf::egptr]

char* egptr() const; a
Returnsgend. O
17.4.2.3.20streambuf::gbump(int) (lib.streambuf::gbump]
EBox 151 E O
a_ibrary WG issue: Jerry Schwarz, September 28, 1993 d
O g
[qwas 17.4.1.7.5]:gbump out of range should be undefined. N

void gbump(int n); a
Assignsgnext + ntognext . a
17.4.2.3.21streambuf::setg(char*, char*, char*) (lib.streambuf::setg]

void setg(char* gbeg_arg , char* gnext_arg , char* gend_arg); a
Assignsgbeg _arg to gbeg, gnext arg tognext , andgend arg togend. ad
17.4.2.3.22streambuf::pbase() [(lib.streambuf::pbase]

char* pbase() const; a
Returnspbeg . ad
17.4.2.3.23streambuf::pptr() [({lib.streambuf::pptr]

char* pptr() const; a
Returnspnext . 0

89) The default constructor is protected for clasgambuf to assure that only objects for classes derived from this class maylbe
constructed.

17.4.2.3.24streambuf::epptr() DRAFT: 25 January 1994 Library 17-69

17.4.2.3.24streambuf::epptr() [lib.streambuf::epptr]

char* epptr() const; a
Returnspend. ad
17.4.2.3.25streambuf::pbump(int) [(lib.streambuf::pbump]

void pbump(int ny; a
Assignspnext + nto pnext . 0
17.4.2.3.26streambuf::setp(char*, char*) [(lib.streambuf::setp]

void setp(char* pbeg_arg , char* pend_arg); a
Assignspbeg_arg to pbeg, pbeg_arg to pnext ,andpend_arg to pend. ad
17.4.2.3.27streambuf::overflow(int) (lib.streambuf::overflow]
FBox 152

H_ibrary WG issue: Jerry Schwarz, January 3, 1994

0
] want to emphasize (D). Even if Bill doesn’t like my version of the protocol, | think it is essentially/that

[there be some indication of what has to be specified to specialize it.

FEOeE

HBox 153
H_ibrary WG issue: Jerry Schwarz, January 3, 1994

i

O
D) Most importantly, | have indicated exactly what information must be supplied in order to specialize the
Cprotocol.

FBox 154
H_ibrary WG issue: Jerry Schwarz, January 3, 1994

i

O
C) The draft's second case doesn’t say anything about how pbeg and pnext are modified. Since itidoesn’t
[bay they presumably must be left unchanged, but that is obviously a mistake.

FBox 155
H_ibrary WG issue: Jerry Schwarz, January 3, 1994

i

O
B) In the draft’s first case, the protocol doesn’'t say anything about what happens when an output pésition is
Cmade available.

17-70 Library

HBox 156
[Library WG issue: Jerry Schwarz, January 3, 1994
O

d
U
ad
g

n any event the protocol in the draft has some defects:

A) In case c==EOF, the draft doesn’t allow the funct
to fail. My protocol does.

I o o

DRAFT: 25 January 1994

n

17.4.2.3.27
streambuf::overflow(int)

Ho

17.4.2.3.27 DRAFT: 25 January 1994 Library 1471
streambuf::overflow(int)

Box 157]
Library WG issue: Jerry Schwarz, January 3, 1994 a
[was 17.4.1.7.12] overflow: a
Rev 7 simply requires the return is #®Fif c==EOF. a
Requiring it to be 0 is a change. a
More generally | think_ibrary over specifies the protocol in a
many places. Since this is the contract with user defined virtuals a
| think over specification here is wrong. a
The only obligation obverflow(c) is to eventually append a
the characters betweebeg andpptr andc to the output a
sequence followed by. a
It is not (for example) required to return immediatelg=EEOF. a
Nor is it required to put into the array even if it makes an a
output position available. a
I think Library over specified all the virtuals. | consider this a a
serious issue. O

The new draft has modified the description of overflow, but I think it still overspecifies in some wayd,Jand
under specifies in others. Also it doesn’'t make it clear that what is being described is a “protocol’lJthat
derived classes are required to implement. It hasn’t been solicited, but here is my version of the underflow

protocol (using the vocabulary of the draft). a
The pending sequence of characters is defined as the a
concatenation of O
a) If pbeg is NULLthen the empty sequence otherwise a

pnext-pbeg characters beginning pbeg . a

b) if c==EOF then the empty sequence otherwise the a
seguence consisting of]
overflow may consume some initial subsequence of the pending a
sequence. Consuming a character means either appending it to a
the associated output stream or discarding it. a
In case some characters of the pending sequence have not been a
appended to the associated output stream, bbetthe number a
of characters in the pending sequence not appended to the a
output stream. Thepbeg andpnext must be set so that a
pnext-pbeg==r and ther characters starting pbeg are the a
same as the subsequence that has not been appended to the a
associated output stream. a
In case all characters of the pending sequence have been a
appended to the associated output stream, then either a
pbeg is set toNULL, orpbeg andpnext are both set to a

(the same) noNULL value. a

—72 Library DRAFT: 25 January 1994 17.4.2.3.27
streambuf::overflow(int)

The function may fail if either appending some character

to the associated output stream fails or for some reason

[I have in mind out of memory] it is unable to establish
pbeg andpnext according to the above rules.

If the function fails it may signal that by returning
EOFor throwing an exception.

Otherwise the function returns some value (other than
EORH to indicate success

o0 specialize this proposal you must specify.

a) What possible subsequences will be disposed of.
b) When are characters discarded and when are they
appended to the associated output stream.
¢) The associated output stream. (This need not
be specified if
d) How failure is signaled.

[
O
O
O
by
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
r
O
O
O
O
O
O
O
O
g e) The effect, if any ogbeg, gnext, gend
O

a

) e e e o e e e e e e

believe this protocol is easier to work with than the one in the draft.

HBox 158 El]
HJbrary WG issue: Jerry Schwarz, September 28, 1993 d
0 O

rJwas 17.4.1.7.12].overflow should not be required to patinto the buffer even if it makes a write pos$iEl

[Tion available.

virtual int overflow(int ¢ =EOF); a

Appends the character designatecttp the output sequence, if possible, in one of three ways: ad

— If ¢ 1= EOF and if either the output sequence has a write position available or the function makes a
write position available, the function assign$o * pnext ++. The function signals success by returfi
ing (unsigned char) c. a

— If ¢ = EOF and if the function can append a character directly to the associated output sequeride, the
function appends directly to the associated output sequencepbdég < pnext , thepnext - O
pbeg characters beginning @beg shall be first appended directly to the associated output sequerce,
beginning with the character gtbeg. The function signals success by returnifumsigned a
char) c. a

— If ¢ == EOF, there is no character to append. The function signals success by returning a valuélother
thanEOF O

If the function can succeed in more than one of these ways, it is unspecified which way is chosehl. The
function can alter the number of write positions available as a result of any call. How (or whethdr) the
function makes a write position available or appends a character directly to the output sequence is(defined
separately for each class derived fretmeambuf in this clause. a

The function returnEOFto indicate failure. a

17.4.2.3.27 DRAFT: 25 January 1994 Library 1473
streambuf::overflow(int)

The default behavior is to retuEOF O
17.4.2.3.28streambuf::pbackfail(int) [(lib.streambuf::pbackfail]
virtual int pbackfail(int ¢ =EOF); a
Puts back the character designated Iy the input sequence, if possible, in one of five ways: ad
— If ¢ 1= EOF , if either the input sequence has a putback position available or the function makes(@ put-
back position available, and (finsigned char) ¢ == (unsigned char) gnext [-1] , the O
function assigngnext - 1 to gnext . The function signals success by return{mgsigned a
char) c. a

— If ¢ = EOF , if either the input sequence has a putback position available or the function makes(@ put-
back position available, and if the function is permitted to assign to the putback position, the fuction
assign to*-- gnext . The function signals success by returrungsigned char) c. a

— If ¢ = EOF , if no putback position is available, and if the function can put back a character diriéctly
to the associated input sequence, the function putsddakctly to the associate input sequence. The
function signals success by returniugsigned char) c. a

— If ¢ == EOF and if either the input sequence has a putback position available or the function makes a
putback position available, the function assignext -1 to gnext . The function signals succes§!
by returning(unsigned char) c. a

— If ¢ == EOF, if no putback position is available, if the function can put back a character directly t@lthe
associated input sequence, and if the function can determine the cheaiautezdiately before the cur-0
rent position in the associated input sequence, the function puts lwhiectly to the associated input]
sequence. The function signals success by returning a value othEtRan a

If the function can succeed in more than one of these ways, it is unspecified which way is chosehl. The
function can alter the number of putback positions available as a result of any call. How (or whethir) the
function makes a putback position available, puts back a character directly to the input sequence, di deter-
mines the character immediately before the current position in the associated input sequence is defined sep-

arately for each class derived fratneambuf in this clause. a
The function returnEOFto indicate failure. ad
The default behavior is to retuBEOF ad
17.4.2.3.29streambuf::underflow() [(lib.streambuf::underflow]
EBox 159 g 0
%ibrary WG issue: Jerry Schwarz, January 3, 1994 0 a
O 0
[And it has to be reworded becauselerflow can now return witlynext not being setd |
%ox 160 ED
[Library WG issue: Jerry Schwarz, January 3, 1994 n
O O
ootnote 43: “The public streambuf member functions aafiderflow only if the incremengnext [1J
efore returning” a]
O 0
[(Must be raised to the body of the text. N

17-74 Library DRAFT: 25 January 1994

Box 161
Library WG issue: Jerry Schwarz, January 3, 1994

[was 17.4.1.7.14Junderflow

The over specification here is really bad. I've written
streambuf classes where underflow always guarantees some
minimum amount of characters will be put in the buffer. Thus
it may do lots of stuff even if there is a read position available.

My version ofunderflow

The pending sequence of characters is defined as the
concatenation of

a) Ifgnext is nonNULLthen thegend-gnext characters
starting agnext , otherwise the empty sequence

b) Some sequence (possibly empty) of characters read from
the input stream.

If the pending sequence is null then the function fails.

Otherwise the first character of the pending sequence
is called the result character.

The backup sequence is defined as the concatenation of

a) If gbeg is nonNULL then empty, otherwise
thegnext-gbeg characters beginning gbeg.

b) the result character.
The function sets up thgnext andgend satisfying

a) In case the pending sequence has more than one character
thegend-gnext characters starting ghext are the
characters in the pending sequence after the result character.

b) If the pending sequence has exactly one character,
thengnext andgend may beNULL or may both be
set to the same nddULL pointer.

If gbeg andgnext are nonNULLthen the function
is not constrained as to their contents, but the
“usual backup condition” is that either

a) If the backup sequence contains at lgaskt-gbeg
characters then ttgnext-gbeg characters starting
atgbeg agree with the laginext-gbeg characters
of the backup sequence.

b) or then characters startinggnext-n agree with
the backup sequence (wherés the length of the
backup sequence)

17.4.2.3.29
streambuf::underflow()

O O

ooooog

oooOoo [y | [y | [y |

[y |

ad O

O O

O O

O O

r.4.2.3.29 DRAFT: 25 January 1994 0 Library 1475
Qreambuf::underflow() B

BTO specialize this protocol you must specify g a
O O

O a) How a character is read from the input stream. O a
O O

g b) How many characters are read from the input stream g a
0 under various conditions 0 O
O O

O d) Which alternative for case (b) of the rules for O a
g setting upgnext andgend are g a
g ¢) Whether the normal backup condition is satisfied. g a
O O

O d) The effect opbeg,pnext,pend if any 0 M

virtual int underflow(); a

Reads a character from the input sequence, if possible, without moving the stream position past it[as fol-
lows: O

— If the input sequence has a read position available the function signals success by reflirning
(unsigned char)* gnext . a

— Otherwise, if the function can determine the charaxtat the current position in the associated inplt
sequence, it signals success by returimgigned char) X. If the function makes a read positiofl
available, it also assignsto * gnext . a

The function can alter the number of read positions available as a result of any call. How (or whetheér) the
function makes a read position available or determines the chaxaatténe current position in the associ:l
ated input sequence is defined separately for each class derivestrieambuf in this clause. a

The function returnEOFto indicate failure. a
The default behavior is to retuBOF a

17.4.2.3.30streambuf::uflow() [(lib.streambuf::uflow]

%ox 162
[Library WG issue: Jerry Schwarz, January 3, 1994
]

%treambuf::uflow is supposed to be defined as

]
Call underflow(EOF) . If underflow returnsEOF, returnEOF If there is a read position availab
[then dogbump(-1) and returr{unsigned char)*gnext

e

virtual int uflow(); a

Reads a character from the input sequence, if possible, and moves the stream position past it, as folldws:

— If the input sequence has a read position available the function signals success by reflirning
(unsigned char)* gnext ++, O

— Otherwise, if the function can read the charaxgtdirectly from the associated input sequence, it signéals
success by returnin@unsigned char) x. If the function makes a read position available, it algb
assigns« to * gnext . O

17-76 Library DRAFT: 25 January 1994 17.4.2.3.30streambuf::uflow()

The function can alter the number of read positions available as a result of any call. How (or whethér) the
function makes a read position available or reads a character directly from the input sequence is [defined
separately for each class derived fretmeambuf in this clause. O

The function returnEOFto indicate failure. a

The default behavior is to calinderflow() and, if that function returnEOF or fails to make a readl
position available, returrEOF Otherwise, the function signals success by returr{ungsigned O

char)* gnext ++. %0) O
17.4.2.3.31streambuf::xsgetn(char*, int) [lib.streambuf::xsgetn]
virtual int xsgetn(char* s, int ny; a

Assigns up ta1 characters to successive elements of the array whose first element is desigmatdhey [
characters assigned are read from the input sequence as if by repeatedlioaftyp() . Assigning stops O
when eithern characters have been assigned or a cadlbtompc() would returnEOFE The function O

returns the number of characters assigsﬂéd. a
17.4.2.3.32streambuf::xsputn(const char*, int) [lib.streambuf::xsputn]
virtual int xsputn(const char* s, int ny; a

Writes up ton characters to the output sequence as if by repeated cslstt{ c¢) . The characters writ- [
ten are obtained from successive elements of the array whose first element is desigsatéiirting O
stops when eithen characters have been written or a cabpotc(¢) would returnEOF The function O

returns the number of characters written. O
17.4.2.3.33streambuf::seekoff(streamoff, ios::seekdir, [(lib.streambuf::seekoff]
ios::openmode) O
virtual streampos seekoff(streamoff off ,ios::seekdir way, a
ios::openmode which =ios::in | ios::out); a

Alters the stream positions within one or more of the controlled sequences in a way that is definedl sepa-
rately for each class derived fratreambuf in this clause. The default behavior is to return an objectof

classstreampos that stores an invalid stream position. O
17.4.2.3.34streambuf::seekpos(streampos, [(lib.streambuf::seekpos]
ios::openmode) O
virtual streampos seekpos(streampos sp, a
ios::openmode which =ios:in | ios::out); a

Alters the stream positions within one or more of the controlled sequences in a way that is definedl sepa-
rately for each class derived fra@treambuf in this clause. The default behavior is to return an objectof
classstreampos that stores an invalid stream position. O

JU) A class derived fronstreambuf can override the virtual member functionderflow() with a function that returns a valuell
other thanEOFwithout making a read position available. In that evstmgambuf::uflow() must also be overridden since the]
degault behavior is inadequate.

Classes derived frostreambuf can provide more efficient ways to implemesgetn andxsputn by overriding these defi- O
nitions in the base class.

17.4.2.3.35 DRAFT: 25 January 1994 Library 1#77
streambuf::setbuf(char*, int)

17.4.2.3.35streambuf::setbuf(char*, int) [lib.streambuf::setbuf]
virtual streambuf* setbuf(char* s, int ny; O
Performs an operation that is defined separately for each class derivedrsambuf in this clause. ad

The default behavior is to retutinis

17.4.2.3.36streambuf::sync() [({lib.streambuf::sync]

virtual int sync(); a
Synchronizes the controlled sequences with any associated external sources and sinks of character€lin a way
that is defined separately for each class derived fitoeambuf in this clause. The function retureB©F 0O
if it fails. The default behavior is to return zero. O

17.4.3 Headekistream> [({lib.header.istream]

The headexistream> defines a type and a function signature that control input from a stream buffefl

17.4.3.1 Classstream (lib.istream]

17-78 Library DRAFT: 25 January 1994

class istream : virtual public ios {

public:
istream(streambuf* sb);
virtual ~istream();
int ipfx(int noskipws = 0);
void isfx();
istream& operator>>(istream& (* pf)(istream&))
istream& operator>>(ios& (* pf)(ios&))
istream& operator>>(char* S);
istream& operator>>(unsigned char* S)
istream& operator>>(signed char* s);
istream& operator>>(char& c);
istream& operator>>(unsigned char& c)
istream& operator>>(signed char& c)
istream& operator>>(short& ny;
istream& operator>>(unsigned short& n);
istream& operator>>(int& ny;
istream& operator>>(unsigned int& ny;
istream& operator>>(long& n);
istream& operator>>(unsigned long& ny;
istream& operator>>(float& f);
istream& operator>>(double& f);
istream& operator>>(long double& f);
istream& operator>>(void*& p);
istream& operator>>(streambuf& sb);
int get();

istream& get(char* s, int n,char delim ="\n");
delim ="\n’)

istream& get(unsigned char* s, int n, char

istream& get(signed char* s, int n, char delim

istream& get(char& c);
istream& get(unsigned char& c);
istream& get(signed char& c);

istream& get(streambuf& sb, char delim ="\n’);
istream& getline(char* s, int n,char delim
istream& getline(unsigned char* s, int n, char
istream& getline(signed char* s, int n, char
istreamé& ignore(int n =1, int delim = EOF);

istreamé& read(char* s, int ny;
istream& read(unsigned char* s, int n
istream& read(signed char* s, int n
int peek();
istream& putback(char c);
istream& unget();
int gcount() const;
int sync();
private:
I int chcount ; exposition only

h

The classstream defines a number of member function signatures that assist in reading and interpreting

input from sequences controlled by a stream buffer.

17.4.3.1 Classstream

=\n)

=\n");
delim ="\n’)
delim ="\n’)

I e o o

O

Two groups of member function signatures share common propertiegrhatted input functiongor O
extractorg and theunformatted input function®8oth groups of input functions obtain (ektrac) input O

characters by caling the function signaturesb.sbumpc() , sb.sgetc() , and O
sb.sputbackc(char) . If one of these called functions throws an exception, the input function ¢alls
setstate(badbit) and rethrows the exception. O

— The formatted input functions are:

17.4.3.1 Classstream DRAFT: 25 January 1994 Library 17-79

istream& operator>>(char* S);

istream& operator>>(unsigned char* S)
istream& operator>>(signed char* s);
istream& operator>>(char& c);

istream& operator>>(unsigned char& c)
istream& operator>>(signed char& c)
istream& operator>>(short& ny;

istream& operator>>(unsigned short& n);
istream& operator>>(int& ny;

istream& operator>>(unsigned int& ny;
istream& operator>>(long& n);

istream& operator>>(unsigned long& ny;
istream& operator>>(float& f);

istream& operator>>(double& f);
istream& operator>>(long double& f);
istream& operator>>(void*& p);

istream& operator>>(streambuf& sb);

OOoooooOoooooooooano

O

— The unformatted input functions are:

int get();

istream& get(char* s, int n,char delim ="\n");

istream& get(unsigned char* s, int n,char delim ="\n")
istream& get(signed char* s, int n,char delim ="\n’)
istream& get(char& c);

istream& get(unsigned char& c);

istream& get(signed char& c);

istream& get(streambuf& sb, char delim ="\n’);

istream& getline(char* s, int n,char delim ="\n");
istream& getline(unsigned char* s, int n,char delim ="\n")
istream& getline(signed char* s, int n,char delim ="\n")
istreamé& ignore(int n =1, int delim = EOF);

istreamé& read(char* s, int ny;

istream& read(unsigned char* s, int n

istream& read(signed char* s, int n

int peek();

istream& putback(char c);

istream& unget();

OOO0oOOoOoooooooogoogooo

Each formatted input function begins execution by calipig() . If that function returns nonzero, théel
function endeavors to obtain the requested input. In any case, the formatted input function ends bytalling
isfx() , then returning the value specified for the formatted input function. O

Some formatted input functions endeavor to obtain the requested input by parsing characters extractéd from
the input sequence, converting the result to a value of some scalar data type, and storing the converted value
in an object of that scalar data type. The behavior of such functions is described in terms of the coriversion

specification for an equivalent call to the function signatscanf(FILE*, const char*, ...) , O

declared ircstdio.h> , with the following alterations: O

— The formatted input function extracts characters from a stream buffer, rather than reading them ftdbm an
input file 92 O

— If flags() & skipws is zero, the function does not skip any leading white space. In that case, if
the next input character is white space, the scan fails. O

— If the converted data value cannot be represented as a value of the specified scalar data type, a 8can fail-
ure occurs. 0

92)The stream buffer can, of course, be associated with an input file, but it need not be. O

17-80 Library DRAFT: 25 January 1994 17.4.3.1 Classstream

If the scan fails for any reason, the formatted input function seittate(failbit) . g
For conversion to an integral type other than a character type, the function determines the integral Conver-
sion specifier as follows: O
— If (flags() & basefield) == oct , the conversion specifier @s O
— If (flags() & basefield) == hex , the conversion specifier xs O
— If (flags() & basefield) == , the conversion specifieriis O

Otherwise, the integral conversion specified ir conversion to a signed integral type,uofor conver- [
sion to an unsigned integral type.

Each unformatted input function begins execution by calffig1) . If that function returns nonzero,]

the function endeavors to extract the requested input. It also counts the number of characters extrddted. In
any case, the unformatted input function ends by storing the count in a member object andfgdlling [

then returning the value specified for the unformatted input function.

For the sake of exposition, the data maintained by an object ofstl@ssn is presented here as: g
— int chcount , stores the number of characters extracted by the last unformatted input function called
for the object. O
17.4.3.1.1istream::istream() [lib.cons.istream]
istream(streambuf* sb); a

Constructs an object of classtream , assigning initial values to the base class by calling

ios::init(sb) , then assigning zero thcount . a
17.4.3.1.2istream;:~istream() [({lib.des.istream]
virtual ~istream(); O
Destroys an object of clasgream . ad
17.4.3.1.3istream::ipfx(int) (lib.istream::ipfx]
int ipfx(int noskipws = 0); g

If good() is nonzero, prepares for formatted or unformatted input. Firgsg()f is not a null pointer, O
the function callgie()->flush() to synchronize the output sequence with any associated exterrial C
stream. (The catie()->flush() does not necessarily occur if the function can determine that no §yn-
chronization is necessary.) ffoskipws is zero andflags() & skipws is nonzero, the function
extracts and discards each character as lofigspace(¢) is nonzero for the next available input chaf3
acterc. The function signatursspace(int) is declared ir<ctype.h> . O

If, after any preparation is completeghod() is nonzero, the function returns a nonzero value. Oth@r-
wise, it callssetstate(failbit) and returns zero. O

93) The function signaturapfx(int) andisfx() can also perform additional implementation-dependent operations.

17.4.3.1.4istream::isfx() DRAFT: 25 January 1994 Library 17-81

17.4.3.1.4istream::isfx() (lib.istream::isfx]
void isfx(); ad
Returns. a
17.4.3.1.5istream;:operator>>(istreamé& (*)(istream&)) (lib.istream::ext.imanip]
istream& operator>>(istreamé& (* pf)(istream&)) a
Returng* pf)(this) ¥ 0
17.4.3.1.6istream::operator>>(ios& (*)(ios&)) [(lib.istream::ext.iomanip]
istream& operator>>(ios& (* prf)(ios&)) a
Returngistream&)(* pf)(*this) 99 O
17.4.3.1.7istream::operator>>(char*) (lib.istream::ext.str]
HBox 163 g
El_ibrary WG issue: Jerry Schwarz, January 3, 1994 0 O
O
Swas 17.4.1.8.13] U O
[istream extractors g O
t
0
§ And | don’t understand why each extractor uses a different O
E format. In Rev 7, all the integral extractors allow the sdine O
0 representations. Was this a deliberate change? E O
O
O still don’t understand this. E
FBox 164 g 0
H_ibrary WG issue: Jerry Schwarz, September 28, 1993 d
0 O
fwas 17.4.1.8.13]: U 0
OWhy does each extractor use a different format? B ™
istreamé& operator>>(char* s); a

A formatted input function, extracts characters and stores them into successive locations of an arraylwhose
first element is designated s/ If width() is greater than zero, the maximum number of charactérs
storedn iswidth() ; otherwise it iNT_MAX, defined in<limits.h> . g

Characters are extracted and stored until any of the following occurs:
— n -1 characters are stored;

— end-of-file occurs on the input sequence;

O o o o

— isspace(c¢) is nonzero for the next available input character

J2) See, for example, the function signatws{istream&)
95) See, for example, the function signatdes(ios&)

17-82 Library DRAFT: 25 January 1994 17.43.1.7
istream::operator>>(char*)

The function signaturisspace(int) is declared ir<ctype.h> . g
If the function stores no characters, it caki$state(failbit) . In any case, it then stores a null char?
acter into the next successive location of the array andwddlis(0) . The function returnhis . g
17.4.3.1.8istream::operator>>(unsigned char*) [lib.istream::ext.ustr]
istream& operator>>(unsigned char* S) t
Returnsoperator>>((char*) s). ad
17.4.3.1.9istream;:operator>>(signed char*) (lib.istream::ext.sstr]
istream& operator>>(signed char* s); O
Returnsoperator>>((char*) s). ad
17.4.3.1.10istream::operator>>(char&) (lib.istream::ext.c]
istream& operator>>(char& c); a

A formatted input function, extracts a character, if one is available, and stores iOtherwise, the func- O

tion callssetstate(failbit) . The function returnhis . O
17.4.3.1.11istream::operator>>(unsigned char&) (lib.istream::ext.uc]
istream& operator>>(unsigned char& c) a
Returnsoperator>>((char&) c) . g
17.4.3.1.12istream::operator>>(signed char&) (lib.istream::ext.sc]
istream& operator>>(signed char& c) a
Returnsoperator>>((char&)). ad
17.4.3.1.13istream::operator>>(short&) (lib.istream::ext.si]
istream& operator>>(short& ny; a

A formatted input function, converts a signed short integer (with the integral conversion specifier prededed

by h, as inhd for decimal input) if one is available, and stores i.inThe function returnihis . O
17.4.3.1.14istream::operator>>(unsigned short&) [(lib.istream::ext.usi]
istream& operator>>(unsigned short& ny; a

A formatted input function, converts an unsigned short integer (with the integral conversion specifiéf pre-

ceded byh, as inhu for decimal input) if one is available, and stores i.inThe function returnghis . O
17.4.3.1.15istream::operator>>(int&) (lib.istream::ext.i]
istreamé& operator>>(int& n); a

A formatted input function, converts a signed integer (with the integral conversion specifier unqualified, as
in d for decimal input) if one is available, and stores i.inThe function returnghis . O

17.4.3.1.16 DRAFT: 25 January 1994 Library 1483
istream::operator>>(unsigned int&)

17.4.3.1.16istream::operator>>(unsigned int&) (lib.istream::ext.ui]

istream& operator>>(unsigned int& ny; a

A formatted input function, converts an unsigned integer (with the integral conversion specifier unqualified,

as inu for decimal input) if one is available, and stores itinThe function return&his . a
17.4.3.1.17istream::operator>>(long&) (lib.istream::ext.li]
istream& operator>>(long& ny; a

A formatted input function, converts a signed long integer (with the integral conversion specifier prededed

byl ,asinld for decimal input) if one is available, and stores i.inThe function returnihis . O
17.4.3.1.18istream::operator>>(unsigned long&) [lib.istream::ext.uli]
istream& operator>>(unsigned long& ny; a

A formatted input function, converts an unsigned long integer (with the integral conversion specifiefl pre-

ceded by , as inlu for decimal input) if one is available, and stores i.inThe function returnghis . O
17.4.3.1.19istream::operator>>(float&) (lib.istream::ext.f]
istream& operator>>(float& f); a

A formatted input function, convertsfipat (with the conversion specifidr) if one is available, and

stores it inf. The function return&his . O
17.4.3.1.20istream::operator>>(double&) {lib.istream::ext.d]
istreamé& operator>>(double& f); a

A formatted input function, convertsdmuble (with the conversion specifidf) if one is available, and

stores it inf. The function return&his . a
17.4.3.1.21istream::operator>>(long double&) (lib.istream::ext.Id]
istream& operator>>(long double& f); a

A formatted input function, convertslang double (with the conversion specifiétf) if one is avail- O

able, and stores it ifh. The function return&his . O
17.4.3.1.22istream::operator>>(void*&) (lib.istream::ext.ptr]
istream& operator>>(void*& pP); a

A formatted input function, converts a pointevtmd (with the conversion specifigr) if one is available, O

and stores it ip. The function return&his . O
17.4.3.1.23istream::operator>>(streambuf&) (lib.istream::ext.sb]
istream& operator>>(streambufé& sb); a

A formatted input function, extracts characters frismis and inserts them in the output sequence can-
trolled bysb. Characters are extracted and inserted until any of the following occurs: O

— end-of-file occurs on the input sequence; O
— inserting in the output sequence fails (in which case the character to be inserted is not extracted);]

— an exception occurs (in which case the exception is caught but not rethrown). O

17-84 Library DRAFT: 25 January 1994 17.4.3.1.23
istream::operator>>(streambuf&)

If the function inserts no characters, it caklgstate(failbit) . The function return&his O
17.4.3.1.24istream::get() [lib.istream::get]
HBox 165 B
HJbrary WG issue: Greg Bentz, October 22, 1993 I
0 O
] have been consulting theClibrary draft (X3J16/93-108,WG21/NO315) and | think | have found a stdfe-
Cment which is inconsistent with most existing implementations. While that doesn’t say much, it als ems
Eto go against what | feel is the desired behaviour.

O
gThe functions: N
Cistream::get(char *, int, char) (was 17.4.1.8.27) g
Cistream::getline(char *, int, char) (was 17.4.1.8.34) a]
O

O
aooth declare the following: I
0 O
0O “If the function stores no characters, it calls 'setstate(failbit)’.” ED
O
EI believe the line should read: H]

O
g “If the function stores no characters and 'c != delim’, it calls N
] ’setstate(failbit).” ED
O
Urhis change, particularly for 'istream::getline(char *, int, char)’, allows line oriented reading of inpq%ﬂles

Shat have 'delim’ terminated lines, some of which may be empty. I
O

O

dif the call 'getline(buf, sizeof(buf), '0);’ is made when the next character in the input stream is '0 th&cur-
[rent wording causes 'failbit’ to be set. The proposed wording allows 'getline’ to return with no chatatters
an 'buf’, but having consumed the '0 character.

O
Hn support of this proposal | also refer to the+'@OStreams Handbook" by Steve Teale (ISBN 0-201-
59641-5) pages 288-290. (example source t6.cpp) Mr. Teale indicates that the proposed wording i§] in his
Copinion, the correct behaviour. H

int get(); ad

An unformatted input function, extracts a charaaterif one is available. The function then returns

(unsigned char) c. Otherwise, the function caléetstate(failbit) and then returne OF a
17.4.3.1.25istream::get(char*, int, char) [(lib.istream::get.str]
istream& get(char* s, int n,char delim ="\n"); a

An unformatted input function, extracts characters and stores them into successive locations of ai array
whose first element is designated by Characters are extracted and stored until any of the followihg
occurs: u

— n -1 characters are stored;

— end-of-file occurs on the input sequence (in which case the functiosettate(eofbit));

o 0o O

— ¢ == delim for the next available input characte(in which case is not extracted).

17.4.3.1.25 DRAFT: 25 January 1994 Library 1485
istream::get(char*, int, char)

If the function stores no characters, it cak$state(failbit) . In any case, it then stores a null char?
acter into the next successive location of the array. The function rétiiss . O
17.4.3.1.26istream::get(unsigned char*, int, char) [lib.istream::get.ustr]
istream& get(unsigned char* s, int n,char delim ="\n’) a
Returngget((char*) s, n, delim). ad
17.4.3.1.27istream::get(signed char*, int, char) [(lib.istream::get.sstr]
istream& get(signed char* s, int n,char delim ="\n") a
Returngget((char*) s, n, delim). ad
17.4.3.1.28istream::get(char&) (lib.istream::get.c]
istream& get(char& c); a

An unformatted input function, extracts a character, if one is available, and assigos Dtberwise, the O

function callssetstate(failbit) . The function return&his . O
17.4.3.1.29istream::get(unsigned char&) (lib.istream::get.uc]
istream& get(unsigned char& c); a
Returngget((char&) c¢). O
17.4.3.1.30istream::get(signed char&) [(lib.istream::get.sc]
istreamé& get(signed char& c); a
Returndstream::get((char&)). ad
17.4.3.1.31istream::get(streambuf&, char) [(lib.istream::get.sh]
istream& get(streambuf& sb, char delim ='\n); a

An unformatted input function, extracts characters and inserts them in the output sequence contralled by

sb. Characters are extracted and inserted until any of the following occurs: O
— end-of-file occurs on the input sequence; O
— inserting the output sequence fails (in which case the character to be inserted is not extracted); [0
— ¢ == delim for the next available input characte(in which case is not extracted); O
— an exception occurs (in which case, the exception is caught but not rethrown). O
If the function inserts no characters, it caltgstate(failbit) . The function return&his . ad
17.4.3.1.32istream::getline(char*, int, char) {lib.istream::getline.str]
istream& getline(char* s, int n,char delim ="n’); a

An unformatted input function, extracts characters and stores them into successive locations of &d array
whose first element is designated by Characters are extracted and stored until any of the followihg
occurs: 0

— n -1 characters are stored (in which case the function stiésate(failbit)); O

17-86 Library DRAFT: 25 January 1994 17.4.3.1.32
istream::getline(char*, int, char)

— end-of-file occurs on the input sequence (in which case the functioseisliate(eofbit)); g
— ¢ == delim for the next available input characterin which case the input character is extractéd
but not stored). O
If the function stores no characters, it cak$state(failbit) . In any case, it then stores a null char?
acter into the next successive location of the array. The function rétiiss . O
17.4.3.1.33istream::getline(unsigned char*, int, char) [lib.istream::getline.ustr]
istream& getline(unsigned char* s, int n,char delim ="\n’) a
Returnggetline((char*) s, n, delim). ad
17.4.3.1.34istream::getline(signed char*, int, char) (lib.istream::getline.sstr]
istream& getline(signed char* s, int n,char delim ="\n") a
Returnggetline((char*) s, n, delim). ad
17.4.3.1.35istream::ignore(int, int) (lib.istream::ignore]
istream& ignore(int n =1,int delim = EOF); O

An unformatted input function, extracts characters and discards them. Characters are extracted untilany of
the following occurs: O

— if n 1= INT_MAX , n characters are extracted

— end-of-file occurs on the input sequence (in which case the functiosetstate(eofbit));

o o O

— ¢ == delim for the next available input characte(in which case is extracted).

The last condition will never occurdfelim == EOF.
The macrdNT_MAXis defined ir<limits.h>

The function return¥this

17.4.3.1.36istream::read(char*, int) (lib.istream::read.str]

istream& read(char* s, int n; O

An unformatted input function, extracts characters and stores them into successive locations of di array
whose first element is designated $y Characters are extracted and stored until either of the followihg

occurs: g
— n characters are stored; O
— end-of-file occurs on the input sequence (in which case the functioseisliate(failbit)). g
The function returnsthis . O
17.4.3.1.37istream::read(unsigned char*, int) Hlib.istream::read.ustr]
istreamé& read(unsigned char* s, int n a

Returngread((char*) s, n). ad

17.4.3.1.38 DRAFT: 25 January 1994 Library 1787
istream::read(signed char*, int)

17.4.3.1.38istream::read(signed char*, int) (lib.istream::read.sstr]

istreamé& read(signed char* s, int n a
Returngread((char*) s, n). ad
17.4.3.1.39istream::peek() (lib.istream::peek]

int peek(); a
An unformatted input function, returns the next available input character, if possible.
If good() is zero, the function returfsOF Otherwise, it returnslbuf()->sgetc()
17.4.3.1.40istream::putback(char) (lib.istream::putback]

istream& putback(char c); a
An unformatted input function, callslbuf->sputbackc(c) . If that function return&€OF the func- O
tion callssetstate(badbit) . The function return¥his O
17.4.3.1.41istream::unget() (lib.istream::unget]

istreamé& unget(); a
An unformatted input function, caliglbuf->sungetc() . If that function return€OF, the function O
callssetstate(badbit) . The function returnthis O
17.4.3.1.42istream::gcount() [lib.istream::gcount]

int gcount() const; a
Returnschcount . O
17.4.3.1.43istream::sync() (lib.istream::sync]

int sync(); a
If rdbuf() is a null pointer, returnEOF. Otherwise, the function caltgbuf()->pubsync() and, if 0O
that function return&€OF, calls setstate(badbit) and return€EOF Otherwise, the function returngd]
zero. u
17.4.3.2ws(istream&) lib.ws]

istream& ws(istreamé& is); a
Saves a copy ofs.fmtflags , then clearss .skipws in is.fmtflags . The function then callsO
is .iJ%];x() and s .isfx() , and restoress.fmtflags to its saved value. The function returng
is . O
17.4.4 Headerxostream> [({lib.header.ostream]

The headerostream> defines a type and several function signatures that control output to a stream

buffer.

J0) The effect okcin >>ws is to skip any white space in the input sequence controllethby

O

17-88 Library

17.4.4.1 Clas®stream

DRAFT: 25 January 1994

17.4.4.1 Classstream

[lib.ostream]

EBox 166 E
aibrary WG issue: Jerry Schwarz, January 3, 1994 O O
O a
(Qwas 17.4.1.10] ostream: g O
g Again Library omitts definitions. In particular it is silent oﬁ O
g what happens when exceptions are thrown by virtuals. - O
O a
O a
[Not fixed. g
class ostream : virtual public ios { a
ostream(streambuf* sb); a
virtual ~ostream(); a
int opfx(); a
void osfx(); a
ostreamé& operator<<(ostreamé& (* pf)(ostream&)); a
ostreamé& operator<<(ios& (* prf)(ios&)); a
ostreamé& operator<<(const char* s); a
ostreamé& operator<<(char c); a
ostreamé& operator<<(unsigned char c); a
ostreamé& operator<<(signed char c); a
ostreamé& operator<<(short ny; a
ostreamé& operator<<(unsigned short ny; a
ostreamé& operator<<(int ny; a
ostreamé& operator<<(unsigned int ny; a
ostreamé& operator<<(long n; a
ostreamé& operator<<(unsigned long ny; a
ostreamé& operator<<(float f); a
ostreamé& operator<<(double f); a
ostreamé& operator<<(long double f); a
ostreamé& operator<<(void* D); a
ostreamé& operator<<(streambuf& sb); a
ostreamé& operator<<(const wchar_t* ws); a
ostreamé& operator<<(wchar_t we); a
ostream& put(char c); a
ostreamé& write(const char* s, int ny; a
ostreamé& write(const unsigned char* s, int ny; a
ostreamé& write(const signed char* s, int n; a
ostream& flush(); a
h 0

The classostream defines a number of member function signatures that assist in formatting and wiiting

output to output sequences controlled by a stream buffer. O

Two groups of member function signatures share common propertieferitingtted output functionfor O
inserterg and theunformatted output functionBoth groups of output functions generateifmerf) output [0

characters by calling the function signatsie.sputc(int)

tion, the output function calletstate(badbit)

— The formatted output functions are:

. If the called functions throws an excep:!
and rethrows the exception. O

O

17.4.4.1 Clas®stream DRAFT: 25 January 1994 Library 17-89

ostreamé& operator<<(const char* s);
ostreamé& operator<<(char c);

ostreamé& operator<<(unsigned char c);
ostreamé& operator<<(signed char c);
ostreamé& operator<<(short n);

ostreamé& operator<<(unsigned short ny;
ostreamé& operator<<(int n);

ostreamé& operator<<(unsigned int n);
ostreamé& operator<<(long ny;

ostreamé& operator<<(unsigned long ny;
ostreamé& operator<<(float f);

ostreamé& operator<<(double f);
ostreamé& operator<<(long double f);
ostreamé& operator<<(void* p);

ostreamé& operator<<(streambuf* sb);

OOoOooOoOooooooooogano

O

— The unformatted output functions are:

ostream& put(char c);

ostream& write(const char* s, int ny;

ostreamé& write(const unsigned char* s, int ny;
ostreamé& write(const signed char* s, int n;

OoOodono

Each formatted output function begins execution by calihd) . If that function returns nonzero, thel
function endeavors to generate the requested output. In any case, the formatted output function Ends by
callingosfx() , then returning the value specified for the formatted output function. O

Some formatted output functions endeavor to generate the requested output by converting a valie from
some scalar anTes type to text form and inserting the converted text in the output sequence. The beliavior
of such functions is described in terms of the conversion specification for an equivalent call to the fuction

signaturefprintf(FILE*, const char*, ...) , declared in<stdio.h> , with the following 0O

alterations: O

— The formatted output function inserts characters in a stream buffer, rather than writing them to anfoutput
file.9”) 0

— The formatted output function uses the fill character returneélify as the padding charactef]
(rather than the space character for left or right paddir@farinternal padding). O

If the operation fails for any reason, the formatted output functionseitate (badbit) . ad

For conversion from an integral type other than a character type, the function determines the integfal con-

version specifier as follows: O

— If (flags() & basefield) == oct , the integral conversion specifierds O

— If (flags() & basefield) == hex , the integral conversion specifierxs If flags() & O
uppercase is honzerox is replaced with. O

Otherwise, the integral conversion specified fr conversion from a signed integral type udior conver- [

sion from an unsigned integral type. O
For conversion from a floating-point type, the function determines the floating-point conversion specifier as
follows: 0
— If (flags() & floatfield) == fixed , the floating-point conversion specifierfis O

') The stream buffer can, of course, be associated with an output file, but it need not be.

10

11

12

13

17-90 Library DRAFT: 25 January 1994 17.4.4.1 Classstream

— If (flags() & floatfield) == scientific , the floating-point conversion specifierds If [
flags() & uppercase is nonzeroeg is replaced witte. O
Otherwise, the floating-point conversion specifiegis If flags() & uppercase is nonzerog is O
replaced withG a
The conversion specifier has the following additional qualifiers prepended to make a conversion spétifica-
tion: a
— For conversion from an integral type other than a character tyffsgs{) & showpos is nonzero, O
the flag+ is prepended to the conversion specification; afldgs() & showbase is nonzero, the O
flag # is prepended to the conversion specification. a
— For conversion from a floating-point type, fiags() & showpos is nonzero, the flagr is O
prepended to the conversion specification; arfthgfs() & showpoint is nonzero, the flagg is 0O
prepended to the conversion specification. O
— For any conversion, ifvidth() is nonzero, then a field width is specified in the conversion specifica-
tion. The value isvidth() . a
— For conversion from a floating-point type fifgs() & fixed is nonzero or iprecision() is O
greater than zero, then a precision is specified in the conversion specification. The padog is [0
sion() . O
Moreover, for any conversion, padding with the fill character returnddi(py = behaves as follows: O
— If (flags() & adjustfield) == right , ho flag is prepended to the conversion specificatian,
indicating right justification (any padding occurs before the converted text). A fill character oéturs
wherevefrfprintf generates a space character as padding. O
— If (flags() & adjustfield) == internal , the flag0 is prepended to the conversion spedid
fication, indicating internal justification (any padding occurs within the converted text). A fill charddter
occurs whereveprintf generates @ as padding?.8 O

Otherwise, the flag is prepended to the conversion specification, indicating left justification (any padding
occurs after the converted text). A fill character occurs whefpvietf generates a space character &8s
padding. O

Each unformatted output function begins execution by cadipfg() . If that function returns nonzero,]
the function endeavors to generate the requested output. In any case, the unformatted output functibn ends
by callingosfx() , then returning the value specified for the unformatted output function. O

17.4.4.1.1ostream::ostream(streambuf*) [lib.cons.ostream.sb]

ostream(streambuf* sb); a

Constructs an object of classstream , assigning initial values to the base class by callig

ios::init(sb) , then assigning zero thcount . a

17.4.4.1.20stream::~ostream() [lib.des.ostream]
virtual ~ostream(); a

Destroys an object of classtream . ad

98) The conversion specificatiofo generates a leadifywhich isnota padding character.

17.4.4.1.30stream::opfx() DRAFT: 25 January 1994 Library 17-91

17.4.4.1.3ostream::opfx() (lib.ostream::opfx]
int opfx(); a
If good() is nonzero, prepares for formatted or unformatted outpuie()f is not a null pointer, the O
function callgtie()->flush() . It returnsgood() 99) a
17.4.4.1.40stream::osfx() [({lib.ostream::osfx]
void osfx(); a
If flags() & unitbuf is nonzero, calllush() . O
17.4.4.1.50stream::operator<<(ostreamé& (*)(ostream&)) [{lib.ostream::ins.omanip]
ostreamé& operator<<(ostreamé& (* pf)(ostream&)) a
Returns(* pf)(*this) .10 O
17.4.4.1.60stream::operator<<(ios& (*)(ios&)) ({lib.ostream::ins.iomanip]
ostreamé& operator<<(ios& (* pf)(ios&)) a
* *thi 101)
Returng(ostream&)(prf)(*this) . O
17.4.4.1.7ostream::operator<<(const char*) (lib.ostream::ins.str]
ostreamé& operator<<(const char* s); t

A formatted output function, converts theBs s with the conversion specifies. The function returns O
*this . O

17.4.4.1.80ostream::operator<<(char) [({lib.ostream::ins.c]

ostreamé& operator<<(char c); a

A formatted output function, converts tbiear ¢ with the conversion specifierand a field width of zero. O

The stored field widthigs:: wide) isnotset to zero. The function returithis . O
17.4.4.1.90stream::operator<<(unsigned char) [{lib.ostream::ins.uc]
ostreamé& operator<<(unsigned char c) a
Returnsoperator<<((char) c). ad
17.4.4.1.100stream::operator<<(signed char) [(lib.ostream::ins.sc]
ostreamé& operator<<(signed char c) a
Returnsoperator<<((char) c) . O
99) The function signaturespfx() andosfx() can also perform additional implementation-dependent operations. O
100)See, for example, the function signatarell(ostream&) . O

101)See, for example, the function signatudec(ios&)

17-92 Library DRAFT: 25 January 1994 1744111
ostream::operator<<(short)

17.4.4.1.11ostream::operator<<(short) [(lib.ostream::ins.si]

ostreamé& operator<<(short n); a

A formatted output function, converts the signed short integeith the integral conversion specifier prektl

ceded byh. The function returnhis . a
17.4.4.1.120stream::operator<<(unsigned short) [{lib.ostream::ins.usi]
ostreamé& operator<<(unsigned short ny; a

A formatted output function, converts the unsigned short intageith the integral conversion specifief]

preceded by. The function returnhis . O
17.4.4.1.130stream::operator<<(int) [{lib.ostream::ins.i]
ostreamé& operator<<(int ny; O

A formatted output function, converts the signed integeith the integral conversion specifier. The fundd

tion returnstthis . O
17.4.4.1.140stream::operator<<(unsigned int) (lib.ostream::ins.ui]
ostreamé& operator<<(unsigned int n; a

A formatted output function, converts the unsigned integeiith the integral conversion specifier. Thél

function returngthis . O
17.4.4.1.150stream::operator<<(long) [(lib.ostream::ins.li]
ostreamé& operator<<(long n); a

A formatted output function, converts the signed long integerith the integral conversion specifier prektl

ceded by . The function returnhis . a
17.4.4.1.160stream::operator<<(unsigned long) [{lib.ostream::ins.uli]
ostreamé& operator<<(unsigned long ny; a

A formatted output function, converts the unsigned long integeith the integral conversion specifief]

preceded by . The function returnhis . O
17.4.4.1.170stream::operator<<(float) ({lib.ostream::ins.f]
ostreamé& operator<<(float f); O

A formatted output function, converts tfleat f with the floating-point conversion specifier. The fundd

tion returnstthis . O
17.4.4.1.18ostream::operator<<(double) (lib.ostream::ins.d]
ostreamé& operator<<(double f); a

A formatted output function, converts tideuble f with the floating-point conversion specifier. Thél
function returnsthis . O

17.4.4.1.19 DRAFT: 25 January 1994 Library 1493
ostream::operator<<(long double)

17.4.4.1.190stream::operator<<(long double) [(lib.ostream::ins.Id]

ostreamé& operator<<(long double f); a

A formatted output function, converts tlang double f with the floating-point conversion specifief]

preceded by.. The function returnhis . a
17.4.4.1.200stream::operator<<(void*) [({lib.ostream::ins.ptr]
ostreamé& operator<<(void* p); a

A formatted output function, converts the pointewtéid p with the conversion specifigr. The function O

returns*this . O
17.4.4.1.21ostream::operator<<(streambuf&) [{lib.ostream::ins.sb]
ostreamé& operator<<(streambuf& sb); a

A formatted output function, extracts characters from the input sequence contradledaby inserts them O

in *this . Characters are extracted and inserted until any of the following occurs: O
— end-of-file occurs on the input sequence; O
— inserting in the output sequence fails (in which case the character to be inserted is not extracted);]
— an exception occurs (in which case, the exception is rethfc%)n). O
If the function inserts no characters, it caktgstate(failbit) . The function return&his . ad
17.4.4.1.220stream::put(char) (lib.ostream::put]

int put(char c); a

An unformatted output function, inserts the charaaterif possible. The function then returngl

(unsigned char) c. Otherwise, the function cakketstate(badbit) . It then return&€OF O
17.4.4.1.230stream::write(const char*, int) [lib.ostream::write.str]
ostream& write(const char* s, int ny; O

An unformatted output function, obtains characters to insert from successive locations of an arraylivhose

first element is designated Isy Characters are inserted until either of the following occurs: a
— n characters are inserted; O
— inserting in the output sequence fails (in which case the functiorsetdkate(badbit)). a
The function returnsthis . O
17.4.4.1.240stream::write(const unsigned char*, int) [{lib.ostream::write.ustr]
ostreamé& write(const unsigned char* s, int n) a
Returnswrite((const char*) s, n). ad
1U2) This behavior differs from that foistream::istream& operator>>(streambuf&) , Which doesnot rethrow the

exception.

17-94 Library DRAFT: 25 January 1994 17.4.4.1.25
ostream::write(const signed char*, int)

17.4.4.1.250stream::write(const signed char*, int) [lib.ostream::write.sstr]
ostream& write(const signed char* s, int n) a
Returnswrite((const char*) s, n). ad
17.4.4.1.260stream::flush() [({lib.ostream::flush]
ostream& flush(); a
If rdbuf() is not a null pointer, calldbuf()->pubsync() . If that function return&OF, the func- O
tion callssetstate(badbit) O
The function returnsthis
17.4.4.2 endl(ostream&) (lib.endl]
ostreamé& endl(ostreamé& 0s); a
Calls os.put(\n’) , thenos .flush() . The function returnghis .1%® ad
17.4.4.3ends(ostream&) (lib.ends]
ostreamé& ends(ostreamé& 0s); a
Calls os.put(\0’) . The function returnighis 1% O
17.4.4.4flush(ostream&) [lib.flush]
ostream& flush(ostream& 0s); a
Calls 0s .flush() . The function return&his . a
17.4.5 Headexiomanip> [({lib.header.iomanip]

The headexiomanip> defines three template classes and several related functions that use these témplate
classes to provide extractors and inserters that alter information maintained hp<laasd its derived O

classes. It also defines several instantiations of these template classes and functions. a
17.4.5.1 Template classmanip< T> [({lib.template.smanip]

template<class T> class smanip { a

public: O

smanip(ios& (* pf_arg)(ios&, n, 1) a

I ios& (* pf)(ios&, T); exposition only a

I T manarg ; exposition only a

h 0

The template classmanip< T> describes an object that can store a function pointer and an object ofllype
T. The designated function accepts an argument of thisTtypger the sake of exposition, the maintained

data is presented here as: O
— i0s& (* pf)(ios&, T) , the function pointer; O
— T manarg , the object of typd. O
193] The effect of executingout << endl is to insert a newline character in the output sequence controlleouby, then syn-

chranize it with any external file with which it might be associated.

104%)) - . .
The effect of executingstr << ends is to insert a null character in the output sequence controlledtpoy. If ostr is an

object of classtrstreambuf , the null character can terminatenamss constructed in an array object.

17.4.5.1 Template classmanip< 7> DRAFT: 25 January 1994 Library 17-95

17.4.5.1.1smanip< T>::smanip(ios& (*)(i0s&, n, T (lib.cons.smanip.ios]
smanip(ios& (* pf_arg)(ios&, T), Tmanarg_arg), a

Constructs an object of classanip< T>, initializing pf to pf_ arg andmanarg to manarg_arg . ad

17.4.5.1.20perator>>(istreamé&, const smanip< T>&) [lib.ext.smanip]
istream& operator>>(istream& is , const smanip< T>& a); a

Calls(* a.pf)(is, a.manarg) and catches any exception the function call throws. If the function

catches an exception, it calis .setstate(ios::failbit) (the exception is not rethrown). Thel

function returngs . O

17.4.5.1.3operator<<(ostream&, const smanip< T>&) [(lib.ins.smanip]
ostreamé& operator<<(ostreamé& 0s, const smanip< T>& a); a

Calls(* a.pf)(os, a.manarg) and catches any exception the function call throws. If the function

catches an exception, it calls.setstate(ios::failbit) (the exception is not rethrown). Thel

function returnss. 0
17.4.5.2 Template clasgnanip< T> (lib.template.imanip]

template<class T> class imanip { a

public: a

imanip(ios& (* pf_arg)(ios&, n, 7 a

I ios& (* pf)(ios&, n; exposition only a

I T manarg ; exposition only a

h 0

The template classnanip< T> describes an object that can store a function pointer and an object oflfype
T. The designated function accepts an argument of thisltypeor the sake of exposition, the maintained

data is presented here as: a
— i0s& (* pf)(ios&, T) , the function pointer; a
— T manarg , the object of typd. a
17.4.5.2.1imanip< T>:imanip(ios& (*)(ios&, n, T [(lib.cons.imanip.ios]
imanip< T>:imanip(ios& (* pf_arg)(i0s&, T, Tmanarg_arg); a
Constructs an object of clagsanip< T>, initializing pf to pf_arg andmanarg to manarg_arg . ad
17.4.5.2.20perator>>(istreamé&, const imanip< T>&) [(lib.ext.imanip]
istream& operator>>(istream& is , const imanip< T>& a); a

Calls(* a.pf)(is, a.manarg) and catches any exception the function call throws. If the function
catches an exception, it calis .setstate(ios::failbit) (the exception is not rethrown). Thel
function returngs . O

17.4.5.3 Template classmanip< T> (lib.template.omanip]

17-96 Library DRAFT: 25 January 1994 17.4.5.3 Template classmanip< T>

template<class T> class omanip { a
public: a

omanip(ios& (* pf_arg)(i0s&, n, a
I i0s& (* pf)(ios&, T); exposition only a
I T manarg ; exposition only a
h 0

The template classmanip< T> describes an object that can store a function pointer and an object ofllype
T. The designated function accepts an argument of thisltypeor the sake of exposition, the maintained

data is presented here as: O
— i0s& (* pf)(ios&, T) , the function pointer; O
— T manarg , the object of typd. O
17.4.5.3.1omanip< T>::omanip(ios& (*)(i0os&, n, T ({lib.cons.omanip.ios]
omanip< T>::omanip(ios& (* pf_arg)(ios&, T), Tmanarg_arg), O
Constructs an object of clasmanip< T>, initializing pf to pf_arg andmanarg to manarg_arg . O
17.4.5.3.20perator<<(istreamé&, const omanip< T>&) (lib.ins.omanip]
ostreamé& operator<<(ostreamé& 0s, const omanip< T>& a); a

Calls (* a.pf)(os, a.manarg) and catches any exception the function call throws. If the function

catches an exception, it calis.setstate(ios::failbit) (the exception is not rethrown). Thel
function returnos. O
17.4.5.4 Instantiations of manipulators [lib.instantiations.of.manipulators]
17.4.5.4.1resetiosflags(ios::fmtflags) (lib.resetiosflags]
smanip<ios::fmtflags> resetiosflags(ios::fmtflags mask); a
Returnssmanip<ios::fmtflags>(& f, mask) , wheref can be defined as® ad
ios& f(ios& str ,ios:fmtflags mask) a
{ /I reset specified flags O
str .setf((ios::fmtflags)0, mask); a
return (- str); a
} 0
17.4.5.4.2setiosflags(ios::fmtflags) [(lib.setiosflags]
smanip<ios::fmtflags> setiosflags(ios::fmtflags mask); O
Returnssmanip<ios::fmtflags>(& f, mask) , wheref can be defined as: ad
ios& f(ios& str ,ios:fmtflags mask) a
{ /I set specified flags a
str .setf(mask); a
return (str); a
} 0
199) The expressiorcin >> resetiosflags(ios::skipws) clearsios::skipws in the format flags stored in the

istream objectcin (the same asin >> noskipws), and the expressiarout << resetiosflags(ios::showbase)
clearsios::showbase in the format flags stored in tlostream objectcout (the same asout << noshowbase).

17.45.4.2 DRAFT: 25 January 1994 Library 1%#97
setiosflags(ios::fmtflags)

17.4.5.4.3setbase(int) (lib.setbase]
smanip<int> setbase(int base); a
Returnssmanip<int>(& f, base), wheref can be defined as: ad
ios& f(ios& str ,int base) a
{ /I set basefield O
str .setf(n == 8 ? ios::oct : n == 10 ? ios::dec a
:n==16 ?ios::hex : (ios::fmtflags)0, ios::basefield); a
return (str), a
} ad
17.4.5.4.4seffill(int) (lib.setfill]
smanip<int> setfill(int c); a
Returnssmanip<int>(& f, c¢),wheref can be defined as: g
ios& f(ios& str ,int c) a
{ /I set fill character a
str fill(c); a
return (- str); a
} ad
17.4.5.4.5setprecision(int) [lib.setprecision]
smanip<int> setprecision(int ny; 0
Returnssmanip<int>(& f, n), wheref can be defined as: ad
ios& f(ios& str ,int n) O
{ /I set precision a
str .precision(n); a
return (str), a
} O
17.4.5.4.6setw(int) (lib.setw]
smanip<int> setw(int n; a
Returnssmanip<int>(& f, n),wheref can be defined as: g
ios& f(ios& str ,int n) a
{ Il set width a
str.width(n); a
return (str); a
} ad
17.4.6 Headerstrstream> [lib.header.strstream]

The headekstrstream> defines three types that associate stream buffers with (single-byte) character
array objects and assist reading and writing such objects. a

17.4.6.1 Classtrstreambuf [(lib.strstreambuf]

17-98 Library DRAFT: 25 January 1994 17.4.6.1 Classtrstreambuf

class strstreambuf : public streambuf { a
public: a
strstreambuf(int alsize_arg =0); a
strstreambuf(void* (* palloc_arg)(size_t), a

void (* pfree_arg)(void*)); a

strstreambuf(char* gnext_arg ,int n, char* pbeg _arg =0); a
strstreambuf(unsigned char* gnext_arg ,int n, a

unsigned char* pbeg_arg =0); a

strstreambuf(signed char* gnext_arg ,int n, a

signed char* pbeg _arg =0); a

strstreambuf(const char* gnext_arg , int n); a
strstreambuf(const unsigned char* gnext_arg ,int n; a
strstreambuf(const signed char* gnext_arg ,int ny; a

virtual ~strstreambuf(); a

void freeze(int = 1); a

char* str(); a

int pcount(); a

protected: a
I virtual int overflow(int ¢ = EOF); inherited O
I virtual int pbackfail(int ¢ =EOF); inherited a
I virtual int underflow(); inherited a
I virtual int uflow(); inherited a
I virtual int xsgetn(char* s, int n); inherited O
I virtual int xsputn(const char* s, int ny; inherited a
I virtual streampos seekoff(streamoff off , ios::seekdir way, a
I ios::openmode which =ios:in | ios::out); inherited a
I virtual streampos seekpos(streampos sp, a
I ios::openmode which =ios::in | ios::out); inherited a
1! virtual streambuf* setbuf(char* s, int ny; inherited O
1 virtual int sync(); inherited a
private: O
I typedef T1 strstate ; exposition only a
I static const strstate allocated ; exposition only a
I static const strstate constant exposition only a
I static const strstate dynamic ; exposition only a
I static const strstate frozen ; exposition only a
I strstate strmode ; exposition only a
1 int alsize exposition only a
I void* (* palloc)(size_t); exposition only a
I void (* pfree)(void*); exposition only a
h 0

The classstrstreambuf is derived fromstreambuf to associate the input sequence and possibly fhe
output sequence with an object of some character array type, whose elements store arbitrary valugs. The
array object has several attributes. For the sake of exposition, these are represented as elementslof a bit-
mask type (indicated here @4) calledstrstate . The elements are: a

— allocated , set when a dynamic array object has been allocated, and hence should be freedlby the

destructor for thetrstreambuf object; a
— constant , set when the array object lmmst elements, so the output sequence cannot be writtef]

— dynamic , set when the array object is allocated (or reallocated) as necessary to hold a character
sequence that can change in length; a

— frozen , set when the program has requested that the array object not be altered, reallocated, orffreed.

For the sake of exposition, the maintained data is presented here as:

— strstate strmode , the attributes of the array object associated witlstits¢ereambuf object; O

— int alsize ,the suggested minimum size for a dynamic array object;

17.4.6.1 Classtrstreambuf DRAFT: 25 January 1994 Library 17-99

— void* (* palloc)(size_t) , points to the function to call to allocate a dynamic array object; O

— void (* pfree)(void*) , points to the function to call to free a dynamic array object. O

Each object of classtrstreambuf has aseekable areadelimited by the pointerseeklow and
seekhigh . If gnext is a null pointer, the seekable area is undefined. Othersésklow equals
gbeg andseekhigh is eitherpend, if pend is not a null pointer, ogend.

OooOoo

17.4.6.1.1strstreambuf::strstreambuf(int) [(lib.cons.strstreambuf.i]
strstreambuf(int alsize_arg =0); a

Constructs an object of classtreambuf | initializing the base class witireambuf() , and initial-

izing:

— strmode with dynamic ;

— alsize with alsize_arg ;

— palloc with a null pointer;

— pfree with a null pointer.

17.4.6.1.2strstreambuf::strstreambuf(void* [({lib.cons.strstreambuf.ff]
(*)(size_t), void (*)(void*)) O

strstreambuf(void* (* palloc_arg)(size_t), void (* pfree_arg)(void®)); a
Constructs an object of clasgstreambuf | initializing the base class wigtreambuf() , and initial-
izing:

— strmode with dynamic ;
— alsize with an unspecified value;
— palloc with palloc_arg ;

— pfree with pfree_arg

17.4.6.1.3strstreambuf::strstreambuf(char*, int, [(lib.cons.strstreambuf.str]
char*) O

strstreambuf(char* gnext_arg ,int n,char* pbeg arg =0); a

Constructs an object of clasgstreambuf | initializing the base class widtreambuf() , and initial-
izing:

O
0
— strmode with zero; O
— alsize with an unspecified value; O
— palloc with a null pointer; O

0

— pfree with a null pointer.

gnext_arg shall point to the first element of an array object whose number of eleMentetermined O
as follows: 0
0
0

— Ifn >0, Nisn.

— Ifn ==0, Nisstrlen(gnext arg).

17-100 Library DRAFT: 25 January 1994 17.4.6.1.3
strstreambuf::strstreambuf(char*, int, char*)

— If n <0, NisINT_MAX O
The function signaturstrlen(const char*) is declared irxstring.h> . The macrdNT_MAXis [O
defined in<limits.h> O
If pbeg_arg is a null pointer, the function executes: O
setg(gnext arg , gnext arg , gnext arg + N) a
Otherwise, the function executes: O
setg(gnext_arg , gnext arg , pbeg_ arg); 0
setp(pbeg_arg , pbeg_arg + N); O
17.4.6.1.4strstreambuf::strstreambuf(unsigned char*, [(lib.cons.strstreambuf.ustr]
int, unsigned char*) O
strstreambuf(unsigned char* gnext_arg ,int n, a
unsigned char* pbeg _arg =0); a
Behaves the same sisstreambuf((char*) gnext_arg , n,(char®) pbeg _arg) . ad
17.4.6.1.5strstreambuf::strstreambuf(signed char?*, [{lib.cons.strstreambuf.sstr]
int, signed char*) O
strstreambuf(signed char* gnext_arg ,int n, a
signed char* pbeg_arg =0); a
Behaves the same sigstreambuf((char*) gnext_arg , n, (char®) pbeg _arg) . ad
17.4.6.1.6strstreambuf::strstreambuf(const char*, [(lib.cons.strstreambuf.cstr]
int) O
BBox 167 B O
[Library WG issue: Jerry Schwarz, January 3, 1994 0 a
O 0
Elstrstreambuf::strstreambuf(const char*) B a
O
] This is not the same as the non-const version. In Rev 7, this ig a
O covered by a short sentence, that says “stores” are not allowed. a
g What this means in particular is timttback can't be allowed to a
i O
0 modify the array. . a
O
0 So we a flag in the “exposition only” section that keeps B a
O track of this and caus@backfail to fail appropriately. O N
strstreambuf(const char* gnext_arg ,int ny; a
Behaves the same sgstreambuf((char*) gnext_arg , n), except that the constructor also sefs$

constant in strmode . a

17.4.6.1.7 DRAFT: 25 January 1994 Library 17101
strstreambuf::strstreambuf(const unsigned char*, int)

17.4.6.1.7 strstreambuf::strstreambuf(const unsigned [(lib.cons.strstreambuf.custr]
char*, int) O
strstreambuf(const unsigned char* gnext_arg ,int ny; a
Behaves the same sisstreambuf((const char*) gnext arg , n). ad
17.4.6.1.8strstreambuf::strstreambuf(const signed [(lib.cons.strstreambuf.csstr]
char*, int) O
strstreambuf(const signed char* gnext_arg ,int ny; a
Behaves the same sigstreambuf((const char*) gnext arg , n). ad
17.4.6.1.9strstreambuf::~strstreambuf() [([lib.des.strstreambuf]
virtual ~strstreambuf(); a
Destroys an object of clas¢rstreambuf . The function frees the dynamically allocated array objédt
only if strmode & allocated is nonzero andstrmode & frozen is zero. (Subclausel
_strstreambuf::overflowdescribes how a dynamically allocated array object is freed.) O
17.4.6.1.10strstreambuf::freeze(int) (lib.strstreambuf::freeze]
void freeze(int freezefl =1); a

If strmode & dynamic is nonzero, alters the freeze status of the dynamic array object as follovi$: If

freezefl is nonzero, the function sefeozen in strmode . Otherwise, it clear&ozen in str- O
mode. O
17.4.6.1.11strstreambuf::str() [(lib.strstreambuf::str]
char* str(); a
Callsfreeze() , then returns the beginning pointer for the input sequgﬂmg.loe) ad
17.4.6.1.12strstreambuf::pcount() {lib.strstreambuf::pcount]
int pcount() const; a

If the next pointer for the output sequenpeext , is a null pointer, returns zero. Otherwise, the functi@h
returns the current effective length of the array object as the next pointer minus the beginning poiriier for
the output sequencpnext - pbeg. O

17.4.6.1.13strstreambuf::overflow(int) [(lib.strstreambuf::overflow]

190)The return value can be a null pointer.

17-102 Library DRAFT: 25 January 1994 17.46.1.13
strstreambuf::overflow(int)

HBox 168
HJbrary WG issue: Jerry Schwarz, January 3, 1994

E[Was 17.4.3.1]

O overflow

This is essentially editorial. | think the words Library uses

here (and in general describing specializatiorstreambuf) are
wrong.Library says “Behaves the same stseambuf::underflow(int)
with the following specific behavior.” Butreambuf::underflow(int)
returnsEOFunconditionally.

WhatLibrary is trying to say is something like “it implements
the protocol defined fastreambuf::underflow with the fol-
lowing specific behavior.”

I think the right thing to do is make these descriptions self
contained.

Oooooooooooooooodg

00 was wrong here. Sorry. Comparib@rary with the current draft convinces me that when the func

Ltan be described as a specialization of a protocol it is better to do that. All the repetitions of the prefdcol in
he current draft mean you have to compare lots of identical verbiage to see how various functiong! differ
rom each other. N

0 O

[But | think it is essential that the protocol itself indicate what needs to be specified in a specializatio@]

B il eu = e e ayd = b e

I virtual int overflow(int ¢ =EOF); inherited a

Appends the character designatecthp the output sequence, if possible, in one of two ways: ad

— If ¢ 1= EOF and if either the output sequence has a write position available or the function makes a
write position available (as described below), the function assigas pnext ++. The function sig- O

nals success by returnifignsigned char) c. a

— If ¢ == EOF, there is no character to append. The function signals success by returning a valuélother
thanEOF O

The function can alter the number of write positions available as a result of any call. ad

The function returnEOFto indicate failure. O

To make a write position available, the function reallocates (or initially allocates) an array object with@ suf-
ficient number of elementsto hold the current array object (if any), plus at least one additional write gosi-
tion. How many additional write positions are made available is otherwise unspé%ﬁiﬁdpa//oc is O

not a null pointer, the function cal($ palloc)(n) to allocate the new dynamic array object. Other
wise, it evaluates the expressioew char[n] . In either case, if the allocation fails, the function returfs
EOF. Otherwise, it setallocated in strmode . O

To free a previously existing dynamic array object whose first element addeds$ igree is not a null O
pointer, the function call& pfree)(p). Otherwise, it evaluates the expressietete[] p. a

If strmode & dynamic is zero, or ifstrmode & frozen is nonzero, the function cannot extend the
array (reallocate it with greater length) to make a write position available. a

Uan implementation should consideisize in making this decision.

17.4.6.1.14 DRAFT: 25 January 1994 Library 17103
strstreambuf::pbackfail(int)

17.4.6.1.14strstreambuf::pbackfail(int) [lib.strstreambuf::pbackfail]
I virtual int pbackfail(int ¢ = EOF); inherited

O

Puts back the character designated Iy the input sequence, if possible, in one of three ways:

— If ¢ = EOF , if the input sequence has a putback position available, gndsfgned char) c
== unsigned char) gnext [-1] , the function assigngnext -1 to gnext . The function sig-
nals success by returnifignsigned char) c.

— If ¢ = EOF , if the input sequence has a putback position available, atdribde & constant
is zero, the function assigmsto *-- gnext . The function signals success by returnjngsigned
char) c.

— If ¢ == EOF and if the input sequence has a putback position available, the function agsgnhs
-1 tognext . The function signals success by returr(ungsigned char) c.

OO ooo ogoo O

If the function can succeed in more than one of these ways, it is unspecified which way is chosehl. The

function can alter the number of putback positions available as a result of any call. a
The function returnEOFto indicate failure. O
17.4.6.1.15strstreambuf::underflow() [lib.strstreambuf::underflow]

I virtual int underflow(); inherited a

Reads a character from the input sequence, if possible, without moving the stream position past it[as fol-
lows: O

— If the input sequence has a read position available the function signals success by reflirning
(unsigned char)* gnext . O

— Otherwise, if the current write next pointgmext is not a null pointer and is greater than the currémt
read end pointegend, the function makes a read position available by assignirgetal a value O
greater thangnext and no greater thamnext . The function signals success by returnirfg
(unsigned char)* gnext . O

The function can alter the number of read positions available as a result of any call.

The function returnEOFto indicate failure.

17.4.6.1.16strstreambuf::uflow() (lib.strstreambuf::uflow]

I virtual int uflow(); inherited O
Behaves the same siseambuf::uflow(int) . O
17.4.6.1.17strstreambuf::xsgetn(char*, int) [(lib.strstreambuf::xsgetn]

I virtual int xsgetn(char* s, int ny; inherited a
Behaves the same siseambuf::xsgetn(char*, int) . O
17.4.6.1.18strstreambuf::xsputn(const char*, int) (lib.strstreambuf::xsputn]

I virtual int xsputn(const char* s, int ny; inherited a

Behaves the same siseambuf::xsputn(char*, int) . ad

17-104 Library DRAFT: 25 January 1994 17.4.6.1.19
strstreambuf::seekoff(streamoff, ios::seekdir, ios::openmode)

17.4.6.1.19strstreambuf::seekoff(streamoff, (lib.strstreambuf::seekoff]
ios::seekdir, ios::openmode) O
HBox 169

El_ibrary WG issue: Jerry Schwarz, January 3, 1994

Swas 17.4.3.1.15]

0 strstreambuf::seekoff

O The discussion on the reflector shows that

g there is no consensus about what this paragraph should say. |

g have a proposal in x3j16/93-0128.

EThis has been fixed by the vote in San Jose, but in reviewing this paragraph | noticed that the currefi refers
[fo seekhigh but doesn’t define it anywhere.

Rl a ke e

1 virtual streampos seekoff(streamoff off , ios::seekdir way, a
I ios::openmode which =ios:in | ios::out); inherited a

Alters the stream position within one of the controlled sequences, if possible, as described belowl The
function returnstreampos(newoff), constructed from the resultant offeewoff (of typestream- O

off), that stores the resultant stream position, if possible. If the positioning operation fails, or if thélcon-
structed object cannot represent the resultant stream position, the object stores an invalid stream po&ition.

If which & ios::in is nonzero, the function positions the input sequence. Otherwigdydh & O
ios::out is nonzero, the function positions the output sequence. Otherwigkicli & (ios::in O
| ios::out) equalsios::in | ios::out and if way equals eithefos::beg orios:end , O

the function positions both the input and the output sequences. Otherwise, the positioning operationfails.

For a sequence to be positioned, if its next pointer is a null pointer, the positioning operation fails. @ther-

wise, the function determinggwoff in one of three ways: O
— If way ==ios::beg , newoff is zero. O
— If way ==ios:.cur , newoff is the next pointer minus the beginning pointergxt - xbeg). O
— If way ==ios::end , newoff is the end pointer minus the beginning pointemd - xbeg). O
If newoff + off is less tharseeklow - xbeg, or if seekhigh - xbeg is less thamewoff + [0
off , the positioning operation fails. Otherwise, the function asstgeg + newoff + off tothe O
next pointerxnext . O
17.4.6.1.20strstreambuf::seekpos(streampos, (lib.strstreambuf::seekpos]
ios::openmode) O
I virtual streampos seekpos(streampos sp, a
I ios::openmode which =ios::in | ios::out); inherited a

Alters the stream position within one of the controlled sequences, if possible, to correspond to thel3tream
position stored insp (as described below). The function retusteeampos(newoff), constructed [

from the resultant offsetewoff (of typestreamoff), that stores the resultant stream position, if posiSi-

ble. If the positioning operation fails, or if the constructed object cannot represent the resultant streai posi-
tion, the object stores an invalid stream position. O

If which & ios:in is nonzero, the function positions the input sequencevhiéh & ios::out O
is nonzero, the function positions the output sequence. If the function positions neither sequence, the posi-
tioning operation fails. O

17.4.6.1.20 DRAFT: 25 January 1994 Library 17105
strstreambuf::seekpos(streampos, ios::openmode)

For a sequence to be positioned, if its next pointer is a null pointer, the positioning operation fails. @ther-

wise, the function determinggewoff from sp.offset() . If newoff is an invalid stream position,]
has a negative value, or has a value greaterdbekhigh - seeklow , the positioning operation fails.O
Otherwise, the function addsewoff to the beginning pointexbeg and stores the result in the next
pointerxnext . O
17.4.6.1.21strstreambuf::setbuf(char*, int) (lib.strstreambuf::setbuf]

1! virtual streambuf* setbuf(char* s, int ny; inherited O

Performs an operation that is defined separately for each class derivedrimeambuf

The default behavior is the same assfiveambuf::setbuf(char*, int)

17.4.6.1.22strstreambuf::sync() [(lib.strstreambuf::sync]
1 virtual int sync(); inherited a
Behaves the same siseambuf::sync() . ad
17.4.6.2 Classstrstream (lib.istrstream]
class istrstream : public istream { a
public: a
istrstream(); a
istrstream(const char* s); a
istrstream(const char* s, int ny; O
istrstream(char* s); a
istrstream(char* s, int ny; O
virtual ~istrstream(); a
strstreambuf* rdbuf() const; a
private: a
I strstreambuf sb; exposition only a
h 0
The classistrstream is a derivative ofistream that assists in the reading of objects of clags
strstreambuf . It supplies astrstreambuf object to control the associated array object. For the
sake of exposition, the maintained data is presented here as: O
— sb, thestrstreambuf object. O
17.4.6.2.1istrstream::istrstream(const char*) [lib.cons.istrstream.cstr]
istrstream(const char* s); a
Constructs an object of clasdrstream |, initializing the base class witktream(& sb), and initial- O
izing sb with sb('s, 0) . s shall designate the first element ofnarss. O
17.4.6.2.2istrstream::istrstream(const char*, int) [(lib.cons.istrstream.cstrn]
istrstream(const char* s, int ny; O
Constructs an object of clasdrstream |, initializing the base class witktream(& sb), and initial- O

izing sb with sb(s, n). s shall designate the first element of an array whose lengtleisments, and O
n shall be greater than zero. O

17-106 Library DRAFT: 25 January 1994 17.4.6.2.3
istrstream::istrstream(char*)

17.4.6.2.3istrstream::istrstream(char*) [lib.cons.istrstream.str]
istrstream(char* s); a
Constructs an object of clasdrstream |, initializing the base class witetream(& sb), and initial- O
izing sb with sb((const char*) s, 0) . s shall designate the first element ofnams. a
17.4.6.2.4istrstream::istrstream(char?*, int) [lib.cons.istrstream.strn]
istrstream(char* s, int ny; a
Constructs an object of clasdrstream |, initializing the base class witetream(& sb), and initial- O
izing sb with sb((const char*) s, n). s shall designate the first element of an array whose length
is n elements, and shall be greater than zero. O
17.4.6.2.5istrstream::~istrstream() [(lib.des.istrstream]
virtual ~istrstream(); a
Destroys an object of clasgrstream . ad
17.4.6.2.6istrstream::rdbuf() (lib.istrstream::rdbuf]
strstreambuf* rdbuf() const; a
Returns&sb. O
17.4.6.3 Clas®strstream [(lib.ostrstream]
class ostrstream : public ostream { a
public: a
ostrstream(); O
ostrstream(char* s, int n, openmode mode = out); O
virtual ~ostrstream(); a
strstreambuf* rdbuf() const; a
void freeze(int freezefl); O
char* str(); a
int pcount() const; a
private: a
I strstreambuf sb; exposition only a
I3 0
The classostrstream is a derivative ofostream that assists in the writing of objects of clads
strstreambuf . It supplies astrstreambuf object to control the associated array object. For the
sake of exposition, the maintained data is presented here as: O
— Sb, thestrstreambuf object. O
17.4.6.3.10strstream::ostrstream() [lib.cons.ostrstream]
ostrstream(); a

Constructs an object of classtrstream |, initializing the base class wittstream(& sb) , and initial- O
izing sb with sb() . a

17.4.6.3.2 DRAFT: 25 January 1994 Library 17107

ostrstream::ostrstream(char*, int, openmode)

17.4.6.3.20strstream::ostrstream(char*, int, openmode) [(lib.cons.ostrstream.str]
ostrstream(char* s, int n, openmode mode = out); O

Constructs an object of classtrstream , initializing the base class wittstream(& sb) , and initial- O

izing sb with one of two constructors: a

— If mode & app is zero, thers shall designate the first element of an arrayr@ements. The con-0
structorissb(s, n, s). a

— If mode & app is nonzero, thes shall designate the first element of an array efements that con-0
tains anNTBS whose first element is designated By The constructor issb(s, n, s + O

s:strlen(s)) . a
The function signaturstrlen(const char*) is declared ircstring.h> . ad
17.4.6.3.30strstream::~ostrstream() [{lib.des.ostrstream]

virtual ~ostrstream(); a
Destroys an object of classtrstream . ad
17.4.6.3.40strstream::rdbuf() [lib.ostrstream::rdbuf]

strstreambuf* rdbuf() const; a
Returns&sb. O
17.4.6.3.50strstream::freeze(int) (lib.ostrstream::freeze]

void freeze(int freezefl =1); a
Callssb.freeze(freezefl). O
17.4.6.3.60strstream::str() [(lib.ostrstream::str]

char* str(); a
Returnssb.str() . ad
17.4.6.3.7 ostrstream::pcount() [{lib.ostrstream::pcount]

int pcount() const; a
Returnssb.pcount() . ad
17.4.7 Headerxsstream> [lib.header.sstream]

The headexsstream> defines three types that associate stream buffers with objects oftciags , as O
described in subclausstring . O

17.4.7.1 Classtringbuf [(lib.stringbuf]

17-108 Library DRAFT: 25 January 1994 17.4.7.1 Classtringbuf

EBox 170

rLibrary WG issue: Jerry Schwarz, January 3, 1994

O

LFormulating the “as if” rule is an interesting exercise. If the sequence is representediky the

equence is (a[0], a[max]) and the put pointer jpxand the get pointer is gk then the rule require
he pointers to be such that.

a)pbeg==NULL or for alli such that
px-(pnext-pbeg) <= < px, a[i]==pbeg][i-pxX]

b) gbeg==NULL or for alli s such that
ox-(gnext-gbeg) <=i < gx+(gend-gbeq), a[i]l==gnext[i-px]

c) for anyi such that both
px-(pnext-pbeg) <=1 < px
and

gx-(gnext-gbeg) <= i < gx+(gend-gbeg)

pnext+(i-px) == gnext + (i-gx)

= Bt e e e e e e e Rl et e

8 e e P

f my alternative protocols are accepted, essentially the same conditions are achieved by specializir@so that
rthe input and output streams are represented by d
O O
O Stream's ; Hy|
g size_t px;

0 size_t gx;
O O
I'll be happy to elaborate on any of the above. M
Box 171 E O
aibrary WG issue: Jerry Schwarz, January 3, 1994 O a
0 O
OWhy is the array not made a part of the “exposition only” privatels? M
HBox 172 El]
El_ibrary WG issue: Jerry Schwarz, January 3, 1994 d
O
gThere are several (partially related) problems with strengbuf section. El]

O
Of | understand it properly, the class is keeping track of the “current sequence” as the characters %tween

beg andpend. It has to be made clear that there is an “as if’ rule. Remember you can derive{ffom
tringbuf and find out what its really doing with the various pointers.

N
O O
[The description ofinderflow doesn’t indicate howpbeg is set. Obviously it's set to the start of t%
Carray, but in standardeze it needs to be said.

17.4.7.1 Classtringbuf

class stringbuf : public streambuf { a
public: a
stringbuf(ios::openmode which =ios:in | ios::out); O
stringbuf(const string& str a
ios::openmode which =ios::in | ios::out); a

string str() const; a

void str(const string& str_arg); a

protected: a
I virtual int overflow(int ¢ =EOF); inherited a
I virtual int pbackfail(int ¢ =EOF); inherited a
I virtual int underflow(); inherited O
I virtual int uflow(); inherited a
I virtual int xsgetn(char* s, int ny; inherited a
I virtual int xsputn(const char* s, int ny; inherited a
I virtual streampos seekoff(streamoff off ,ios::seekdir way, a
I ios::openmode which =ios::in | ios::out); inherited a
I virtual streampos seekpos(streampos sp, a
I ios::openmode which =ios:in | ios::out); inherited a
I virtual streambuf* setbuf(char* s, int ny; inherited O
I virtual int sync(); inherited a
private: a
I ios::openmode mode exposition only a
J5 0

DRAFT:

25 January 1994 Library 17-109

The classtringbuf is derived fromstreambuf to associate possibly the input sequence and possibly
the output sequence with a sequence of arbitrary (single-byte) characters. The sequence can be ifltialized

from, or made available as, an object of ckgag . O
For the sake of exposition, the maintained data is presented here as: ad
— ios::openmode mode, hasios::in set if the input sequence can be read, iasdout setif O
the output sequence can be written. O
For the sake of exposition, the stored character sequence is described here as an array object. O
17.4.7.1.1stringbuf::stringbuf(ios::openmode) [(lib.cons.stringbuf.m]
stringbuf(ios::openmode which =ios::in | ios::out); a
Constructs an object of classingbuf , initializing the base class wigtreambuf() , and initializing O
modewith which . The function allocates no array object. O
17.4.7.1.2stringbuf::stringbuf(const string&, [lib.cons.stringbuf.sm]
ios::openmode) O
stringbuf(const string& str , ios::openmode which =ios:in | ios::out); a
Constructs an object of classingbuf , initializing the base class wigireambuf() , and initializing O
modewith which . O
If str .length() is nonzero, the function allocates an array objectwhose lengthn is 0O
str .length() and whose elements[/] are initialized tostr [/]. If which & ios:in is O
nonzero, the function executes: O
setg(x, X, x + n); a
If which & ios::out is nonzero, the function executes: O
setp(x, x + nj; O

17-110 Library DRAFT: 25 January 1994 17.4.7.1.3
stringbuf::~stringbuf()

17.4.7.1.3stringbuf::~stringbuf() [lib.des.stringbuf]
virtual ~stringbuf(); a
Destroys an object of clastingbuf . ad
17.4.7.1.4stringbuf::str() (lib.stringbuf::str]
string str() const; a
If mode & ios:in is nonzero angynext is not a null pointer, returnstring(gbeg, gend - O
gbeg) . Otherwise, ifmode & ios::out is nonzero angnext is not a null pointer, the function
returnsstring(pbeg, pend - pbeg). Otherwise, the function retursting() . O
17.4.7.1.5stringbuf::str(const string&) (lib.stringbuf::str.s]
void str(const string& str_arg); a
If str_arg .length() is zero, executes: ad
setg(0, 0, 0); O
setp(0, 0); a

and frees storage for any associated array object. Otherwise, the function allocates an arrayvbbget [
lengthnis str_arg .length() and whose elemenyq /] are initialized tostr_ arg [/1]. If which O

& ios::in is nonzero, the function executes: O
setg(x, X, x + n); a
If which & ios::out is nonzero, the function executes: O
setp(x, x + nj; O
17.4.7.1.6stringbuf::overflow(int) (lib.stringbuf::overflow]
I virtual int overflow(int ¢ =EOF); inherited a
Appends the character designatecchip the output sequence, if possible, in one of two ways: O

— If ¢ 1= EOF and if either the output sequence has a write position available or the function makes a
write position available (as described below), the function assigas pnext ++. The function sig- O

nals success by returnifgnsigned char) c. O

— If ¢ == EOF, there is no character to append. The function signals success by returning a valuélother
thanEOF O

The function can alter the number of write positions available as a result of any call. O

The function return&EOFto indicate failure. O

The function can make a write position available onlyndde & ios::out is nonzero. To make all

write position available, the function reallocates (or initially allocates) an array object with a sufficient
number of elements to hold the current array object (if any), plus one additional write positiardelf& [
ios::in is nonzero, the function alters the read end pogeed to point just past the new write positior]
(as does the write end poineend). O

17.4.7.1.7 DRAFT: 25 January 1994 Library 17111
stringbuf::pbackfail(int)

17.4.7.1.7 stringbuf::pbackfail (int) [(lib.stringbuf::pbackfail]
I virtual int pbackfail(int ¢ = EOF); inherited

O

Puts back the character designated Iy the input sequence, if possible, in one of three ways:

— If ¢ = EOF , if the input sequence has a putback position available, gndsfgned char) c
== unsigned char) gnext [-1] , the function assigngnext -1 to gnext . The function sig-
nals success by returnifignsigned char) c.

— If ¢ = EOF , if the input sequence has a putback position available, anddé & Jos::out s
nonzero, the function assigngo *-- gnext . The function signals success by returnfmgsigned
char) c.

— If ¢ == EOF and if the input sequence has a putback position available, the function agsgnhs
-1 tognext . The function signals success by returr(ungsigned char) c.

OO ooo ogoo O

If the function can succeed in more than one of these ways, it is unspecified which way is chosen. [0

The function returnEOFto indicate failure. O

17.4.7.1.8stringbuf::underflow() [(lib.stringbuf::underflow]

FBox 173 ED

HJbrary WG issue: Jerry Schwarz, January 3, 1994 n
0

0

Underflow needs to consider that the sequence might have been extendedesfibw s from its ini- [

(tial state. a]

]

: s

g###_lib.stringbuf::seekpos(streampos,.ids'brary WG issue: Jerry Schwarz, January 3, 1994 N
O

O
[Also it should be possible to seek the input stream anywhere in the sequence, even if it has been exténded.
]

0 O
O
g###_lib.stringbuf::seekpos(streampos,.ids'brary WG issue: Jerry Schwarz, January 3, 1994 N
0 O
[Beeking to position 0 should be allowed even when the sequence is empty. En
I virtual int underflow(); inherited a
If the input sequence has a read position available, signals success by ref{umsigned ad
char)* gnext . Otherwise, the function returE®Fto indicate failure. O
17.4.7.1.9stringbuf::uflow() (lib.stringbuf::uflow]
I virtual int uflow(); inherited O
Behaves the same siseambuf::uflow(int) . O
17.4.7.1.10stringbuf::xsgetn(char*, int) (lib.stringbuf::xsgetn]
I virtual int xsgetn(char* s, int ny; inherited a

Behaves the same siseambuf::xsgetn(char*, int) . O

17-112 Library DRAFT: 25 January 1994 17.4.7.1.11
stringbuf::xsputn(const char*, int)

17.4.7.1.11stringbuf::xsputn(const char*, int) (lib.stringbuf::xsputn]
I virtual int xsputn(const char* s, int ny; inherited a
Behaves the same siseambuf::xsputn(char*, int) . ad
17.4.7.1.12stringbuf::seekoff(streamoff, ios::seekdir, [(lib.stringbuf::seekoff]
ios::openmode) O
I virtual streampos seekoff(streamoff off , ios::seekdir way, a
I ios::openmode which =ios:in | ios::out); inherited O

Alters the stream position within one of the controlled sequences, if possible, as described belowl The
function returnstreampos(newoff), constructed from the resultant offsewoff (of typestream- O

off), that stores the resultant stream position, if possible. If the positioning operation fails, or if thélcon-
structed object cannot represent the resultant stream position, the object stores an invalid stream po&ition.

If which & ios::in is nonzero, the function positions the input sequence. Otherwigdydh & O
ios::out is nonzero, the function positions the output sequence. Otherwigkiclfi & (ios::in O
| ios::out) equalsios::in | ios::out and if way equals eitheios::beg orios::end , O

the function positions both the input and the output sequences. Otherwise, the positioning operationfails.

For a sequence to be positioned, if its next pointer is a null pointer, the positioning operation fails. Qther-

wise, the function determinegwoff in one of three ways: O
— If way ==ios::beg , newoff is zero. O
— If way ==Iios::cur , hewoff is the next pointer minus the beginning pointerext - xbeg). O
— If way ==ios:end , newoff isthe end pointer minus the beginning poini&nd - xbeg). O
If newoff + off islessthan zero, or ¥end - xbeg is less thamewoff + off , the positioning O
operation fails. Otherwise, the function assigheg + newoff + off to the next pointexknext . O
17.4.7.1.13stringbuf::seekpos(streampos, ios::openmode) [(lib.stringbuf::seekpos]

I virtual streampos seekpos(streampos sp, a

I ios::openmode which =ios::in | ios::out); inherited a

Alters the stream position within one of the controlled sequences, if possible, to correspond to thel3tream
position stored insp (as described below). The function retusteeampos(newoff), constructed O

from the resultant offsetewoff (of typestreamoff), that stores the resultant stream position, if posiSi-

ble. If the positioning operation fails, or if the constructed object cannot represent the resultant streabh posi-

tion, the object stores an invalid stream position. a
If which & ios::in is nonzero, the function positions the input sequencevhith & ios::out ad
is nonzero, the function positions the output sequence. If the function positions neither sequence, the posi-
tioning operation fails. a

For a sequence to be positioned, if its next pointer is a null pointer, the positioning operation fails. @ther-
wise, the function determinggewoff from sp.offset() . If newoff is an invalid stream position,]
has a negative value, or has a value greaterxbad - xbeg, the positioning operation fails. Othert]
wise, the function addesewoff to the beginning pointexbeg and stores the result in the next pointér
xnext . g

17.4.7.1.14 DRAFT: 25 January 1994 Library 17113
stringbuf::setbuf(char*, int)

17.4.7.1.14stringbuf::setbuf(char*, int) [(lib.stringbuf::setbuf]

1! virtual streambuf* setbuf(char* s, int ny; inherited O

Performs an operation that is defined separately for each class derivedringtouf

The default behavior is the same assfiveambuf::setbuf(char*, int)

17.4.7.1.15stringbuf::sync() [(lib.stringbuf::sync]
1 virtual int sync(); inherited a
Behaves the same siseambuf::sync() . ad
17.4.7.2 Classstringstream (lib.istringstream]
class istringstream : public istream { O
public: a
istringstream(ios::openmode which =ios::in); a
istringstream(const string& str , ios::openmode which =ios::in); a
virtual ~istringstream(); O
stringbuf* rdbuf() const; a
string str() const; a
void str(const string& str); a
private: O
I stringbuf sb; exposition only a
I3 0
The classistringstream is a derivative ofistream that assists in the reading of objects of claBs
stringbuf . It supplies astringbuf object to control the associated array object. For the sakélof
exposition, the maintained data is presented here as: a
— sb, thestringbuf object. a
17.4.7.2 1istringstream::istringstream(ios::openmode) [(lib.cons.istringstream.m]
istringstream(ios::openmode which =ios::in); a
Constructs an object of clas$ringstream , initializing the base class witbtream(& sb), and ini- O
tializing sb with sb(which) . O
17.4.7.2.2istringstream::istringstream(const string&, [lib.cons.istringstream.sm]
ios::openmode O
istringstream(const string& str , ios::openmode which =ios::in); a
Constructs an object of clas$ringstream , initializing the base class witbtream(& sb), and ini- O
tializing sb with sb(str , which) . O
17.4.7.2.3istringstream::~istringstream() (lib.des.istringstream]
virtual ~istringstream(); a

Destroys an object of clasgringstream . O

17-114 Library DRAFT: 25 January 1994 17.4.7.2.4
istringstream::rdbuf()

17.4.7.2 4istringstream::rdbuf() [lib.istringstream::rdbuf]
stringbuf* rdbuf() const; a
Returns&sb. O
17.4.7.2 5istringstream::str() [(lib.istringstream::str]
string str() const; a
Returnssb.str() . ad
17.4.7.2.6istringstream::str(const string&) (lib.istringstream::str.s]
void str(const string& str_arg); a
Callssb.str(str_arg). O
17.4.7.3 Clas®stringstream [({lib.ostringstream]
class ostringstream : public ostream { a
public: a
ostringstream(ios::openmode which =ios::out); a
ostringstream(const string& str , ios::openmode which =ios::out); a
virtual ~ostringstream(); a
stringbuf* rdbuf() const; a
string str() const; a
void str(const string& str); a
private: a
I stringbuf sb; exposition only a
h 0
The classostringstream is a derivative ofostream that assists in the writing of objects of clads
stringbuf . It supplies astringbuf object to control the associated array object. For the sakélof
exposition, the maintained data is presented here as: O
— sb, thestringbuf object. O
17.4.7.3.1ostringstream::ostringstream(ios::openmode) [lib.cons.ostringstream.m]
ostringstream(ios::openmode which =ios::out); a
Constructs an object of classtringstream , initializing the base class withstream(& sb), and ini- 0O
tializing sb with sb(which) . O
17.4.7.3.2 [lib.cons.ostringstream.sm]
ostringstream::ostringstream(const string&, O
ios::openmode U
ostringstream(const string& str , ios::openmode which =ios::out); a
Constructs an object of clagstringstream , initializing the base class withstream(& sb), and ini- O

tializing sb with sb(str , which) . O

1

17.4.7.3.3
ostringstream::~ostringstream()

17.4.7.3.3ostringstream::~ostringstream()

virtual ~ostringstream();
Destroys an object of classtringstream

17.4.7.3.40stringstream::rdbuf()
stringbuf* rdbuf() const;

Returns&sb.

17.4.7.3.50stringstream::str()

string str() const;
Returnssb .str()

17.4.7.3.60stringstream::str(const string&)

void str(const string&
Callssb.str(str_arg).

17.4.8 Headexfstream>

The headekfstream>

DRAFT: 25 January 1994

str_arg);

Library 17115

[lib.des.ostringstream]

[{lib.ostringstream::rdbuf]

({lib.ostringstream::str]

[(lib.ostringstream::str.s]

(lib.header.fstream]

defines six types that associate stream buffers with files and assist readingl and

writing files. O

In this subclause, the type nafé E is a synonym for the typgelLE defined in<stdio.h> . g
17.4.8.1 Classilebuf (lib.filebuf]

class filebuf : public streambuf { a

public: a

filebuf(); O

virtual ~filebuf(); a

int is_open() const; a

filebuf* open(const char* s, ios::openmode mode); a

I filebuf* open(const char* s, ios::open_mode mode); optional a

filebuf* close(); a

protected: a

I virtual int overflow(int ¢ =EOF); inherited a

I virtual int pbackfail(int ¢ =EOF); inherited O

I virtual int underflow(); inherited a

I virtual int uflow(); inherited a

I virtual int xsgetn(char* s, int ny; inherited a

I virtual int xsputn(const char* s, int ny; inherited a

I virtual streampos seekoff(streamoff off ,ios::seekdir way, a

I ios::openmode which =ios::in | ios::out); inherited a

I virtual streampos seekpos(streampos sp, a

I ios::openmode which =ios:in | ios::out); inherited O

1! virtual streambuf* setbuf(char* s, int n; inherited O

I virtual int sync(); inherited a

private: a

I FILE* file ; exposition only O

J3 O

The classfilebuf is derived fromstreambuf

sequence with an object of typ_E . TypeFILE is defined in<stdio.h>

the maintained data is presented here as:

to associate both the input sequence and the oufput
. For the sake of exposition,]
O

17-116 Library DRAFT: 25 January 1994 17.4.8.1 ClasBlebuf

— FILE *file , points to thé-ILE associated with the object of clddsbuf . g

The restrictions on reading and writing a sequence controlled by an object diietags are the same O
as for reading and writing its associated file. In particular: O

— If the file is not open for reading or for update, the input sequence cannot be read. O
— If the file is not open for writing or for update, the output sequence cannot be written. O
O

— A joint file position is maintained for both the input sequence and the output sequence.

17.4.8.1.1filebuf::filebuf() [lib.cons.filebuf]
filebuf(); a
Constructs an object of clafebuf , initializing the base class witstreambuf() , and initializing O
file to a null pointer. a
17.4.8.1.2filebuf::~filebuf() lib.des.filebuf]
virtual ~filebuf(); a
Destroys an object of clafebuf . The function callglose() . ad
17.4.8.1.3filebuf::is_open() (lib.filebuf::is.open]
int is_open() const; a
Returns a nonzero valuefife is not a null pointer. a
17.4.8.1.4filebuf::open(const char*, ios::openmode) (lib.filebuf::open]
filebuf* open(const char* s, ios::openmode mode); a
If file is not a null pointer, returns a null pointer. Otherwise, the function célls
streambuf::streambuf() . It then opens a file, if possible, whose name isnt®&s s, by calling O
fopen(s, modstr) and assigning the return valuefite . TheNTBS modstr is determined from O
mode & ~ios::ate as follows: O
— ios:in becomesr” ; O
— ios::out | ios::trunc becomesw" ; O
— ios::out | ios::app becomesa” ; O
— ios:in | ios::bin becomesrb" ; O
— ios::out | ios::trunc | ios::bin becomeswb" ; O
— ios::out | ios::app | ios::bin becomesab” ; O
— ios:in | ios::out becomesr+" ; O
— ios:in | ios::out | ios::trunc becomesw+" ; O
— ios:iin | ios::out | ios::app becomesa+" ; O
— ios::in | ios::out | ios::bin becomesr+b" O
— ios::in | ios::out | ios::trunc | ios::bin becomesw+b" ; O
— ios:in | ios::out | ios::app | ios::bin becomesa+b” . O

17.48.14 DRAFT: 25 January 1994 Library 17117
filebuf::open(const char*, ios::openmode)

If the resultingfile is not a null pointer andnode & ios::ate is nonzero, the function callsO
fseek(file , 0, SEEK_END) . If that function returns a null pointer, the function calisse() O
and returns a null pointer. Otherwise, the function rettlniss . O
The macroSEEK_ENDis defined, and the function signaturéspen(const char*, const O
char*) andfseek(FILE*, long, int) are declared, irstdio.h> O
17.4.8.1.5filebuf::open(const char*, ios::open_mode) (lib.filebuf::open.old]

I filebuf* open(const char* s, ios::open_mode mode); optional a
Returnsopen(s, (ios::openmode) mode) . ad
17.4.8.1.6filebuf::close() [(lib.filebuf::close]
HBox 174 g 0
(Library WG issue: Jerry Schwarz, January 3, 1994 a
O 0

was 17.4.4.1.14] 0 ad
0! think close should assign O thie B a
0 0
[Not fixed. O ™

filebuf* close(); a
If file is a null pointer, returns a null pointer. Otherwise, if the fcdtlse(file) returns zero, the O
function stores a null pointer file and returnghis . Otherwise, it returns a null pointer. O
The function signaturelose(FILE*) is declared, ircstdio.h> . ad
17.4.8.1.7filebuf::overflow(int) (lib.filebuf::overflow]

I virtual int overflow(int ¢ = EOF); inherited O
Appends the character designatecchip the output sequence, if possible, in one of three ways: ad

— If ¢ 1= EOF and if either the output sequence has a write position available or the function makes a
write position available (in an unspecified manner), the function assignspnext ++. The function O
signals success by returniunsigned char) c. O

— If ¢ !'= EOF , the function appends directly to the associated output sequence (as described beldw).
If pbeg < pnext ,thepnext - pbeg characters beginning gbeg are first appended directly to]
the associated output sequence, beginning with the charapteegt The function signals success b/
returning(unsigned char) C. O

— If ¢ == EOF, there is no character to append. The function signals success by returning a valuélother
thanEOF 0

If the function can succeed in more than one of these ways, it is unspecified which way is chosehl. The
function can alter the number of write positions available as a result of any call. O

The function return&EOFto indicate failure. Ifile is a null pointer, the function always fails. O
To append a characterdirectly to the associated output sequence, the function evaluates the expression:

foutc(x, file)== x a

17-118 Library DRAFT: 25 January 1994 17.48.1.7
filebuf::overflow(int)

which must be nonzero. The function signafprgc(int, FILE*) is declared ircstdio.h> . g
17.4.8.1.8filebuf::pbackfail(int) (lib.filebuf::pbackfail]

I virtual int pbackfail(int ¢ = EOF); inherited a
Puts back the character designated Iy the input sequence, if possible, in one of four ways: a

— If ¢ !'= EOF and if either the input sequence has a putback position available or the function makes a
putback position available (in an unspecified manner), the function assigriss gnext . The func- O
tion signals success by returnifugnsigned char) c. a

— If ¢ !'= EOF and if no putback position is available, the function puts lzadkectly to the associatel]
input sequence (as described below). The function signals success by re{umsigned a
char) c. a

— If ¢ == EOF and if either the input sequence has a putback position available or the function makes a
putback position available, the function assignext -1 to gnext . The function signals succes§!
by returning(unsigned char) c. a

— If ¢ == EOF, if no putback position is available, and if the function can determine the charactér
immediately before the current position in the associated input sequence (in an unspecified manner), the
function puts back directly to the associated input sequence. The function signals success by return-
ing a value other thalBOF. a

If the function can succeed in more than one of these ways, it is unspecified which way is chosehl. The
function can alter the number of putback positions available as a result of any call. a

The function returnEOFto indicate failure. Ifile is a null pointer, the function always fails. ad

To put back a characterdirectly to the associated input sequence, the function evaluates the expression:

ungetc(x, file)== x a
which must be nonzero. The function signaumgetc(int, FILE*) is declared ircstdio.h> . ad
17.4.8.1.9filebuf::underflow() (lib.filebuf::underflow]

FBox 175 ED

H_ibrary WG issue: Jerry Schwarz, January 3, 1994 -
O

O

dwas 17.4.4.1.3] (g

O filebuf::underflow

U This is an example of why I think the use of

E stdio functions doesn’t improve the presentation. -
O

gThis is partially fixed. The paragraph has been modified so that it incorporates the protocol, but thisCreates
Cbther problems. In particular it says “or makes a write position available (in an unspecified mannet), ...”
Urhis seems to sanction doing just about anything with the “pending characters”, but we really tto
ansist that they we sent to the file. -

O
SNSO, the filebuf is supposed to support bidirectional files, if underflow is called when gbeg is non-NULL
[5pecial actions have to be taken. These aren’t mentioned here.

I virtual int underflow(); inherited O

17.4.8.1.9filebuf::underflow() DRAFT: 25 January 1994 Library 17-119

Reads a character from the input sequence, if possible, without moving the stream position past it[as fol-
lows: O

— If the input sequence has a read position available the function signals success by refuirning
(unsigned char)* gnext . O

— Otherwise, if the function can determine the charactat the current position in the associated input
sequence (as described below), it signals success by ret@unsigned char) x. If the function O

makes a read position available, it also assigits* gnext . O
The function can alter the number of read positions available as a result of any call. O
The function return&EOFto indicate failure. Ifile is a null pointer, the function always fails. O
To determine the character(of typeint) at the current position in the associated input sequence,the
function evaluates the expression: O

(x =ungetc(fgetc(file), file))!'=EOF a
which must be nonzero. The function signatuigestc(FILE*) and ungetc(int, FILE*) are 0O
declared ircstdio.h> . O
17.4.8.1.10filebuf::uflow() (lib.filebuf::uflow]

I virtual int uflow(); inherited a

Reads a character from the input sequence, if possible, and moves the stream position past it, as folldws:

— If the input sequence has a read position available the function signals success by reflirning
(unsigned char)* gnext ++, O

— Otherwise, if the function can read the charaatatdirectly from the associated input sequence (@s
described below), it signals success by returfimgigned char) X. If the function makes a read]

position available (in an unspecified manner), it also assigo$ gnext . O
The function can alter the number of read positions available as a result of any call. O
The function returnEOFto indicate failure. Ifile is a null pointer, the function always fails. ad
To read a character into an objacfof typeint) directly from the associated input sequence, the function
evaluates the expression: O

(x =fgetc(file))!=EOF a
which must be nonzero. The function signafgegc(FILE*) is declared irkstdio.h> . O
17.4.8.1.11filebuf::xsgetn(char*, int) (lib.filebuf::xsgetn]

I virtual int xsgetn(char* s, int ny; inherited a
Behaves the same siseambuf::xsgetn(char*, int) . O
17.4.8.1.12filebuf::xsputn(const char*, int) (lib.filebuf::xsputn]

I virtual int xsputn(const char* s, int ny; inherited a

Behaves the same siseambuf::xsputn(char*, int) . ad

17-120 Library DRAFT: 25 January 1994 17.4.8.1.13
filebuf::seekoff(streamoff, ios::seekdir, ios::openmode)

17.4.8.1.13filebuf::seekoff(streamoff, ios::seekdir, (lib.filebuf::seekoff]
ios::openmode) O
I virtual streampos seekoff(streamoff off , ios::seekdir way, a
I ios::openmode which =ios:in | ios::out); inherited a

Alters the stream position within the controlled sequences, if possible, as described below. The flhction
returns a newly constructetreampos object that stores the resultant stream position, if possible. Ifthe
positioning operation fails, or if the object cannot represent the resultant stream position, the objectistores

an invalid stream position. O
If file is a null pointer, the positioning operation fails. Otherwise, the function determines one oflthree
values for the argumemthence, of typeint : O
— If way ==ios::beg ,the argumentiSEEK SET O
— If way ==ios:.cur , the argument ISEEK_CUR O
— If way ==ios::end ,the argumentiSEEK END O
The function then calliseek(file , off , whence) and, if that function returns nonzero, the posdii
tioning operation fails. O
The macros SEEK_SET SEEK CUR and SEEK_END are defined, and the function signaturg
fseek(FILE?*, long, int) is declared, ircstdio.h> . O
17.4.8.1.14filebuf::seekpos(streampos, ios::openmode) (lib.filebuf::seekpos]

I virtual streampos seekpos(streampos sp, a

I ios::openmode which =ios::in | ios::out); inherited a

Alters the stream position within the controlled sequences, if possible, to correspond to the stream pbsition
stored insp.pos and sp.fp 198) The function returns a newly constructeleampos object that O
stores the resultant stream position, if possible. If the positioning operation fails, or if the object ¢annot
represent the resultant stream position, the object stores an invalid stream position.

If file is a null pointer, the positioning operation fails. O
17.4.8.1.15filebuf::setbuf(char*, int) (lib.filebuf::setbuf]
1! virtual streambuf* setbuf(char* s, int ny; inherited O

Makes the array af (single-byte) characters, whose first element is designated dyailable for use as all
buffer area for the controlled sequences, if possibldilelf is a null pointer, the function returns a nulll

pointer. Otherwise, if the cafletvbuf(file , s, IOFBF, n) is nonzero, the function returns &l
null pointer. Otherwise, the function returtkis . a
The macro_IOFBF is defined, and the function signatusetvbuf(FILE*, char*, int, ad
size_t) is declared, irstdio.h> . a
17.4.8.1.16filebuf::sync() (lib.filebuf::sync]

1U8)The function may, for example, cédletpos(file , & sp.fp) andl/orfseek(file , sp.pos , SEEK_SET) , declared 0O
in <stdio.h>

17.4.8.1.16filebuf::sync() DRAFT: 25 January 1994 Library 17-121

%ox 176

[Library WG issue: Jerry Schwarz, January 3, 1994
O

e et

EB. filebuf::sync.

O

CSomething needs to be said about setting of pointgobeg, pend, pnext should all be set thiULL a]

O

Urhe g pointers are more delicate. The intention was that you throw away the get area and (if necEssary)
eek the file. Some implementor's haven’'t done the seek, or ignore failures. This gives you aliday to
hrow away (some or all of) input from a terminal. We ought to

O 0
[kay something about this. As the draft now reads it appears tlipptheters can’t be modified. [
1 virtual int sync(); inherited ad

Returns zero ifile is a null pointer. Otherwise, the function retufihssh(file).

The function signaturélush(FILE*) is declared ircstdio.h>
17.4.8.2 Clas#stream (lib.ifstream]
class ifstream : public istream { a
public: O
ifstream(); a
ifstream(const char* s, openmode mode =in); a
virtual ~ifstream(); a
filebuf* rdbuf() const; a
int is_open(); a
void open(const char* s, openmode mode =in); a
I void open(const char* s,open_mode mode =in); optional a
void close(); a
private: a
I filebuf b ; exposition only a
h 0

The classfstream is a derivative ofstream that assists in the reading of named files. It supplie§la
filebuf object to control the associated sequence. For the sake of exposition, the maintained datalis pre-

sented here as: O
— filebuf fb , thefilebuf object. O
17.4.8.2. 1ifstream::ifstream() [(lib.cons.ifstream]
ifstream(); a
Constructs an object of claiéstream | initializing the base class witstream(& b)) . O
17.4.8.2.2ifstream::ifstream(const char*, openmode) (lib.cons.ifstream.fn]
ifstream(const char* s, openmode mode = in); a
Constructs an object of clagfstream , initializing the base class witistream(& fb), then calls O

open(s, mode) . O

17-122 Library DRAFT: 25 January 1994 17.4.8.2.3fstream::~ifstream()

17.4.8.2 3ifstream::~ifstream() (lib.des.ifstream]

virtual ~ifstream(); a
Destroys an object of cladstream . ad
17.4.8.2.4ifstream::rdbuf() (lib.ifstream::rdbuf]

filebuf* rdbuf() const; a
Returns&fb . O
17.4.8.2.5ifstream::is_open() (lib.ifstream::is.open]

int is_open(); D
Returnstb.is_open() . O
17.4.8.2.6ifstream::open(const char*, openmode) [(lib.ifstream::open]

void open(const char* s, openmode mode =in); a
Callsfb .open(s, mode) . If the callis_open() returns zero, callsetstate(failbit) . g
17.4.8.2.7ifstream::open(const char*, open_mode) (lib.ifstream::open.old]

I void open(const char* s,open_mode mode =in); optional a
Callsopen(s, (openmode) mode) . ad
17.4.8.2.8ifstream::close() (lib.ifstream::close]

void close(); a
Callsfb .close() and, if that function returns zero, cadlststate(failbit) . ad
17.4.8.3 Clas®fstream [lib.ofstream]

class ofstream : public ostream { a

public: a

ofstream(); a
ofstream(const char* s, openmode mode = out); a
virtual ~ofstream(); a
filebuf* rdbuf() const; a
int is_open(); a
void open(const char* s, openmode mode = out); a
I void open(const char* s,open_mode mode = out); optional a
void close(); a

private: a

1 filebuf b ; exposition only a

2 a

The clasofstream is a derivative obstream that assists in the writing of named files. It suppliesCa
filebuf object to control the associated sequence. For the sake of exposition, the maintained datalis pre-
sented here as: O

— filebuf fb , thefilebuf object. O

17.4.8.3.1ofstream::ofstream() DRAFT: 25 January 1994 Library 17-123

17.4.8.3.1ofstream::ofstream() [lib.cons.ofstream]

ofstream();
Constructs an object of clasfstream , initializing the base class wittstream(& b)) .

17.4.8.3.20fstream::ofstream(const char*, openmode) [lib.cons.ofstream.fn]

ofstream(const char* s, openmode mode = out);

Constructs an object of clasdstream , initializing the base class withstream(& fb), then calls
open(s, mode) .

17.4.8.3.3ofstream::~ofstream() ({lib.des.ofstream]

virtual ~ofstream();
Destroys an object of clasfstream

17.4.8.3.40fstream::rdbuf() (lib.ofstream::rdbuf]
filebuf* rdbuf() const;

Returns&fb .

17.4.8.3.50fstream::is_open() [lib.ofstream::is.open]

intis_open();
Returnsfb .is_open()

17.4.8.3.60fstream::open(const char*, openmode) [({lib.ofstream::open]

void open(const char* s, openmode mode = out);
Callsfb .open(s, mode . Ifis_open() is then false, callsetstate(failbit)

17.4.8.3.7 ofstream::open(const char*, open_mode) [lib.ofstream::open.old]

I void open(const char* s,open_mode mode =in); optional
Callsopen(s, (openmode) mode) .

17.4.8.3.80fstream::close() (lib.ofstream::close]

void close();
Callsfb .close() and, if that function returns zero, cadlststate(failbit)

17.4.8.4 Classtdiobuf [lib.stdiobuf]

OO

17-124 Library

class std
public:

DRAFT: 25 January 1994

iobuf : public streambuf {

protected:

I
I
1
1
I
I
1
1
I
I
1
1
private:
I
1

h

The classstdiobuf

sequence with an externally supplied object of fyjid= . TypeFILE is defined in<stdio.h>

17.4.8.4 Classtdiobuf

stdiobuf(FILE* file_arg =0);
virtual ~stdiobuf();
int buffered() const;
void buffered(int buf fl),
virtual int overflow(int ¢ =EOF); inherited
virtual int pbackfail(int ¢ = EOF); inherited
virtual int underflow(); inherited
virtual int uflow(); inherited
virtual int xsgetn(char* s, int ny; inherited
virtual int xsputn(const char* s, int ny; inherited
virtual streampos seekoff(streamoff off , ios::seekdir way,
ios::openmode which =ios:in | ios::out); inherited
virtual streampos seekpos(streampos sp,
ios::openmode which =ios::in | ios::out); inherited
virtual streambuf* setbuf(char* s, int ny; inherited
virtual int sync(); inherited

FILE* file ;
int is_buffered;

is derived fromstreambuf

exposition only
exposition only

sake of exposition, the maintained data is presented here as:

— FILE *file

— is_buffered

, nonzero if thestdiobuf

, points to thé=ILE associated with the stream buffer;

nized with the associated file (as described below).

The restrictions on reading and writing a sequence controlled by an object atdialsaf

as for an object of clasebuf

If an stdiobuf

object is not buffered anfile

associated file, as follows:

— the callsputc(

— the callsputbacke(

— the callsbumpc()

The functionggetc(FILE*)

<stdio.h>

17.4.8.4.1stdiobuf::stdiobuf(

stdiobuf(

Constructs an object of clasgliobuf

file tofile_arg

) is equivalent to the cafputc(c,

is equivalent to the calfjetc(

, fputc(int, FILE*)

FILE *)
FILE* file_arg =0);

andis_buffered to zero.

¢) is equivalent to the calingetc(c,
file).

, initializing the base class witiireambuf()

file);
file);

, andungetc(int, FILE*)

[lib.cons.stdiobuf.fi]

I |

to associate both the input sequence and the oufput
. Forthe O

U
U

object isbuffered,and hence need not be kept synchrot

O

are the same [0

O

is not a null pointer, it is kept synchronized with thg

O

U
U
U

are declared in O

O

O

, and initializing O

O

17.4.8.4.2 stdiobuf::~stdiobuf()

17.4.8.4.2stdiobuf::~stdiobuf()

DRAFT: 25 January 1994

Library 17-125

[lib.des.stdiobuf]

virtual ~stdiobuf(); a
Destroys an object of clastdiobuf ad
17.4.8.4.3stdiobuf::buffered() [lib.stdiobuf::buffered]

int buffered() const; a
Returns a nonzero valueisf_buffered is nonzero. ad
17.4.8.4.4stdiobuf::buffered(int) [(lib.stdiobuf::buffered.i]

void buffered(int buf fl); a
Assignsbuf_fl tois_buffered O
17.4.8.4.5stdiobuf::overflow(int) (lib.stdiobuf::overflow]

I virtual int overflow(int ¢ =EOF); inherited a

Behaves the same &kebuf::overflow(int)
is_buffered

17.4.8.4.6stdiobuf::pbackfail(int)
I virtual int pbackfail(int

Behaves the same fikebuf::pbackfail(int)
is_buffered

17.4.8.4.7 stdiobuf::underflow()

1 virtual int underflow();

Behaves the same ditebuf::underflow()
is_buffered

17.4.8.4.8stdiobuf::uflow()

I virtual int uflow();

Behaves the same ddebuf::uflow()

, Subject to the buffering requirements specified by
O

[lib.stdiobuf::pbackfail]

¢ =EOF); inherited O

, subject to the buffering requirements specified hy
O

[lib.stdiobuf::underflow]
inherited 0

, Subject to the buffering requirements specified hy
O

[(lib.stdiobuf::uflow]
inherited 0

, Subject to the buffering requirements specified hy

is_buffered O
17.4.8.4.9stdiobuf::xsgetn(char*, int) (lib.stdiobuf::xsgetn]

I virtual int xsgetn(char* s, int ny; inherited a
Behaves the same siseambuf::xsgetn(char*, int) . O
17.4.8.4.10stdiobuf::xsputn(const char*, int) [lib.stdiobuf::xsputn]

I virtual int xsputn(const char* s, int ny; inherited a

Behaves the same siseambuf::xsputn(char*, int) . ad

17-126 Library DRAFT: 25 January 1994

17.48.4.11

stdiobuf::seekoff(streamoff, ios::seekdir, ios::openmode)

17.4.8.4.11stdiobuf::seekoff(streamoff, ios::seekdir,
ios::openmode)

I virtual streampos seekoff(streamoff

I ios::openmode which =ios:in | ios::out);

Behaves the same filgbuf::seekoff(streamoff, ios::seekdir, ios::openmode)

17.4.8.4.12stdiobuf::seekpos(streampos, ios::openmode)

I virtual streampos seekpos(streampos
I ios::openmode which

sp,
=ios::in | ios::out);

Behaves the same filgbuf::seekpos(streampos, ios::openmode)

17.4.8.4.13stdiobuf::setbuf(char*, int)

1! virtual streambuf* setbuf(char* s, int
Behaves the same filebuf::setbuf(char*, int)

17.4.8.4.14stdiobuf::sync()

I virtual int sync(); inherited
Behaves the same filgbuf::sync()
17.4.8.5 Classstdiostream
class istdiostream : public istream {
public:
istdiostream(FILE* file_arg =0);
virtual ~istdiostream();
stdiobuf* rdbuf() const;
int buffered() const;
void buffered(int buf fl),
private:
I stdiobuf fb; exposition only
I3

The clasdgstdiostream is a derivative oistream
objects of type-ILE . It supplies sstdiobuf
exposition, the maintained data is presented here as:

— stdiobuf fb , thestdiobuf object.

17.4.8.5.1istdiostream::istdiostream(FILE *)

istdiostream(FILE* file_arg =0);

Constructs an object of clastdiostream
tializing fo with stdiobuf(file_arg).

17.4.8.5.2istdiostream::~istdiostream()

virtual ~istdiostream();

Destroys an object of clasgdiostream

off , ios::seekdir

[lib.stdiobuf::seekoff]
O

way,
inherited

[(lib.stdiobuf::seekpos]

inherited

[(lib.stdiobuf::setbuf]

inherited

[(lib.stdiobuf::sync]

(lib.istdiostream]

[(lib.cons.istdiostream.fi]

, initializing the base class wiibtream(& fb) and ini-

[{lib.des.istdiostream]

oo

I o o o o i e

that assists in the reading of files controlled by
object to control the associated sequence. For the saké

g
g

OO

of

17.4.8.5.3istdiostream::rdbuf() DRAFT: 25 January 1994 Library 17-127

17.4.8.5.3istdiostream::rdbuf() (lib.istdiostream::rdbuf]

stdiobuf* rdbuf() const; a

Returns&fb . O
17.4.8.5.4istdiostream::buffered() [(lib.istdiostream::buffered]

int buffered() const; a

Returns a nonzero valueisf_buffered is nonzero. ad
17.4.8.5.5istdiostream::buffered(int) [(lib.istdiostream::buffered.i]

void buffered(int buf fl); a

Assignsbuf fl tois buffered . ad
17.4.8.6 Clas®stdiostream [lib.ostdiostream]

class ostdiostream : public ostream { a

public: a

ostdiostream(FILE* file_arg =0); a

virtual ~ostdiostream(); a

stdiobuf* rdbuf() const; a

int buffered() const; a

void buffered(int buf fl); a

private: O

I stdiobuf fb; exposition only a

I3 0

The classostdiostream is a derivative ofbstream that assists in the writing of files controlled byl
objects of typde-ILE . It supplies sstdiobuf object to control the associated sequence. For the sakig
exposition, the maintained data is presented here as: a

— stdiobuf fb , thestdiobuf object.

17.4.8.6.10stdiostream::ostdiostream(FILE %) [lib.cons.ostdiostream.fi]
ostdiostream(FILE* file_arg =0); O
Constructs an object of classtdiostream , initializing the base class witbstream(& fb) and ini- O
tializing fo with stdiobuf(file_arg). O
17.4.8.6.20stdiostream::~ostdiostream() [{lib.des.ostdiostream]
virtual ~ostdiostream(); a
Destroys an object of classtdiostream . ad
17.4.8.6.30stdiostream::rdbuf() [({lib.ostdiostream::rdbuf]
stdiobuf* rdbuf() const; a

Returns&fb . a

of

17-128 Library DRAFT: 25 January 1994

17.4.8.6.4ostdiostream::buffered()

int buffered() const;
Returns a nonzero valueisf_buffered is nonzero.

17.4.8.6.50stdiostream::buffered(int)
void buffered(int buf fl),

Assignsbuf fl tois_buffered

17.4.9 Headerxiostream>

17.4.8.6.4
ostdiostream::buffered()

[(lib.ostdiostream::buffered]

[{lib.ostdiostream::buffered.i]

({lib.header.iostream]

The headekiostream> declares four objects that associate objects of skaésbuf with the stan-

dard C streams provided for by the functions declarecsidio.h>
and the associations are established, the first time an object oioslalsst

objects areotdestroyed during program executitiy

17.4.9.1 Objectin

EBox 177 g
H_ibrary WG issue: Jerry Schwarz, September 28, 1993 [
O 0
Qwas 17.4.2.10-12]: why amin , etc. attached tilebuf s? O

istream cin;

lib.cin]

The objectcin controls input from an unbuffered stream buffer associated with the dlipat |

declared irkstdio.h>

After the objectin is initialized,cin.tie() returnscout .

17.4.9.2 Objectcout

ostream cout;

(lib.cout]

The objectcout controls output to an unbuffered stream buffer associated with the cljectt |,

declared ircstdio.h>

17.4.9.3 Objectcerr

ostream cerr;

(lib.cerr]

The objectcerr controls output to an unbuffered stream buffer associated with the chject |

declared ircstdio.h>

After the objecterr is initialized,cerr.flags() & unitbuf

is nonzero.

193] constructors and destructors for static objects can access these objects to read irgidinfroror write output tostdout or

stderr

O

. The four objects are constructed,]
is constructed. The fourd

O

OO

OO

OO

O

17.4.9.4 Objectclog DRAFT: 25 January 1994 Library 17-129

17.4.9.4 Objectlog lib.clog]

extern ostream clog; ad

The objectclog controls output to a stream buffer associated with the objeetr , declared in O

<stdio.h> . O
17.5 Support classes [({lib.support.classes]

The Standard € library defines several types, and their supporting macros, constants, and function Signa-
tures, that support a variety of useful data structures. a
17.5.1 Headerstring> ({lib.header.string]

The headekstring> defines a type and several function signatures for manipulating varying-lefigth
sequences of (single-byte) characters. a
17.5.1.1 Classtring [(lib.string]

HBox 178

ELibrary WG issue: Uwe Steinniiller, January 21, 1994

Eﬁill does not like destructors and assignment operators:
0 ~string(); // missing
string& operator=(const string&); // missing

or all find operations (searching from the erfdd, fins_last_of and find_last_not_of
he clause

Returns NPOS if pos > len. should be removed. The functions should (as a conveni
alculate there starting position themselves. If you search forward it is for sure that you cannot find

D-D-HFDD

e)
string

5O

BESEE g P B

rmplemented diffent *>C mutable size_t res; // does not change the
[tring value !!

af pos > len i

0 0

O O

[as this behaviour is consistent with forward searches

a string s("1234");

= 0

0 . .

0 s.rfind("1", 0) should deliver 0 N

0 and [0

0 s.rfind("4", 3) should be 3 If the user wants to use the result for another sear%‘ue

[has to decrement himself.

FBox 179 ED

HJbrary WG issue: Uwe Steinniiller, January 4, 1994 n
0

0

[F>GENERAL *>seperate differnt sections in the header constructors, (g

Chssign,.. a]

= O

lass string { *>C char *ptr; /I has this property, might be n

rimplemented diffent *>C size_t len; /l has this property, might be N
Ny
En

17-130 Library DRAFT: 25 January 1994 17.5.1.1 Classtring

EBox 180 El]
aibrary WG issue: Uwe Steinniiller, January 4, 1994 d
0 O
[(The string class is quite different in detail from what it should be. This is the result of changing thelauthor
Ebf the papers twice. Let us try to do the best. a]

O
H will mark as follows: *>comment *>M missing d
f>W wrong *>C corrected *>Q in question ™
[*>R remove =N
HBox 181 El]
El_ibrary WG issue: Beman Dawes, December 19, 1993 d

O
gStringlwstring/dynarray/ptrdynarray/bitstring classes are all missing destructmparator= . Bits is [IJ
[missing operator= . Maybe you should check other classes, too, since this seems to have be%some
[kind of systematic omission. | stopped checking at this point.
FBox 182 El]
HJbrary WG issue: Uwe Steinniiller, September 22, 1993 d

O

O
[Thedynarray and my formesstring class proposal followed this rule, we should get a consensl&lon
[this by the library WG.

17.5.1.1 Classtring

DRAFT: 25 January 1994

class string {

public:

Library 17-131

string();
string(size_t size , capacity cap);
string(const string& str , size_t pos =0, size_t n =NPOS);
string(const char* s, size_t n = NPOS);
string(char c, size_t rep =1);
string(unsigned char c, size_t rep =1);
string(signed char c, size_t rep =1);
string& operator=(const char* s);
string& operator=(char c);
string& operator+=(const string& rhs);
string& operator+=(const char* s);
string& operator+=(char c);
string& append(const string& str , size_t pos =0,
size .t n =NPOS);
string& append(const char* s, size_t n =NPOS);
string& append(char c, size_t rep =1);
string& assign(const string& str , size_t pos =0,
size .t n =NPOS);
string& assign(const char* s, size_t n =NPOS);
string& assign(char c, size_t rep =1);
string& insert(size_t pos1, const string& str , size_t pos2 =0,
size .t n =NPOS);
string& insert(size_t pos, const char* s,
size t n =NPOS);
string& insert(size_t pos, char ¢, size_t rep =1);
string& remove(size_t pos =0, size_t n =NPOS);
string& replace(size_t pos1, size_t nl, const string& str
size t pos2 =0,size_t n2 = NPOS);
string& replace(size_t pos, size_t nl, const char* s,
size .t n2 =NPOS);
string& replace(size_t pos, size_t n,char c,
sizet rep =1)
char get_at(size_t pos) const;
void put_at(size_t pos, char ¢);
char operator[](size_t pos) const;
char& operator[](size_t pos);
const char* c_str() const;
size_t length() const:
void resize(size_t n, char c =0);
size_t reserve() const;
void reserve(size_t res_arg);
size_t copy(char* s, size_t n, size_t pos =0);
size_t find(const string& str , size_t pos = 0) const;
size_t find(const char* s, size_t pos =0, size_t n =NPOS) const;
size_t find(char c, size_t pos = 0) const;
size_t rfind(const string& str , size_t pos =NPOS) const;
size_t rfind(const char* s, size t pos = NPOS,

size_t
size_t rfind(char c, size_t
size_t find_first_of(const string&
size_t find_first_of(const char*

size_t

n = NPOS) const;
pos = NPOS) const;

n = NPOS) const;

str , size_t pos = 0) const;
s, size t pos =0,

size_t find_first_of(char c, size_t pos = 0) const;
size_t find_last_of(const string& str , size_t pos = NPOS) const;
size_t find_last_of(const char* s, size_t pos = NPOS,

size_t
size_t find_last_of(char
size_t find_first_not_of(const string&
size_t find_first_not_of(const char*

size_t

n = NPOS) const;
c, size_t

n = NPOS) const;

pos = NPOS) const;
str , size_t pos = 0) const;
s, size t pos =0,

e e e e o o o

17-132 Library DRAFT: 25 January 1994 17.5.1.1 Classtring

size_t find_first_not_of(char c, size t pos = 0) const; a

size_t find_last_not_of(const string& str , size_t pos = NPOS) a

const; a

size_t find_last_not_of(const char* s, size_t pos =NPOS, a

size t n =NPOS) const; O

size_t find_last_not_of(char c, size_t pos = NPOS) const; a

string substr(size_t pos =0, size_t n = NPOS) const; a

int compare(const string& str , size_t pos =0, a

size t n =NPOS) const; O

int compare(char* s, size_t n =NPOS) const; a

int compare(char c, size_t rep =1)const; a

private: a
I char* ptr ; exposition only a
I size_t len , res; exposition only a
J5 0

The classstring describes objects that can store a sequence consisting of a varying number of arGitrary
(single-byte) characters. The first element of the sequence is at position zero. Such a sequencélis also
called acharacter string(or simply astring if the type of the elements is clear from context). Storage for

the string is allocated and freed as necessary by the member functions efrioigss. For the sake of O

exposition, the maintained data is presented here as: O
— char* ptr , points to the initial character of the string; O
— size_t len , counts the number of characters currently in the string; O
— size_t res , for an unallocated string, holds the recommended allocation size of the string, whilé for
an allocated string, becomes the currently allocated size. O
In all caseslen <= res . O
The functions described in this subclause can report two kinds of errors, each associated with a[distinct
exception: O
— alengtherror is associated with exceptions of tygmgtherror O
— anout-of-rangeerror is associated with exceptions of typgofrange . O
To report one of these errors, the function evaluates the expressiaise() , whereex is an object of O
the associated exception type. O
17.5.1.1.1string::string() [lib.cons.string]
string(); a
Constructs an object of clasging initializing: a
— ptr to an unspecified value; O
— len to zero; O
— res to an unspecified value. O
17.5.1.1.2string::string(size_t, capacity) [lib.cons.string.cap]
string(size_t size , capacity cap); a
Constructs an object of clastring . If cap is default_size , the function either reports a lengtf]
error if size equaldNPOSor initializes: a

— ptr to point at the first element of an allocated arragigé elements, each of which is initialized tal

175.1.1.2 DRAFT: 25 January 1994 Library 17133
string::string(size_t, capacity)

Zero;
— len tosize ;

— res to avalue at least as largeles .

Otherwisecap shall bereserve and the function initializes: O
— ptr to an unspecified value; O
— len to zero; O
— res tosize . O
17.5.1.1.3string::string(const string&, size_t, size_t) [lib.cons.string.sub]
string(const string& str , size_t pos =0, size_t n =NPOS); a
Reports an out-of-range error ibs > str.len . Otherwise, the function constructs an object of cldss
string and determines the effective lengtlen of the initial string value as the smaller nfand O
str.len - pos. Thus, the function initializes: a
— ptr to point at the first element of an allocated copylefi elements of the string controlled byr O
beginning at positiopos; a
— len torlen ; O
— res to avalue at least as largeles . a
17.5.1.1.4string::string(const char*, size t) ({lib.cons.string.str]
string(const char* s, size_t n = NPQOS); a
If n equalsNPOS storesstrlen(s) in n. The function signaturetrien(const char*) is O
declared ircstring.h> . O

In any case, the function constructs an object of glasyy and determines its initial string value fronfl
the array ofthar of lengthn whose first element is designated 4y s shall not be a null pointer. Thus[]
the function initializes: O

— ptr to point at the first element of an allocated copy of the array whose first element is pointegd at’by

— len ton; O

— res to avalue at least as largeles . O

17.5.1.1.5string::string(char, size_t) [(lib.cons.string.c]
string(char c, size_t rep =1); a

Reports a length error iep equalsNPOS Otherwise, the function constructs an object of cdassg ad
and determines its initial string value by repeating the charadtrall rep elements. Thus, the functior
initializes: 0

— ptr to point at the first element of an allocated arrayepf elements, each storing the initial valeie [0
— len torep; O
0

— res to avalue at least as largeles .

17-134 Library DRAFT: 25 January 1994 17.5.1.15
string::string(char, size_t)

17.5.1.1.6string::string(unsigned char, size_t) [lib.cons.string.uc]

HBox 183
HJbrary WG issue: Uwe Steinniiller, January 4, 1994

Epublic: string(); string(size_t size, capacity cap);
string(const string& str, size 't pos = 0, size_t n= NPOS);
string(const char *s); string(const char *s, size t n);
string(char c, size_t rep = 1);

odooo

O

f> still don’'t why we nead these overloads ?? *> and if in all places
Cwhere we have chars (append,)

O

EBQ string(unsigned char c, size_trep = 1); *>Q string(signed char c,
rpize_trep = 1);

O

> destructor *>M _~string();

string(unsigned char c, size_t rep =1);
Behaves the same sising((char) c, rep).

17.5.1.1.7sstring(signed char, size t) [lib.cons.string.sc]

string(signed char c, size_t rep =1);
Behaves the same sising((char) c, rep).

17.5.1.1.8string::operator=(const char*) [(lib.string::op=.str]

e e e i o e e

O

O

HBox 184
H_ibrary WG issue: Uwe Steinniiller, January 4, 1994

O
[f>M strint& operator=(const string& rsh); *>M strint& operator=(const
Cchar* s); *>M _strint& operator=(char ¢);

e

string& operator=(const char* s);
Returns*this = string(S).

17.5.1.1.9string::operator=(char) (lib.string::op=.c]

string& operator=(char c);
Returnstthis = string(c) .

17.5.1.1.10string::operator+=(const string&) (lib.string::op+=.sub]

string& operator+=(const string& rhs);

Returnsappend(rhs) .

O

175.1.1.11 DRAFT: 25 January 1994 Library 17135
string::operator+=(const char*)

17.5.1.1.11string::operator+=(const char*) (lib.string::op+=.str]

string& operator+=(const char* s); a
Returns*this += string(s). ad
17.5.1.1.12string::operator+=(char) (lib.string::op+=.c]

string& operator+=(char c); a
Returnstthis += string(). ad
17.5.1.1.13string::append(const string&, size _t, (lib.string::append.sub]

size t) O
HBox 185 El]
El_ibrary WG issue: Uwe Steinniiller, January 4, 1994 -
O

E string& append(const string& str, size_t pos = 0, size_t n = NPOS); (g
[f>W string& append(const char *s, size_t pos = 0, size_t n = NPOS); *> %
[pos not needed: could write s.append(s + pos, n);

string& append(const string& str , size_t pos =0, size_t n =NPOS); a
Reports an out-of-range error fifos > strlen . Otherwise, the function determines the effective
lengthrlen of the string to append as the smallenaind str.len - pos. The function then reportsQ

a length error ifen >=NPOS - rlen .

Otherwise, the function replaces the string controlledthis with a string of lengthen + rlen O
whose firstlen elements are a copy of the original string controlledthis and whose remaining ele{]

ments are a copy of the initial elements of the string controllestrbybeginning at positiopos . O

The function returnsthis . ad

17.5.1.1.14string::append(const char*, size_t) (lib.string::append.str]

FBox 186 ED

H_ibrary WG issue: Uwe Steinniiller, January 4, 1994 H
O

O

[The function signature string::append(const char *, sizéze t) ED

t

E**>C string& append(const char *s, size_t n = NPOS); B]
0

%> wrong because the s might contain O before the length n *>W Returns ™

rappend(string(s), pos, n). *>C Returns append(string(s, n)); ED

t

E**>C The function signature string::append(char, size_t) B]
0

%>C string& append(char c, size_trep = 1); |
O

O

[*>C Returns append(string(c, rep)). Eo

O

string& append(const char* s, size_t n =NPOS);

17-136 Library DRAFT: 25 January 1994 175.1.1.14
string::append(const char*, size_t)

Returnsappend(string(s, n) . O
17.5.1.1.15string::append(char, size_t) [(lib.string::append.c]
HBox 187 El]
HJbrary WG issue: Uwe Steinniiller, January 4, 1994 d
0 O
f>C string& append(const char *s, size t n = NPOS); *>C string& L
Cappend(char ¢, size trep =1); H
string& append(char c, size_t rep =1); ad
Returnsappend(string(c, rep)) . ad
17.5.1.1.16string::assign(const string&, size_t, size t) [(lib.string::assign.sub]
string& assign(const string& str , size_t pos =0, size_t n = NPQOS); O
Reports an out-of-range error fifos > str.len . Otherwise, the function determines the effectivé
lengthrien of the string to assign as the smallenaindstr.len - pos. O
The function then replaces the string controlledthis with a string of lengthlen whose elements areld
a copy of the string controlled I3¢r beginning at positiopos . O
The function returnsthis . O
17.5.1.1.17string::assign(const char*, size_t) [(lib.string::assign.str]
FBox 188 B 0
H_ibrary WG issue: Uwe Steinniiller, January 4, 1994 O a
O O
[(*>C The function signature string::assign(const char *, size_t) B a
O
%>C string& assign(const char *s, size_t n = NPOS); B a
O O
Returns assign(string(s, n) or operator=(string(s,n)); O O
O O
E’*>C The function signature string::assign(char, size_t,) B a
O
S">C string& assign(char c, size_t rep = 1); O a
O O
[(*>C _ Returns assign(string(c, rep)). g ™

17.5.1.1.17 DRAFT: 25 January 1994 Library 17137
string::assign(const char*, size_t)

HBox 189 El]

El_ibrary WG issue: Uwe Steinniiller, January 4, 1994 d
O

gThe function signature string::assign(const string&, gizgze t) El]

O

O>M operator= a]
O

%tring& assign(const string& str, sizegpos = 0, size n = NPOS); ™
O

O

Reports an out-of-range error if pos str.len. Otherwise, the function determines the effective lengttdrlen of

[the string to assign as the smaller of n and str.len - pos.

O

O

Crhe function then replaces the string controlled by *this with a string of length rlen whose elemeni$lare a
rcopy of the string controlled by str beginning at position pos.

O
0r'he function returns *this.

H =5

HBox 190 El]
El_ibrary WG issue: Uwe Steinniiller, January 4, 1994 d
O
g string& assign(const string& str, size_t pos = 0, size_t n = NPOS); (o
> see append *>C string& assign(const char * s, size_t n = NPOS); *>C %
[string& assign(char c, size trep = 1);
string& assign(const char* s, size_t n =NPOS); ad
Returnsassign(string(s, n . ad
17.5.1.1.18string::assign(char, size_t) [(lib.string::assign.c]
string& assign(char c, size_t rep =1); O
Returnsassign(string(c, rep)) . ad
17.5.1.1.19string::insert(size_t, const string&, size_t, [(lib.string::insert.sub]
size t) O
string& insert(size_t pos1, const string& str , size_t pos2 =0, O
size .t n =NPOS); O
Reports an out-of-range errorgibsl > len or pos2 > strlen . Otherwise, the function deterd
mines the effective lengthlien of the string to insert as the smallerr&nd str.len - pos2. The 0O
function then reports a length errovéh >= NPOS - rlen . g

Otherwise, the function replaces the string controlledthis with a string of lengthen + rlen O
whose firstposl elements are a copy of the initial elements of the original string controll&thisy , O
whose nextlen elements are a copy of the elements of the string controllsd byeginning at position [
pos2, and whose remaining elements are a copy of the remaining elements of the original string conirolled
by *this . O

The function returndthis . a

17-138 Library DRAFT: 25 January 1994 17.5.1.1.20
string::insert(size_t, const char*, size_t)

17.5.1.1.20string::insert(size_t, const char*, size_t) (lib.string::insert.str]
%ox 191 El]
[Library WG issue: Uwe Steinniiller, January 4, 1994 d
O 0
g string& insert(size_t posl, const string& str, size t pos2 = 0, (o
0 sizet n = NPOS); *>C
[string& insert(size_t posl, const char *s, size .t n = NPOS); *>C
Cstring& insert(size t pos, char c, size trep =1); mn|
string& insert(size_t pos, const char* s, size_t n =NPOS); a
Returnsnsert(pos, string(s, n . a
17.5.1.1.21string::insert(size_t, char, size_t) [(lib.string::insert.c]
string& insert(size_t pos, char ¢, size_t rep =1); a
Returnsnsert(pos, string(c, rep)) . ad
17.5.1.1.22string::remove(size_t, size_t) (lib.string::remove]
HBox 192 El]
El_ibrary WG issue: Uwe Steinniiller, January 4, 1994 -
O
E string& remove(size_t pos = 0, size_t n = NPOS); (g
0 -
= 0
U string& replace(size_t posl, size t nl, const string& str, -
E size_t pos2 = 0, size_t n2 = NPOS); *>C string& replace(size_t |
0sl, size t nl, const char *s, size t n2 = (g
NPOS); *>C string& replace(size_t pos, size_t n, char c, size t rep = %
(1);
string& remove(size_t pos =0, size_t n =NPOS); a

Reports an out-of-range error iios > len . Otherwise, the function determines the effective lendth
xlen of the string to be removed as the smallenahd/en - pos.

The function then replaces the string controlledttys with a string of lengthlen - xlen whose O
first pos elements are a copy of the initial elements of the original string controlli>iby , and whose O
remaining elements are a copy of the elements of the original string controltgdisy beginning at O
positionpos + xlen .

The function returnsthis . O

17.5.1.1.23string::replace(size_t, size_t, (lib.string::replace.sub]
const string&, size_t, size t) O

string& replace(size_t pos1, size_t nl, const string& str a

size t pos2 =0, size_t n2 =NPOS); O

Reports an out-of-range errorgbsl > len or pos2 > strlen . Otherwise, the function deter{]

mines the effective lengtklen of the string to be removed as the smallendfandlen - posl. It O

also determines the effective lengtlyn of the string to be inserted as the smallen®fandstr.len - 0O

pos2. The function then reports a length errdert - xlen >=NPOS- rlen . a

17.5.1.1.23 DRAFT: 25 January 1994 Library 17139
string::replace(size_t, size_t, const string&, size_t, size_t)

Otherwise, the function replaces the string controlledthig with a string of lengtden - xlen + O
rlen whose firstposl elements are a copy of the initial elements of the original string controlledlby
*this , whose nextrlen elements are a copy of the initial elements of the string controllesirby O
beginning at positiopos2, and whose remaining elements are a copy of the elements of the original &tring

controlled by*this beginning at positiopos1 + xlen . O
The function returnsthis . O
17.5.1.1.24string::replace(size_t, size_t, const char*, (lib.string::replace.str]
size t) O
string& replace(size_t pos, size_t nl, const char* s, a
size .t n2 =NPOS), a

Returngreplace(pos, nl1, string(s, n2)) . ad
17.5.1.1.25string::replace(size _t, size t, char, size_t) (lib.string::replace.c]

string& replace(size_t pos, size_t n,char ¢, size_t rep =1); a
Returngreplace(pos, n, string(c, rep)) . ad
17.5.1.1.26string::get_at(size_t) (lib.string::get.at]
EBox 193 B 0
a_ibrary WG issue: Uwe Steinniiller, January 4, 1994 0 a
O O
>C const char get at(size t pos) const; i ™

char get_at(size_t pos) const; a
Reports an out-of-range erroibs >= len . Otherwise, the function returp#r [pos] . g
17.5.1.1.27string::put_at(size_t, char) (lib.string::put.at]

void put_at(size_t pos, char c¢); a
Reports an out-of-range errorgbs > len . Otherwise, ifpos == len , the function replaces thell

string controlled bythis with a string of lengtHen + 1 whose firstlen elements are a copy of the]l
original string and whose remaining element is initializedc toOtherwise, the function assigmsto [

ptr [pos] . a
17.5.1.1.28string::operator[](size_t) (lib.string::op.array]

%ox 194 ED
[Library WG issue: Uwe Steinniiller, January 4, 1994 n
O O
gThe function signature string::operator[](sige El]
0

[f>C const char operator[](size_t pos) const; char& operator[](size t H]
[pos); [0

17-140 Library DRAFT: 25 January 1994 17.5.1.1.28
string::operatorf[](size_t)

EBox 195 B 0
aibrary WG issue: Uwe Steinniiller, January 4, 1994 0 a
O 0
*>C const char operator[](size t pos) const; 8 N
char operator[](size_t pos) const; a
char& operator[](size_t pos); a
If pos < len , returnsptr [pos] . Otherwise, ifpos == len , theconst version returns zero. Oth-0
erwise, the behavior is undefined. O
The reference returned by the noomst version is invalid after any subsequent calctstr or any O
nonconst member function for the object. O
17.5.1.1.29string::c_str() (lib.string::c.str]
const char* c_str() const; a

Returns a pointer to the initial element of an array of lefegth + 1 whose firstlen elements equal thed
corresponding elements of the string controlledthis and whose last element is a null character. The
program shall not alter any of the values stored in the array. Nor shall the program treat the returned value

as a valid pointer value after any subsequent call to a&oost: member function of the classdring O
that designates the same objectthis . O
17.5.1.1.30string::length() (lib.string::length]
size_t length() const: a
Returnslen . O
17.5.1.1.31string::resize(size_t, char) (lib.string::resize]
void resize(size_t n, char c =0); O

Reports a length error if equalsNPOS Otherwise, the function alters the length of the string designaied
by *this as follows: a

— If n <= len , the function replaces the string designatedthis with a string of lengtim whose 0O
elements are a copy of the initial elements of the original string designattdtdsby . a

— If n > len , the function replaces the string designatedthig with a string of lengttn whose first 0
len elements are a copy of the original string designatedthiyy , and whose remaining elements arfé

all initialized toc. O
17.5.1.1.32string::reserve() (lib.string::reserve]
FBox 196 ED
HJbrary WG issue: Uwe Steinniiller, January 4, 1994 n

0
]
0 size t reserve() const; *>C void reserve(size_t res_arg) (g
Cconst; /res is mutable En

O

size_t reserve() const;

17.5.1.1.32string::reserve() DRAFT: 25 January 1994 Library 17-141

Returnsres .

17.5.1.1.33string::reserve(size_t) [lib.string::reserve.cap]

void reserve(size_t res_arg);

O

If no string is allocated, the function assiges _arg to res . Otherwise, whether or how the functiofl

O

altersres is unspecified.

17.5.1.1.34string::copy(char*, size_t, size t) [(lib.string::copy]
HBox 197

ELibrary WG issue: Uwe Steinniiller, January 4, 1994

Y

7>C size_t copy(char *s, size_t n, size_t pos = 0); *> the user should
rspecify the size of bytes s points to *> pos is the offset in the this
[string

e e e

size_t copy(char* s, size_t n, size_t pos =0);

O

Reports an out-of-range errorifios > len . Otherwise, the function determines the effective lendth
rlen of the string to copy as the smallermfand/en - pos. s shall designate an array of at least

rlen elements.

The function then replaces the stringlg)esignated loyth a string of lengthrlen whose elements are dJ

copy of the string controlled byhis

The function returnglen . O
17.5.1.1.35string::find(const string&, size t) [(lib.string::find.sub]
size_t find(const string& str , size_t pos = 0) const; a
Determines the lowest positioos , if possible, such that both of the following conditions obtain:
— pos <= xpos andxpos + str.len <= len ;
— ptr [xpos + []1== str.ptr [1] forall elementd of the string controlled bgtr .
If the function can determine such a valuexpos , it returnsxpos . Otherwise, it returnslPOS O
17.5.1.1.36string::find(const char*, size_t, size_t) (lib.string::find.str]
HBox 198 ED
El_ibrary WG issue: Uwe Steinniiller, January 4, 1994 H
O
%>C size_t find(const string& str, size t pos = 0) const; size t (g
rfind(const char *s, size_t pos = 0, size_t n = NPOS) const; *>C size t %
(find(char c, size t pos = 0) const;
size_t find(const char* s, size_t pos =0, size_t n =NPOS) const; a
119 The function does not append a null character to the string. O

17-142 Library DRAFT: 25 January 1994 17.5.1.1.36

string::find(const char*, size_t, size_t)
Returngfind(string(s, n), pos).

17.5.1.1.37string::find(char, size_t) (lib.string::find.c]

size_t find(char c, size_t pos = 0) const;
Returndfind(string(c), pos).

17.5.1.1.38string::rfind(const string&, size_t) (lib.string::rfind.sub]

size_t rfind(const string& str , size_t pos = NPOS) const;

Determines the highest positiapos , if possible, such that both of the following conditions obtain:

— Xpos + str.len <= pos +1 andpos < len ;

O

— ptr [xpos + |]== str.ptr [1] forall elementd of the string controlled bgtr .

If the function can determine such a valuexpos , it returnsxpos . Otherwise, it returnslPOS
17.5.1.1.39string::rfind(const char*, size t, size t) (lib.string::rfind.str]
HBox 199

[Library WG issue: Uwe Steinniiller, January 4, 1994

O

B> search begins from end, thats why pos = NPOS for default *>C size t

dfind(const string& str, size_t pos = NPOS) const *>C size_t

rrfind(const char *s, size_t pos = NPOS, size t n =

[NPOS) const; *>C size trfind(char c, size t pos = NPOS) const;

HH S P ERE

size_t rfind(const char* S, size_t pos = NPOS,
size .t n =NPOS) const;

Returngrfind(string(s, n), pos).
17.5.1.1.40string::rfind(char, size_t) [lib.string::rfind.c]
size_t rfind(char c, size_t pos = NPOS) const;
Returngfind(string(c, n), pos).
17.5.1.1.41string::find_first_of(const string&, {lib.string::find.first.of.sub]
size t) a
size_t find_first_of(const string& str , size_t pos = 0) const;

Determines the lowest positioos , if possible, such that both of the following conditions obtain:
— pos <= xpos andxpos < len ;

— ptr [xpos]== str.ptr [1] for some element of the string controlled bgtr .

If the function can determine such a valuexpos , it returnsxpos . Otherwise, it returnslPOS

OO

O

17.5.1.1.42 DRAFT: 25 January 1994 Library 17143
string::find_first_of(const char*, size_t,size_t)

e o

17.5.1.1.42string::find_first_of(const char*, [(lib.string::find.first.of.str]
size_t,size t) O
EBox 200
rLibrary WG issue: Uwe Steinniiller, January 4, 1994
O
U>C size t find_first_of(const string& str, size t pos = 0) const
0 size_t find_first_of(const char *s, size_t pos = 0, size t
' = NPOS) const; *> does not make sense (first of c is find(c, pos) *>W
rsize_t find_first_of(char c, size t pos = 0, size_t n = NPOS)
[tonst;
size_t find_first_of(const char* s, size t pos =0,
size .t n =NPOS) const;
Returndfind_first_of(string(s, n), pos).
17.5.1.1.43string::find_first_of(char, size t) [(lib.string::find.first.of.c]
size_t find_first_of(char c, size_t pos = 0) const;
Returndind_first_of(string(c), pos).
17.5.1.1.44string::find_last_of(const string&, (lib.string::find.last.of.sub]
size_t) O
size_t find_last_of(const string& str , size_t pos = NPOS) const;

Determines the highest positiapos , if possible, such that both of the following conditions obtain:
— Xxpos <= pos and pos < len;

— ptr [xpos]== str.ptr [1] for some element of the string controlled bgtr .

If the function can determine such a valuexpos , it returnsxpos . Otherwise, it returnslPOS

17.5.1.1.45string::find_last_of(const char*, [lib.string::find.last.of.str]
size_t,size t) O

oo

O

O

%ox 201

[Library WG issue: Uwe Steinniiller, January 4, 1994
O

D search from the end *>C size t find_last_of(const string& str,

rpize_t pos = NPOS)const; *>C size_t find_last_of(const char *s, size_t

pos = NPOS, size_.t n = NPOS) const; *>W size_t
ind last of(char c, size t pos =0, size tn =NPOS) const;

HHPE 2R

size_t find_last_of(const char* s, size_t pos = NPOS,
size .t n =NPOS) const;

Returndind_last_of(string(s, n), pos).

oo

O

17-144 Library DRAFT: 25 January 1994 17.5.1.1.46

string::find_last_of(char, size_t)

17.5.1.1.46string::find_last_of(char, size_t) [lib.string::find.last.of.c]
size_t find_last_of(char c, size t pos = NPOS) const;
Returndind_last_of(string(c, n), pos).
17.5.1.1.47 [(lib.string::find.first.not.of.sub]
string::find_first_not_of(const string&,size_t) a
size_t find_first_not_of(const string& str

size_t pos =0)const;

Determines the lowest positioos , if possible, such that both of the following conditions obtain:

— pos <= xpos andxpos < len ;

O

HHP S P EE

— ptr [xpos]== str.ptr [1] for no element of the string controlled bgtr .
If the function can determine such a valuexpos , it returnsxpos . Otherwise, it returnslPOS
17.5.1.1.48string::find_first_not_of(const char*, (lib.string::find.first.not.of.str]
size_t,size t) O
H?;ox 202
[Library WG issue: Uwe Steinniiller, January 4, 1994
O
Do size_t find_first_not_of(const string& str, size_t pos = 0)const;
0 size_t find_first_not_of(const char *s, sizet pos = O,
O size_t n = NPOS) const; *>W size_t find_first_not_of(char c,
[5ize tpos =0, size tn = NPOS) const;
size_t find_first_not_of(const char* s, size_t pos =0,

size .t n =NPOS) const;

Returndfind_first_not_of(string(S, n), pos).
17.5.1.1.49string::find_first_not_of(char, size_t) [(lib.string::find.first.not.of.c]
size_t find_first_not_of(char c, size_t pos = 0) const;
Returndind_first_not_of(string(c), pos).
17.5.1.1.50string::find_last_not_of(const string&, (lib.string::find.last.not.of.sub]
size t) O
size_t find_last_not_of(const string& str , size_t pos = NPOS) const;

Determines the highest positiapos , if possible, such that both of the following conditions obtain:
— Xpos <= pos and pos < len ;

— ptr [xpos]== str.ptr [1] for no element of the string controlled bgtr .

If the function can determine such a valuexpos , it returnsxpos . Otherwise, it returnslPOS

oo

O

175.1.1.51 DRAFT: 25 January 1994 Library 17145
string::find_last_not_of(const char*, size_t, size_t)

17.5.1.1.51string::find_last_not_of(const char?*, [(lib.string::find.last.not.of.str]
size_t, size_t) O
%ox 203 El]
[Library WG issue: Uwe Steinniiller, January 4, 1994 d
O 0
N size_t find_last_not_of(const string& str, size_t pos = NPOS)const; (o
%>C size_t find_last_not_of(const char *s, size t pos = NPOS,
0 size_t n = NPOS) const; *>W size t find_last_not_of(char c,
[size tpos =0, size tn =NPOS) const; mn|
size_t find_last_not_of(const char* s, size_t pos = NPOS, a
size t n =NPOS) const; a
Returndind_last_not_of(string(s, n), pos). O
17.5.1.1.52string::find_last_not_of(char, size t) [(lib.string::find.last.not.of.c]
size_t find_last_not_of(char c, size_t pos = NPQOS) const; a
Returndind_last_not_of(string(c, n), pos). ad
17.5.1.1.53string::substr(size_t, size_t) [(lib.string::substr]
[Box 204 ED
CLibrary WG issue: Uwe Steinniiller, January 4, 1994 H
O O
g string substr(size_t pos = 0, size_t n = NPOS) const; ED
t . . .
0 int compare(const string& str, size_t pos = 0, B]
O size t n = NPOS) const; *>C int M
Ctompare(char *s, size tn) const; ™
string substr(size_t pos =0, size_t n = NPOS) const; a

Reports an out-of-range erroriios > len . Otherwise, the function determines the effective lendth

rlen of the string to copy as the smallerrsdnd/en - pos. O
The function then returrstring(ptr + pos, rlen). O
17.5.1.1.54string::compare(const string&, size _t, (lib.string::compare.sub]
size t) O
int compare(const string& str , size_t pos, size_t n = NPOS) const; a

Reports an out-of-range errorifios > len . Otherwise, the function determines the effective lendth
rlen of the strings to compare as the smallest,dén - pos, andstr.len . The function then com-0
pares the two strings by callimgemcmpptr + pos, str.ptr , rlen). The function signature
memcmp(const void*, const void*, size t) is declared ir<string.h> 1D a

If the result of that comparison is nonzero, the function returns the nonzero result. Otherwise, the flhction
returns: g

1) The elements are compared as if they had tyys@gned char . O

17-146 Library DRAFT: 25 January 1994 17.5.1.1.54
string::compare(const string&, size_t, size_t)

— if len < rlen , avalue less than zero;

— if len == rlen , the value zero;

— if len > rlen , avalue greater than zero.

17.5.1.1.55string::compare(const char*, size_t) (lib.string::compare.str]
size_t compare(const char* s, size_t n = NPOS) const; a
Returnscompare(string(S, n), pos). a
17.5.1.1.56string::compare(char, size_t) [(lib.string::compare.c]
FBox 205 ED
HJbrary WG issue: Uwe Steinniiller, January 4, 1994 n
0
0
> not very useful *>R int compare(char c, size t pos = 0, size t n (g
O = NPOS) const; n
size_t compare(char c, size_t rep =1)const; g
Returnscompare(string(c, rep), pos). O
17.5.1.2 operator+(const string&, const string&) [(lib.op+.sub.sub]
string operator+(const string& Ihs , const string& rhs); O
Returnsstring(/hs).append(rhs). a
17.5.1.3 operator+(const char*, const string&) [({lib.op+.str.sub]
string operator+(const char* Ihs , const string& rhs); a
Returnsstring(lhs)+ rhs. O
17.5.1.4 operator+(char, const string&) (lib.op+.c.sub]
string operator+(char Ihs , const string& rhs); a
Returnsstring(lhs)+ rhs. ad
17.5.1.5 operator+(const string&, const char*) [({lib.op+.sub.str]
string operator+(const string& Ihs , const char* rhs); a
Returnslhs +string(rhs). ad
17.5.1.6 operator+(const string&, char) (lib.op+.str.c]
string operator+(const string& Ihs ,char rhs); a

Returnslhs + string(rhs). ad

17.5.1.7
operator==(const string&, const string&)

DRAFT: 25 January 1994

17.5.1.7 operator==(const string&, const string&)

int operator==(const string& Ihs , const string&

Returns a nonzero valuel{f lhs == rhs) is nonzero.

17.5.1.8 operator==(const char*, const string&)

string operator==(const char* Ihs , const string&

Returnsstring(lhs)== rhs.

17.5.1.9 operator==(char, const string&)

string operator==(char Ihs , const string& rhs);

Returnsstring(/hs)== rhs.

17.5.1.100perator==(const string&, const char*)

string operator==(const string& Ihs , const char*

Returnslhs ==string(rhs).

17.5.1.11 operator==(const string&, char)

string operator==(const string& Ihs ,char rhs);

Returnshs ==string(rhs).

17.5.1.12operator!=(const string&, const string&)

int operator!=(const string& Ihs , const string&

Returns a nonzero valuelffs .compare(rhs) is nonzero.

17.5.1.130perator!=(const char*, const string&)

string operator!=(const char* Ihs , const string&

Returnsstring(/hs)!= rhs.

17.5.1.140perator!=(char, const string&)

string operator!=(char Ihs , const string& rhs);

Returnsstring(/hs)!= rhs.

17.5.1.150perator!=(const string&, const char*)

string operator!=(const string& Ihs , const char*

Returnslhs 1= string(rhs).

17.5.1.16operator!=(const string&, char)

string operator!=(const string& Ihs ,char rhs);

Returnslhs = string(rhs).

Library 1#147

[lib.op==.sub.sub]

rhs);
[(lib.op==.str.sub]
rhs);
[lib.op==.c.sub]
(lib.op==.sub.str]
rhs);
[lib.op==.sub.c]
(lib.op!=.sub.sub]
rhs);
[(lib.op!=.str.sub]
rhs);
[(lib.op!=.c.sub]
(lib.op!=.sub.str]
rhs);

[(lib.op!=.sub.c]

17-148 Library DRAFT: 25 January 1994 17.5.1.17
operator>>(istreamé&, string&)

17.5.1.17 operator>>(istreamé&, string&) {lib.ext.sub]

istream& operator>>(istream& is , string& str); a

A formatted input function, extracts characters and appends them to the string contradied. byhe 0O
string is initially made empty by callingfr .remove(0) . Each extracted characters appended as if
by callingstr .append(c). If width() is greater than zero, the maximum number of characters stated
niswidth() ; otherwise it idNT_MAX defined ir<limits.h> . a

Characters are extracted and appended until any of the following occurs:
— n characters are appended;

— NPOS -1 characters are appended;

— isspace(c¢) is nonzero for the next available input charact€in which case the input character i

O
O
O
— end-of-file occurs on the input sequence; a
S
not extracted). a

The function signaturesspace(int) is declared ir<ctype.h>

If the function appends no characters, it cadistate(failbit) . The function returnss .

17.5.1.18getline(istream&, string&, char) [lib.getline.sub]

istream& getline(istreamé& is , string& str ,char delim ="n"); a
An unformatted input function, extracts characters and appends them to the string contrsited Ghe 0O

string is initially made empty by callingfr .remove(0) . Each extracted characters appended as if
by callingstr .append(c¢). Characters are extracted and appended until any of the following occursi

— NPOS -1 characters are appended (in which case the functiorsetdiste(failbit)); O
— end-of-file occurs on the input sequence (in which case the functiosetate(eofbit)); O
— ¢ == delim for the next available input characterin which case the input character is extractédl
but not appended). O
If the function appends no characters, it cadlistate(failbit) . The function returnss . ad
17.5.1.190perator<<(ostreamé&, const string&) (lib.ins.sub]
ostreamé& operator<<(ostream& 0s, const string& str); a
A formatted output function, behaves the samesawrrite(str .c_str(), str .length())

The function returngs.

17.5.2 Headerwstring> (lib.header.wstring]

The headerkwstring> defines a type and several function signatures for manipulating varying-lefigth
sequences of wide characters. O

17.5.2.1 Classvstring (lib.wstring]

17.5.2.1 Classvstring DRAFT: 25 January 1994 Library 17-149

HBox 206
HJbrary WG issue: Ichiro Koshida, January 10, 1994
O
rn reviewing G+ library draft, | found two differences betwestning class andvstring class.
O
ti. Member functionstring::c_str() andwstring::c_wcs()
hese member functions have same functionality (i.e., to get C representatiostdhthe or wstring
rPbject). They should have a same name.
O
(2. Wstring class lacks 1/O fucntions
Unstring class defintion, these functions are defined:
function signature operator>>(istream&, string&)
function signature getline(istream&, string&, char)
function signature operator<<(ostream&, string&)

oooog

LNone of them, however, exist for thestring class. Corresponding functions listed below shoul
efined for thevstring class.

q function signature operator>>(istream&, wstring&)

0 function signature getline(istream&, wstring&, wchar_t)

0 function signature operator<<(ostreamé&, wstring&)

e

Do e P g e OB OE P ROg

17-150 Library

DRAFT: 25 January 1994 17.5.2.1 Claswsstring

class wstring {

public:

wstring();
wstring(size_t Size , capacity cap);
wstring(const wstring& str , size_t pos =0, size_t n =NPOS);
wstring(const wchar_t* s, size_t n = NPOS);
wstring(wchar_t c, size_t rep =1);
wstring& operator=(const wchar_t* s);
wstring& operator=(wchar_t c);
wstring& operator+=(const wstring& rhs);
wstring& operator+=(const wchar_t* s);
wstring& operator+=(wchar_t c);
wstring& append(const wstring& str , size_t pos =0,
size t n =NPOS);
wstring& append(const wchar_t* s, size_t n =NPOS);
wstring& append(wchar_t c, size_t rep =1);
wstring& assign(const wstring& str , size_t pos =0,
size t n =NPOS);
wstring& assign(const wchar_t* s, size_t n =NPOS);
wstring& assign(wchar_t c, size_t rep =1);
wstring& insert(size_t pos1, const wstring& str , size_t pos2 =0,
size t n =NPOS);
wstring& insert(size_t pos, const wchar_t* s,
size .t n =NPOS);
wstring& insert(size_t pos, wchar_t c, size_t rep =1);
wstring& remove(size_t pos =0, size_t n = NPQOS);
wstring& replace(size_t posl, size_t nl, const wstring& str,
size t pos2 =0, size_t n2 =NPOS);
wstring& replace(size_t pos, size_t nl, const wchar_t* s,
size .t n2 =NPOS);
wstring& replace(size_t pos, size_t n, wchar_t c,
sizet rep =1)
wchar_t get_at(size_t pos) const;
void put_at(size_t pos, wchar_t c);
wchar_t operator[](size_t pos) const;
wchar_t& operator[](size_t pos);
const wchar_t* c_wecs() const;
size_t length() const:

void resize(size_t n, wchar_t c =0);

size_t reserve() const;

void reserve(size_t res_arg);

size_t copy(wchar_t* s, size_t n, size_t pos =0);

size_t find(const wstring& str , size_t pos = 0) const;

size_t find(const wchar_t* s, size_t pos =0, size_t n = NPOS)
const;

size_t find(wchar_t c, size_t pos = 0) const;

size_t rfind(const wstring& str , size_t pos = NPOS) const;

size_t rfind(const wchar_t* s, size_t pos =NPOS,
size .t n =NPOS) const;

size_t rfind(wchar_t c, size_t pos = NPOS) const;

size_t find_first_of(const wstring& str , size_t pos = 0) const;

size_t find_first_of(const wchar_t* s, size_t pos =0,
size .t n =NPOS) const;

size_t find_first_of(wchar_t c, size_t pos = 0) const;

size_t find_last_of(const wstring& str , size_t pos = NPOS) const;

size_t find_last_of(const wchar_t* s, size_t pos = NPOS,
size .t n =NPOS) const;

size_t find_last_of(wchar_t c, size_t pos = NPOS) const;

size_t find_first_not_of(const wstring& str , size_t pos =0)
const;

size_t find_first_not_of(const wchar_t* s, size_t pos =0,

size .t n =NPOS) const;

e e e o

17.5.2.1 Classvstring DRAFT: 25 January 1994 Library 17-151

size_t find_first_not_of(wchar_t c, size t pos = 0) const; O

size_t find_last_not_of(const wstring& str , size_t pos = NPOS) O

const; O

size_t find_last_not_of(const wchar_t* s, size_t pos = NPOS, O

size .t n =NPOS) const; O

size_t find_last_not_of(wchar_t c, size_t pos = NPOS) const; O

wstring substr(size_t pos =0, size_t n =NPOS) const; O

int compare(const wstring& str , size_t pos =0, O

size .t n =NPOS) const; O

int compare(wchar_t* s, size_t n = NPOS) const; O

int compare(wchar_t c, size_t rep =1)const; O

private: O
I wchar_t* ptr ; exposition only ad
I size_t len , res; exposition only O
5 O

The clasavstring describes objects that can store a sequence consisting of a varying number of arGitrary
wide characters. The first element of the sequence is at position zero. Such a sequence is alsoltalled a
wide-character strindor simply astring if the type of the elements is clear from context). Storage for fhe
string is allocated and freed as necessary by the member functions ofvstiasg . For the sake of O

exposition, the maintained data is presented here as: O
— wchar_t* ptr , points to the initial character of the string; O
— size_t len , counts the number of characters currently in the string; O
— size_t res , for an unallocated string, holds the recommended allocation size of the string, whilé for
an allocated string, becomes the currently allocated size. O
In all caseslen <= res . a
The functions described in this subclause can report two kinds of errors, each associated with a[distinct
exception: O
— alengtherror is associated with exceptions of tygmgtherror O
— anout-of-rangeerror is associated with exceptions of typgofrange . O
To report one of these errors, the function evaluates the expressiaise() , whereex is an object of O
the associated exception type. O
17.5.2.1.1wstring::wstring() [lib.cons.wstring]
wstring(); a
Constructs an object of clagstring initializing: ad
— ptr to an unspecified value; O
— len to zero; O
— res to an unspecified value. O
17.5.2.1.2wstring::wstring(size_t, capacity) [lib.cons.wstring.cap]
wstring(size_t Size , capacity cap); a
Constructs an object of classstring . If cap is default_size , the function either reports a lengtffl
error if size equaldNPOSor initializes: a

— ptr to point at the first element of an allocated arragigé elements, each of which is initialized tal

17-152 Library DRAFT: 25 January 1994 175.2.1.2
wstring::wstring(size_t, capacity)
Zero;
— len tosize ;

— res to avalue at least as largeles .

Otherwisecap shall bereserve and the function initializes: O
— ptr to an unspecified value; O
— len to zero; O
— res tosize . O
17.5.2.1.3wstring::wstring(const wstring&, size_t, [lib.cons.wstring.wsub]
size t) O
wstring(const wstring& str , size_t pos =0, size_t n =NPOS); a
Reports an out-of-range errorgbs > str.len . Otherwise, the function constructs an object of cldss
wstring and determines the effective lengthn of the initial wstring value as the smaller mfand O
str.len - pos. Thus, the function initializes: a
— ptr to point at the first element of an allocated copyl/efi elements of the wstring controlled by]
str beginning at positiopos; a
— len torlen ; O
— res to avalue at least as largeles . a
17.5.2.1.4wstring::wstring(const wchar_t*, size t) [lib..cons.wstring.wstr]
wstring(const wchar_t* s, size_t ny; a
If n equalsNPOS storeswcslen(s) in n. The function signaturescslen(const wchar_T*) is O
declared ircwchar.h> . O

In any case, the function constructs an object of el@agsng and determines its initial string value fronfl
the array ofwchar_t of lengthn whose first element is designated fy s shall not be a null pointer.O
Thus, the function initializes: O

— ptr to point at the first element of an allocated copy of the array whose first element is pointegd at’by

— len ton; O

— res to avalue at least as largeles . O

17.5.2.1.5wstring::wstring(wchar_t, size_t) (lib..cons.wstring.wc]
wstring(wchar_t c, size_t rep =1); a

Reports a length error iEp equalsNPOS Otherwise, the function constructs an object of clastsing ad
and determines its initial string value by repeating the charadtrall rep elements. Thus, the functior
initializes: 0

— ptr to point at the first element of an allocated arrayepf elements, each storing the initial valeie [0
— len torep; O
0

— res to avalue at least as largeles .

175.2.15 DRAFT: 25 January 1994 Library 17153
wstring::wstring(wchar _t, size_t)

17.5.2.1.6wstring::operator=(const wchar_t*) [lib.wstring::op=.wstr]
wstring& operator=(const wchar_t* s); a
Returnsthis = string(s). ad
17.5.2.1.7wstring::operator=(wchar _t) [lib.wstring::op=.wc]
wstring& operator=(wchar_t c); a
Returnstthis = string(). ad
17.5.2.1.8wstring::operator+=(const wstring&) [{lib.wstring::op+=.wsub]
wstring& operator+=(const wstring& rhs); a
Returnsappend(rhs) . ad
17.5.2.1.9wstring::operator+=(const wchar_t*) (lib.wstring::op+=.wstr]
wstring& operator+=(const wchar_t* s); a
Returnstthis += string(s). O
17.5.2.1.10wstring::operator+=(wchar_t) (lib.wstring::op+=.wc]
wstring& operator+=(wchar_t c); a
Returnstthis += string(). ad
17.5.2.1.11wstring::append(const wstring&, size_t, [({lib.wstring::append.wsub]
size t) a
wstring& append(const wstring& str , size_t pos =0, size_t n = NPQOS); a
Reports an out-of-range error ifos > str.len . Otherwise, the function determines the effectivé
lengthrlen of the string to append as the smallenaindstr.len - pos. The function then reports]
a length error ifen >=NPOS - rlen . O

Otherwise, the function replaces the string controlledthis with a string of lengthen + rlen O
whose firstlen elements are a copy of the original string controlledtbis and whose remaining ele{]

ments are a copy of the initial elements of the string controllestrbybeginning at positiopos . O
The function returnsthis . O
17.5.2.1.12wstring::append(const wchar_t*, size t) (lib.wstring::append.wstr]
wstring& append(const wchar_t* s, size_t n =NPOS); a
Returnsappend(wstring(s, n) . ad
17.5.2.1.13wstring::append(wchar_t, size_t) (lib.wstring::append.wc]
wstring& append(wchar_t c, size_t rep =1); a

Returnsappend(wstring(c, rep)) . O

17-154 Library DRAFT: 25 January 1994 175.2.1.14
wstring::assign(const wstring&, size_t, size_t)

17.5.2.1.14wstring::assign(const wstring&, size t, (lib.wstring::assign.wsub]
size t) O
wstring& assign(const wstring& str , size_t pos =0, size_t n =NPOS); a
Reports an out-of-range error ifos > str.len . Otherwise, the function determines the effectivé
lengthrien of the string to assign as the smallenaindstr.len - pos. a
The function then replaces the string controlledthis with a string of lengthlen whose elements areld
a copy of the string controlled I3¢r beginning at positiopos . a
The function returnsthis . O
17.5.2.1.15wstring::assign(const wchar_t*, size_t) [({lib.wstring::assign.wstr]
wstring& assign(const wchar_t* s, size_t n = NPOS); a
Returnsassign(wstring(s, n)) . ad
17.5.2.1.16wstring::assign(wchar _t, size t) [lib.wstring::assign.wc]
wstring& assign(wchar_t c, size_t rep =1); a
Returnsassign(wstring(c, rep)) . O
17.5.2.1.17wstring::insert(size_t, const wstring&, (lib.wstring::insert.wsub]
size t, size t) O
wstring& insert(size_t pos1, const wstring& str , size_t pos2 =0, a
size t n =NPOS); O
Reports an out-of-range errorgbsl > len or pos2 > strlen . Otherwise, the function deter{]
mines the effective lengthien of the string to insert as the smallerrfnd str.len - pos2. The O
function then reports a length errodéhi >= NPOS - rlen . a

Otherwise, the function replaces the string controlledthis with a string of lengthen + rlen O
whose firstposl elements are a copy of the initial elements of the original string controll&tdhisy , O
whose nextlen elements are a copy of the elements of the string controlleé¢r bypeginning at position O
pos2, and whose remaining elements are a copy of the remaining elements of the original string conirolled

by *this . O
The function returnsthis . O
17.5.2.1.18wstring::insert(size_t, const wchar_t*, [({lib.wstring::insert.wstr]
size t) O

wstring& insert(size_t pos, const wchar_t* s, size_t n = NPQOS); a
Returnsnsert(pos, wstring(s, n)) . ad
17.5.2.1.19wstring::insert(size_t, wchar _t, size t) [({lib.wstring::insert.wc]

wstring& insert(size_t pos, wchar_t c, size_t rep =1); a

Returnsnsert(pos, wstring(c, rep)) . ad

17.5.2.1.20 DRAFT: 25 January 1994 Library 17155

wstring::remove(size_t, size_t)

17.5.2.1.20wstring::remove(size_t, size_t) (lib.wstring::remove]
wstring& remove(size_t pos =0, size_t n =NPOS); a

Reports an out-of-range errorfifios > len . Otherwise, the function determines the effective lendth

xlen of the string to be removed as the smallemahd/en - pos. a

The function then replaces the string controlledthys with a string of lengthen - xlen whose O
first pos elements are a copy of the initial elements of the original string controllgtiby , and whose O
remaining elements are a copy of the elements of the original string controltgdisy beginning at O

positionpos + xlen . a

The function returnsthis . O
17.5.2.1.21wstring::replace(size t, size_t, [(lib.wstring::replace.wsub]

const wstring&, size t, size t) O

wstring& replace(size_t pos1, size_t nl, const wstring& str a

size .t pos2 =0, size_t n2 =NPOS); a

Reports an out-of-range errorgbsl > Jlen or pos2 > strlen . Otherwise, the function deter{]

mines the effective lengtklen of the string to be removed as the smallendfandlen - posl. It O

also determines the effective lengtln of the string to be inserted as the smallen®fandstr.len - 0O

pos2. The function then reports a length errdeit - xlen >=NPOS- rlen . O

Otherwise, the function replaces the string controlledtbis ~ with a string of lengtien - xlen + O

rlen whose firstposl elements are a copy of the initial elements of the original string controlledlby
*this , whose nextrlen elements are a copy of the initial elements of the string controllestrby O
beginning at positiopos2, and whose remaining elements are a copy of the elements of the original Etring

controlled by*this beginning at positiopos1 + xlen . O
The function returnsthis . ad
17.5.2.1.22wstring::replace(size_t, size_t, [({lib.wstring::replace.wstr]
const wchar_t*, size_t) O
wstring& replace(size_t pos, size_t nl, const wchar_t* s, a
size t n2 =NPOS); O
Returngreplace(pos, nl1, wstring(s, n2)) . ad
17.5.2.1.23wstring::replace(size _t, size_t, wchar t, [(lib.wstring::replace.wc]
size t) a
wstring& replace(size_t pos, size_t n, wchar_t c, size_t rep =1); a
Returngreplace(pos, n, wstring(c, rep)) . ad
17.5.2.1.24wstring::get_at(size_t) [(lib.wstring::get.at]
wchar_t get_at(size_t pos) const; a
Reports an out-of-range erromibs >= len . Otherwise, the function returpgr [pos] . O
17.5.2.1.25wstring::put_at(size_t, wchar_t) (lib.wstring::put.at]
void put_at(size_t pos, wchar_t c); a
Reports an out-of-range errorgbs > len . Otherwise, ifpos == len , the function replaces thel

string controlled bythis with a string of lengtHhen + 1 whose firstlen elements are a copy of the]l

17-156 Library DRAFT: 25 January 1994 17.5.2.1.25
wstring::put_at(size_t, wchar_t)

original string and whose remaining element is initializedc toOtherwise, the function assigmsto [

ptr [pos] . O
17.5.2.1.26wstring::operator[](size_t) [lib.wstring::op.array]
wchar_t operator[](size_t pos) const; a
wchar_t& operator[](size_t pos); a
If pos < len , returnsptr [pos] . Otherwise, ifpos == len , theconst version returns zero. Oth-0
erwise, the behavior is undefined. O
The reference returned by the noomst version is invalid after any subsequent calctavcs or any O
nonconst member function for the object. O
17.5.2.1.27wstring::c_wcs() ({lib.wstring::c.wcs]
const wchar_t* c_wecs() const; a

Returns a pointer to the initial element of an array of lefegth + 1 whose firstlen elements equal the
corresponding elements of the string controlledthis and whose last element is a null character. The
program shall not alter any of the values stored in the array. Nor shall the program treat the returned value
as a valid pointer value after any subsequent call to a&owest- member function of the clasestring O

that designates the same objectthis . O
17.5.2.1.28wstring::length() (lib.wstring::length]
size_t length() const: a
Returnslen . O
17.5.2.1.29wstring::resize(size_t, wchar_t) (lib.wstring::resize]
void resize(size_t n, wchar_t c =0); O

Reports a length error if equalsNPOS Otherwise, the function alters the length of the string designdied
by *this as follows: a

— If n <= len , the function replaces the string designatedthis with a string of lengtim whose 0O
elements are a copy of the initial elements of the original string designattdtdsby . a

— If n > len , the function replaces the string designatedthig with a string of lengttn whose first 0
len elements are a copy of the original string designatedthiyy , and whose remaining elements arfé

all initialized toc. O
17.5.2.1.30wstring::reserve() (lib.wstring::reserve]
size_t reserve() const; a
Returnsres . g
17.5.2.1.31wstring::reserve(size_t) [(lib.wstring::reserve.cap]
void reserve(size_t res_arg); a

If no string is allocated, the function assiges _arg to res . Otherwise, whether or how the functiofl
altersres is unspecified. O

17.5.2.1.32 DRAFT: 25 January 1994 Library 17157

wstring::copy(wchar_t*, size_t, size_t)

17.5.2.1.32wstring::copy(wchar_t*, size_t, size_t) [lib.wstring::copy.wstr]
size_t copy(wchar_t* s, size_t n, size_t pos =0); a

Reports an out-of-range errorfifios > len . Otherwise, the function determines the effective lendth

rlen of the string to copy as the smallermfand/en - pos. s shall designate an array of at least
rlen elements. O

The function then replaces the string designated kmth a string of lengthrlen whose elements are dl
copy of the string controlled byhis 12) a

The function returnglen . a
17.5.2.1.33wstring::find(const wstring&, size_t) ({lib.wstring::find.wsub]
size_t find(const wstring& str , size_t pos = 0) const; O

Determines the lowest positioos , if possible, such that both of the following conditions obtain:

— pos <= xpos andxpos + str.len <= len ;

— ptr [xpos + |]== str.ptr [1] forall elementd of the string controlled bgtr .
If the function can determine such a valuexpos , it returnsxpos . Otherwise, it returnslPOS ad
17.5.2.1.34wstring::find(const wchar_t*, size t, (lib.wstring::find.wstr]
size t) O

size_t find(const wchar_t* s, size_t pos =0, size_t n = NPOS) const; a
Returndind(wstring(s, n), pos). O
17.5.2.1.35wstring::find(wchar_t, size_t) (lib.wstring::find.wc]

size_t find(wchar_t c, size_t pos = 0) const; a
Returngfind(wstring(c), pos). O
17.5.2.1.36wstring::rfind(const wstring&, size_t) [lib.wstring::rfind.wsub]

size_t rfind(const wstring& str , size_t pos = NPOS) const; a

Determines the highest positiapos , if possible, such that both of the following conditions obtain:;

— Xpos + str.len <= pos +1 andpos < len ;

— ptr [xpos + |]== str.ptr [1] forall elementd of the string controlled bgtr .
If the function can determine such a valuexpos , it returnsxpos . Otherwise, it returnslPOS ad
17.5.2.1.37wstring::rfind(const wchar_t*, size_t, (lib.wstring::rfind.wstr]
size t) a
size_t rfind(const wchar_t* s, size_t pos = NPOS, size_t n = NPQOS) a
const; a

112)The function does not append a null wide character to the string. O

17-158 Library DRAFT: 25 January 1994 17.5.2.1.37
wstring::rfind(const wchar_t*, size_t, size_t)

Returnsgrfind(wstring(s, n), pos).
17.5.2.1.38wstring::rfind(wchar _t, size_t) [lib.wstring::rfind.wc]
size_t rfind(wchar_t c, size_t pos = NPOS) const;
Returngfind(wstring(c, n), pos).
17.5.2.1.39wstring::find_first_of(const wstring&, [lib.wstring::find.first.of wsub]
size t) a
size_t find_first_of(const wstring& str , size_t pos = 0) const;

Determines the lowest positioos , if possible, such that both of the following conditions obtain:
— pos <= xpos andxpos < len ;

— ptr [xpos]== str.ptr [1] for some element of the string controlled bgtr .

If the function can determine such a valuexpos , it returnsxpos . Otherwise, it returnslPOS

17.5.2.1.40wstring::find_first_of(const wchar_t*, [({lib.wstring::find.first.of.wstr]
size t, size t) O
size_t find_first_of(const wchar_t* s, size_t pos =0,

size .t n =NPOS) const;

Returndiind_first_of(wstring(s, n), pos).
17.5.2.1.41wstring::find_first_of(wchar _t, size t) [(lib.wstring::find.first.of.wc]
size_t find_first_of(wchar_t c, size t pos = 0) const;
Returndfind_first_of(wstring(c), pos).
17.5.2.1.42wstring::find_last_of(const wstring&, [({lib.wstring::find.last.of.wsub]
size t) O
size_t find_last_of(const wstring& str , size_t pos = NPOS) const;

Determines the highest positiapos , if possible, such that both of the following conditions obtain:
— Xxpos <= pos and pos < len ;

— ptr [xpos]== str.ptr [1] for some element of the string controlled bgtr .

If the function can determine such a valuexpos , it returnsxpos . Otherwise, it returnslPOS

17.5.2.1.43wstring::find_last_of(const wchar_t*, (lib.wstring::find.last.of.wstr]
size t, size t) O
size_t find_last_of(const wchar_t* S, size_t pos = NPOS,

size .t n =NPOS) const;

Returndind_last_of(wstring(s, n), pos).

17.5.2.1.44 DRAFT: 25 January 1994 Library 17159
wstring::find_last_of(wchar_t, size_t)

17.5.2.1.44wstring::find_last_of(wchar_t, size_t) [lib.wstring::find.last.of.wc]
size_t find_last_of(wchar_t c, size t pos = NPOS) const;
Returndind_last_of(wstring(c, n), pos).
17.5.2.1.45 [({lib.wstring::find.first.not.of.wsub]
wstring::find_first_not_of(const wstring&, a
size t) a
size_t find_first_not_of(const wstring& str , size_t pos = 0) const;

Determines the lowest positioos , if possible, such that both of the following conditions obtain:
— pos <= xpos andxpos < len ;

— ptr [xpos]== str.ptr [1] for no element of the string controlled bgtr .

If the function can determine such a valuexpos , it returnsxpos . Otherwise, it returnslPOS

17.5.2.1.46 ({lib.wstring::find.first.not.of.wstr]
wstring::find_first_not_of(const wchar_t*, O
size t, size t) O
size_t find_first_not_of(const wchar_t* s, size_t pos =0,

size .t n =NPOS) const;

Returndiind_first_not_of(wstring(s, n), pos).
17.5.2.1.47wstring::find_first_not_of(wchar _t, (lib.wstring::find.first.not.of.wc]
size t) O
size_t find_first_not_of(wchar_t c, size t pos = 0) const;
Returndfind_first_not_of(wstring(c), pos).
17.5.2.1.48 [({lib.wstring::find.last.not.of.wsub]
wstring::find_last_not_of(const wstring&, a
size t) O
size_t find_last_not_of(const wstring& str , size_t pos = NPOS) const;

Determines the highest positiapos , if possible, such that both of the following conditions obtain:
— Xxpos <= pos and pos < len ;

— ptr [xpos]== str.ptr [1] for no element of the string controlled bgtr .

If the function can determine such a valuexpos , it returnsxpos . Otherwise, it returnslPOS

17.5.2.1.49 [({lib.wstring::find.last.not.of.wstr]
wstring::find_last_not_of(const wchar_t*, O
size t, size t) O
size_t find_last_not_of(const wchar_t* S, size_t pos = NPOS,

size .t n =NPOS) const;

Returndind_last_not_of(wstring(s, n), pos).

17-160 Library DRAFT: 25 January 1994 17.5.2.1.50
wstring::find_last_not_of(wchar_t, size_t)

17.5.2.1.50wstring::find_last_not_of(wchar_t, [lib.wstring::find.last.not.of.wc]
size t) O
size_t find_last_not_of(wchar_t c, size t pos = NPOS) const; a
Returndind_last_not_of(wstring(c, n), pos). ad
17.5.2.1.51wstring::substr(size _t, size_t) [({lib.wstring::substr]
wstring substr(size_t pos =0, size_t n =NPOS) const; a

Reports an out-of-range errorifios > len . Otherwise, the function determines the effective lendth

rlen of the string to copy as the smallerrmnd/en - pos. O
The function then returngstring(ptr + pos, rlen). ad
17.5.2.1.52wstring::compare(const wstring&, size_t, [({lib.wstring::compare.wsub]
size t) O
int compare(const wstring& str , size_t pos, size_t n = NPOS) const; a

Reports an out-of-range error iios > len . Otherwise, the function determines the effective lendth
rlen of the strings to compare as the smallest,dén - pos, andstr.len . The function then com-0
pares the two strings by callimcscmp(ptr + pos, str.ptr , rlen). The function signature
wmemcmp(const wchar_t*, const wchar_t*, size_t) is declared irkwchar.h> . O

If the result of that comparison is nonzero, the function returns the nonzero result. Otherwise, the flihction
returns: 0

— if len < rlen , avalue less than zero; O
— if len == rlen ,the value zero; 0
O

— if len > rlen , avalue greater than zero.

17.5.2.1.53wstring::compare(const wchar_t*, size_t) (lib.wstring::compare.wstr]
size_t compare(const wchar_t* s, size_t n =NPOS) const; a
Returnscompare(wstring(s, n), pos). O
17.5.2.1.54wstring::compare(wchar_t, size_t) (lib.wstring::compare.wc]
size_t compare(wchar_t c, size_t rep =1)const; a
Returnscompare(wstring(c, rep), pos). ad
17.5.2.2 operator+(const wstring&, const wstring&) (lib.op+.wsub.wsub]
wstring operator+(const wstring& Ihs , const wstring& rhs); a
Returnswstring(/hs).append(rhs). ad
17.5.2.3 operator+(const wchar_t*, const wstring&) ({lib.op+.wstr.wsub]
wstring operator+(const wchar_t* Ihs , const wstring& rhs); a

Returnswstring(/hs)+ rhs. a

17524
operator+(wchar_t, const wstring&)

DRAFT: 25 January 1994

17.5.2.4 operator+(wchar_t, const wstring&)

wstring operator+(wchar_t Ihs , const wstring& rhs);

Returnswstring(/hs)+ rhs.

17.5.2.5 operator+(const wstring&, const wchar_t*)

wstring operator+(const wstring& Ihs , const wchar_t*

Returnslhs +wstring(rhs).

17.5.2.6 operator+(const wstring&, wchar_t)

Library 17161

(lib.op+.wc.wsub]

[({lib.op+.wsub.wstr]
rhs);

(lib.op+.wsub.wc]

wstring operator+(const wstring& Ihs , wchar_t rhs);

Returnslhs + wstring(rhs).

17.5.2.7 operator==(const wstring&, const wstring&) [lib.op==.wsub.wsub]
int operator==(const wstring& Ihs , const wstring& rhs);

Returns a nonzero valuellfs .compare(rhs) is zero.

17.5.2.8 operator==(const wchar_t*, const wstring&)

wstring operator==(const wchar_t* Ihs , const wstring&

Returnswstring(/hs)== rhs .

17.5.2.9 operator==(wchar_t, const wstring&)

wstring operator==(wchar_t Ihs , const wstring& rhs);

Returnswstring(/hs)== rhs .

17.5.2.100perator==(const wstring&, const wchar_t*)

wstring operator==(const wstring& Ihs , const wchar_t*

Returnslhs == wstring(rhs).

17.5.2.11 operator==(const wstring&, wchar_t)

[lib.op==.wstr.wsub]
rhs);

[(lib.op==.wc.wsub]

[{lib.op==.wsub.wstr]
rhs);

(lib.op==.wsub.wc]

wstring operator==(const wstring& Ihs , wchar_t rhs);

Returnslhs ==wstring(rhs).

17.5.2.12 operator!=(const wstring&, const wstring&) [lib.op!'=.wsub.wsub]
int operator!=(const wstring& Ihs , const wstring& rhs);

Returns a nonzero valuel{f lhs == rhs) is nonzero.

17.5.2.13operator!=(const wchar_t*, const wstring&)

wstring operator!=(const wchar_t* Ihs , const wstring&

Returnswstring(/hs)!= rhs .

[(lib.op!=.wstr.wsub]
rhs);

17-162 Library DRAFT: 25 January 1994 17.5.2.14
operator!=(wchar_t, const wstring&)

17.5.2.140perator!=(wchar_t, const wstring&) (lib.op!=.wc.wsub]
wstring operator!=(wchar_t Ihs , const wstring& rhs); a
Returnswstring(/hs)!= rhs . ad
17.5.2.150perator!=(const wstring&, const wchar_t*) [({lib.op!=.wsub.wstr]
wstring operator!=(const wstring& Ihs , const wchar_t* rhs); a
Returnslhs = wstring(rhs). ad
17.5.2.16operator!=(const wstring&, wchar_t) [(lib.op!'=.wsub.wc]
wstring operator!=(const wstring& Ihs , wchar_t rhs); a
Returnslhs 1= wstring(rhs) . ad
17.5.3 Headexbits> ({lib.header.hits]
The headekbits> defines a template class and several related functions for representing and manipulat-
ing fixed-size sequences of bits. O
17.5.3.1 Template clasbits< N> (lib.template.bits]
HBox 207 El]
El_ibrary WG issue: Charles Allison, August 26, 1993 H
O

Swas 17.5.3]: Exceptions are global because otherwise there would be a different exception classkset for
reach value oN, because of the template. If everything is put in a hamespace, then the global namespace is
Chot polluted.

17.5.3.1 Template clasbits< N> DRAFT: 25 January 1994 Library 17-163

template<size_t N> class bits {

public:
bits();
bits(unsigned long val);
bits(const string& str , size_t pos =0, size_t n =NPOS);
bits< N>& operator&=(const bits< N>& rhs);
bits< N>& operator|=(const bits< N>& rhs);
bits< N>& operator*=(const bits< N>& rhs);
bits< N>& operator<<=(size_t pos);
bits< N>& operator>>=(size_t pos);
bits< N>& set();
bits< N>& set(size_t pos, int val =1),
bits< N>& reset();
bits< N>& reset(size_t pos);

bits< N> operator~();

bits< N>& toggle();

bits< N>& toggle(size_t pos);
unsigned short to_ushort() const;
unsigned long to_ulong() const;
string to_string() const;

size_t count() const;

size_t length() const;

int operator==(const bits< N>& rhs) const;
int operator!=(const bits< N>& rhs) const;
int test(size_t pos) const;

int any() const;
int none() const;

I o

bits< N> operator<<(size_t pos) const;
bits< N> operator>>(size_t pos) const;
private:
I char array [N; exposition only
I3

The template cladsits< N> describes an object that can store a sequence consisting of a fixed numbler of
bits, N O

Each bit represents either the value zero (reset) or one (setpgdlea bit is to change the value zero t@
one, or the value one to zero. Each bit has a non-negative pgzitlon\When converting between ari]
object of clasbits< N> and a value of some integral type, bit positims corresponds to thieit valuel [O

<< pos. The integral value corresponding to two or more bits is the sum of their bit values. g
For the sake of exposition, the maintained data is presented here as: O
— char array [N, the sequence of bits, stored one bit per eleféht. O

The functions described in this subclause can report three kinds of errors, each associated with aldistinct
exception: O

— aninvalid-argumentrror is associated with exceptions of typealidargument ; O
— anout-of-rangeerror is associated with exceptions of typgofrange ; O
O

— anoverflowerror is associated with exceptions of typerflow

To report one of these errors, the function evaluates the expregsiaise() , whereex is an object of O
the associated exception type. O

5 an implementation is free to store the bit sequence more efficiently. O

17-164 Library DRAFT: 25 January 1994 17.5.3.1.1bits< Nb>::bits()

17.5.3.1.1bits< N>::bits() (lib.cons.bits]
bits(); ad
Constructs an object of clasigs< NAb, initializing all bits to zero. a
17.5.3.1.2bits< N>::hits(unsigned long) [(lib.cons.bits.ul]
%ox 208 ED
[Library WG issue: Charles Allison, August 26, 1993 n
O O
was 17.5.3.4.2]: | did indeed fail to specify what the construdtibs(unsigned long n) does if [J
he significant bits of don't fit in N bits. My implementation throws an exception, which | believe is
[sistent with clas®itstring (which expands to accommodatg To be honest, | don't really care if
Cilently truncates, like this proposal does. Comments? NN
bits(unsigned long val); a

Constructs an object of clabiés< N>, initializing the firstMbit positions to the corresponding bit values

in val . Mis the smaller oilNand the valu€€HAR_BIT * sizeof (unsigned long) . The macro O
CHAR_BITis defined ir<limits.h> . O
If M < N, remaining bit positions are initialized to zero. ad
17.5.3.1.3bits< N>::bits(const string&, size_t, size t) [lib.cons.bits.subt]
bits(const string& str , size_t pos =0, size_t n =NPOS); a
Reports an out-of-range error fifos > strlen . Otherwise, the function determines the effective
lengthrlen of the initializing string as the smaller ofandstr.len - pos. The function then reportsC
an invalid-argument error if any of thi#en characters irstr beginning at positiopos is other tharD [
orl. U

Otherwise, the function constructs an object of dhitsx A, initializing the firstMbit positions to val- O
ues determined from the corresponding characters in the string Mis the smaller oiNandrlen . An 0O
element of the constructed string has value zero if the corresponding charatter eginning at posi- O
tion pos, is0. Otherwise, the element has the value one. Character pgzisont M -1 corresponds 0
to bit position zero. Subsequent decreasing character positions correspond to increasing bit positions.

If M < N remaining bit positions are initialized to zero. O
17.5.3.1.4bits< N>::operator&=(const bits< N>&) (lib.bits::op&=.bt]
bits< N>& operator&=(const bits< N>& rhs); a

Clears each bit irfthis for which the corresponding bit inhs is clear, and leaves all other bit&]

unchanged. The function returtthis . O
17.5.3.1.5bits< N>::operator|=(const bits< N>&) {lib.bits::op G=.bt]
bits< N>& operator|=(const bits< N>& rhs); a

Sets each bit ifthis for which the corresponding bit iths is set, and leaves all other bits unchanged.
The function returnsthis . O

17.5.3.1.6 DRAFT: 25 January 1994 Library 17165
bits< Nb::operator*=(const bits< N>&)

17.5.3.1.6bits< N>::operator*=(const bits< N>&) {lib.bits::op”=.bt]
bits< N>& operator*=(const bits< N>& rhs); a

Toggles each bit irfthis for which the corresponding bit iths is set, and leaves all other bit§l

unchanged. The function returtthis . a
17.5.3.1.7bits< N>::operator<<=(size_t) (lib.bits::op.Ish=]
bits< N>& operator<<=(size_t pos); a

Replaces each bit at positiérin *this with a value determined as follows:
— If | < pos, the new value is zero;

— If | >= pos, the new value is the previous value of the bit at position pos.

The function returnsthis . ad
17.5.3.1.8bits< N>::operator>>=(size_t) lib.bits::op.rsh=]
bits< N>& operator>>=(size_t pos); a

Replaces each bit at positiérin *this with a value determined as follows:
— If pos >= N - [, the new value is zero;

— If pos < N - [, the new value is the previous value of the bit at position pos.

The function returnsthis . ad
17.5.3.1.9bits< N>::set() (lib.bits::set]
bits< N>& set(); a
Sets all bits irfthis . The function return&his . O
17.5.3.1.10bits< N>:iset(size _t, int) lib.bits::set.n]
bits< N>& set(size_t pos, int val =1) a

Reports an out-of-range errorgbs does not correspond to a valid bit position. Otherwise, the functibn
stores a new value in the bit at positjgms in *this . If val is nonzero, the stored value is one, othéer-

wise it is zero. The function returrihis . a
17.5.3.1.11bits< N>:reset() (lib.bits::reset]
bits< N>& reset(); a
Resets all bits ifithis . The function return&his . ad
17.5.3.1.12hits< N>:ireset(size_t) [lib.bits::reset.n]
bits< N>& reset(size_t pos); a

Reports an out-of-range errorgbs does not correspond to a valid bit position. Otherwise, the functibn
resets the bit at positiqgos in *this . The function returnghis . O

17-166 Library DRAFT: 25 January 1994 17.5.3.1.13vits< N>::operator~()

17.5.3.1.13bits< N>::operator~() lib.bits::op7]
bits< N> operator~(); a

Constructs an object of classbhits< N> and initializes it with*this . The function then returnsQ

x.toggle() . a
17.5.3.1.14bits< N>::toggle() [(lib.bits::toggle]
bits< N>& toggle(); a
Toggles all bits irfthis . The function return&his . ad
17.5.3.1.15hits< N>::toggle(size t) (lib.bits::toggle.n]
bits< N>& toggle(size_t pos); a

Reports an out-of-range errorgbs does not correspond to a valid bit position. Otherwise, the functibn

toggles the bit at positionos in *this . The function return&his . O
17.5.3.1.16bits< Ab::to_ushort() (lib.bits::to.ushort]
unsigned short to_ushort() const; a

If the integral valuex corresponding to the bits ifthis cannot be represented as typesigned O

short , reports an overflow error. Otherwise, the function retutns O
17.5.3.1.17bits< N>::to_ulong() [lib.bits::to.ulong]
unsigned long to_ulong() const; a

If the integral valuex corresponding to the bits ifthis cannot be represented as typesigned ad

long , reports an overflow error. Otherwise, the function retptns a
17.5.3.1.18hits< N>::to_string() [lib.bits::to.string]
string to_string() const; a

Constructs an object of tymtring and initializes it to a string of lengticharacters. Each character id
determined by the value of its corresponding bit positiofthis . Character positiolV - 1 corre- [
sponds to bit position zero. Subsequent decreasing character positions correspond to increasing it posi-

tions. Bit value zero becomes the chara@tdsit value one becomes the charadter O
The function returns the created object. ad
17.5.3.1.19bits< N>::count() (lib.bits::count]
size_t count() const; a
Returns a count of the number of bits setlrs . O
17.5.3.1.20bits< Ab::length() (lib.bits::length]
size_t length() const; a

Returnsh. O

175.3.1.21 DRAFT: 25 January 1994 Library 17167
bits< Nb::operator==(const bits< N>&)

17.5.3.1.21bits< N>::operator==(const bits< N>&) lib.bits::op==.bt]

int operator==(const bits< N>& rhs) const; a

Returns a nonzero value if the value of each bithis equals the value of the corresponding bitis . [0

17.5.3.1.22bits< N>::operator!=(const bits< N>&) [(lib.bits::op!=.bt]

int operator!=(const bits< N>& rhs) const; 0
Returns a nonzero value!{fthis == rhs). ad
17.5.3.1.23hits< N>:itest(size t) (lib.bits::test]

int test(size_t pos) const; a

Reports an out-of-range errorgbs does not correspond to a valid bit position. Otherwise, the functibn

returns a nonzero value if the bit at positaos in *this has the value one. O
17.5.3.1.24bits< N>::any() (lib.bits::any]

int any() const; a
Returns a nonzero value if any bittthis is one. O
17.5.3.1.25bits< N>::none() {lib.bits::none]

int none() const; a
Returns a nonzero value if no bitthis is one. O
17.5.3.1.26hits< N>::operator<<(size t) (lib.bits::op.Ish]

bits< N> operator<<(size_t pos) const; a
Returnsbits< N>(*this) <<= pos. a
17.5.3.1.27hits< N>::operator>>(size_t) [(lib.bits::op.rsh]

bits< N> operator>>(size_t pos) const; a
Returnsbits< N>(*this) >>= pos. O
17.5.3.2 operator&(const bits< N>&, const bits< N>&) [(lib.op&.bt.bt]

bits< N> operator&(const bits< N>& Ihs |, const bits< N>& rhs); a
Returnshits< N>(lhs) &= pos. g
17.5.3.3 operator|(const bits< N>&, const bits< N>&) (lib.op Obt.bt]

bits< N> operator|(const bits< N>& Ihs , const bits< N>& rhs); a

Returnsbits< N>(/hs) |= pos. ad

17-168 Library DRAFT: 25 January 1994

operator®(const bits<

17.5.3.4 operator™(const bits< N>&, const bits< N>&)

bits< N> operator”(const bits< N>& Ihs , const bits<

Returnsbits< N>(lhs) "= pos.
17.5.3.5operator>>(istream&, bits< N>&)
istream& operator>>(istream& is , bits< Nb& X);

17.5.3.4
N>&, const bits< N>&)
(lib.op”.bt.bt]
N>& rhs); O
O
(lib.ext.bt]
O

A formatted input function, extracts up M(single-byte) characters froms . The function stores thesel

characters in a temporary objesttr of type string , then evaluates the expression = [O

bits< N>(str). Characters are extracted and stored until any of the following occurs: O

— Ncharacters have been extracted and stored,; O

— end-of-file occurs on the input sequence; O

— the next input character is neitteor 1 (in which case the input character is not extracted). O

If no characters are storedstr , the function callss .setstate(ios::failbit)

The function returnss .

17.5.3.6 operator<<(ostreamé&, const bits< N>&) (lib.ins.bt]
ostreamé& operator<<(ostreamé& 0s, const bits< N>& X); a

Returnsos << x.to_string() ad

17.5.4 Headekbitstring>
The headexbitstring>

(lib.header.bitstring]

defines a class and several function signatures for representing and manipulat-

ing varying-length sequences of bits. O
17.5.4.1 Classitstring (lib.bitstring]

EBox 209 O 0
a_ibrary WG issue: Charles Allison, August 26, 1993 B a
Efwas 17.5.4]: | don't appreciate the need foeserve() function. | need someone to convince r% ™

17.5.4.1 Clasditstring DRAFT: 25 January 1994 Library 17-169

class bitstring { a
public: a
bitstring(); a
bitstring(unsigned long val , size_t ny; a
bitstring(const bitstring& str , size_t pos =0, size_t n =NPOS); O
bitstring(const string& str , size_t pos =0, size_t n =NPOS); a

bitstring& operator+=(const bitstring& rhs); a

bitstring& operator&=(const bitstring& rhs); a

bitstring& operator|=(const bitstring& rhs); a

bitstring& operator*=(const bitstring& rhs); a

bitstring& operator<<=(size_t pos); a

bitstring& operator>>=(size_t pos); a

bitstring& append(str , pos =0, n =NPOS); a

bitstring& assign(str , pos =0, n =NPOS); a

bitstring& insert(size_t pos1, const bitstring& str a

size t pos2 =0, size_t n =NPOS); a

bitstring& remove(size_t pos, size_t n =NPOS); a

bitstring& replace(size_t pos1, size_t nl, const bitstring& str, O

size_t pos2 =0, size_t n2 =NPOS); O

bitstring& set(); a

bitstring& set(size_t pos, int val =1), a

bitstring& reset(); a

bitstring& reset(size_t pos); a

bitstring& operator~(); a

bitstring& toggle(); a

bitstring& toggle(size_t pos); a

string to_string() const; a

size_t count() const; a

size_t length() const; a

size_t resize(size_t n, int val =0); a

size_t trim(); a

size_t find(int val , size_t pos =0, size_t n =NPOS) const; a

size_t rfind(int val , size_t pos =0, size_t n = NPOS) const; O

bitstring substr(size_t pos, size_t n = NPOS) const; a

int operator==(const bitstring& rhs); a

int operator!=(const bitstring& rhs); a

int test(size_t pos) const; a

int any() const; a

int none() const; a

bitstring operator<<(size_t pos) const; a

bitstring operator>>(size_t pos) const; a

private: a
I char* ptr ; expaosition only O
I size_t len ; exposition only a
h 0

The clasditstring describes an object that can store a sequence consisting of a varying number af bits.
Such a sequence is also calleditastring (or simply astring if the type of the elements is clear from corid
text). Storage for the string is allocated and freed as necessary by the member functionsbdf class
string . a

Each bit represents either the value zero (reset) or one (setdpgdlea bit is to change the value zero tal
one, or the value one to zero. Each bit has a non-negative pgzitlon\When converting between ari]
object of clas®itstring of lengthlen and a value of some integral type, bit posit{ims corresponds O
to thebit valuel << (len - pos -1) 19 The integral value corresponding to two or more bitslis
the sum of their bit values.

% Note that bit position zero is tleost-significanbit for an object of clashkitstring , while it is theleast-significanbit for an O
object of clasbits< N>,

17-170 Library DRAFT: 25 January 1994 17.5.4.1 Clasbitstring

For the sake of exposition, the maintained data is presented here as:
— char* ptr , points to the sequence of bits, stored one bit per ele]rﬁr’ént;

— size_t len , the length of the bit sequence.

The functions described in this subclause can report three kinds of errors, each associated with aldistinct
exception: O

— aninvalid-argumentrror is associated with exceptions of typealidargument ; O
— alengtherror is associated with exceptions of tygegtherror O
O

— anout-of-rangeerror is associated with exceptions of typgofrange

To report one of these errors, the function evaluates the expregsiaise() , whereex is an object of O

the associated exception type. O

17.5.4.1.1bitstring::bitstring() [(lib.cons.bitstring]
bitstring(); ad

Constructs an object of clasistring , initializing:

— ptr to an unspecified value;

— len to zero.

17.5.4.1.2bitstring::bitstring(unsigned long, size t) [(lib.cons.bitstring.ul]
bitstring(unsigned long val , size_t ny; a

Reports a length error if equalsNPOS Otherwise, the function constructs an object of diétssring ad

and determines its initial string value fromal . If val is zero, the corresponding string is the empfy
string. Otherwise, the corresponding string is the shortest sequence of bits with the same bitvealue @s
If the corresponding string is shorter thanthe string is extended with elements whose values are all Zéro.

Thus, the function initializes: O
— ptr to point at the first element of the string; O
— len to the length of the string. O
17.5.4.1.3bitstring::bitstring(const bitstring&, size _t, ({lib.cons.bitstring.bs]
size t) O
bitstring(const bitstring& str , size_t pos =0, size_t n =NPOS); a
Reports an out-of-range errorgbs > strlen . Otherwise, the function constructs an object of cldss
bitstring and determines the effective lengtan of the initial string value as the smaller mfand O
str.len - pos. Thus, the function initializes: O
— ptr to point at the first element of an allocated copyl@fi elements of the string controlled by [
beginning at positiopos; O
— len torlen . O

5 an implementation is, of course, free to store the bit sequence more efficiently.

175.4.1.3 DRAFT: 25 January 1994 Library 17171
bitstring::bitstring(const bitstring&, size_t, size_t)

17.5.4.1.4bitstring::bitstring(const string&, size _t, [lib.cons.bitstring.sub]
size t) O

bitstring(const string& str , size_t pos =0, size_t n =NPOS); a
Reports an out-of-range error ifos > str.len . Otherwise, the function determines the effectivé
lengthrlen of the initializing string as the smaller nfandstr.len - pos. The function then reportsC]
an invalid-argument error if any of then characters irstr beginning at positiopos is other tharD O
orl. g
Otherwise, the function constructs an object of clatsring and determines its initial string valuél

from str . The length of the constructed stringrisn . An element of the constructed string has valte
zero if the corresponding charactersin , beginning at positiopos, is0. Otherwise, the element has thel

value one. O
Thus, the function initializes: O
— ptr to point at the first element of the string; a
— len torlen . O
17.5.4.1.5bitstring::operator+=(const bitstring&) (lib.bitstring::op+=.bs]
bitstring& operator+=(const bitstring& rhs); 0
Reports a length error#én >=NPOS - rhs.len . ad

Otherwise, the function replaces the string controllettlg with a string of lengthen + rhs.len ad
whose firstlen elements are a copy of the original string controlledtbis and whose remaining ele{]

ments are a copy of the elements of the string controlletidy O

The function returnsthis . O

17.5.4.1.6bitstring::operator&=(const bitstring&) (lib.bitstring::op&=.bs]
bitstring& operator&=(const bitstring& rhs); a

Determines a lengthlen which is the larger ofen andrhs.len | then behaves as if the shorter of tHe
two strings controlled bythis andrhs were temporarily extended to lengtlen by adding elements
all with value zero. The function then replaces the string controlletthy with a string of length O
rlen whose elements have the value one only if both of the corresponding elem#his ofandrhs [

are one. 0

The function returnsthis . ad

17.5.4.1.7bitstring::operator|=(const bitstring&) (lib.bitstring::op G=.bs]
bitstring& operator|=(const bitstring& rhs); a

Determines a lengthen which is the larger ofen andrhs.len , then behaves as if the shorter of tHe
two strings controlled bythis andrhs were temporarily extended to lengtlen by adding elements
all with value zero. The function then replaces the string controlletthiyy with a string of length O
rlen whose elements have the value one only if either of the corresponding elemihits ofandrhs O
are one. g
The function returnsthis O

17-172 Library DRAFT: 25 January 1994 17.54.1.8
bitstring::operator*=(const bitstring&)

17.5.4.1.8bitstring::operator*=(const bitstring&) (lib.bitstring::op™=.bs]
bitstring& operator*=(const bitstring& rhs); a

Determines a lengthen which is the larger ofen andrhs.len , then behaves as if the shorter of tHe
two strings controlled bythis andrhs were temporarily extended to lengtlen by adding elements
all with value zero. The function then replaces the string controlletthiy with a string of length O
rlen whose elements have the value one only if the corresponding eleméitiis of andrhs have dif- O

ferent values. O
The function returnsthis . O
17.5.4.1.9bitstring::operator<<=(size_t) (lib.bitstring::op.Ish=]
bitstring& operator<<=(size_t pos); 0
Replaces each element at positioim the string controlled bjthis with a value determined as follows: O
— If pos >= len - [, the new value is zero;
— If pos < len - I,the new value is the previous value of the element at positionpos.
The function returnsthis . O
17.5.4.1.10bitstring::operator>>=(size_t) [(lib.bitstring::op.rsh=]
bitstring& operator>>=(size_t pos); a
Replaces each element at positioim the string controlled bjthis with a value determined as follows: O
— If I < pos, the new value is zero;
— If I >= pos, the new value is the previous value of the element at positionpos.
17.5.4.1.11bitstring::append(const bitstring&, size_t, [(lib.bitstring::append]
size_t) O
bitstring& append(const bitstring& str , size_t pos =0, a
size t n =NPOS); O
Reports an out-of-range error ifos > str.len . Otherwise, the function determines the effectivé
lengthrlen of the string to append as the smallenandstr.len - pos. The function then reports]
a length error ifen >=NPOS - rlen . a

Otherwise, the function replaces the string controlledthis with a string of lengthen + rlen O
whose firstlen elements are a copy of the original string controlledthis and whose remaining ele{]

ments are a copy of the initial elements of the string controllestrbybeginning at positiopos . a
The function returnsthis . O
17.5.4.1.12bitstring::assign(const bitstring&, size t, [(lib.bitstring::assign]
size t) a
bitstring& assign(const bitstring& str , size_t pos =0, a
size_t n =NPOS); a
Reports an out-of-range error fiflos > strlen . Otherwise, the function determines the effective

lengthrlen of the string to assign as the smallenandstr.len - pos. O

17.5.4.1.12 DRAFT: 25 January 1994 Library 17173
bitstring::assign(const bitstring&, size_t, size_t)

The function then replaces the string controlledthis with a string of lengthlen whose elements areld

a copy of the string controlled 3yr beginning at positiopos . O

The function returnsthis . O
17.5.4.1.13bitstring::insert(size_t, const bitstring&, (lib.bitstring::insert]

size_t, size_t) O

bitstring& insert(size_t pos1, const bitstring& str , size_t pos2 =0, a

size t n =NPOS); a

Reports an out-of-range errorgbsl > len or pos2 > strlen . Otherwise, the function deter{]

mines the effective lengthlen of the string to insert as the smallerrofind str.len - pos2. The O

function then reports a length errodéfi >= NPOS - rlen . O

Otherwise, the function replaces the string controlledthis with a string of lengthen + rlen O
whose firstposl elements are a copy of the initial elements of the original string controll&thisy , [0
whose nextlen elements are a copy of the elements of the string controlleé¢r bypeginning at position [
pos2, and whose remaining elements are a copy of the remaining elements of the original string conirolled

by *this . O

The function returnsthis . ad

17.5.4.1.14bitstring::remove(size_t, size_t) [(lib.bitstring::remove]
bitstring& remove(size_t pos, size_t n =NPOS); a

Reports an out-of-range error iios > len . Otherwise, the function determines the effective lendth
xlen of the string to be removed as the smallenahd/en - pos. O

The function then replaces the string controlledttys with a string of lengthlen - xlen whose O
first pos elements are a copy of the initial elements of the original string controli>iby , and whose O
remaining elements are a copy of the elements of the original string controltedisy beginning at O

positionpos + xlen . O

The function returnsthis . ad
17.5.4.1.15bitstring::replace(size_t, size_t, (lib.bitstring::replace]

const bitstring&, size_t, size_t) O

bitstring& replace(size_t pos1, size_t nl, const bitstring& str a

size t pos2 =0, size_t n2 =NPOS); O

Reports an out-of-range errorgbsl > len or pos2 > strlen . Otherwise, the function deter{]

mines the effective lengtklen of the string to be removed as the smallendfandlen - posl. It O

also determines the effective lengtlyn of the string to be inserted as the smallen®fandstr.len - 0O

pos2. The function then reports a length errdert - xlen >=NPOS- rlen . a

Otherwise, the function replaces the string controlledthig with a string of lengtden - xlen + O

rlen whose firstposl elements are a copy of the initial elements of the original string controlledlby
*this , whose nextrlen elements are a copy of the initial elements of the string controllesirby O
beginning at positiopos2, and whose remaining elements are a copy of the elements of the original &tring
controlled by*this beginning at positioposl + xlen . a

The function returnsthis . a

17-174 Library DRAFT: 25 January 1994 17.5.4.1.16bitstring::set()

17.5.4.1.16bitstring::set() (lib.bitstring::set]
bitstring& set(); a
Sets all elements of the string controlled*this . The function returnhis . ad
17.5.4.1.17bitstring::set(size_t, int) (lib.bitstring::set.n]
bitstring& set(size_t pos, int val =1); a
Reports an out-of-range errorbs > len . Otherwise, ifpos == len , the function replaces thell

string controlled bythis with a string of lengtHen + 1 whose firstlen elements are a copy of the]l
original string and whose remaining element is set accordimg/to Otherwise, the function sets the eld
ment at positionpos in the string controlled bjthis . If val is nonzero, the stored value is one, other-

wise it is zero. The function returtihis . O
17.5.4.1.18bitstring::reset() [(lib.bitstring::reset]
bitstring& reset(); a
Resets all elements of the string controlledthys . The function return&his . ad
17.5.4.1.19bitstring::reset(size_t) (lib.bitstring::reset.n]
bitstring& reset(size_t pos); a
Reports an out-of-range errorgbs > len . Otherwise, ifpos == len , the function replaces thel

string controlled bythis with a string of lengtHhen + 1 whose firstlen elements are a copy of the]l
original string and whose remaining element is zero. Otherwise, the function resets the element at pbsition

pos in the string controlled bythis . O
17.5.4.1.20bitstring::operator~() [lib.bitstring::0p"
bitstring& operator~(); a
Constructs an object of classbitstring and initializes it with*this . The function then returnsld
x.toggle() . a
17.5.4.1.21bitstring::toggle() [(lib.bitstring::toggle]
bitstring& toggle(); a
Toggles all elements of the string controlled*this . The function return&his . ad
17.5.4.1.22bitstring::toggle(size_t) [(lib.bitstring::toggle.n]
bitstring& toggle(size_t pos); a

Reports an out-of-range errorgbs >= len . Otherwise, the function toggles the element at positidn

pos in *this . 0
17.5.4.1.23bitstring::to_string() (lib.bitstring::to.string]
string to_string() const; a

Creates an object of tymtring and initializes it to a string of lengtlen characters. Each character ig
determined by the value of its corresponding element in the string controltgtiby . Bit value zero O
becomes the charact@y bit value one becomes the charadter O

17.5.4.1.23 DRAFT: 25 January 1994 Library 17175
bitstring::to_string()

The function returns the created object. O
17.5.4.1.24bitstring::count() (lib.bitstring::count]
size_t count() const; a
Returns a count of the number of elements set in the string controltéudy . ad
17.5.4.1.25bitstring::length() (lib.bitstring::length]
size_t length() const; a
Returnslen . O
17.5.4.1.26bitstring::resize(size _t, int) [(lib.bitstring::resize]
size_t resize(size_t n, int val =0); a

Reports a length error if equalsNPOS Otherwise, the function alters the length of the string controlléd
by *this as follows: O

— If n <= len , the function replaces the string controlled*tyis with a string of lengtim whose [
elements are a copy of the initial elements of the original string controltgtiby . O

— If n > len , the function replaces the string controlled*thys with a string of lengtm whose first [
len elements are a copy of the original string controlledtbis , and whose remaining elements all

have the value one ¥fal is nonzero, or zero otherwise. O
The function returns the previous valuderi . ad
17.5.4.1.27bitstring::trim() lib.bitstring::trim]

size_t trim(); a

Determines the highest positipos of an element with value one in the string controlled*thys , if 0O
possible. If no such position exists, the function replaces the string with an empty /sming zero). O
Otherwise, the function replaces the string with a string of lepgth + 1 whose elements are a copy dfl

the initial elements of the original string controlled*tyis . O

The function returns the new valueleh . O

17.5.4.1.28bitstring::find(int, size_t, size_t) (lib.bitstring::find]
size_t find(int val , size t pos =0, size_t n = NPOS) const; O

ReturnsNPOSIf pos > len . Otherwise, the function determines the effective lenfgtlh of the string O

to be scanned as the smallermfind/en - pos. The function then determines the lowest positiah
Xpos , if possible, such that both of the following conditions obtain: a
— poOsS <= Xpos,; 0

— The element at positioxpos in the string controlled bythis is one ifval is nonzero, or zero other-(
wise. O

If the function can determine such a valuexpos , it returnsxpos . Otherwise, it returnslPOS ad

17-176 Library DRAFT: 25 January 1994 17.5.4.1.29
bitstring::rfind(int, size_t, size_t)

17.5.4.1.29bitstring::rfind(int, size_t, size_t) (lib.bitstring::rfind]

size_t rfind(int val , size_t pos =0, size_t n = NPOS) const; O

ReturnsNPOSIf pos > len . Otherwise, the function determines the effective lenfgtlhh of the string O

to be scanned as the smallermind/en - pos. The function then determines the highest positiéh
Xpos , if possible, such that both of the following conditions obtain: a
— poOsS <= Xpos, 0
— The element at positioxpos in the string controlled bythis is one ifval is nonzero, or zero other-(
wise. O
If the function can determine such a valuexpos , it returnsxpos . Otherwise, it returnslPOS ad
17.5.4.1.30bitstring::substr(size_t, size_t) [(lib.bitstring::substr]
bitstring substr(size_t pos, size_t n =NPOS) const; a

Reports an out-of-range errorifios > len . Otherwise, the function determines the effective lendth

rlen of the string controlled b¥this as the smaller af andstr.len - pos. O
The function then returns a newly constructed object of tlsising . It determines its initial string O
value from the string controlled Byhis . The length of the constructed stringfien . Its elements are]
a copy of the elements of the string controlledthys beginning at positiopos . O
17.5.4.1.31bitstring::operator==(const bitstring&) [(lib.bitstring::op==.bs]

int operator==(const bitstring& rhs); a
Returns zero ifen !'= rhs.len or if the value of any element of the string controlled*fys dif- O
fers from the value of the corresponding element of the string controllgts by O
17.5.4.1.32bitstring::operator!=(const bitstring&) [(lib.bitstring::op!=.bs]

int operator!=(const bitstring& rhs); a
Returns a nonzero valuel{fthis == rhs). O
17.5.4.1.33bitstring::test(size_t) (lib.bitstring::test]

int test(size_t pos) const; a

Reports an out-of-range errorgbs >= Jen . Otherwise, the function returns a nonzero value if the dle-

ment at positiopos in the string controlled b¥this is one. a
17.5.4.1.34bitstring::any() (lib.bitstring::any]

int any() const; a
Returns a nonzero value if any bit is set in the string controlléthlsy . ad
17.5.4.1.35bitstring::none() [lib.bitstring::none]

int none() const; a

Returns a nonzero value if no bit is set in the string controlléthiz/ . O

17.5.4.1.36 DRAFT: 25 January 1994 Library 17177
bitstring::operator<<(size_t)

17.5.4.1.36bitstring::operator<<(size_t) {lib.bitstring::op.Ish]
bitstring operator<<(size_t pos) const; a
Constructs an object of classbitstring and initializes it with*this . The function then returns [
<<= pos. 0
17.5.4.1.37bitstring::operator>>(size_t) [(lib.bitstring::op.rsh]
bitstring operator>>(size_t pos) const; a
Constructs an object of classbitstring and initializes it with*this . The function then returns O
>>= pos. 0
17.5.4.2 operator+(const bitstring&, const bitstring&) (lib.op+.bs.bs]
bitstring operator+(const bitstring& Ihs , const bitstring& rhs); a
Constructs an object of classbitstring and initializes it with/hs . The function then returns += O
rhs . O
17.5.4.3 operator&(const bitstring&, const bitstring&) (lib.op&.bs.bs]
bitstring operator&(const bitstring& Ihs , const bitstring& rhs); a
Constructs an objeot of classbitstring and initializes it with/hs . The function then returns &= 0O
rhs . O
17.5.4.4 operator|(const bitstring&, const bitstring&) (lib.opbs.bs]
bitstring operator|(const bitstring& Ihs , const bitstring& rhs); a
Constructs an objeot of classbitstring and initializes it with/hs . The function then returns |= O
rhs . O
17.5.4.5 operator®(const bitstring&, const bitstring&) [(lib.op”.bs.bs]
bitstring operator”(const bitstring& Ihs , const bitstring& rhs); a
Constructs an object of classbitstring and initializes it with/hs . The function then returns ~= O
rhs . O
17.5.4.6 operator>>(istream&, bitstring&) [(lib.ext.bs]
istream& operator>>(istream& is , bitstring& X); a

A formatted input function, extracts up MPOS - 1 (single-byte) characters froms . The function O
behaves as if it stores these characters in a temporary sbjecdf type string , then evaluates thell

expressionx = bitstring(str). Characters are extracted and stored until any of the followinhg
occurs: 0
— NPOS -1 characters have been extracted and stored,; O
— end-of-file occurs on the input sequence; O
— the next character to read is neitBesr 1 (in which case the input character is not extracted). O

If no characters are storedstr , the function callgs .setstate(ios::failbit) . ad

17-178 Library DRAFT: 25 January 1994 175.4.6
operator>>(istreamé&, bitstring&)

The function returnss . ad
17.5.4.7 operator<<(ostreamé&, const bitstring&) (lib.ins.bs]
ostreamé& operator<<(ostream& 0s, const bitstring& X); a

Returnsos << x.to_string() . ad
17.5.5 Headerdynarray> (lib.header.dynarray]
The headexdynarray> defines a template class and several related functions for representingland
manipulating varying-size sequences of some objectType a
17.5.5.1 Template clasdynarray< T> [lib.template.dynarray]
%mzm g 0
[Library WG issue: Uwe Steinniiller, January 21, 1994 0 a
O 0

issing 0 0
0 ~dynarray() E a
0 dynarray<T>& operator=(const dynarray<T>&); 0 a
O 0
U get_at should return @onst T& (as does theonst version of [] O
O operator[] g 0
D
]This has the reason that copying the object T might be expenswehan is a
Onot needed if the user only wants to query it. ™
EFolel %]
rLibrary WG issue: Dag Biick, December 12, 1993 n
O O

Uf there are examples where ttes_arg is essential, fine. If it is just a convenience (compared td-the
xplicit call toreserve), | strongly suggest that we compare the convenience against the added comlplex-
rty of the interface.

O O
[Finally, let me add that I'm very pleased thgiharray::operator|] checks its index argument. [T]
HBox 212 %]
HJbrary WG issue: Dag Bitick, December 12, 1993 n
O

]
Crhe introduction (17.5.5.1) should have a summary of all operations that resize the array and possibly move
(its elements.

17.5.5.1 Template clasdynarray< T>

DRAFT: 25 January 1994

Library 17-179

template<class T> class dynarray { a
public: a
dynarray(); a
dynarray(size_t size , capacity cap); a
dynarray(const dynarray< T>& arr); a
dynarray(const T& obj , size_t rep =1); a
dynarray(const T* parr ,size_t n); O
dynarray< T>& operator+=(const dynarray< T>& rhs); a

dynarray< T>& operator+=(const T& obj); a
dynarray< T>& append(const T& obj , size_t rep =1); 0
dynarray< T>& append(const T parr ,size_t n =1); a
dynarray< T>& assign(const T& obj , size_t rep =1), a

dynarray< T>& assign(const T parr ,size_t n =1) a
dynarray< T>& insert(size_t pos, const dynarray< T>& arr); 0
dynarray< T>& insert(size_t pos, const T& obj , size_t rep =1); a
dynarray< T>& insert(size_t pos, const T parr ,size_t n =1), a
dynarray< T>& remove(size_t pos =0, size_t n =NPOS); a

dynarray< T>& sub_array(dynarray< T>& arr , size_t pos, 0

size_t n =NPOS); O

void swap(dynarray< T>& arr); a

const T& get_at(size_t pos) const; a

void put_at(size_t pos, const T& obj); a

T& operator[](size_t pos); a

const T& operator[](size_t pos) const; a

T* base(); a

const T* base() const; a

size_t length() const; a

void resize(size_t n); a

void resize(size_t n, const T& obj); a

size_t reserve() const; a

void reserve(size_t res_arg); a

private: a
I T+ ptr ; exposition only a
I size_t len , res; exposition only a
J5 0

The template clasdynarray< T> describes an object that can store a sequence consisting of a vdrying
number of objects of typ& The first element of the sequence is at position zero. Such a sequence i3 also

called adynamic array An object of typeT shall have: O
— a default constructof() ; O
— acopy constructof(const T&); O
— an assignment operat®& operator=(const T&); O
— adestructor-T() . O
For the function signatures described in this subclause: ad

— it is unspecified whether an operation described in this subclause as initializing an objectTofvitpe [
a copy calls its copy constructor, calls its default constructor followed by its assignment operafor, or
does nothing to an object that is already properly initialized,; O

— it is unspecified how many times objects of tyipare copied, or constructed and destrojsf@j. O

llb)Objects that cannot tolerate this uncertainty, or that fail to meet the stated requirements, can sometimes be organized int@ldynamic
arrays through the intermediary of an object of glasdynarray< T>.

17-180 Library DRAFT: 25 January 1994 17.5.5.1 Template clag¥ynarray< T>

For the sake of exposition, the maintained data is presented here as: O

— T * ptr , points to the sequence of objects; O

— size_t len , counts the number of objects currently in the sequence; O

— size_t res, for an unallocated sequence, holds the recommended allocation size of the seduence,
while for an allocated sequence, becomes the currently allocated size. O

In all caseslen <= res . g

The functions described in this subclause can report three kinds of errors, each associated with aldistinct
exception: O

— aninvalid-argumentrror is associated with exceptions of typealidargument ; O
— alengtherror is associated with exceptions of tygegtherror . O
O

— anout-of-rangeerror is associated with exceptions of typgofrange ;

To report one of these errors, the function evaluates the expregsiaise() , whereex is an object of O
the associated exception type. O
17.5.5.1.1dynarray< T>::dynarray() (lib.cons.dynarray]
dynarray(); a
Constructs an object of cladgnarray< T>, initializing: ad
— ptr to an unspecified value; a
— len to zero; O
— res to an unspecified value. a
17.5.5.1.2dynarray< T>::dynarray(size_t, capacity) [({lib.cons.dynarray.cap]
Box 213 g 0
%ibrary WG issue: Dag Bitick, December 12, 1993 0 a
O 0
Os the constructor in 17.5.5.1.2 guaranteed to wamksifarg < NPOS 2 | think it says sod ™
dynarray(size_t size , capacity cap); a
Reports a length error Hize equalsNPOSand cap is default_size . Otherwise, the function con-O
structs an object of clagiynarray< T>. If cap is default_size , the function initializes: O
— ptr to point at the first element of an allocated arragipé elements of typd, each initialized with O
the default constructor for type O
— len tosize ; O
— res to avalue at least as largeles . O

Otherwisecap shall bereserve and the function initializes:
— ptr to an unspecified value;

— len to zero;

17.5.5.1.2 DRAFT: 25 January 1994 Library 17181
dynarray< T>:dynarray(size_t, capacity)

— res tosize . O
17.5.5.1.3dynarray< T>::dynarray(const dynarray< T>&) (lib.cons.dynarray.da]
dynarray(const dynarray< T>& arr); a

Constructs an object of claggnarray< 7> and determines its initial dynamic array value by copying the

elements from the dynamic array designateddsy. Thus, the function initializes: a

— ptr to point at the first element of an allocated arraypmflen elements of typd, each initialized O

with a copy of the corresponding element from the dynamic array designaaed by a

— len toarrlen ; O

— res to avalue at least as largeles . a
17.5.5.1.4dynarray< T>::dynarray(const T&, size_t) [({lib.cons.dynarray.]

dynarray(const T& obj , size_t rep =1); a

Reports a length error ifep equalsNPOS Otherwise, the function constructs an object of cldSs
dynarray< T> and determines its initial dynamic array value by copyihg into all rep values. Thus, O

the function initializes: O
— ptr to point at the first element of an allocated arrayapf elements of typdl, each initialized by O

copyingobyj ; O
— len torep; O
— res to avalue at least as largeles . O

17.5.5.1.5dynarray< T>::dynarray(const T*, size_t) [lib.cons.dynarray.pt]

dynarray(const T parr ,size_t ny; a

Reports a length error if equalsNPOS Otherwise, the function reports an invalid-argument ermpaif O
is a null pointer. Otherwisgarr shall designate the first element of an array of at leadements of [

type T. 0
The function then constructs an object of cldgsarray< 7> and determines its initial dynamic arrayl
value by copying the elements from the array designatgaibyy. Thus, the function initializes: O
— ptr to point at the first element of an allocated array)@lements of typd, each initialized with a [

copy of the corresponding element from the array designatpdmy;, O
— len ton; O
— res to avalue at least as largelas . O

17.5.5.1.6dynarray< T>::operator+=(const dynarray< T>&) ({lib.dynarray::op+=.da]

17-182 Library DRAFT: 25 January 1994 17.55.1.6
dynarray< T>:operator+=(const dynarray< T>&)

HBox 214
El_ibrary WG issue: Dag Biiick, December 12, 1993

HEES

H find it very questionable that dynarray is allowed to do initialization as a sequence of default constrii¢tor +
rassignment. We know how to get around that problem (new with placement syntax). However, Hinder-
stand that the library WG has been through all this before, but | really don't like it.

dynarray< T>& operator+=(const dynarray< T>& rhs); a

Reports a length error ien >= NPOS - rhs.len . Otherwise, the function replaces the dynamic
array designated bithis with a dynamic array of lengtlken + rhs.len whose firstlen elements O
are a copy of the original dynamic array designatetitdg and whose remaining elements are a copy [of

the elements of the dynamic array designatedhby. a
The function returnsthis . O
17.5.5.1.7dynarray< T>:.operator+=(const T&) (lib.dynarray::op+=.]
dynarray< T>& operator+=(const T& obj); a
Returnsappend(obj) . ad
17.5.5.1.8dynarray< T>::append(const T&, size_t) (lib.dynarray::append.t]
dynarray< T>& append(const T& obj , size_t rep =1); a

Reports a length error ién >= NPOS - rep . Otherwise, the function replaces the dynamic array deis-
ignated by*this with a dynamic array of lengtlen + rep whose firstlen elements are a copy of théel

original dynamic array designated tifsis and whose remaining elements are each a copgjof O

The function returnsthis . ad

17.5.5.1.9dynarray< T>::append(const T*, size_t) (lib.dynarray::append.pt]
dynarray< T>& append(const T parr ,size_t n =1), a

Reports a length error ilen >= NPOS - n. Otherwise, the function reports an invalid-argument eriar
if parr is a null pointer. Otherwisgaarr shall designate the first element of an array of at leade- O
ments of typer. O

The function then replaces the dynamic array designatéthisy with a dynamic array of lengtlen + 0O
n whose firstlen elements are a copy of the original dynamic array designatéthisy and whose O

remaining elements are a copy of the initial elements of the array designated hy O
The function returnsthis . O
17.5.5.1.10dynarray< T>::assign(const T&, size_t) lib.dynarray::assign.t]
dynarray< T>& assign(const T& obj , size_t rep =1); a
Reports a length error iep == NPOS. Otherwise, the function replaces the dynamic array designaied
by *this with a dynamic array of lengttep each of whose elements is a copybf . a

The function returnsthis . a

17.55.1.11 DRAFT: 25 January 1994 Library 17183
dynarray< T>:assign(const T*, size_t)

17.5.5.1.11dynarray< T>::assign(const T*, size_t) (lib.dynarray::assign.pt]

O

dynarray< T>& assign(const T parr ,size_t n =1),

Reports a length error if == NPOS. Otherwise, the function reports an invalid-argument errpaif
is a null pointer. Otherwisggarr shall designate the first element of an array of at leadements of
type T.

The function then replaces the dynamic array designatedhizy with a dynamic array of length
whose elements are a copy of the initial elements of the array designated by

O OO ogoo

The function returnsthis

17.5.5.1.12dynarray< T>:insert(size_t, (lib.dynarray::insert.da]
const dynarray< T>&) O

dynarray< T>& insert(size_t pos, const dynarray< T>& arr); a

Reports an out-of-range errorgbs > len . Otherwise, the function reports a length errdeif >= 0O
NPOS - arrlen . O

Otherwise, the function replaces the dynamic array designatéthiby with a dynamic array of lengthO
len + arrlen whose firstpos elements are a copy of the initial elements of the original dynamic
array designated bythis , whose nextarr.len elements are a copy of the initial elements of the
dynamic array designated layr , and whose remaining elements are a copy of the remaining elemeriis of

the original dynamic array designated*tlyis . O
The function returnsthis . O
17.5.5.1.13dynarray< T>:insert(size_t, const T&, ({lib.dynarray::insert.t]
size t) O
dynarray< T>& insert(size_t pos, const T& obj , size_t rep =1); a

Reports an out-of-range errorgbs > len . Otherwise, the function reports a length errdeif >= 0O
NPOS - rep. U

Otherwise, the function replaces the dynamic array designat&thiby with a dynamic array of lengthO
len + rep whose firstpos elements are a copy of the initial elements of the original dynamic array des-
ignated by*this , whose nextep elements are each a copyatfj , and whose remaining elements arela

copy of the remaining elements of the original dynamic array designatghidy . O
The function returnsthis . ad
17.5.5.1.14dynarray< T>:insert(size_t, const T, (lib.dynarray::insert.pt]
size t) O
dynarray< T>& insert(size_t pos, const T parr ,size_t n =1), a

Reports an out-of-range errorgbs > len . Otherwise, the function reports a length errdeif >= 0O
NPOS - n. Otherwise, the function reports an invalid-argument errpaif is a null pointer. Other- [
wise, parr shall designate the first element of an array of at lkratgments of typd. O

The function then replaces the dynamic array designatéthisy with a dynamic array of lengtlen + 0O

n whose firstpos elements are a copy of the initial elements of the original dynamic array designatéd by
*this , whose nexin elements are a copy of the initial elements of the array designatedrby and O
whose remaining elements are a copy of the remaining elements of the original dynamic array dedignated
by *this . O

17-184 Library DRAFT: 25 January 1994 17.5.5.1.14

dynarray< T>:insert(size_t, const T*, size_t)

The function returnsthis O
17.5.5.1.15dynarray< T>::remove(size_t, size_t) (lib.dynarray::remove]
HBox 215 El]
HJbrary WG issue: Dag Biick, December 12, 1993 d
0 O
d find it unintuitive that da.remove(4); removes all the elements starting at postion 4. 1.e[]1
[think the default value far should be 1 instead &fPOS En

dynarray< T>& remove(size_t pos =0, size_t n =NPOS); t

Reports an out-of-range errorifios > len . Otherwise, the function determines the effective lendth
xlen of the sequence to be removed as the smalleraod/en - pos. a

The function then replaces the dynamic array designatéthisy with a dynamic array of lengtlen - O

xlen whose firstpos elements are a copy of the initial elements of the original dynamic array desigfated
by *this , and whose remaining elements are a copy of the elements of the original dynamic arrayldlesig-
nated by*this beginning at positiomos + xlen . The originalx/len elements beginning at positiori]

pos are destroyed. a

The function returnsthis . O

17.5.5.1.16dynarray< T>::swap(dynarray< T>&) (lib.dynarray::swap]
void swap(dynarray< T>& arr); a

Replaces the dynamic array designatedtbis with the dynamic array designated &y , and replaces O

the dynamic array designated &y with the dynamic array originally designated*tiyis A7 O
17.5.5.1.17dynarray< T>::sub_array(dynarray< T>&, [({lib.dynarray::sub.array]
size t, size t) O
dynarray< T>& sub_array(dynarray< T>& arr , size_t pos, size_t n =NPOS); a

Reports an out-of-range error iios > len . Otherwise, the function determines the effective lendth
rlen of the dynamic array designateditlgis as the smaller of andarr.len - pos.

The function then replaces the dynamic array designategrrbywith a dynamic array of lengthen O
whose elements are a copy of the elements of the dynamic array design#ted bybeginning at posi- [
tion pos.

The function returnarr . O
17.5.5.1.18dynarray< T>::get_at(size t) (lib.dynarray::get.at]
const T& get_at(size_t pos) const; a

Reports an out-of-range errorgbs >= len . Otherwise, the function returns a newly created object of
type T initialized with a copy of the element at positjpms in the dynamic array designated#tlis . O

i1 ’)Presumably, this operation occurs with no actual copying of array elements. O

17.5.5.1.19 DRAFT: 25 January 1994 Library 17185
dynarray< T>::put_at(size_t, const T&)

17.5.5.1.19dynarray< T>::put_at(size_t, const T&) lib.dynarray::put.at]
void put_at(size_t pos, const T& obj); a

Reports an out-of-range errorgbs >= Jen . Otherwise, the function assigo® to the element at[

positionpos in the dynamic array designatedblgis . a
17.5.5.1.20dynarray< T>:.operator[](size_t) ({lib.dynarray::op.array]
T& operatorf](size_t pos); a
const T& operator[](size_t pos) const; a
If pos < len , returns the element at positipos in the dynamic array designated tihis . Other- O
wise, the behavior is undefined. O
The reference returned by the nmomst version is invalid after any subsequent call any comst O
member function for the object. O
17.5.5.1.21dynarray< T>::base() (lib.dynarray::base]
T* base(); a
const T* base() const; a

Returnsptr if len is nonzero, otherwise a null pointer. The program shall not alter any of the values
stored in the dynamic array. Nor shall the program treat the returned value as a valid pointer value after any
subsequent call to a n@enst member function of the claglynarray< T> that designates the samél

object aghis . a
17.5.5.1.22dynarray< T>::length() (lib.dynarray::length]
size_t length() const; a
Returnslen . O
17.5.5.1.23dynarray< T>:resize(size_t) (lib.dynarray::resize]
void resize(size_t ny; a
Reports a length error i equalsNPOS Otherwise, ifn !'= len the function alters the length of thel
dynamic array designated bhis as follows: O

— If n < len , the function replaces the dynamic array designatetihily with a dynamic array of O
length n whose elements are a copy of the initial elements of the original dynamic array designatéd by
*this . Any remaining elements are destroyed. O

— If n > len , the function replaces the dynamic array designatetthly with a dynamic array of O
length n whose firstlen elements are a copy of the original dynamic array designatéthiby , and O

whose remaining elements are all initialized with the default constructor forTclass O
17.5.5.1.24dynarray< T>::resize(size_t, const T&) (lib.dynarray::resize.t]

void resize(size_t n, const T& obj); a

Reports a length error i equalsNPOS Otherwise, ifn != len the function alters the length of thel

dynamic array designated bhis as follows: O

— If n < len , the function replaces the dynamic array designatetiisy with a dynamic array of [
length n whose elements are a copy of the initial elements of the original dynamic array designatéd by
*this . Any remaining elements are destroyed. O

17-186 Library DRAFT: 25 January 1994 17.5.5.1.24
dynarray< T>:resize(size_t, const T&)

— If n > len , the function replaces the dynamic array designatetiisy with a dynamic array of [
length n whose firstlen elements are a copy of the original dynamic array designat&hisy , and O

whose remaining elements are all initialized by copyibg. O
17.5.5.1.25dynarray< T>:reserve() (lib.dynarray::reserve]
size_t reserve() const; a
Returnsres . g
17.5.5.1.26dynarray< T>::rreserve(size t) [({lib.dynarray::reserve.cap]
void reserve(size_t res_arg); a

If no dynamic array is allocated, assiges_arg tores . Otherwise, whether or how the function altefs

res is unspecified. O
17.5.5.2 operator+(const dynarray< T>&, const dynarray< T>&) ({lib.op+.da.da]

dynarray< T> operator+(const dynarray< T>& Ihs a

const dynarray< T>& rhs); a

Returnsdynarray< T>(/hs)+= rhs . g
17.5.5.3 operator+(const dynarray< T>&, const T&) (lib.op+.da.t]

dynarray< T> operator+(const dynarray< T>& Ihs , const T& obj); a

Returnsdynarray< T>(lhs)+= rhs . ad
17.5.5.4 operator+(const T&, const dynarray< T>&) [(lib.op+.t.da]

dynarray< T> operator+(const T& obj , const dynarray< T>& rhs); 0

Returnsdynarray< T>(lhs)+= rhs. ad
17.5.6 Headerptrdynarray> [({lib.header.ptrdynarray]

The headexptrdynarray> defines a template and several related functions for representing and nianip-
ulating varying-size sequences of pointers to some objecfltype O

17.5.6.1 Template clasptrdynarray< 7> (lib.template.ptrdynarray]

175.6.1 DRAFT: 25 January 1994 Library 1#187
Template clasgptrdynarray< 7>

template<class T> class ptrdynarray : public dynarray<void*> {
public:
ptrdynarray();
ptrdynarray(size_t Size , capacity cap);
ptrdynarray(const ptrdynarray< T>& arr);

ptrdynarray(T obj,size_t rep =1);

ptrdynarray(T* parr ,size_t n =1),

ptrdynarray< T>& operator+=(T* obj);

ptrdynarray< T>& operator+=(const ptrdynarray< T>& rhs);

ptrdynarray< T>& append(T* obj , size_t rep =1);

ptrdynarray< T>& append(T** parr , size_t n =1);

ptrdynarray< T>& assign(T* obj, size_t rep =1);

ptrdynarray< T>& assign(T** parr , size_t n =1),

ptrdynarray< T>& insert(size_t pos, const ptrdynarray< T>& arr);

ptrdynarray< T>& insert(size_t pos, T * obj,size_t rep =1);

ptrdynarray< T>& insert(size_t pos, T ** parr ,size_t n =1),

ptrdynarray< T>& remove(size_t pos, size_t n =NPOS);

ptrdynarray< T>& sub_array(ptrdynarray< T>& arr , size_t pos,
size_t n =NPOS);

void swap(ptrdynarray< T>& arr);

T* get_at(size_t pos);

void put_at(size_t pos, T* obj);

T* & operator[](size_t pos);

T* const& operator[](size_t pos) const;

T** base();

const T** base() const;

size_t length() const;

void resize(size_t n;

void resize(size_t n, T obj),

size_t reserve() const;

void reserve(size_t res_arg);

I o

h

The template clagstrdynarray< T> describes an object that can store a sequence consisting of a Mary-
ing number of objects of type pointer To Such a sequence is also calletlyaamic pointer arrayObjects [
of type T are never created, destroyed, copied, assigned, or otherwise accessed by the function sighatures

described in this subclause. O
17.5.6.1.1ptrdynarray< T>::ptrdynarray() [lib.cons.ptrdynarray]
ptrdynarray(); a
Constructs an object of classptrdynarray< 7>, initializing the base class withO
dynarray<void*>() . a
17.5.6.1.2ptrdynarray< T>::ptrdynarray(size t, ({lib.cons.ptrdynarray.cap]
capacity) O
ptrdynarray(size_t size , capacity cap); a

Constructs an object of classptrdynarray< 7>, initializing the base class withO

dynarray<void*>(size , cap). O
17.5.6.1.3 [({lib.cons.ptrdynarray.pda]
ptrdynarray< T>::ptrdynarray(const ptrdynarray< >&) O

ptrdynarray(const ptrdynarray< T>& arr); a

17-188 Library DRAFT: 25 January 1994 17.5.6.1.3
ptrdynarray< T>::ptrdynarray(const ptrdynarray< T>&)

Constructs an object of classptrdynarray< 7>, initializing the base class withO

dynarray<void*>(arr). g
17.5.6.1.4ptrdynarray< T>::ptrdynarray() [lib.cons.ptrdynarray.pt]
ptrdynarray(T obj , size_t rep =1); a

Constructs an object of classptrdynarray< 7>, initializing the base class withO

dynarray<void*>((void*) obj, rep). a
17.5.6.1.5ptrdynarray< T>::ptrdynarray(const T**, [({lib.cons.ptrdynarray.ppt]
size t) O
ptrdynarray(const T* parr ,size_t ny; a

Constructs an object of classptrdynarray< 7>, initializing the base class withO

dynarray<void*>((void**) parr , ny. O
17.5.6.1.6 (lib.ptrdynarray::op+=.pda]
ptrdynarray< T>:.operator+=(const ptrdynarray< >&) O
ptrdynarray< T>& operator+=(const ptrdynarray< T>& rhs); a
Returns (ptrdynarray< T>&)dynarray<void*>::operator+=((const O
dynarray<void*>&) rhs) . O
17.5.6.1.7ptrdynarray< T>::operator+=(™) (lib.ptrdynarray::op+=.pt]
ptrdynarray< T>& operator+=(T* obj); a
Returng(ptrdynarray< T>&)dynarray<void*>:: operator+=((void*) obj). g
17.5.6.1.8ptrdynarray< T>:append(T*, size_t) (lib.ptrdynarray::append.pt]
ptrdynarray< T>& append(T* obj , size_t rep =1); a
Returngptrdynarray< T>&)dynarray<void*>::append((void*) obj, rep). ad
17.5.6.1.9ptrdynarray< T>:append(T**, size t) (lib.ptrdynarray::append.ppt]
ptrdynarray< T>& append(T** parr , size_t n =1); a
Returngptrdynarray< T>&)dynarray<void*>::append((void**) parr , ny. ad
17.5.6.1.10ptrdynarray< T>:assign(T*, size t) (lib.ptrdynarray::assign.pt]
ptrdynarray< T>& assign(T* obj, size_t rep =1); a
Returng(ptrdynarray< T>&)dynarray<void*>::assign((void*) obj, rep). O
17.5.6.1.11ptrdynarray< T>:assign(T**, size_t) (lib.ptrdynarray::assign.ppt]
ptrdynarray< T>& assign(T** parr , size_t n =1), a

Returng(ptrdynarray< T>&)dynarray<void*>::assign((void**) parr , n). g

17.5.6.1.12 DRAFT: 25 January 1994 Library 17189

ptrdynarray< T>:insert(size_t, const ptrdynarray< T>&, size_t)
17.5.6.1.12ptrdynarray< T>:insert(size_t, (lib.ptrdynarray::insert.pda]
const ptrdynarray< T>&, size_t) O
ptrdynarray< T>& insert(size_t pos, const ptrdynarray< T>& arr);
Returns (ptrdynarray< T>&)dynarray<void*>::insert(pos,
(dynarray<void*>&) arr).
17.5.6.1.13ptrdynarray< T>:insert(size_t, T, (lib.ptrdynarray::insert.pt]
size t) O
ptrdynarray< T>& insert(size_t pos, T*obj,size_t rep =1);
Returngptrdynarray< T>&)dynarray<void*>::insert(pos, (void*) obj, rep).
17.5.6.1.14ptrdynarray< T>:insert(size_t, T*, (lib.ptrdynarray::insert.ppt]
size t) O
ptrdynarray< T>& insert(size_t pos, T** parr ,size_t n =1),
Returngptrdynarray< T>&)dynarray<void*>::insert(pos, (void**) parr , ny.
17.5.6.1.15ptrdynarray< T>::remove(size_t, size_t) (lib.ptrdynarray::remove]
ptrdynarray< T>& remove(size_t pos, size_t n =NPOS);
Returng(ptrdynarray< T>&)dynarray<void*>::remove(pos, n).
17.5.6.1.16ptrdynarray< T>::swap(ptrdynarray< T>&) lib.ptrdynarray::swap]
void swap(ptrdynarray< T>& arr);
Callsdynarray<void*>::swap(arr).
17.5.6.1.17 (lib.ptrdynarray::sub.array]
ptrdynarray< T>::sub_array(ptrdynarray< T>&, O
size t, size t) O
ptrdynarray< T>& sub_array(ptrdynarray< T>& arr , size_t pos,

size_t n =NPOS);

Returngptrdynarray< T>&)dynarray<void*>::sub_array(arr , pos, ny.

17.5.6.1.18ptrdynarray< T>::get_at(size t) (lib.ptrdynarray::get.at]
T* get_at(size_t pos) const;

Returng(T)dynarray<void*>::get_at(pos) .

17.5.6.1.19ptrdynarray< T>::put_at(size_t, const T&) lib.ptrdynarray::put.at]
void put_at(size_t pos, T* obj);

Callsdynarray<void*>::put_at(pos, (void*) obj).

17-190 Library DRAFT: 25 January 1994 17.5.6.1.20
ptrdynarray< T>::operator[](size_t)

17.5.6.1.20ptrdynarray< T>::operator[](size_t) {lib.ptrdynarray::op.array]

T& operator[](size_t pos);
const T& operator[](size_t pos) const;

Returng(™ &)dynarray<void*>::operator[](pos) .

17.5.6.1.21ptrdynarray< T>::base() (lib.ptrdynarray::base]

T* base();
const T* base() const;

Returng(T*)dynarray<void*>::base()

17.5.6.1.22ptrdynarray< T>::length() (lib.ptrdynarray::length]

size_t length() const;

Returnsdynarray<void*>::length()

17.5.6.1.23ptrdynarray< T>::resize(size_t) (lib.ptrdynarray::resize]
void resize(size_t ny;

Callsdynarray<void*>::resize(n.

17.5.6.1.24ptrdynarray< T>::resize(size t, ™) (lib.ptrdynarray::resize.pt]
void resize(size_t n, T obj);

Callsdynarray<void*>::resize(n, (void*) obj).

17.5.6.1.25ptrdynarray< T>:reserve() (lib.ptrdynarray::reserve]

size_t reserve() const;
Returnsdynarray<void*>::reserve()

17.5.6.1.26ptrdynarray< T>::rreserve(size_t) {lib.ptrdynarray::reserve.cap]

void reserve(size_t res_arg);
Returnsdynarray<void*>::reserve(res arg).

17.5.6.2 operator+(const ptrdynarray< T>&, [({lib.op+.pda.pda]
const ptrdynarray< T>&) O

ptrdynarray< 7> operator+(const ptrdynarray< T>& Ihs ,
const ptrdynarray< T>& rhs);

Returngptrdynarray< T>)dynarray<void*>::operator+(lhs , rhs).

17.5.6.3 operator+(const ptrdynarray< T>&, T¥) ({lib.op+.pda.pt]
ptrdynarray< T> operator+(const ptrdynarray< T>& lhs , T* obj);

Returng(ptrdynarray< T>)dynarray<void*>::operator+(Ihs , (void*) obj).

17.5.6.4 DRAFT: 25 January 1994 Library 17191
operator+(T*, const ptrdynarray< T>&)

17.5.6.40perator+(T*, const ptrdynarray< T>&) [lib.op+.pt.pda]
ptrdynarray< T>operator+(T* obj , const ptrdynarray< T>& rhs); a
Returngptrdynarray< T>)dynarray<void*>::operator+((void*) obj, rhs). ad
17.5.7 Headexcomplex> [({lib.header.complex]
The headerxcomplex> defines a macro, three types, and numerous functions for representing and raanip-
ulating complex numbers. a
The macro is: O
__STD_COMPLEX 0
whose definition is unspecified. ad
17.5.7.1 Complex numbers witlloat precision [lib.complex.with.float]
17.5.7.1.1 Clasfloat_complex (lib.float.complex]
class float_complex { O
public: a
float_complex(float re.arg =0, im_arg =0); a
float_complex& operator+=(float_complex rhs); a
float_complex& operator-=(float_complex rhs); a
float_complex& operator*=(float_complex rhs); a
float_complex& operator/=(float_complex rhs); a
private: a
I float re, im; expaosition only O
I3 0
The clasdloat_complex describes an object that can store the Cartesian components, fib&ype, O
of a complex number. O
For the sake of exposition, the maintained data is presented here as: O
— float re, the real component; O
— float im, the imaginary component. O
17.5.7.1.1.1float_complex::float_complex(float, float) [lib.cons.float.complex.f.f]
float_complex(float re.arg =0, im_arg =0); a
Constructs an object of clafisat complex , initializing re tore_arg andim toim_arg . ad
17.5.7.1.1.2operator+=(float_complex) (lib.op+=.fc]
float_complex& operator+=(float_complex rhs); a
Adds the complex valughs to the complex valuéthis and stores the sum fthis . The function O
returns*this O
17.5.7.1.1.3operator-=(float_complex) (lib.op-=.fc]
float_complex& operator-=(float_complex rhs); a

Subtracts the complex valuks from the complex valughis and stores the differencefthis . The 0O
function returngthis . O

17-192 Library DRAFT: 25 January 1994 175.7.1.14
operator*=(float_complex)

17.5.7.1.1.4operator*=(float_complex) [lib.op*=.fc]

float_complex& operator*=(float_complex rhs);

Multiplies the complex valuehs by the complex valuéthis and stores the product fithis . The
function returngthis

17.5.7.1.1.50perator/=(float_complex) (lib.op/=.fc]

float_complex& operator/=(float_complex rhs);

Divides the complex valughs into the complex valuéthis and stores the quotient fthis . The
function returngthis

17.5.7.1.2_float_complex(const double_complex&) [lib..float.complex.dc]
float_complex _float_complex(const double_complex& rhs);

Returndloat_complex((float)real(rhs), (float)imag(rhs)).

17.5.7.1.3_float_complex(const long_double_complex&) (lib..float.complex.ldc]
float_complex _float_complex(const long_double_complex& rhs);

Returndfloat_complex((float)real(rhs), (float)imag(rhs)).

17.5.7.1.4operator+(float_complex, float_complex) (lib.op+.fc.fc]
float_complex operator+(float_complex Ihs , float_complex rhs);

Returndfloat_complex(lhs) += rhs .

17.5.7.1.50perator+(float_complex, float) (lib.op+.fc.f]
float_complex operator+(float_complex Ihs , float rhs);

Returndfloat_complex(Ihs) += float_complex(rhs).

17.5.7.1.6operator+(float, float_complex) (lib.op+.f.fc]
float_complex operator+(float Ihs , float_complex rhs);

Returnsfloat_complex(Ihs)+= rhs .

17.5.7.1.7operator-(float_complex, float_complex) (lib.op-.fc.fc]
float_complex operator-(float_complex Ihs , float_complex rhs);

Returndfloat_complex(Ilhs)-= rhs.

17.5.7.1.80operator-(float_complex, float) (lib.op-.fc.f]
float_complex operator-(float_complex Ihs , float rhs);

Returndfloat_complex(Ihs) -= float_complex(rhs).

17.5.7.1.9 DRAFT: 25 January 1994
operator-(float, float_complex)

17.5.7.1.90perator-(float, float_complex)

float_complex operator-(float Ihs , float_complex rhs);
Returndfloat_complex(lhs)-= rhs.

17.5.7.1.100perator*(float_complex, float_complex)

float_complex operator*(float_complex Ihs , float_complex
Returndfloat_complex(lhs Y*= rhs.

17.5.7.1.11operator*(float_complex, float)

float_complex operator*(float_complex Ihs , float rhs);
Returnsfloat_complex(Ihs) *= float_complex(rhs) .

17.5.7.1.120perator*(float, float_complex)

float_complex operator*(float Ihs , float_complex rhs);
Returngfloat_complex(Ilhs Y*= rhs.

17.5.7.1.13operator/(float_complex, float_complex)

float_complex operator/(float_complex Ihs , float_complex
Returndfloat_complex(lhs YI= rhs.

17.5.7.1.140perator/(float_complex, float)

float_complex operator/(float_complex Ihs , float rhs);
Returndfloat_complex(Ihs) /= float_complex(rhs).

17.5.7.1.150perator/(float, float_complex)

float_complex operator/(float Ihs , float_complex rhs);
Returnsfloat_complex(Ilhs)I= rhs.

17.5.7.1.160perator+(float_complex)

float_complex operator+(float_complex Ihs);
Returndfloat_complex(Ihs).

17.5.7.1.170operator-(float_complex)

float_complex operator-(float_complex Ihs);
Returndloat_complex(-real(Ihs), -imag(Ihs)) .

17.5.7.1.18operator==(float_complex, float_complex)

int operator==(float_complex Ihs , float_complex rhs);

Returngreal(/hs) == real(rhs) && imag(/hs)==imag(rhs).

Library 17193

(lib.op-.f.fc]

[(lib.op*.fc.fc]

rhs);

(lib.op*.fc.f]

(lib.op*.f.fc]

[(lib.op/.fc.fc]

rhs);

(lib.op/ fc.f]

(lib.op/.f.fc]

(lib.op+.fc]

(lib.op-.fc]

(lib.op==.fc.fc]

17-194 Library DRAFT: 25 January 1994 17.5.7.1.19
operator==(float_complex, float)

17.5.7.1.190perator==(float_complex, float) [lib.op==.fc.f]

int operator==(float_complex Ihs |, float rhs); a
Returngeal(/hs)== rhs &&imag(lhs) == . ad
17.5.7.1.200perator==(float, float_complex) [lib.op==.f.fc]

int operator==(float Ihs , float_complex rhs); a
Returnsths ==real(rhs)&&imag(rhs)== . O
17.5.7.1.21operator!=(float_complex, float_complex) (lib.op!=.fc.fc]

int operator!=(float_complex Ihs , float_complex rhs); a
Returngreal(/hs) !=real(rhs) || imag(Ihs)!=imag(rhs). a
17.5.7.1.220perator!=(float_complex, float) (lib.op!=.fc.f]

int operator!=(float_complex Ihs | float rhs); a
Returngreal(/hs)!= rhs ||imag(/hs)!=0 . O
17.5.7.1.23operator!=(float, float_complex) [lib.op!=.f.fc]

int operator!=(float Ihs , float_complex rhs); a
Returnsths '=real(rhs) || imag(rhs)!=0 . ad
17.5.7.1.240perator>>(istream&, float_complex&) (lib.ext.fc]

istream& operator>>(istream& is , float_complex& X); a
Executes: g

is >>'(>> re >>'>> im) >>"y, O
where re and im are objects of typdloat . If /s .good() is then nonzero, the function assigns
float_complex(re, im) tox. O
The function returnss . O
17.5.7.1.250perator<<(ostream&, float_complex) (lib.ins.fc]

ostreamé& operator<<(ostreamé& os, float_complex X); a
Returnsos <<'(’ << real(X) <<, << imag(x) <<y’ : 0
17.5.7.1.26abs(float_complex) [lib.abs.fc]

float abs(float_complex X); a
Returns the magnitude a&f ad
17.5.7.1.27arg(float_complex) (lib.arg.fc]

float arg(float_complex X); a

17.5.7.1.27arg(float_complex) DRAFT: 25 January 1994 Library 17-195

Returns the phase anglexof

17.5.7.1.28conij(float_complex) [lib.conj.fc]

float_complex conj(float_complex X);
Returns the conjugate g&f

17.5.7.1.29cos(float_complex) [lib.cos.fc]

float_complex cos(float_complex X);
Returns the cosine of.

17.5.7.1.30cosh(float_complex) [lib.cosh.fc]

float_complex cosh(float_complex X);
Returns the hyperbolic cosine xf

17.5.7.1.31exp(float_complex) (lib.exp.fc]

float_complex exp(float_complex X);
Returns the exponential &f

17.5.7.1.32imag(float_complex) [lib.imag.fc]

float imag(float_complex X);
Returns the imaginary part sf

17.5.7.1.33log(float_complex) [(lib.log.fc]

float_complex log(float_complex X);
Returns the logarithm of.

17.5.7.1.34norm(float_complex) (lib.norm.fc]

float norm(float_complex X);
Returns the magnitude sf

17.5.7.1.35polar(float, float) (lib.polar.f.f]

float_complex polar(float rho , float theta);

Returns theloat_complex value corresponding to a complex number whose magnitudeisand
whose phase anglefiketa .

17.5.7.1.36pow(float_complex, float_complex) (lib.pow.fc.fc]

float_complex pow(float_complex X, float_complex)

Returnsx raised to the power.

17-196 Library DRAFT: 25 January 1994

17.5.7.1.37pow(float_complex, float)

float_complex pow(float_complex X, float

Returnsx raised to the power.

17.5.7.1.38pow(float_complex, int)

float_complex pow(float_complex X, int
Returnsx raised to the power.

17.5.7.1.39pow(float, float_complex)

float_complex pow(float X, float_complex
Returnsx raised to the power.

17.5.7.1.40real(float_complex)

float real(float_complex X);
Returns the real part of

17.5.7.1.41sin(float_complex)

float_complex sin(float_complex X);
Returns the sine of.

17.5.7.1.42sinh(float_complex)

float_complex sinh(float_complex X);
Returns the hyperbolic sine »f

17.5.7.1.43sqrt(float_complex)

float_complex sqrt(float_complex X);
Returns the square root xf
17.5.7.2 Complex numbers witldouble precision

17.5.7.2.1 Classglouble_complex

class double_complex {
public:

double_complex(re_arg =0, im_a