
_ ___ ___

1 General [intro]
_ ___ ___

[intro.scope]1.1 Scope

1 This International Standard specifies requirements for processors of the C + + programming language. The
first such requirement is that they implement the language, and so this Standard also defines C + +. Other
requirements and relaxations of the first requirement appear at various places within the Standard.

2 C + + is a general purpose programming language based on the C programming language as described in
ISO/IEC 9899 (1.2). In addition to the facilities provided by C, C + + provides additional data types, classes,
templates, exceptions, inline functions, operator overloading, function name overloading, references, free∗
store management operators, function argument checking and type conversion, and additional library facili-
ties. These extensions to C are summarized in C.1. The differences between C + + and ISO C1) are summa-
rized in C.2. The extensions to C + + since 1985 are summarized in C.1.2.

[intro.refs]1.2 Normative references

1 The following standards contain provisions which, through reference in this text, constitute provisions of
this International Standard. At the time of publication, the editions indicated were valid. All standards are
subject to revision, and parties to agreements based on this International Standard are encouraged to investi-
gate the possibility of applying the most recent editions of the standards indicated below. Members of IEC
and ISO maintain registers of currently valid International Standards.

— ANSI X3/TR– 1– 82:1982,American National Dictionary for Information Processing Systems.

— ISO/IEC 9899:1990,C Standard

— ISO/IEC xxxx:199xAmendment 1 to C Standard

Box 1
This last title must be filled in when Amendment 1 is approved. The other titles have not been checked for
accuracy. _ __

_ __

[intro.defs]1.3 Definitions

1 For the purposes of this International Standard, the definitions given in ANSI X3/TR– 1– 82 and the follow-
ing definitions apply.

— argument: An expression in the comma-separated list bounded by the parentheses in a function call
expression, a sequence of prepreocessing tokens in the comma-separated list bounded by the parenthe-
ses in a function-like macro invocation, the operand ofthrow , or an expression in the comma-
separated list bounded by the angle brackets in a template instantiation. Also known as an“actual argu-
ment” or “actual parameter.”

— diagnostic message: A message belonging to an implementation-defined subset of the
implementation’s message output.

— dynamic type: The dynamic typeof an expression is determined by its current value and may change
during the execution of a program. If a pointer (8.3.1) whose static type is“pointer to classB” is point-
ing to an object of classD, derived from B (10), the dynamic type of the pointer is“pointer toD.”

1– 2 General DRAFT: 25 January 1994 1.3 Definitions

References (8.3.2) are treated similarly.

— implementation-defined behavior: Behavior, for a correct program construct and correct data, that
depends on the implementation and that each implementation shall document. The range of possible
behaviors is delineated by the standard.

— implementation limits: Restrictions imposed upon programs by the implementation.

— locale-specific behavior:Behavior that depends on local conventions of nationality, culture, and lan-
guage that each implementation shall document.

— multibyte character: A sequence of one or more bytes representing a member of the extended charac-
ter set of either the source or the execution environment. The extended character set is a superset of the
basic character set.

— parameter: an object or reference declared as part of a function declaration or definition ir the catch
clause of an exception handler that acquires a value on entry to the function or handler, an identifier
from the comma-separated list bounded by the parentheses immediately following the macro name in a
function-like macro definition, or atemplate-parameter. A function may said to“take arguments” or to
“have parameters.” Parameters are also known as a“formal arguments” or “formal parameters.”

— signature: The signature of a function is the information about that function that participates in over-
load resolution (13.2): the types of its parameters and, if the function is a non-static member of a class,
the CV-qualifiers (if any) on the function itself and whether the function is a direct member of its class
or inherited from a base class.

— static type: The static typeof an expression is the type (3.8) resulting from analysis of the program
without consideration of execution semantics. It depends only on the form of the program and does not
change.

— undefined behavior: Behavior, upon use of an erroneous program construct, of erroneous data, or of
indeterminately valued objects, for which the standard imposes no requirements. Permissible undefined
behavior ranges from ignoring the situation completely with unpredictable results, to behaving during
translation or program execution in a documented manner characteristic of the environment (with or
without the issuance of a diagnostic message), to terminating a translation or execution (with the
issuance of a diagnostic message). Note that many erroneous program constructs do not engender unde-
fined behavior. They are required to be diagnosed.

— unspecified behavior:Behavior, for a correct program construct and correct data, that depends on the
implementation. The range of possible behaviors is delineated by the standard. The implementation is
not required to document which behavior occurs.

[syntax] 1.4 Syntax notation

1 In the syntax notation used in this manual, syntactic categories are indicated byitalic type, and literal words
and characters inconstant width type. Alternatives are listed on separate lines except in a few cases
where a long set of alternatives is presented on one line, marked by the phrase“one of.” An optional termi-
nal or nonterminal symbol is indicated by the subscript“opt,” so

{ expressionopt }

indicates an optional expression enclosed in braces.

2 Names for syntactic categories have generally been chosen according to the following rules:

— X-nameis a use of an identifier in a context that determines its meaning (e.g.class-name, typedef-
name).

1) Function signatures do not include return type, because that does not participate in overload resolution.

1.4 Syntax notation DRAFT: 25 January 1994 General 1– 3

— X-id is an identifier with no context-dependent meaning (e.g.qualified-id).

— X-seqis one or moreX’s without intervening delimiters (e.g.declaration-seqis a sequence of declara-
tions).

— X-list is one or moreX’s separated by intervening commas (e.g.expression-listis a sequence of expres-
sions separated by commas).

[intro.memory] 1.5 The C + + memory model

1 The fundamental storage unit in the C + + memory model is thebyte. A byte is at least large enough to con-
tain any member of the basic execution character set and is composed of a contiguous sequence of bits, the
number of which is implementation-defined. The least significant bit is called thelow-order bit; the most
significant bit is called thehigh-orderbit. The memory accessible to a C + + program is comprised of one or
more contiguous sequences of bytes. Each byte (except perhaps registers) has a unique address.

2 The constructs in a C + + program create, refer to, access, and manipulateobjectsin memory. Each object
(except bit-fields) occupies one or more contiguous bytes. Objects are created by definitions (3.1) and
new-expressions(5.3.4). Each object has atypedetermined by the construct that creates it. The type in
turn determines the number of bytes that the object occupies and the interpretation of their contents.
Objects may contain other objects, calledsub-objects(9.2, 10). An object that is not a sub-object of any
other object is called acomplete object. For every objectx , there is some object calledthe complete object
of x , determined as follows:

— If x is a complete object, thenx is the complete object ofx .

— Otherwise, the complete object ofx is the complete object of the (unique) object that containsx .

3 C + + provides a variety of built-in types and several ways of composing new types from existing types.

4 Certain types havealignmentrestrictions. An object of one of those types may appear only at an address
that is divisible by a particular integer.

[intro.compliance]1.6 Processor compliance

1 Every conforming C + + processor shall, within its resource limits, accept and correctly execute well-formed
C + + programs, and shall issue at least one diagnostic error message when presented with any ill-formed pro-
gram that contains a violation of any rule that is identified as diagnosable in this Standard or of any syntax
rule, except as noted herein.

2 Well-formed C + + programs are those that are constructed according to the syntax rules, semantic rules iden-
tified as diagnosable, and the One Definition Rule (3.1). If a program is not well-formed but does not con-
tain any diagnosable errors, this Standard places no requirement on processors with respect to that program.

[intro.execution]1.7 Program execution

1 The semantic descriptions in this Standard define a parameterized nondeterministic abstract machine. This
Standard places no requirement on the structure of conforming processors. In particular, they need not
copy or emulate the structure of the abstract machine. Rather, conforming processors are required to emu-
late (only) the observable behavior of the abstract machine as explained below.

2 Certain aspects and operations of the abstract machine are described in this Standard as implementationed
defined (for example,sizeof(int)). These constitute the parameters of the abstract machine. Each
implementation shall include documentation describing its characteristics and behavior in these respects,
which documentation defines the instance of the abstract machine that corresponds to that implementation
(referred to as the ‘‘corresponding instance’’ below).

3 Certain other aspects and operations of the abstract machine are described in this Standard as unspecified
(for example, order of evaluation of arguments to a function). In each case the Standard defines a set of
allowable behaviors. These define the nondeterministic aspects of the abstract machine. An instance of the
abstract machine may thus have more than one possible execution sequence for a given program and a

1– 4 General DRAFT: 25 January 1994 1.7 Program execution

given input.

4 Certain other operations are described in this International Standard as undefined (for example, the effect of
dereferencing the null pointer).

5 A conforming processor executing a well-formed program shall produce the same observable behavior as
one of the possible execution sequences of the corresponding instance of the abstract machine with the
same program and the same input. However, if any such execution sequence contains an undefined opera-
tion, this Standard places no requirement on the processor executing that program with that input (not even
with regard to operations previous to the first undefined operation).

6 The observable behavior of the abstract machine is its sequence of reads and writes tovolatile data and
calls to library I/O functions.2)

2) An implementation can offer additional library I/O functions as an extension. Implementations that do so should treat calls to those
functions as ‘‘observable behavior’’ as well.

_ ___ ___

2 Lexical conventions [lex]
_ ___ ___

1 A C + + program need not all be translated at the same time. The text of the program is kept in units called
source filesin this standard. A source file together with all the headers (17.1.2) and source files included
(16.2) via the preprocessing directive#include , less any source lines skipped by any of the conditional
inclusion (16.1) preprocessing directives, is called atranslation unit. Previously translated translation units
may be preserved individually or in libraries. The separate translation units of a program communicate
(3.4) by (for example) calls to functions whose identifiers have external linkage, manipulation of objects
whose identifiers have external linkage, or manipulation of data files. Translation units may be separately
translated and then later linked to produce an executable program. (3.4).

[lex.phases] 2.1 Phases of translation

1 The precedence among the syntax rules of translation is specified by the following phases.3)

1 Physical source file characters are mapped to the source character set (introducing new-line charac-
ters for end-of-line indicators) if necessary. Trigraph sequences (2.2) are replaced by corresponding
single-character internal representations.

2 Each instance of a new-line character and an immediately preceding backslash character is deleted,
splicing physical source lines to form logical source lines. A source file that is not empty shall end
in a new-line character, which shall not be immediately preceded by a backslash character.

3 The source file is decomposed into preprocessing tokens (2.3) and sequences of white-space charac-
ters (including comments). A source file shall not end in a partial preprocessing token or comment.
Each comment is replaced by one space character. New-line characters are retained. Whether each
nonempty sequence of white-space characters other than new-line is retained or replaced by one
space character is implementation-defined. The process of dividing a source file’s characters into
preprocessing tokens is context-dependent. For example, see the handling of< within a#include
preprocessing directive.

4 Preprocessing directives are executed and macro invocations are expanded. A#include prepro-
cessing directive causes the named header or source file to be processed from phase 1 through phase
4, recursively.

5 Each source character set member and escape sequence in character constants and string literals is
converted to a member of the execution character set.

6 Adjacent character string literal tokens are concatenated and adjacent wide string literal tokens are
concatenated.

7 White-space characters separating tokens are no longer significant. Each preprocessing token is
converted into a token. (See 2.4). The resulting tokens are syntactically and semantically analyzed
and translated. The result of this process starting from a single source file is called atranslation
unit.

8 The translation units that will form a program are combined. All external object and function refer-
ences are resolved.

3) Implementations must behave as if these separate phases occur, although in practice different phases may be folded together.

2– 2 Lexical conventions DRAFT: 25 January 1994 2.1 Phases of translation

Box 2

What about shared libraries?_ ___________________________

_ ___________________________

Library components are linked to satisfy external references to functions and objects not defined in the
current translation. All such translator output is collected into a program image which contains infor-
mation needed for execution in its execution environment.

[lex.trigraph] 2.2 Trigraph sequences

1 Before any other processing takes place, each occurrence of one of the following sequences of three charac-
ters (“trigraph sequences”) is replaced by the single character indicated in Table 1.

Table 1—trigraph sequences
_ __
trigraph replacement trigraph replacement trigraph replacement _ ___ __

??= # ??([??< { _ __
??/ \ ??)] ??> } _ __
??’ ^ ??! | ??- ~ _ __

2 For example,

??=define arraycheck(a,b) a??(b??) ??!??! b??(a??)

becomes

#define arraycheck(a,b) a[b] || b[a]

[lex.pptoken] 2.3 Preprocessing tokens

preprocessing-token:
header-name
identifier
pp-number
character-constant
string-literal
operator
digraph
punctuator
each non-white-space character that cannot be one of the above

1 Each preprocessing token that is converted to a token (2.5) shall have the lexical form of a keyword, an
identifier, a constant, a string literal, an operator, a digraph, or a punctuator.

2 A preprocessing tokenis the minimal lexical element of the language in translation phases 3 through 6.
The categories of preprocessing token are:header names, identifiers, preprocessing numbers, character
constants, string literals, operators, punctuators, digraphs, and single non-white-space characters that do
not lexically match the other preprocessing token categories. If a’ or a" character matches the last cate-
gory, the behavior is undefined. Preprocessing tokens can be separated bywhite space; this consists of
comments (2.6), orwhite-space characters(space, horizontal tab, new-line, vertical tab, and form-feed), or
both. As described in Clause 16, in certain circumstances during translation phase 4, white space (or the
absence thereof) serves as more than preprocessing token separation. White space may appear within a pre-
processing token only as part of a header name or between the quotation characters in a character constant
or string literal.

2.3 Preprocessing tokens DRAFT: 25 January 1994 Lexical conventions 2– 3

3 If the input stream has been parsed into preprocessing tokens up to a given character, the next preprocessing
token is the longest sequence of characters that could constitute a preprocessing token.

4 The program fragment1Ex is parsed as a preprocessing number token (one that is not a valid floating or
integer constant token), even though a parse as the pair of preprocessing tokens1 andEx might produce a
valid expression (for example, ifEx were a macro defined as+1). Similarly, the program fragment1E1 is
parsed as a preprocessing number (one that is a valid floating constant token), whether or notE is a macro
name.

5 The program fragmentx+++++y is parsed asx ++ ++ + y , which violates a constraint on increment
operators, even though the parsex ++ + ++ y might yield a correct expression.

[lex.digraph] 2.4 Digraph sequences

1 Alternate representations are provided for the operators and punctuators whose primary representations use
the“national characters.” These include digraphs and additional reserved words.

digraph:
<%
%>
<:
:>
%%

2 In translation phase 3 (2.1) the digraphs are recognized as preprocessing tokens. Then in translation phase
7 the digraphs and the additional identifiers listed below are converted into tokens identical to those from
the corresponding primary representations, as shown in Table 2.

Table 2—identifiers that are treated as operators
__
alternate primary alternate primary alternate primary __

<% { and && and_eq &= __
%> } bitor | or_eq |= __
<: [or || xor_eq ^= __
:>] xor ^ not ! __
%% # compl ~ not_eq != __

bitand & __

[lex.token] 2.5 Tokens

token:
identifier
keyword
literal
operator
punctuator

1 There are five kinds of tokens: identifiers, keywords, literals (which include strings and character and
numeric constants), operators, and other separators. Blanks, horizontal and vertical tabs, newlines, form-
feeds, and comments (collectively,“white space”), as described below, are ignored except as they serve to
separate tokens. Some white space is required to separate otherwise adjacent identifiers, keywords, and lit-
erals.

2 If the input stream has been parsed into tokens up to a given character, the next token is taken to be the
longest string of characters that could possibly constitute a token.

2– 4 Lexical conventions DRAFT: 25 January 1994 2.6 Comments

[lex.comment] 2.6 Comments

1 The characters/* start a comment, which terminates with the characters*/ . These comments do not nest.
The characters// start a comment, which terminates the next new-line character. If there is a form-feed or
a vertical-tab character in such a comment, only white-space characters may appear between it and the
new-line that terminates the comment; no diagnostic is required. The comment characters// , /* , and*/
have no special meaning within a// comment and are treated just like other characters. Similarly, the
comment characters// and/* have no special meaning within a/* comment.

[lex.name] 2.7 Identifiers

identifier:
nondigit
identifier nondigit
identifier digit

nondigit: one of
_ a b c d e f g h i j k l m

n o p q r s t u v w x y z
A B C D E F G H I J K L M
N O P Q R S T U V W X Y Z

digit: one of
0 1 2 3 4 5 6 7 8 9

1 An identifier is an arbitrarily long sequence of letters and digits. The first character must be a letter; the
underscore_ counts as a letter. Upper- and lower-case letters are different. All characters are significant.

[lex.key] 2.8 Keywords

1 The identifiers shown in Table 3 are reserved for use as keywords, and may not be used otherwise in phases
7 and 8:

Table 3—keywords

asm delete if reinterpret_cast true
auto do inline return try
bool double int short typedef
break dynamic_cast long signed typeid
case else mutable sizeof union
catch enum namespace static unsigned
char extern new static_cast using
class false operator struct virtual
const float private switch void
const_cast for protected template volatile
continue friend public this wchar_t
default goto register throw while ___

2 Furthermore, the alternate representations shown in Table 4 for certain operators and punctuators (2.4) are
reserved and may not be used otherwise:

2.8 Keywords DRAFT: 25 January 1994 Lexical conventions 2– 5

Table 4—alternate representations
_ __
bitand and bitor or xor compl
and_eq or_eq xor_eq not not_eq _ __

3 In addition, identifiers containing a double underscore (_ _) are reserved for use by C + + implementations
and standard libraries and should be avoided by users; no diagnostic is required.

4 The ASCII representation of C + + programs uses as operators or for punctuation the characters shown in
Table 5.

Table 5—operators and punctuation characters
_ ___
! % ^ & * () - +

_ __ _ { } | ~
[] \ ; ’ : " < > ? , . / _ ___

Table 6 shows the character combinationations that are used as operators.

Table 6—character combinations used as operators
_ ___
-> ++ -- .* ->* << >> <= >= == != &&
|| *= /= %= += -= <<= >>= &= ^= |= :: _ ___

Each is converted to a single token in translation phase 7 (2.1).

5 Table 7 shows character combinations that are used as alternative representations for certain operators and
punctuators (2.4).

Table 7—digraphs

<% %> <: :> %% __________________________

Each of these is also recognized as a single token in translation phases 3 and 7.

6 Table 8 shows additional tokens that are used by the preprocessor.

Table 8—preprocessing tokens
_ ___________________________
%% %%%% _ ___________________________

7 Certain implementation-dependent properties, such as the type of asizeof (5.3.3) and the ranges of fun-
damental types (3.8.1), are defined in the standard header files (16.2)

<float.h> <limits.h> <stddef.h>

These headers are part of the ISO C standard. In addition the headers

<new.h> <stdarg.h> <stdlib.h>

define the types of the most basic library functions. The last two headers are part of the ISO C standard;
<new.h> is C + + specific.

2– 6 Lexical conventions DRAFT: 25 January 1994 2.9 Literals

[lex.literal] 2.9 Literals

1 There are several kinds of literals (often referred to as“constants”).

literal:
integer-literal
character-literal
floating-literal
string-literal
boolean-literal

[lex.icon] 2.9.1 Integer literals

integer-literal:
decimal-literal integer-suffixopt

octal-literal integer-suffixopt

hexadecimal-literal integer-suffixopt

decimal-literal:
nonzero-digit
decimal-literal digit

octal-literal:
0
octal-literal octal-digit

hexadecimal-literal:
0x hexadecimal-digit
0X hexadecimal-digit
hexadecimal-literal hexadecimal-digit

nonzero-digit: one of
1 2 3 4 5 6 7 8 9

octal-digit: one of
0 1 2 3 4 5 6 7

hexadecimal-digit:one of
0 1 2 3 4 5 6 7 8 9
a b c d e f
A B C D E F

integer-suffix:
unsigned-suffix long-suffixopt

long-suffix unsigned-suffixopt

unsigned-suffix:one of
u U

long-suffix: one of
l L

1 An integer literal consisting of a sequence of digits is taken to be decimal (base ten) unless it begins with0
(digit zero). A sequence of digits starting with0 is taken to be an octal integer (base eight). The digits8
and9 are not octal digits. A sequence of digits preceded by0x or 0X is taken to be a hexadecimal integer
(base sixteen). The hexadecimal digits includea or A throughf or F with decimal values ten through fif-
teen. For example, the number twelve can be written12 , 014 , or0XC.

2.9.1 Integer literals DRAFT: 25 January 1994 Lexical conventions 2– 7

2 The type of an integer literal depends on its form, value, and suffix. If it is decimal and has no suffix, it has
the first of these types in which its value can be represented:int , long int , unsigned long int . If
it is octal or hexadecimal and has no suffix, it has the first of these types in which its value can be repre-
sented:int , unsigned int , long int , unsigned long int . If it is suffixed byu or U, its type is
the first of these types in which its value can be represented:unsigned int , unsigned long int . If
it is suffixed byl or L, its type is the first of these types in which its value can be represented:long int ,
unsigned long int . If it is suffixed byul , lu , uL , Lu , Ul , lU , UL, or LU, its type isunsigned
long int .

3 A program is ill-formed if it contains an integer literal that cannot be represented by any of the allowed
types.

[lex.ccon] 2.9.2 Character literals

character-literal:
’ c-char-sequence’
L’ c-char-sequence’

c-char-sequence:
c-char
c-char-sequence c-char

c-char:
any member of the source character set except

the single-quote’ , backslash\ , or new-line character
escape-sequence

escape-sequence:
simple-escape-sequence
octal-escape-sequence
hexadecimal-escape-sequence

simple-escape-sequence:one of
\’ \" \? \\
\a \b \f \n \r \t \v

octal-escape-sequence:
\ octal-digit
\ octal-digit octal-digit
\ octal-digit octal-digit octal-digit

hexadecimal-escape-sequence:
\x hexadecimal-digit
hexadecimal-escape-sequence hexadecimal-digit

1 A character literal is one or more characters enclosed in single quotes, as in’x’ , optionally preceded by
the letterL, as inL’x’ . Single character literals that do not begin withL have typechar , with value
equal to the numerical value of the character in the machine’s character set. Multicharacter literals that do
not begin withL have typeint and implementation-defined value.

2 A character literal that begins with the letterL, such asL’ab’ , is a wide-character literal. Wide-character
literals have typewchar_t . They are intended for character sets where a character does not fit into a sin-
gle byte.

3 Certain nongraphic characters, the single quote’ , the double quote" , ?, and the backslash\ , may be repre-
sented according to Table 9.

2– 8 Lexical conventions DRAFT: 25 January 1994 2.9.2 Character literals

Table 9—escape sequences
_ ______________________________
new-line NL (LF) \n
horizontal tab HT \t
vertical tab VT \v
backspace BS \b
carriage return CR \r
form feed FF \f
alert BEL \a
backslash \ \\
question mark ? \?
single quote ’ \’
double quote " \"
octal number ooo \ooo
hex number hhh \xhhh _ ______________________________

If the character following a backslash is not one of those specified, the behavior is undefined. An escape
sequence specifies a single character.

4 The escape\ oooconsists of the backslash followed by one, two, or three octal digits that are taken to spec-
ify the value of the desired character. The escape\x hhhconsists of the backslash followed byx followed
by a sequence of hexadecimal digits that are taken to specify the value of the desired character. There is no
limit to the number of hexadecimal digits in the sequence. A sequence of octal or hexadecimal digits is ter-
minated by the first character that is not an octal digit or a hexadecimal digit, respectively. The value of a
character literal is implementation dependent if it exceeds that of the largestchar . ∗

[lex.fcon] 2.9.3 Floating literals

floating-constant:
fractional-constant exponent-partopt floating-suffixopt

digit-sequence exponent-part floating-suffixopt

fractional-constant:
digit-sequenceopt . digit-sequence
digit-sequence.

exponent-part:
e signopt digit-sequence
E signopt digit-sequence

sign: one of
+ -

digit-sequence:
digit
digit-sequence digit

floating-suffix: one of
f l F L

1 A floating literal consists of an integer part, a decimal point, a fraction part, ane or E, an optionally signed
integer exponent, and an optional type suffix. The integer and fraction parts both consist of a sequence of
decimal (base ten) digits. Either the integer part or the fraction part (not both) may be missing; either the
decimal point or the lettere (or E) and the exponent (not both) may be missing. The type of a floating lit-
eral isdouble unless explicitly specified by a suffix. The suffixesf andF specifyfloat , the suffixesl
andL specifylong double .

2.9.4 String literals DRAFT: 25 January 1994 Lexical conventions 2– 9

[lex.string] 2.9.4 String literals

string-literal:
" s-char-sequenceopt"
L" s-char-sequenceopt"

s-char-sequence:
s-char
s-char-sequence s-char

s-char:
any member of the source character set except

the double-quote" , backslash\ , or new-line character
escape-sequence

1 A string literal is a sequence of characters (as defined in 2.9.2) surrounded by double quotes, optionally
beginning with the letterL, as in"..." or L"..." . A string literal that does not begin withL has type
“array ofchar ” and storage classstatic (3.7), and is initialized with the given characters. Whether all
string literals are distinct (that is, are stored in nonoverlapping objects) is implementation dependent. The
effect of attempting to modify a string literal is undefined.

2 A string literal that begins withL, such asL"asdf" , is a wide-character string. A wide-character string is
of type“array ofwchar_t .” Concatenation of ordinary and wide-character string literals is undefined.

Box 3
Should this render the program ill-formed? Or is it deliberately undefined to encourage extensions? _ ___

_ ___

3 Adjacent string literals are concatenated. Characters in concatenated strings are kept distinct. For example,

"\xA" "B"

contains the two characters’\xA’ and ’B’ after concatenation (and not the single hexadecimal character
’\xAB’).

4 After any necessary concatenation’\0’ is appended so that programs that scan a string can find its end.
The size of a string is the number of its characters including this terminator. Within a string, the double
quote character" must be preceded by a\ .

[lex.bool]2.9.5 Boolean literals

boolean-literal:
false
true

1 The Boolean literals are the keywordsfalse andtrue . Such literals have typebool and the given val-
ues. They are not lvalues.

_ ___ ___

3 Basic concepts [basic]
_ ___ ___

1 This clause presents the basic concepts of the C + + language. It explains the difference between anobject
and anameand how they relate to the notion of anlvalue. It introduces the concepts of adeclarationand a
definitionand presents C + +’s notion oftype, scope, linkage, andstorage class. The mechanisms for starting
and terminating a program are discussed. Finally, this clause presents the fundamental types of the lan-
guage and lists the ways of constructing derived types from these.

2 This clause does not cover concepts that affect only a single part of the language. Such concepts are dis-
cussed in the relevant clauses.

3 An entity is a value, object, subobject, base class subobject, array element, variable, function, set of func-
tions, instance of a function, enumerator, type, class member, template, or namespace.

4 A nameis a use of an identifier (2.7) that denotes an entity orlabel(6.6.4, 6.1).

5 Every name that denotes an entity is introduced by adeclaration. Every name that denotes a label is intro-
duced either by agoto statement (6.6.4) or alabeled-statement(6.1). Every name is introduced in some
contiguous portion of program text called adeclarative region(3.3), which is the largest part of the program
in which that name can possibly be valid. In general, each particular name is valid only within some possi-
bly discontiguous portion of program text called itsscope(3.3). To determine the scope of a declaration, it
is sometimes convenient to refer to thepotential scopeof a declaration. The scope of a declaration is the
same as its potential scope unless the potential scope contains another declaration of the same name. In that
case, the potential scope of the declaration in the inner (contained) declarative region is excluded from the
scope of the declaration in the outer (containing) declarative region.

6 For example, in

int j = 24;

main()
{

int i = j, j;

j = 42;
}

the identifierj is declared twice as a name (and used twice). The declarative region of the firstj includes
the entire example. The potential scope of the firstj begins immediately after thatj and extends to the end
of the program, but its (actual) scope excludes the text between the, and the} . The declarative region of
the second declaration ofj (the j immediately before the semicolon) includes all the text between{ and} ,
but its potential scope excludes the declarationn ofi The scope of the second declaration ofj is the same
as its potential scope..

7 Some names denote types, classes, or templates. In general, it is necessary to determine whether or not a
name denotes one of these entities before parsing the program that contains it. The process that determines
this is calledname lookup.

8 An identifier used in more than one translation unit may potentially refer to the same entity in these transla-
tion units depending on the linkage (3.4) specified in the translation units.

3– 2 Basic concepts DRAFT: 25 January 1994 3 Basic concepts

9 An objectis a region of storage (3.9). In addition to giving it a name, declaring an object gives the object a
storage class, (3.7), which determines the object’s lifetime. Some objects arepolymorphic; the implemen-
tation generates information carried in each such object that makes it possible to determine that object’s
type during program execution. For other objects, the meaning of the values found therein is determined by
the type of the expressions used to access them.

Box 4
Most of this section needs more work. _ ________________________________

_ ________________________________

[basic.def] 3.1 Declarations and definitions

1 A declaration (7) introduces one or more names into a program and gives each name a meaning.

2 A declaration is adefinition unless it declares a function without specifying the function’s body (8.4), it
contains theextern specifier (7.1.1) and neither aninitializer nor afunction-body, it declares a static data
member in a class declaration (9.5), it is a class name declaration (9.1), or it is atypedef declaration
(7.1.3), ausing declaration(7.3.3), or ausing directive(7.3.4).

3 The following, for example, are definitions:

int a; // definesa
extern const int c = 1; // definesc
int f(int x) { return x+a; } // definesf
struct S { int a; int b; }; // definesS
struct X { // definesX

int x; // defines nonstatic data memberx
static int y; // declares static data membery
X(): x(0) { } // defines a constructor ofX

};
int X::y = 1; // definesX::y
enum { up, down }; // definesup and down
namespace N { int d; } // definesN and N::d
namespace N1 = N; // definesN1
X anX; // definesanX

whereas these are just declarations:

extern int a; // declaresa
extern const int c; // declaresc
int f(int); // declaresf
struct S; // declaresS
typedef int Int; // declaresInt
extern X anotherX; // declaresanotherX
using N::d; // declaresN::d

4 In some circumstances, C + + implementations generate definitions automatically. These definitions include
default constructors, copy constructors, assignment operators, and destructors. For example, given

struct C {
string s; // string is the standard library class (17.5.1.1)

};

main()
{

C a;
C b=a;
b=a;

}

the implementation will generate functions to make the definition ofCequivalent to

3.1 Declarations and definitions DRAFT: 25 January 1994 Basic concepts 3– 3

struct C {
string s;
C(): s() { }
C(const C& x): s(x.s) { }
C& operator=(const C& x) { s = x.s; return *this; }
~C() { }

};

[basic.def.odr]3.2 One definition rule

Box 5 ∗
This is still very much under review by the Committee. _ __

_ __

1 ∗No translation unit shall contain more than one definition of any variable, function, named class or enumer-
ation type.

2 A function isusedif it is called, its address is taken, or it is a virtual member function that is not pure.
Every program shall contain at least one definition of every function that is used in that program. That def-
inition may appear explicitly in the program, it may be found in the standard or a user-defined library, or
(when appropriate) the implementation may generate it. If a non-virtual function is not defined, a diagnos-
tic is required only if an attempt is actually made to call that function.

Box 6
This says nothing about user-defined libraries. Probably it shouldn’t, but perhaps it should be more explicit
that it isn’t discussing it. _ __

_ __

3 Exactly one definition in a program is required for a non-local variable with static storage duration, unless
it has a builtin type or is an aggregate and also is unused or used only as the operand of thesizeof opera-
tor.

Box 7
This is still uncertain. _ ___________________

_ ___________________

4 At least one definition of a class is required in a translation unit if the class is used other than in the forma-
tion of a pointer type.

Box 8
This is not quite right, because it is possible to declare a function that returns a class object without first
defining the class. _ __

_ __

Box 9
There may be other situations that do not require a class to be defined: extern declarations (i.e. "extern X
x;"), declaration of static members, others??? _ __

_ __

For example the following complete translation unit is well-formed, even though it never definesX:

struct X; // declareX is a struct type
struct X* x1; // useX in pointer formation
X* x2; // useX in pointer formation

3– 4 Basic concepts DRAFT: 25 January 1994 3.2 One definition rule

5 There may be more than one definition of a named enumeration type in a program provided that each defi-
nition appears in a different translation unit and the values of the enumerators are the same.

Box 10
This will need to be revisited when the ODR is made more precise _ ___

_ ___

6 There may be more than one definition of a class type in a program provided that each definition appears in
a different translation unit and the definitions describe the same type. No diagnostic is required for a viola-
tion of this ODR rule.

Box 11
This will need to be revisited when the ODR is made more precise _ ___

_ ___

[basic.scope]3.3 Declarative regions and scopes

[basic.scope.local]3.3.1 Local scope

1 A name declared in a block (6.3) is local to that block. Its scope begins at its point of declaration (3.3.10)
and ends at the end of its declarative region.

2 Names of parameters of a function are local to the function and shall not be redeclared in the outermost
block of that function.

3 The name in acatch exception-declaration is local to the handler and shall not be redeclared in the outer-
most block of the handler.

4 Names in a declaration in theconditionpart of anif , while , for , do , or switch statement are local to
the controlled statement and shall not be redeclared in the outermost block of that statement.

[basic.scope.proto]3.3.2 Function prototype scope

1 In a function declaration, names of parameters (if supplied) have function prototype scope, which termi-
nates at the end of the function declarator.

3.3.3 Function scope

1 Labels (6.1) can be used anywhere in the function in which they are declared. Only labels have function
scope.

[basic.file.scope]3.3.4 File scope

1 A name declared outside all named namespaces (_namespace_), blocks (6.3) and classes (9) hasfile scope.
The potential scope of such a name begins at its point of declaration (3.3.10) and ends at the end of the
translation unit that is its declarative region. Names declared with file scope are said to beglobal.

2 File scope can be treated as a special case of namespace scope (3.3.5) by viewing an entire translation unit
as an unnamed namespace called theglobal namespace.

[basic.scope.namespace]3.3.5 Namespace scope

1 A name declared in a namespace (_namespace_) has namespace scope. Its potential scope includes its
namespace from the name’s point of declaration (3.3.10) onwards, as well as the potential scope of any
using directive(7.3.4) that nominates its namespace.

3.3.6 Class scope DRAFT: 25 January 1994 Basic concepts 3– 5

[basic.scope.class]3.3.6 Class scope

1 The name of a class member is local to its class and can be used only in a member of that class (9.4) or a
class derived from that class, after the. operator applied to an expression of the type of its class (5.2.4) or a
class derived from (10) its class, after the-> operator applied to a pointer to an object of its class (5.2.4) or
a class derived from (10) its class, after the:: scope resolution operator (5.1) applied to the name of its
class or a class derived from its class, or after ausing directiveas described above.

Box 12
What does: "can be used only in a member of that class" mean? It should be phrased to include: body of
member functions, ctor-init-list, static initializers. _ __

_ __

[basic.scope.hiding]3.3.7 Name hiding

1 A name may be hidden by an explicit declaration of that same name in a nested declarative region or
derived class.

2 A class name (9.1) may be hidden by the name of an object, function, or enumerator declared in the same
scope. If a class and an object, function, or enumerator are declared in the same scope (in any order) with
the same name the class name is hidden.

3 If a name is in scope and is not hidden it is said to bevisible.

4 The region in which a name is visible is called thereachof the name.

Box 13
The term ’reach’ is defined here but never used. More work is needed with the "descriptive terminology". _ __

_ __

[basic.scope.exqual]3.3.8 Explicit qualification

1 A hidden name can still be used when it is qualified by its class or namespace name using the:: operator
(5.1, 9.5, 10). A hidden file scope name can still be used when it is qualified by the unary:: operator
(5.1).

[basic.scope.elab]3.3.9 Elaborated type specifier

1 A class name hidden by a name of an object, function, or enumerator in local or class scope can still be
used when appropriately (7.1.5) prefixed withclass , struct , or union , or when followed by the::
operator. Similarly, a hidden enumeration name can be used when appropriately (7.1.5) prefixed with
enum. For example:

class A {
public:

static int n;
};

main()
{

int A;

A::n = 42; // OK
class A a; // OK
A b; // ill-formed: A does not name a type

}

The scope rules are summarized in 10.5.

3– 6 Basic concepts DRAFT: 25 January 1994 3.3.10 Point of declaration

[basic.scope.pdecl]3.3.10 Point of declaration

1 Thepoint of declarationfor a name is immediately after its complete declarator (8) and before itsinitializer
(if any), except as noted below. For example,

int x = 12;
{ int x = x; }

2 Here the secondx is initialized with its own (unspecified) value.

3 For the point of declaration for an enumerator, see 7.2.

4 The point of declaration of a function with theextern or friend specifier is in the innermost enclosing
namespace just after outermost nested scope containing it which is contained in the namespace.

Box 14
The terms "just after the outermost nested scope" imply name injection. We avoided introducing the con-
cept of name injection in the working paper up until now. We should probably continue to do without. _ __

_ __

5 The point of declaration of a class first declared in anelaborated-type-specifieris immediately after the
identifier;

6 A nonlocal name remains visible up to the point of declaration of the local name that hides it. For example,

const int i = 2;
{ int i[i]; }

declares a local array of two integers.

[basic.link] 3.4 Program and linkage

1 A programconsists of one or moretranslation units(2) linked together. A translation unit consists of a
sequence of declarations.

translation unit:
declaration-seqopt

2 A name which hasinternal linkage is local to its translation unit. Names with internal linkage are: vari-
ables or function members of a namespace that are explicitly declaredstatic ; function members of a
namespace that are explicitly declaredinline and not explicitly declaredextern ; variable members of
a namespace that are explicitly declaredconst and not explicitly declaredextern ; members of an
unnamed namespace.

3 The name of a class that has not been used in the declaration of an object, function, or class that has exter-
nal linkage and has no static members (9.5) and no noninline member functions (9.4.2) has internal linkage.

4 Every declaration of a particular name of namespace scope that is not declared to have internal linkage in
one of these ways shall refer to the same variable (3.9), function (8.3.5), or class (9) in every translation
unit in which it appears. Such names are said to haveexternallinkage. ∗

5 A name which is declared in an unnamed namespace has internal linkage and such name does not refer to
another entity with the same name declared in another translation unit.

6 Typedef names (7.1.3), enumerators (7.2), and template names (14) do not have external linkage.

Box 15
How are the bodies of templates linked to their declarations? _ __

_ __

3.4 Program and linkage DRAFT: 25 January 1994 Basic concepts 3– 7

7 Static class members (9.5) have external linkage.

8 Noninline class member functions have external linkage. Inline class member functions must have exactly
one definition in a program.

Box 16
To be reworked when the ODR is clarified. _ ____________________________________

_ ____________________________________

9 Local names (3.3) explicitly declaredextern have external linkage unless already declaredstatic
(7.1.1).

10 After all adjustments of types (during which typedefs (7.1.3) are replaced by their definitions), the types
specified by all declarations of a particular external name must be identical, except that such types may dif-
fer by the presence or absence of a major array bound (8.3.4). A violation of this rule does not require a
diagnostic.

11 A function may be defined only in namespace or class scope.

12 Linkage to non-C + + declarations can be achieved using alinkage-specification(7.5).

[basic.start] 3.5 Start and termination

[basic.start.main]3.5.1 Main function

1 A program shall contain a function calledmain , which is the designated start of the program.

2 This function is not predefined by the compiler, it cannot be overloaded, and its type is implementation
dependent. The two examples below are allowed on any implementation. It is recommended that any fur-
ther (optional) parameters be added afterargv . The functionmain() may be defined as

int main() { /* ... */ }

or

int main(int argc, char* argv[]) { /* ... */ }

In the latter formargc shall be the number of arguments passed to the program from an environment in
which the program is run. Ifargc is nonzero these arguments shall be supplied as zero-terminated strings
in argv[0] throughargv[argc-1] andargv[0] shall be the name used to invoke the program or
"" . It is guaranteed thatargv[argc]==0 .

3 The functionmain() shall not be called from within a program. The linkage (3.4) ofmain() is imple-
mentation dependent. The address ofmain() shall not be taken andmain() shall not be declared
inline or static .

4 Calling the function

void exit(int);

declared in<stdlib.h> (17.2.4.4) terminates the program without leaving the current block and hence
without destroying any local variables (12.4). The argument value is returned to the program’s environ-
ment as the value of the program.

5 A return statement inmain() has the effect of leaving the main function (destroying any local variables)
and callingexit() with the return value as the argument. If control reaches the end ofmain without
encountering areturn statement, the effect is that of executing

return 0;

3– 8 Basic concepts DRAFT: 25 January 1994 3.5.2 Initialization of non-local objects

[basic.start.init]3.5.2 Initialization of non-local objects

Box 17
This is still under active discussion by the committee. _ __

_ __

1 The initialization of nonlocal static objects (3.7) in a translation unit is done before the first use of any func-
tion or object defined in that translation unit. Such initializations (8.5, 9.5, 12.1, 12.6.1) may be done
before the first statement ofmain() or deferred to any point in time before the first use of a function or
object defined in that translation unit. The default initialization of all static objects to zero (8.5) is per-
formed before any dynamic (that is, run-time) initialization. No further order is imposed on the initial-
ization of objects from different translation units. The initialization of local static objects is described in
6.7.

[basic.start.term]3.6 Termination

1 Destructors (12.4) for initialized static objects are called when returning frommain() and when calling
exit() (17.2.4.4). Destruction is done in reverse order of initialization. The functionatexit() from
<stdlib.h> can be used to specify that a function must be called at exit. Ifatexit() is to be called,
objects initialized before anatexit() call may not be destroyed until after the function specified in the
atexit() call has been called.

2 Where a C + + implementation coexists with a C implementation, any actions specified by the C implementa-
tion to take place after theatexit() functions have been called take place after all destructors have been
called.

3 Calling the function

void abort();

declared in<stdlib.h> terminates the program without executing destructors for static objects and with-
out calling the functions passed toatexit() .

[basic.stc]3.7 Storage duration

1 The storage duration of an object determines its lifetime.

2 The storage class specifiersstatic , auto , andmutable are related to storage duration as described
below.

[basic.stc.static]3.7.1 Static storage duration

1 All non-local variables have static storage duration; such variables are created and destroyed as described in
3.5 and_stmt.decl_.

2 Note that if an object of static storage class has a constructor or a destructor with side effects, it shall not be
eliminated even if it appears to be unused.

Box 18
This awaits committee action on the ‘‘as-if’’ rule. _ ___

_ ___

3 The keywordstatic may be used to declare a local variable with static storage duration; for a description
of initialization and destruction of local variables, see 6.7.

4 The keywordstatic applied to a class variable in a class definition also determines that it has static stor-
age duration.

3.7.2 Automatic storage duration DRAFT: 25 January 1994 Basic concepts 3– 9

[basic.stc.auto]3.7.2 Automatic storage duration

1 Local objects not declaredstatic or explicitly declaredauto haveautomaticstorage duration and are
associated with an invocation of a block.

2 Each object with automatic storage duration is initialized (12.1) each time the control flow reaches its defi-
nition and destroyed (12.4) whenever control passes from within the scope of the object to outside that
scope (6.6).

3 A named automatic object with a constructor or destructor with side effects may not be destroyed before the
end of its block, nor may it be eliminated even if it appears to be unused.

[basic.stc.dynamic]3.7.3 Dynamic storage class

1 Objects may be created and destroyed dynamically, usingoperator new , operator new[] ,
operator delete , oroperator delete [] .

2 In addition, an explicit destructor call may destroy an object.

Box 19
This section requires much more work. _ _________________________________

_ _________________________________

[basic.stc.inherit]3.7.4 Duration of sub-objects

1 The storage duration of class subobjects, base class subobjects and array elements is that of their complete
object (1.5).

[basic.stc.mutable]3.7.5 Themutable keyword

1 The keywordmutable is grammatically a storage class specifier but is unrelated to the storage duration
(lifetime) of the class member it describes. Modifying a class member declaredmutable is deemed not to
be modifying the value of the object that contains that member. Therefore,mutable members ofconst
objects are notconst .

[basic.stc.ref]3.7.6 Reference duration

1 Except in the case of a local reference declaration initialised by an rvalue, a reference may be used to name
an existing object denoted by an lvalue.

2 The reference has static duration if it is declared non-locally, automatic duration if declared locally includ-
ing as a function parameter, and inherited duration if declared in a class.

3 References may or may not require storage.

4 The duration of a reference is distinct from the duration of the object it refers to except in the case of a local
reference declaration initialized by an rvalue.

5 Access through a reference to an object which no longer exists or has not yet been constructed yields unde-
fined behaviour.

Box 20
Can references be declared auto or static? This section probably does not belong here. _ ___

_ ___

3– 10 Basic concepts DRAFT: 25 January 1994 3.8 Types

[basic.types] 3.8 Types

1 There are two kinds of types: fundamental types and compound types. Types may describe objects, refer-
ences (8.3.2), or functions (8.3.5).

2 Arrays of unknown size and classes that have been declared but not defined are calledincompletetypes
because the size and structure of an instance of the type is unknown. Also, thevoid type represents an
empty set of values, so that no objects of typevoid ever exist;void is an incomplete type. The term
incompletely-defined object typeis a synonym forincomplete type; the termcompletely-defined object type
is a synonym forcomplete type;

3 A class type (such as“class X ”) may be incomplete at one point in a translation unit and complete later
on; the type“class X ” is the same type at both points. The declared type of an array may be incomplete
at one point in a translation unit and complete later on; the array types at those two points (“array of
unknown bound ofT” and“array of NT”) are different types. However, the type of a pointer to array of
unknown size cannot be completed.

4 Variables that have incomplete type are prohibited in some contexts. For example:

class X; // X us an incomplete type
extern X* xp; // xp is a pointer to an incomplete type
extern int arr[]; // the type of arr is incomplete
typedef int UNKA[]; // UNKA is an incomplete type
UNKA* arrp; // arrp is a pointer to an incomplete type
UNKA** arrpp;

void foo()
{

xp++; // ill-formed: X is incomplete
arrp++; // ill-formed: incomplete type
arrpp++; // okay: sizeof UNKA* is known

}

struct X { int i; }; // now X is a complete type
int arr[10]; // now the type of arr is complete

X x;
void bar()
{

xp = &x; // okay; type is ‘‘pointer to X’’
arrp = &arr; // ill-formed: different types
xp++; // okay: X is complete
arrp++; // ill-formed: UNKA can’t be completed

}

[basic.fundamental] 3.8.1 Fundamental types

1 There are several fundamental types. The standard header<limits.h> specifies the largest and smallest
values of each for an implementation.

2 Objects declared as characters (char) are large enough to store any member of the implementation’s basic
character set. If a character from this set is stored in a character variable, its value is equivalent to the inte-
ger code of that character. Characters may be explicitly declaredunsigned or signed . Plain char ,
signed char , and unsigned char are three distinct types. Achar , a signed char , and an
unsigned char consume the same amount of space.

3 An enumerationcomprises a set of named integer constant values. Each distinct enumeration constitutes a
differentenumerated type. Each constant has the type of its enumeration.

3.8.1 Fundamental types DRAFT: 25 January 1994 Basic concepts 3– 11

4 There are foursigned integer types: “signed char ”, “short int ”, “int ”, and“long int .” In this
list, each type provides at least as much storage as those preceding it in the list, but the implementation may
otherwise make any of them equal in storage size. Plainint s have the natural size suggested by the
machine architecture; the other signed integer types are provided to meet special needs.

5 Typewchar_t is a distinct type whose values can represent distinct codes for all members of the largest
extended character set specified among the supported locales (_lib.locale_). Typewchar_t has the same
size, signedness, and alignment requirements (1.5) as one of the other integral types, called itsunderlying
type.

6 For each of the signed integer types, there exists a corresponding (but different)signed integer type:
“unsigned char ”, “unsigned short int ”, “unsigned int ”, and “unsigned long
int, ” each of which which occupies the same amount of storage and has the same alignment requirements
(1.5) as the corresponding signed integer type.4) An alignment requirementis an implementation-dependent
restriction on the value of a pointer to an object of a given type (5.4, 1.5).

7 Unsigned integers, declaredunsigned , obey the laws of arithmetic modulo 2n wheren is the number of
bits in the representation of that particular size of integer. This implies that unsigned arithmetic does not
overflow.

8 Values of typebool can be eithertrue or false .5) There are nosigned , unsigned , short , or
long bool types or values. As described below,bool values behave as integral types. Thus, for exam-
ple, they participate in integral promotions (4.1, 5.2.3). Although values of typebool generally behave as
signed integers, for example by promoting (4.1) toint instead ofunsigned int , a bool value can
successfully be stored in a bit-field of any (nonzero) size.

9 There are threefloating types:float , double , andlong double . The typedouble provides at least
as much precision asfloat , and the typelong double provides at least as much precision asdouble .
Each implementation defines the characteristics of the fundamental floating point types in the standard
header<float.h> .

10 Typesbool , char , and the signed and unsigned integer types are collectively calledintegral types. A
synonym for integral type isinteger type. Enumerations (7.2) are not integral, but they can be promoted
(4.1) to signed or unsignedint . Integralandfloating types are collectively calledarithmetictypes.

11 Thevoid type specifies an empty set of values. It is used as the return type for functions that do not return
a value. No object of typevoid may be declared. Any expression may be explicitly converted to type
void (5.4); the resulting expression may be used only as an expression statement (6.2), as the left operand
of a comma expression (5.18), or as a second or third operand of?: (5.16).

[basic.compound]3.8.2 Compound types

1 There is a conceptually infinite number of compound types constructed from the fundamental types in the
following ways:

— arraysof objects of a given type, 8.3.4;

— functions, which have parameters of given types and return objects of a given type, 8.3.5;

— pointersto objects or functions (including static members of classes) of a given type, 8.3.1;

— referencesto objects or functions of a given type, 8.3.2;

— constants, which are values of a given type, 7.1.5;

— classescontaining a sequence of objects of various types (9), a set of functions for manipulating
these objects (9.4), and a set of restrictions on the access to these objects and functions, 11;

4) See 7.1.5.2 regarding the correspondence between types and the sequences oftype-specifiers that designate them.
5) Using abool value in ways described by this International Standard as ‘‘undefined,’’ such as by examining the value of an unini-
tialized automatic variable, might cause it to behave as if is neithertrue nor false .

3– 12 Basic concepts DRAFT: 25 January 1994 3.8.2 Compound types

— structures, which are classes without default access restrictions, 11;

— unions, which are classes capable of containing objects of different types at different times, 9.6;

— pointers to non-static6) class members, which identify members of a given type within objects of a
given class, 8.3.3.

2 In general, these methods of constructing types can be applied recursively; restrictions are mentioned in
8.3.1, 8.3.4, 8.3.5, and 8.3.2.

3 Any type so far mentioned is anunqualified type. Each unqualified type has three correspondingqualified
versionsof its type:7) a const-qualifiedversion, avolatile-qualifiedversion, and aconst-volatile-qualified
version (see 7.1.5). The cv-qualified or unqualified versions of a type are distinct types that belong to the
same category and have the same representation and alignment requirements.8) A compound type is not
cv-qualified (3.8.3) by the cv-qualifiers (if any) of the type from which it is compounded.

4 A pointer to objects of a typeT is referred to as a“pointer toT.” For example, a pointer to an object of type
int is referred to as“pointer toint ” and a pointer to an object of classX is called a“pointer toX.” Point-
ers to incomplete types are allowed although there are restrictions on what can be done with them (3.8).

5 Objects of cv-qualified (3.8.3) or unqualified typevoid* (pointer to void), can be used to point to objects
of unknown type. Avoid* must have enough bits to hold any object pointer.

6 Except for pointers to static members, text referring to“pointers” does not apply to pointers to members.

[basic.type.qualifier] 3.8.3 CV-qualifiers

1 There are twocv-qualifiers, const andvolatile . When applied to an object,const means the pro-
gram may not change the object, andvolatile has an implementation-defined meaning.9) An object may
have both cv-qualifiers.

2 There is a (partial) ordering on cv-qualifiers, so that one object or pointer may be said to bemore cv-
qualified than another. Table 10 shows the relations that constitute this ordering.

Table 10—relations onconst and volatile
_ _____________________________________
no cv-qualifier < const
no cv-qualifier < volatile
no cv-qualifier < const volatile

const < const volatile
volatile < const volatile _ _____________________________________

3 A pointer or reference to cv-qualified type (sometimes called a cv-qualified pointer or reference) need not
actually point to a cv-qualified object, but it is treated as if it does. For example, a pointer toconst int
may point to an unqualifiedint , but a well-formed program may not attempt to change the pointed-to
object through that pointer even though it may change the same object through some other access path.
CV-qualifiers are supported by the type system so that a cv-qualified object or cv-qualified access path to
an object may not be subverted without casting (5.4). For example:

6) Static class members are objects or functions, and pointers to them are ordinary pointers to objects or functions.
7) See 8.3.4 and 8.3.5 regarding cv-qualified array and function types.
8) The same representation and alignment requirements are meant to imply interchangeability as arguments to functions, return values
from functions, and members of unions.
9) Roughly,volatile means the object may change of its own accord (that is, the processor may not assume that the object contin-
ues to hold a previously held value).

3.8.3 CV-qualifiers DRAFT: 25 January 1994 Basic concepts 3– 13

void f()
{

int i = 2; // not cv-qualified
const int ci = 3; // cv-qualified (initialized as required)
ci = 4; // error: attempt to modify const
const int* cip; // pointer to const int
cip = &i; // okay: cv-qualified access path to unqualified
*cip = 4; // error: attempt to modify through ptr to const
int* ip;
ip = cip; // error: attempt to convert const int* to int*

}

[basic.type.name] 3.8.4 Type names

1 Fundamental and compound types can be given names by thetypedef mechanism (7.1.3), and families of
types and functions can be specified and named by thetemplate mechanism (14).

[basic.lval]3.9 Lvalues and rvalues

1 Every expression is either anlvalueor rvalue.

2 An lvalue refers to an object or function. Some rvalue expressions—those of class or cv-qualified class
type—also refer to objects.10)

3 Some builtin operators and function calls yield lvalues. For example, ifE is an expression of pointer type,
then*E is an lvalue expression referring to the object or function to whichE points. As another example,
the function

int& f();

yields an lvalue, so the callf() is an an lvalue expression.

4 Some builtin operators expect lvalue operands, for example the builtin assignment operators all expect their
left hand operands to be lvalues. Other builtin operators yield rvalues, and some expect them. For example
the unary and binary+ operator expect rvalue arguments and yields an rvalue result. Constructor invoca-
tions and calls to functions that do not return references are always rvalues.

5 The discussion of each builtin operator in 5 indicates whether it expects lvalue operands and whether it
yields an lvalue. The discussion of reference initialization in 8.5.3 indicates the behavior of lvalues and
rvalues in other significant contexts.

6 User defined operators are functions, and whether such operators expect or yield lvalues is determined by
their type.

7 Rvalues may be qualified types, however the unqualified type is used unless the rvalue is of class type and
a member function is called on the rvalue.

8 Whenever an lvalue that refers to a non-array11) non-class object appears in a context where an lvalue is not
expected, the value contained in the referenced object is used. When this occurs, the value has the unquali-
fied type of the lvalue. For example:

const int* cip;
int i = *cip // "*cip" has type int

If this type is incomplete, the program is ill-formed.

10)Expressions such as invocations of constructors and of functions that return a class type do in some sense refer to an object, and the
implementation may invoke a member function upon such objects, but the expressions are not lvalues.
11)An lvalue that refers to an array object is usually converted to a (rvalue) pointer to the initial element of the array (4.6).

3– 14 Basic concepts DRAFT: 25 January 1994 3.9 Lvalues and rvalues

Box 21

In C this is undefined._ ___________________

_ ___________________

For example:

struct X;
X* xp;
xp; // okay: pointer to incomplete type
*xp; // error: incomplete type

However, when an lvalue is used as the operand ofsizeof the value contained in the referenced object is
not accessed, since that operator does not evaluate its operand.

9 An lvalue or rvalue of class type can also be used to modify its referent under certain circumstances.

Box 22
Provide example cross-reference. _ ____________________________

_ ____________________________

10 Functions cannot be modified, but pointers to functions may be modifiable.

11 An expression of incomplete type cannot be used to modify an object, but a pointer to such an object may
be modifiable and the object itself may be modifiable at some point in the program where its type is com-
plete.

12 Array objects cannot be modified, but their elements may be modifiable.

13 The referent of aconst -qualified expression shall not be modified (through that expression), except that if
it is of class type and has amutable component, that component may be modified.

14 If an expression can be used to modify its object, it is calledmodifiable. A program that attempts to modify
an object through a nonmodifiable lvalue or rvalue expression is ill-formed.

_ ___ ___

4 Standard conversions [conv]
_ ___ ___

1 Some operators may, depending on their operands, cause conversion of the value of an operand from one
type to another. This section summarizes the conversions demanded by most ordinary operators and
explains the result to be expected from such conversions; it will be supplemented as required by the discus-
sion of each operator. These conversions are also used in initialization (8.5, 8.5.3, 12.8, 12.1). 12.3 and
13.2 describe user-defined conversions and their interaction with standard conversions. The result of a con-
version is an lvalue only if the result is a reference (8.3.2).

[conv.prom] 4.1 Integral promotions

1 A char , wchar_t , bool , short int , enumerator, object of enumeration type (7.2), or anint bit-
field (9.7) (in both their signed and unsigned varieties) may be used wherever an integer rvalue may be
used. In contexts where a constant integer is required, thebool , char , wchar_t , short int , object of
enumeration type (7.2), or bit-field must be constant. (Enumerators are always constant).

2 Except for enumerators, objects of enumeration type, and typewchar_t , if an int can represent all the
values of the original type, the value is converted toint ; otherwise it is converted tounsigned int .

3 For enumerators, objects of enumeration type, and typewchar_t , if an int can represent all the values of
the underlying type, the value is converted to anint ; otherwise if anunsigned int can represent all the
values, the value is converted to anunsigned int ; otherwise, if along can represent all the values, the
value is converted to along ; otherwise it is converted tounsigned long .

4 A Boolean value may be converted toint , takingfalse to zero andtrue to one.

5 This process is calledintegral promotion.

[conv.integral] 4.2 Integral conversions

1 An integer rvalue may be converted to any integral type. If the target type isunsigned, the resulting value
is the least unsigned integer congruent to the source integer (modulo 2n wheren is the number of bits used
to represent the unsigned type). In a two’s complement representation, this conversion is conceptual and
there is no change in the bit pattern.

2 When an integer is converted to a signed type, the value is unchanged if it can be represented in the new
type; otherwise the value is implementation dependent.

3 When an integer is converted tobool , see 4.9.

[conv.double] 4.3 Float and double

1 Single-precision floating point arithmetic may be used forfloat expressions. When a less precise float-
ing value is converted to an equally or more precise floating type, the value is unchanged. When a more
precise floating value is converted to a less precise floating type and the value is within representable range,
the result may be either the next higher or the next lower representable value. If the result is out of range,
the behavior is undefined.

4– 2 Standard conversions DRAFT: 25 January 1994 4.4 Floating and integral

[conv.float] 4.4 Floating and integral

1 Conversion of a floating value to an integral type truncates; that is, the fractional part is discarded. Such
conversions are machine dependent; for example, the direction of truncation of negative numbers varies
from machine to machine. The result is undefined if the value cannot be represented in the integral type.

2 Conversions of integral values to floating type are as mathematically correct as the hardware allows. Loss
of precision occurs if an integral value cannot be represented exactly as a value of the floating type.

[conv.arith] 4.5 Arithmetic conversions

1 Many binary operators that expect operands of arithmetic type cause conversions and yield result types in a
similar way. The purpose is to yield a common type, which is also the type of the result. This pattern is
called the“usual arithmetic conversions.”

2
— If either operand is of typelong double , the other is converted tolong double .

— Otherwise, if either operand isdouble , the other is converted todouble .

— Otherwise, if either operand isfloat , the other is converted tofloat .

— Otherwise, the integral promotions (4.1) are performed on both operands.

— Then, if either operand isunsigned long the other is converted tounsigned long .

— Otherwise, if one operand is along int and the otherunsigned int , then if along int can
represent all the values of anunsigned int , theunsigned int is converted to along int ;
otherwise both operands are converted tounsigned long int .

— Otherwise, if either operand islong , the other is converted tolong .

— Otherwise, if either operand isunsigned , the other is converted tounsigned .

— Otherwise, both operands areint .

[conv.ptr] 4.6 Pointer conversions

1 The following conversions may be performed wherever pointers (8.3.1) are assigned, initialized, compared,
or otherwise used:

— A constant expression (5.19) that evaluates to zero (the null pointer constant) when assigned to,
compared with, alternated with (5.16), or used as an initializer of an operand of pointer type is con-
verted to a pointer of that type. It is guaranteed that this value will produce a pointer distinguishable
from a pointer to any object or function.

— A pointer to a cv-qualified or unqualified object type may be converted to a pointer to the same type
with greater cv-qualifications (3.8.3). That is, for any unqualified typeT, aT* may be converted to
a const T* , a volatile T* , or aconst volatile T* ; a const T* may be converted to a
const volatile T* ; or avolatile T* may be converted to aconst volatile T* .

— A pointer to any object type may be converted to avoid* with the greater or equal cv-
qualifications. That is, for any unqualified typeT. a T* may be converted to avoid* , a const
void* , avolatile void* , or aconst volatile void* ; a const T* may be converted to
a const void* or a const volatile void* ; a volatile T* may be converted to a
volatile void* or a const volatile void* ; and aconst volatile T* may be con-
verted to aconst volatile void* .

— Two pointer types and T2 aresimilar if there exists a typeT and integerN > 0 such that:

T1 is Tcv1 ,n * . . . cv1 , 1 * cv1 , 0

and

4.6 Pointer conversions DRAFT: 25 January 1994 Standard conversions 4– 3

T2 is Tcv2 ,n * . . . cv2 , 1 * cv2 , 0

where eachcvi , j is const , volatile , const volatile , or nothing. An expression of type
T1 may be converted to typeT2 if and only if the following conditions are satisfied:

— the pointer types are similar.

— for everyj > 0, if const is in cv1 ,j thenconst is in cv2 ,j , and similarly forvolatile .

— thecv1 ,j andcv2 ,j are different, thenconst is in everycv2 ,k for 0< k < j.

— A pointer to function may be converted to avoid* provided avoid* has sufficient bits to hold it.

— A pointer to a class may be converted to a pointer to an accessible12) base class of that class (10)
provided the conversion is unambiguous (10.1); a base class is accessible if its public members are
accessible (11.1). The result of the conversion is a pointer to the base class sub-object of the derived
class object. The null pointer (0) is converted into itself.

— An expression with type“array ofT” may be converted to a pointer to the initial element of the array
(5).

— An expression with type“function returningT” is converted to“pointer to function returningT”
except when used as the operand of the address-of operator& or the function call operator() or the
sizeof operator, or when the expression is a reference to a non-static member function.

— A pointer may be converted to typebool , see 4.9.

[conv.ref] 4.7 Reference conversions

1 The following conversion may be performed wherever references (8.3.2) are initialized (including argument
passing (5.2.2) and function value return (6.6.3)):

— An lvalue of a cv-qualified or unqualified object type may be converted to a reference to the same
type with increased cv-qualifications.

— An lvalue of a class may be converted to a reference to an accessible base class (10, 11.1) of that
class (8.5.3) provided this conversion can be done unambiguously (10.2). The result of the conver-
sion is a reference to the base class sub-object of the derived class object.

[conv.mem] 4.8 Pointers to members

1 The following conversion may be performed wherever pointers to members (8.3.3) are initialized, assigned,
compared, or otherwise used:

— A constant expression (5.19) that evaluates to zero is converted to a pointer to member. It is guaran-
teed that this value will produce a pointer to member distinguishable from any other pointer to mem-
ber.

— A pointer to a member of a class may be converted to a pointer to member of a class derived from
that class provided the (inverse) conversion from the derived class to the base class pointer is acces-
sible (11.1) and provided this conversion can be done unambiguously (10.2).

2 The rule for conversion of pointers to members (from pointer to member of base to pointer to member of
derived) appears inverted compared to the rule for pointers to objects (from pointer to derived to pointer to
base) (4.6, 10). This inversion is necessary to ensure type safety.

12)A pointer to a class may be explicitly converted to a pointer to a base class, regardless of accessibility, using a cast (5.2.3 or 5.4).

4– 4 Standard conversions DRAFT: 25 January 1994 4.8 Pointers to members

3 Note that a pointer to member is not a pointer to object or a pointer to function and the rules for conversions
of such pointers do not apply to pointers to members. In particular, a pointer to member cannot be con-
verted to avoid* .

4 A pointer to member may be converted to typebool , see 4.9.

[conv.bool]4.9 Boolean conversions

1 Conversion tobool is required in several contexts, such as initializing abool variable, or in thecondition
of anif or while statement or the first operand of the?: operator.

2 In all such cases, the expression to be converted must be of arithmetic, pointer, or pointer to member type
or of a class type for which only one unambiguous conversion exists to arithmetic, pointer, pointer to mem-
ber, orbool . Otherwise, the program is ill-formed.

3 A zero value (or a pointer that would compare equal to zero) becomesfalse ; any other value becomes
true .

_ ___ ___

5 Expressions [expr]
_ ___ ___

1 This clause defines the syntax, order of evaluation, and meaning of expressions. An expression is a
sequence of operators and operands that specifies a computation. An expression may result in a value and
may cause side effects.

2 Operators can be overloaded, that is, given meaning when applied to expressions of class type (9). Uses of
overloaded operators are transformed into function calls as described in 13.4. Overloaded operators obey
the rules for syntax specified in this clause, but the requirements of operand type, lvalue, and evaluation
order are replaced by the rules for function call. Relations between operators, such as++a meaninga+=1 ,
are not guaranteed for overloaded operators (13.4).13)

3 This clause defines the operators when applied to types for which they have not been overloaded. Operator
overloading cannot modify the rules for operators applied to types for which they are defined by the lan-
guage itself.

4 Operators may be regrouped according to the usual mathematical rules only where the operators really are
associative or commutative. Overloaded operators are never assumed to be associative or commutative.
Except where noted, the order of evaluation of operands of individual operators and subexpressions of indi-
vidual expressions is unspecified. In particular, if a value is modified twice in an expression, the result of
the expression is unspecified except where an ordering is guaranteed by the operators involved. For exam-
ple,

i = v[i++]; // the value of ‘i’ is undefined
i=7,i++,i++; // ‘i’ becomes 9

5 The handling of overflow and divide by zero in expression evaluation is implementation dependent. Most
existing implementations of C + + ignore integer overflows. Treatment of division by zero and all floating
point exceptions vary among machines, and is usually adjustable by a library function.

6 Except where noted, operands of typesconst T, volatile T, T&, const T&, andvolatile T& can
be used as if they were of the plain typeT. Similarly, except where noted, operands of typeT* const
andT* volatile can be used as if they were of the plain typeT* . Similarly, a plainT can be used
where avolatile T or aconst T is required. These rules apply in combination so that, except where
noted, aconst T* volatile can be used where aT* is required. Such uses do not count as standard
conversions when considering overloading resolution (13.2).

7 If an expression initially has the type“reference toT” (8.3.2, 8.5.3), the type is adjusted to“ T” prior to any
further analysis, the expression designates the object or function denoted by the reference, and the expres-
sion is an lvalue. A reference can be thought of as a name of an object.

8 User-defined conversions of class objects to and from fundamental types, pointers, and so on, can be
defined (12.3). If unambiguous (13.2), such conversions will be applied by the compiler wherever a class
object appears as an operand of an operator, as an initializer (8.5), as the controlling expression in a selec-
tion (6.4) or iteration (6.5) statement, as a function return value (6.6.3), or as a function argument (5.2.2).

13)Nor is it guaranteed for typebool ; += must not havebool left operand.

5– 2 Expressions DRAFT: 25 January 1994 5.1 Primary expressions

[expr.prim] 5.1 Primary expressions

1 Primary expressions are literals, names, and names qualified by the scope resolution operator:: .

primary-expression:
literal
this
:: identifier
:: operator-function-id
:: qualified-id
(expression)
id-expression

2 A literal is a primary expression. Its type depends on its form (2.9).

3 In the body of a nonstatic member function (9.4), the keywordthis names a pointer to the object for
which the function was invoked. The keywordthis cannot be used outside a class member function
body.

Box 23

In a constructor it is common practice to allowthis in mem-initializers._ __

_ __

4 The operator:: followed by anidentifier, a qualified-id, or anoperator-function-idis a primary expres-
sion. Its type is specified by the declaration of the identifier, name, oroperator-function-id. The result is
the identifier, name, oroperator-function-id. The result is an lvalue if the identifier is. The identifier or
operator-function-idmust be of file scope. Use of:: allows a type, an object, a function, or an enumerator
to be referred to even if its identifier has been hidden (3.3).

5 A parenthesized expression is a primary expression whose type and value are identical to those of the
unadorned expression. The presence of parentheses does not affect whether the expression is an lvalue.

6 A id-expressionis a restricted form of aprimary-expressionthat can appear after. and-> (5.2.4):

id-expression: ∗
unqualified-id
qualified-id

unqualified-id:
identifier
operator-function-id
conversion-function-id
˜ class-name

Box 24
Issue: now it’s allowed to invoke~int() , but~class-name doesn’t allow for that. _ ___

_ ___

7 An identifier is anid-expressionprovided it has been suitably declared (7). Foroperator-function-ids, see
13.4. Forconversion-function-ids, see 12.3.2. Aclass-nameprefixed by~ denotes a destructor; see 12.4.

qualified-id:
nested-name-specifier unqualified-id

8 A nested-name-specifierthat names a class (7.1.5) followed by:: and the name of a member of that class
(9.2), or a member of a base of that class (10), is aqualified-id; its type is the type of the member. The
result is the member. The result is an lvalue if the member is. Theclass-namemay be hidden by a nontype
name, in which case theclass-nameis still found and used. Whereclass-name:: class-nameis used, and
the twoclass-names refer to the same class, this notation names the constructor (12.1). Whereclass-name
:: ~ class-nameis used, the twoclass-names must refer to the same class; this notation names the

5.1 Primary expressions DRAFT: 25 January 1994 Expressions 5– 3

destructor (12.4). Multiply qualified names, such asN1::N2::N3::n , can be used to refer to nested
types (9.8).

[expr.post] 5.2 Postfix expressions

1 Postfix expressions group left-to-right.

postfix-expression:
primary-expression
postfix-expression[expression]
postfix-expression(expression-listopt)
simple-type-specifier(expression-listopt)
postfix-expression. id-expression
postfix-expression-> id-expression
postfix-expression++
postfix-expression--
dynamic_cast < type-id > (expression)
static_cast < type-id > (expression)
reinterpret_cast < type-id > (expression)
const_cast < type-id > (expression)
typeid (expression)
typeid (type-id)

expression-list:
assignment-expression
expression-list, assignment-expression

[expr.sub] 5.2.1 Subscripting

1 A postfix expression followed by an expression in square brackets is a postfix expression. The intuitive
meaning is that of a subscript. One of the expressions must have the type“pointer toT” and the other must
be of enumeration or integral type. The type of the result is“T.” The type“T” must be complete. The
expressionE1[E2] is identical (by definition) to*((E1)+(E2)) . See 5.3 and 5.7 for details of* and+
and 8.3.4 for details of arrays.

[expr.call] 5.2.2 Function call

1 There are two kinds of function call: ordinary function call and member function14) (9.4) call. A function
call is a postfix expression followed by parentheses containing a possibly empty, comma-separated list of
expressions which constitute the arguments to the function. For ordinary function call, the postfix expres-
sion must be a function name, or a pointer or reference to function. For member function call, the postfix
expression must be an implicit (9.4) or explicit class member access (5.2.4) whoseid-expressionis a func-
tion member name, or a pointer-to-member expression (5.5) selecting a function member. The first expres-
sion in the postfix expression is then called theobject expression, and the call is as a member of the object
pointed to or referred to. If a function or member function name is used, the name may be overloaded (13),
in which case the appropriate function will be selected according to the rules in 13.2. The function called in
a member function call is normally selected according to the static type of the object expression (see 10),
but if that function isvirtual the function actually called will be the final overrider (10.3) of the selected
function in the dynamic type of the object expression (i.e., the type of the object pointed or referred to by
the current value of the object expression).

2 The type of the function call expression is the return type of the statically chosen function (i.e., ignoring the
virtual keyword), even if the type of the function actually called is different. This type must be com-
plete or the typevoid .

14)A static member function (9.5) is an ordinary function.

5– 4 Expressions DRAFT: 25 January 1994 5.2.2 Function call

3 When a function is called, each parameter (8.3.5) is initialized (8.5.3, 12.8, 12.1) with its corresponding
argument. Standard (4) and user-defined (12.3) conversions are performed. The value of a function call is
the value returned by the called function except in a virtual function call if the return type of the final over-
rider is different from the return type of the statically chosen function, the value returned from the final
overrider is converted to the return type of the statically chosen function. A function may change the val-
ues of its nonconstant parameters, but these changes cannot affect the values of the arguments except where
a parameter is of a non-const reference type (8.3.2). Where a parameter is of reference type a temporary
variable is introduced if needed (7.1.5, 2.9, 2.9.4, 8.3.4, 12.2). In addition, it is possible to modify the val-
ues of nonconstant objects through pointer parameters.

4 A function may be declared to accept fewer arguments (by declaring default arguments (8.3.6)) or more
arguments (by using the ellipsis,... 8.3.5) than the number of parameters in the function definition (8.4).

5 If no declaration of the called function is accessible from the scope of the call the program is ill-formed.
This implies that, except where the ellipsis (...) is used, a parameter is available for each argument.

6 Any argument of typefloat for which there is no parameter is converted todouble before the call; any
of char , short , enumeration, or a bit-field type for which there is no parameter are converted toint or
unsigned by integral promotion (4.1). An object of a class for which no parameter is declared is passed
as a data structure.

Box 25

To ‘‘pass a parameter as a data structure’’ means, roughly, that the parameter must be a PODS, and that
otherwise the behavior is undefined. This must be made more precise._ __

_ __

7 An object of a class for which a parameter is declared is passed by initializing the parameter with the argu-
ment by a constructor call before the function is entered (12.2, 12.8).

8 The order of evaluation of arguments is unspecified; take note that compilers differ. All side effects of
argument expressions take effect before the function is entered. The order of evaluation of the postfix
expression and the argument expression list is unspecified.

9 Recursive calls are permitted.

10 A function call is an lvalue if and only if the result type is a reference.

[expr.type.conv] 5.2.3 Explicit type conversion (functional notation)

1 A simple-type-specifier(7.1.5) followed by a parenthesizedexpression-listconstructs a value of the speci-
fied type given the expression list. If the expression list specifies a single value, the expression is equiva-
lent (in definedness, and if defined in meaning) to the corresponding cast expression (5.4). If the expres-
sion list specifies more than a single value, the type must be a class with a suitably declared constructor
(8.5, 12.1).

2 A simple-type-specifier(7.1.5) followed by a (empty) pair of parentheses constructs a value of the specified
type. If the type is a class with a default constructor (12.1), that constructor will be called; otherwise the
result is the default value given to a static object of the specified type. See also (5.4).

[expr.ref] 5.2.4 Class member access

1 A postfix expression followed by a dot (.) or an arrow (->) followed by anid-expressionis a postfix
expression. For the first option (dot) the type of the first expression (theobject expression) must be“class
object” (of a complete type). For the second option (arrow) the type of the first expression (thepointer
expression) must be“pointer to class object” (of a complete type). Theid-expressionmust name a member
of that class, except that an imputed destructor may be explicitly invoked for a built-in type, see 12.4.
Therefore, ifE1 has the type“pointer to classX,” then the expressionE1->E2 is converted to the equiva-
lent form (*(E1)).E2 ; the remainder of this subclause will address only the first option (dot)15). If the

15)Note that ifE1 has the type“pointer to classX”, then(*(E1)) is an lvalue.

5.2.4 Class member access DRAFT: 25 January 1994 Expressions 5– 5

id-expressionis a qualified-id, the class specified by the thenested-name-specifierof the qualified-id is
looked up as a type both in the class of the object expression (or the class pointed to by the pointer expres-
sion) and the context in which the entirepostfix-expressionoccurs. If thenested-name-specifiercontains a
template-class-id(_temp.class_), its template-arguments are evaluated in the context in which the entire
postfix-expressionoccurs. For the purpose of this type lookup, the name, if any, of each class is also con-
sidered a nested class member of that class. These searches must yield a single type which may be found in
either or both contexts. Abbreviatingobject-expression.id-expressionasE1.E2 , then the type and lvalue
properties of this expression are determined as follows. In the remainder of this subclause,cq represents
eitherconst or the absence ofconst ; vq represents eithervolatile or the absence ofvolatile .

2 If E2 is declared to have type“reference toT”, thenE1.E2 is an lvalue; the type ofE1.E2 is “T”. Other-
wise, one of the following rules applies.

— If E2 is a static data member, and the type ofE2 is “cq vqT”, thenE1.E2 is an lvalue; the expres-
sion designates the named member of the class. The type ofE1.E2 is “cq vqT”.

— If E2 is a (possibly overloaded) static member function, and the type ofE2 is “cv-qualifier function
of(parameter type list) returningT”, thenE1.E2 is an lvalue; the expression designates the static
member function. The type ofE1.E2 is the same type as that ofE2, namely“cv-qualifier function
of(parameter type list) returningT”.

— If E2 is a non-static data member, and the type ofE1 is “cq1 vq1X”, and the type ofE2 is “cq2 vq2
T”, the expression designates the named member of the object designated by the first expression. If
E1 is an lvalue, thenE1.E2 is an lvalue. Let the notationvq12stand for the“union” of vq1 and
vq2 ; that is, ifvq1or vq2 is volatile , thenvq12is volatile . Similarly, let the notationcq12
stand for the“union” of cq1andcq2; that is, ifcq1or cq2 is const , thencq12is const . If E2 is
declared to be amutable member, then the type ofE1.E2 is “vq12T”. If E2 is not declared to be
amutable member, then the type ofE1.E2 is “cq12 vq12T”.

— If E2 is a (possibly overloaded) non-static member function, and the type ofE2 is “cv-qualifier
function of(parameter type list) returningT”, thenE1.E2 is not an lvalue. The expression desig-
nates a member function (of some classX). The expression may be used only as the left-hand
operand of a member function call (9.4) or as the operand of the parenthesis operator (13.4.4). The
type ofE1.E2 is “classX’s cv-qualifier member function of(parameter type list) returningT”.

— If E2 is a nested type, the expressionE1.E2 is ill-formed.

— If E2 is a member constant, and the type ofE2 is “T,” the expressionE1.E2 is not an lvalue. The
type ofE1.E2 is “T”.

3 Note that“class objects” can be structures (9.2) and unions (9.6). Classes are discussed in 9.

[expr.post.incr] 5.2.5 Increment and decrement

1 The value obtained by applying a postfix++ is the value of the operand. The operand must be a modifiable
lvalue. The type of the operand must be an arithmetic type or a pointer to object type. After the result is
noted, the object is incremented by1, unless the object is of typebool , in which case it is set totrue
(this use is deprecated). The type of the result is the same as the type of the operand, but it is not an lvalue.
See also 5.7 and 5.17.

2 The operand of postfix-- is decremented analogously to the postfix++ operator, except that the operand
shall not be of typebool .

[expr.dynamic.cast] 5.2.6 Dynamic cast

1 The result of the expressiondynamic_cast<T>(v) is of typeT, which must be a pointer or a reference
to a complete class type or“pointer tocv void ”. The type ofv must be a complete pointer type ifT is a
pointer, or a complete reference type ifT is a reference.

5– 6 Expressions DRAFT: 25 January 1994 5.2.6 Dynamic cast

2 If T is a pointer to classB andv is a pointer to classD such thatB is an unambiguous accessible direct or
indirect base class ofD, the result is a pointer to the uniqueB sub-object of theD object pointed to byv .
Similarly, if T is a reference to classB andv is a reference to classD such thatB is an unambiguous acces-
sible direct or indirect base class ofD, the result is a reference to the unique16) B sub-object of theD object
referred to byv . For example,

struct B {};
struct D : B {};
void foo(D* dp)
{

B* bp = dynamic_cast<B*>(dp); // equivalent to B* bp = dp;
}

Otherwisev must be a pointer or reference to a polymorphic type (10.3).

3 If T is void* then the result is a pointer to the complete object (12.6.2) pointed to byv . Otherwise, a run-
time check is applied to see if the object pointed or referred to byv can be converted to the type pointed or
referred to byT.

4 The run-time check logically executes like this: If, in the complete object pointed (referred) to byv , v
points (refers) to an umambiguous base class sub-object of aT object, the result is a pointer (reference) to
thatT object. Otherwise, if the type of the complete object has an unambiguous public base class of typeT,
the result is a pointer (reference) to theT sub-object of the complete object. Otherwise, the run-time check
fails.

5 The value of a failed cast to pointer type is the null pointer. A failed cast to reference type throws
Bad_cast (17.3.2.4). For example,

class A { virtual void f(); };
class B { virtual void g(); };
class D : public virtual A, private B {};
void g()
{

D d;
B* bp = (B*)&d; // cast needed to break protection
A* ap = &d; // public derivation, no cast needed
D& dr = dynamic_cast<D&>(*bp); // succeeds
ap = dynamic_cast<A*>(bp); // succeeds
bp = dynamic_cast<B*>(ap); // fails
ap = dynamic_cast<A*>(&dr); // succeeds
bp = dynamic_cast<B*>(&dr); // fails

}

class E : public D , public B {};
class F : public E, public D {}
void h()
{

F f;
A* ap = &f; // okay: finds unique A
D* dp = dynamic_cast<D*>(ap); // fails: ambiguous
E* ep = (E*)ap; // error: cast from virtual base
E* ep = dynamic_cast<E*>(ap); // succeeds

}

16)The complete object pointed or refereed to byv may contain otherB objects as base classes, but these are ignored.

5.2.7 Type identification DRAFT: 25 January 1994 Expressions 5– 7

[expr.typeid] 5.2.7 Type identification

1 The result of atypeid expression is of typeconst Type_info& (17.3.4.2). The value is a reference to
aType_info object that represents thetype-idor the type of theexpressionrespectively.

2 If the expressionis a reference to a polymorphic type (10.3) theType-info for the complete object
(12.6.2) referred to is the result. Where theexpressionis a pointer to a polymorphic type dereferenced
using* or [expression] the Type-info for the complete object pointed to is the result. Otherwise, the
result is theType-info representing the (static) type of theexpression.

[expr.static.cast]5.2.8 Static cast

1 The result of the expressionstatic_cast<T>(v) is of type T. Types may not be defined in a
static_cast. Any type conversion not mentioned below and not explicitly defined by the user (12.3)
is ill-formed.

2 Thestatic_cast operator cannot cast away constness. See below.

3 Any implicit conversion (including standard conversions and user-defined conversions) can be performed
explicitly usingstatic_cast.

4 A pointer to a complete classB may be explicitly converted to a pointer to a complete classD that hasB as
a direct or indirect base class if an unambiguous conversion fromD to B exists (4.6, 10.2) and ifB is not a
virtual base class (10.1). Such a cast from a base to a derived class is valid only if the pointer points to an
object of the base class that is actually a sub-object of an object of the derived class; the resulting pointer
points to the enclosing object of the derived class. Otherwise (the object of the base class is not a sub-
object of an object of the derived class) the result of the cast is undefined.

Box 26
The two proposals differed in the preceding behavior. We believe this is the intended behavior; _ __

_ __

Aside from this pointer conversion (base-to-derived), the inverse of any implicit conversion can be per-
formed explicitly usingstatic_cast subject to the restriction that the explicit conversion does not cast
away constness.

5 Additional conversions that may be performed explicitly usingstatic_cast are listed below. No other
conversions may be performed explicitly usingstatic_cast.

6 A value of integral type may be explicitly converted to an enumeration type. The result of the conversion
will compare equal to the integral value provided that the value is within the range of the enumeration’s
underlying type (7.2). Otherwise, the result is undefined.

7 A “pointer to member ofclass A of type T1” may be explicitly converted to a“pointer to member of
class B of typeT2” whenclass A andclass B are either the same class or one is is unambiguously
derived from the other (4.6), and the typesT1 andT2 are the same.

Box 27
The proposal implied the above without direct statement. Check this. _ ___

_ ___

The effect of calling a member function through a pointer to member function type that differs from the
type used in the definition of the member function is undefined.

8 The effect of calling a member function through a pointer to member function type that differs from the
type used in the definition of the member function is undefined.

9 An lvalue expression of type“ T” may be explicitly converted to the type“reference toX” if an expression
of type“pointer toT” may be explicitly converted to the type“pointer toX” with a static_cast . The
implementation shall not copy a sub-object to bind a reference; for example,

5– 8 Expressions DRAFT: 25 January 1994 5.2.8 Static cast

struct B {};
struct D : public B {};
const B &r = D(); // copying only B sub-object not allowed

Box 28
Issue (core#1, editorial): An rvalue expression of type“T” may be explicitly converted to the type“refer-
ence toconst X ” if a variable of type“reference toconst X ” can be initialized with an rvalue expres-
sion of type“T”. _ __

_ __

Constructors or conversion functions are not called as the result of a cast to a reference. Conversion of a
reference to a base class to a reference to a derived class is exactly analogous to the conversion of a pointer
to a base class to a pointer to a derived class, with respect to restrictions and semantics.

10 The result of a cast to a reference type is an lvalue; the results of other casts are not. Operations performed
on the result of a pointer or reference cast refer to the same object as the original (uncast) expression.

11 An expression may be converted to a class type (only) if an appropriate constructor or conversion operator
has been declared; see12.3.

12 If a null pointer value is converted to a type“pointer toT”, the resulting pointer value is a null pointer
value.

13 In the description of types, the notationcv represents a set of cv-qualifiers (one of {const }, { vola-
tile }, { const, volatile }, or the empty set).

Box 29
This probably should be moved to the discussion of types. _ __

_ __

14 Any expression may be explicitly converted to type“cvvoid .”

Box 30
We believe this was the intent; check this. _ ___________________________________

_ ___________________________________

15 The following rules define casting away constness. In these rulesTn and Xn represent types. For two
pointer types:

X1 = T1 cv11 * cv12 * ... cv1N * where T1 is not a pointer type and
X2 = T2 cv21 * cv22 * ... cv2M * where T2 is not a pointer type and
K is the minimum of N and M,

Box 31
Editor: re-format this into subscripts, etc. _ __________________________________

_ __________________________________

casting from X1 to X2 casts away constness if, for a non-pointer typeT (e.g.,int), there does not exist an
implicit conversion from:

T cv1(N-K+1) * cv1(N-K+2) * ... cv1N * to
T cv2(N-K+1) * cv2(M-K+2) * ... cv2M *

16 Casting from a type“reference toT1” to “reference toT2” casts away constness if a cast from“pointer to
T1” to “pointer toT2” casts away constness.

17 Casting from“pointer toC1 member of typeT1” to “pointer toC2 member of typeT2” casts away const-
ness if a cast from“pointer toT1” to “pointer toT2” casts away constness.

5.2.8 Static cast DRAFT: 25 January 1994 Expressions 5– 9

18 For static_cast or const_cast , N and M must be equal, otherwise areinterpret_cast is
required. Note that these rules are not intended to protect constness in all cases -- in particular, conversions
between pointers to functions are not covered because such conversions lead to values whose use causes
undefined behavior.

[expr.reinterpret.cast]5.2.9 Reinterpret cast

1 The result of the expressionreinterpret_cast<T>(v) is of type“T.” Types may not be defined in a
reinterpret_cast. Any type conversion not mentioned below and not explicitly defined by the user
(12.3) is ill-formed.

2 Thereinterpret_cast operator cannot cast away constness; seestatic_cast (_expr.static.cast_).

3 Conversions that may be performed explicitly usingreinterpret_cast are listed below. The map-
ping performed byreinterpret_cast is implementation-defined; it may, or may not, produce a repre-
sentation different from the original value.

4 A pointer may be explicitly converted to any integral type large enough to hold it. The mapping function is
implementation-defined, but is intended to be unsurprising to those who know the addressing structure of
the underlying machine.

5 A value of integral type may be explicitly converted to a pointer. A pointer converted to an integer of suffi-
cient size (if any such exists on the implementation) and back to the same pointer type will have its original
value; mappings between pointers and integers are otherwise implementation-defined.

6 An incomplete class may be used in a pointer cast. If there is any inheritance relationship between the
source and target classes, the behavior is undefined.

7 A pointer to function may be explicitly converted to a pointer to an object type provided the object pointer
type has enough bits to hold the function pointer. A pointer to an object type may be explicitly converted
to a pointer to function provided the function pointer type has enough bits to hold the object pointer. In
both cases, use of the resulting pointer may cause addressing exceptions if the subject pointer does not refer
to suitable storage.

8 A pointer to a function may be explicitly converted to a pointer to a function of a different type. The effect
of calling a function through a pointer to a function type that differs from the type used in the definition of
the function is undefined. See also 4.6.

9 A “pointer to member ofclass A of type T1” may be explicitly converted to a“pointer to member of
class B of typeT2” whenclass A andclass B are either the same class or one is is unambiguously
derived from the other (4.6), and the typesT1 andT2 differ. (The case whenT1 andT2 are the same type
is covered bystatic_cast , (5.2.8).

10 The effect of calling a member function through a pointer to member function type that differs from the
type used in the definition of the member function is undefined.

11 If a null pointer value is converted to a type“pointer toT”, the resulting pointer value is a null pointer
value.

12 An lvalue expression of type“ T” may be explicitly converted to the type“reference toX” if an expression
of type“pointer toT” may be explicitly converted to the type“pointer toX” usingreinterpret_cast .
Constructors or conversion functions are not called as the result of a cast to a reference. Conversion of a
reference to a base class to a reference to a derived class is exactly analogous to the conversion of a pointer
to a base class to a pointer to a derived class, with respect to restrictions and semantics.

13 The result of a cast to a reference type is an lvalue; the results of other casts are not. Operations performed
on the result of a pointer or reference cast refer to the same object as the original (uncast) expression.

5– 10 Expressions DRAFT: 25 January 1994 5.2.10 Const cast

[expr.const.cast]5.2.10 Const cast

1 The result of the expressionconst_cast<T>(v) is of type “T.” Types may not be defined in a
const_cast. Any type conversion not mentioned below and not explicitly defined by the user (12.3) is
ill-formed.

2 A pointer or reference to any object type, or a pointer to data member may be explicitly converted to a type
that is identical except forconst andvolatile qualifiers. For pointers and references, the result will
refer to the original object. For pointers to data members, the result will refer to the same member as the
original (uncast) pointer to data member. Depending on the type of the referenced object, a write operation
through the resulting pointer, reference or pointer to data member may produce undefined behavior; see
decl.type.

3 If a null pointer value is converted to a type“pointer toT”, the resulting pointer value is a null pointer
value.

[expr.unary]5.3 Unary expressions

1 Expressions with unary operators group right-to-left.

unary-expression:
postfix-expression
++ unary-expression
-- unary-expression
unary-operator cast-expression
sizeof unary-expression
sizeof (type-id)
new-expression
delete-expression

unary-operator: one of
* & + - ! ~

[expr.unary.op]5.3.1 Unary operators

1 The unary* operator meansindirection: the expression must be a pointer, and the result is an lvalue refer-
ring to the object to which the expression points. If the type of the expression is“pointer toT,” the type of
the result is“T.”

2 The result of the unary& operator is a pointer to its operand. The operand must be an lvalue, or a
qualified-id. In the first two cases, if the type of the expression is“T,” the type of the result is“pointer to
T.” In particular, the address of an object of type“cv T” is “pointer tocv T,” with the same cv-qualifiers.
For example, the address of an object of type“const int ” has type“pointer toconst int .” For a
qualified-id, if the member is not static and of type“T” in class C , the type of the result is“pointer to
member ofclass C of typeT.” For a static member of type“T”, the type is plain“pointer toT.”

3 The address of an object of incomplete type may be taken, but only if the complete type of that object does
not have the address-of operator (operator&()) overloaded; no diagnostic is required.

4 The address of an overloaded function (13) can be taken only in a context that uniquely determines which
version of the overloaded function is referred to (see 13.3).

5 The operand of the unary+ operator must have arithmetic or pointer type and the result is the value of the
argument. Integral promotion is performed on integral operands. The type of the result is the type of the
promoted operand.

6 The operand of the unary- operator must have arithmetic type and the result is the negation of its operand.
Integral promotion is performed on integral operands. The negative of an unsigned quantity is computed by
subtracting its value from 2n, wheren is the number of bits in the promoted operand. The type of the result
is the type of the promoted operand.

5.3.1 Unary operators DRAFT: 25 January 1994 Expressions 5– 11

7 The operand of the logical negation operator! is converted tobool (4.9); its value istrue if the con-
verted operand isfalse andfalse otherwise. The type of the result isbool .

8 The operand of~ must have integral type; the result is the one’s complement of its operand. Integral pro-
motions are performed. The type of the result is the type of the promoted operand.

[expr.pre.incr] 5.3.2 Increment and decrement

1 The operand of prefix++ is incremented by1, or set totrue if it is bool (this use is deprecated). The
operand must be a modifiable lvalue. The type of the operand must be an arithmetic type or a pointer to a
completely-defined object type. The value is the new value of the operand; it is an lvalue. Ifx is not of
type bool , the expression++x is equivalent tox+=1 . See the discussions of addition (5.7) and assign-
ment operators (5.17) for information on conversions.

2 The operand of prefix-- is decremented analogously to the prefix++ operator, except that the operand
shall not be of typebool .

[expr.sizeof] 5.3.3 Sizeof

1 Thesizeof operator yields the size, in bytes, of its operand. The operand is either an expression, which
is not evaluated, or a parenthesized type name. Thesizeof operator may not be applied to an expression
that has function or incomplete type, or to the parenthesized name of such a type, or to an lvalue that desig-
nates a bit-field. Abyte is unspecified by the language except in terms of the value ofsizeof ;
sizeof(char) is 1, butsizeof(bool) is implementation-defined.17)

2 When applied to a reference, the result is the size of the referenced object. When applied to a class, the
result is the number of bytes in an object of that class including any padding required for placing such
objects in an array. The size of any class or class object is greater than zero. When applied to an array, the
result is the total number of bytes in the array. This implies that the size of an array ofn elements isn times
the size of an element.

3 Thesizeof operator may be applied to a pointer to a function, but not to a function.

4 Types may not be defined in asizeof expression.

5 The result is a constant of typesize_t , an implementation-dependent unsigned integral type defined in
the standard header<stddef.h> .

[expr.new] 5.3.4 New

1 Thenew-expressionattempts to create an object of thetype-id(8.1) to which it is applied. This type must
be a complete object type.

new-expression:
:: opt new new-placementopt new-type-id new-initializeropt

:: opt new new-placementopt (type-id) new-initializeropt

new-placement:
(expression-list)

new-type-id:
type-specifier-seq new-declaratoropt

new-declarator:
* cv-qualifier-seqopt new-declaratoropt

:: opt nested-name-specifier* cv-qualifier-seqopt new-declaratoropt
direct-new-declarator

17)sizeof(bool) is not required to be1.

5– 12 Expressions DRAFT: 25 January 1994 5.3.4 New

direct-new-declarator:
[expression]
direct-new-declarator[constant-expression]

new-initializer:
(expression-listopt)

The lifetime of an object created by anew-expressionis not restricted to the scope in which it is created.
Thenew-expressionreturns a pointer to the object created. When that object is an array (that is, thedirect-
new-declaratorsyntax is used or thenew-type-idor type-id denotes an array type), thenew-expression
yields a pointer to the initial element (if any) of the array. For example, bothnew int andnew int[10]
return anint ∗ and the type ofnew int[i][10] is int (*)[10] . Every constant-expressionin a
direct-new-declaratormust be a constant integral expression (5.19) with a strictly positive value. The
expressionin a direct-new-declaratormust be of integral type. If theexpressionhas a negative value, the
result of the new-expressionis undefined. Thus, for example, ifn is a variable of typeint ,
new float[n][5] is well-formed (becausen is the expressionof a direct-new-declarator), but
new float[5][n] is not well-formed (becausen is not aconstant-expression). If n is negative, the
effect ofnew float[n][5] is undefined.

2 When the value of theexpressionin adirect-new-declaratoris zero, an array with no elements is allocated.
The pointer returned by thenew-expressionwill be non-null and distinct from the pointer to any other
object.

3 The type-specifier-seqmay not containconst , volatile , class declarations, or enumeration declara-
tions.

4 Storage for the object created by anew-expressionis obtained from the appropriateallocation function
(12.5) (operator new() for non-arrays oroperator new[]() for arrays). When the allocation func-
tion is called, the first argument will be amount of space requested (which may be larger than the size of the
object being created only if that object is an array). Thenew-placementsyntax can be used to supply addi-
tional arguments. For example,new T results in a call ofoperator new(sizeof(T)) , new(2,f) T
results in a call ofoperator new(sizeof(T),2,f) , new T[5] results in a call ofoperator
new[](x) , andnew(2,f) T[5] results in a call ofoperator new[](y,2,f) , wherex andy are
greater than or equal tosizeof(T[5]) .

5 The return value from the allocation function, if non-null, will be assumed to point to a block of appropri-
ately aligned available storage of the requested size, and the object will be created in that block (but not
necessarily at the beginning of the block, if the object is an array). The allocation function may indicate
failure by throwing anxalloc exception (15, 17.3.3.1). In this case no initialization is done.

6 If a class has one or more constructors (12.1) anew-expressionfor that class calls one of them to initialize
the object. If the class does not have a default constructor, suitable arguments (13.2) must be provided in a
new-initializer. If there is no constructor and anew-initializeris used, it must be of the form(expression)
or () . If an expression is present it will be used to initialize the object; if not, or anew-initializer is not
used, the object will start out with an unspecified value.

7 Access and ambiguity control are done for both the allocation function and the constructor (12.1, 12.5).

8 An object of a class can be created bynew only if suitable arguments are provided to the class’s construc-
tors, or if the class has a default constructor.18)

9 No initializers can be specified for arrays. Arrays of objects of a class can be created by anew-expression
only if the class has a default constructor.19) In that case, the default constructor will be called for each ele-
ment of the array, in order of increasing address.

18)This means thatstruct s{}; s x; s y(x); is allowed on the grounds thatclass s has an implicitly declared copy con-
structor, to which the argumentx is being provided.
19)PODS structs have an implicitly-declared default constructor.

5.3.4 New DRAFT: 25 January 1994 Expressions 5– 13

10 Whether the allocation function is called before evaluating the constructor arguments, after evaluating the
constructor arguments but before entering the constructor, or by the constructor itself is unspecified. It is
also unspecified whether the arguments to a constructor are evaluated if the allocation function returns the
null pointer or throws an exception.

11 In anew-type-idused as the operand fornew, parentheses may not be used. This implies that

new int(*[10])(); // error

is ill-formed because the binding is

(new int) (*[10])(); // error

The explicitly parenthesized version of thenew operator can be used to create objects of derived types. For
example,

new (int (*[10])());

allocates an array of10 pointers to functions (taking no argument and returningint).

12 Thenew-typein anew-expressionis the longest possible sequence ofnew-declarators. This prevents ambi-
guities between declarator operators&, * , [] , and their expression counterparts. For example,

new int*i; // syntax error: parsed as ‘(new int*) i’
// not as ‘(new int)*i’

The* is the pointer declarator and not the multiplication operator.

[expr.delete] 5.3.5 Delete

1 Thedelete-expressionoperator destroys a complete object (1.5) or array created by anew-expression.

delete-expression:
:: opt delete cast-expression
:: opt delete [] cast-expression

The first alternative is for non-array objects, and the second is for arrays. The result has typevoid .

2 In either alternative, if the value of the operand ofdelete is the null pointer the operation has no effect.
Otherwise, in the first alternative (delete object), the value of the operand ofdelete must be a pointer to a
non-array object created by anew-expressionwithout anew-placementspecification, or a pointer to a sub-
object representing a base class of such an object.

Box 32
Issue: ... or a class with an unambiguous conversion to such a pointer type ... _ ___

_ ___

In the second alternative (delete array), the value of the operand ofdelete must be a pointer to an array
created by anew-expressionwithout anew-placementspecification. Otherwise, the result is undefined.

3 In the first alternative (delete object), if the static type of the operand is different from its dynamic type and
the class of the complete object has a destructor (12.4), the static type must have a virtual destructor or the
result is undefined. In the second alternative (delete array) if the dynamic type of the object to be deleted is
a class that has a destructor and its static type is different from its dynamic type, the result is undefined.

4 The effect of attempting to access a deleted object is undefined and the deletion of an object may change its
value. Furthermore, if the expression denoting the object in adelete-expressionis a modifiable lvalue, any
attempt to access its value after the deletion is undefined.

5 A program that appliesdelete to a pointer to constant is ill formed.

6 If the class of the object being deleted is incomplete at the point of deletion and the class has a destructor or
an allocation function or a deallocation function, the result is undefined.

5– 14 Expressions DRAFT: 25 January 1994 5.3.5 Delete

7 The delete-expressionwill invoke the destructor (if any) for the object or the elements of the array being
deleted. In the case of an array, the elements will be destroyed in order of decreasing address (that is, in
reverse order of construction).

8 To free the storage pointed to, thedelete-expressionwill call a deallocation function(operator
delete() for non-arrays oroperator delete[]() for arrays); see 12.5.

[expr.cast] 5.4 Explicit type conversion (cast notation)

1 The result of the expression(T) cast-expressionis of type T. An explicit type conversion can be
expressed using functional notation (5.2.3), a type conversion operator (dynamic_cast,
static_cast, reinterpret_cast, const_cast), or thecastnotation.

cast-expression:
unary-expression
(type-id) cast-expression

2 ∗Types may not be defined in casts.

3 Any type conversion not mentioned below and not explicitly defined by the user (12.3) is ill-formed.

4 The conversions performed bystatic_cast , reinterpret_cast , const_cast , or any sequence
thereof, may be performed using the cast notation of explicit type conversion. The same semantic restric-
tions and behaviors apply.

5 In addition to those conversions, a pointer to an object of a derived class (10) may be explicitly converted
to a pointer to any of its base classes regardless of accessibility restrictions (11.2), provided the conversion
is unambiguous (10.2). The resulting pointer will refer to the contained object of the base class. ∗

[expr.mptr.oper] 5.5 Pointer-to-member operators

1 The pointer-to-member operators->* and.* group left-to-right.

pm-expression:
cast-expression
pm-expression.* cast-expression
pm-expression->* cast-expression

2 The binary operator.* binds its second operand, which must be of type“pointer to member ofT” to its
first operand, which must be of classT or of a class of whichT is an unambiguous and accessible base
class. The result is an object or a function of the type specified by the second operand.

3 The binary operator->* binds its second operand, which must be of type“pointer to member ofT” to its
first operand, which must be of type“pointer toT” or “pointer to a class of whichT is an unambiguous and
accessible base class.” The result is an object or a function of the type specified by the second operand.

4 If the result of.* or ->* is a function, then that result can be used only as the operand for the function
call operator() . For example,

(ptr_to_obj->*ptr_to_mfct)(10);

calls the member function denoted byptr_to_mfct for the object pointed to byptr_to_obj . The
result of an.* expression or a->* expression is an lvalue only if its first operand is an lvalue and its sec-
ond operand refers to an lvalue.

[expr.mul] 5.6 Multiplicative operators

1 The multiplicative operators* , / , and%group left-to-right.

5.6 Multiplicative operators DRAFT: 25 January 1994 Expressions 5– 15

multiplicative-expression:
pm-expression
multiplicative-expression* pm-expression
multiplicative-expression/ pm-expression
multiplicative-expression% pm-expression

2 The operands of* and/ must have arithmetic type; the operands of%must have integral type. The usual
arithmetic conversions (4.5) are performed on the operands and determine the type of the result.

3 The binary* operator indicates multiplication.

4 The binary/ operator yields the quotient, and the binary%operator yields the remainder from the division
of the first expression by the second. If the second operand of/ or %is zero the result is undefined; other-
wise(a/b)*b + a%b is equal toa. If both operands are nonnegative then the remainder is nonnegative;
if not, the sign of the remainder is implementation dependent.

[expr.add] 5.7 Additive operators

1 The additive operators+ and - group left-to-right. The usual arithmetic conversions (4.5) are performed
for operands of arithmetic type.

additive-expression:
multiplicative-expression
additive-expression+ multiplicative-expression
additive-expression- multiplicative-expression

For addition, either both operands shall have arithmetic type, or one operand shall be a pointer to a com-
pletely defined object type and the other shall have integral type.

2 For subtraction, one of the following shall hold:

— both operands have arithmetic type;

— both operands are pointers to qualified or unqualified versions of the same completely defined object
type; or

— the left operand is a pointer to a completely defined object type and the right operand has integral type.

3 If both operands have arithmetic type, the usual arithmetic conversions are performed on them. The result
of the binary+ operator is the sum of the operands. The result of the binary- operator is the difference
resulting from the subtraction of the second operand from the first.

4 For the purposes of these operators, a pointer to a nonarray object behaves the same as a pointer to the first
element of an array of length one with the type of the object as its element type.

5 When an expression that has integral type is added to or subtracted from a pointer, the result has the type of
the pointer operand. If the pointer operand points to an element of an array object, and the array is large
enough, the result points to an element offset from the original element such that the difference of the sub-
scripts of the resulting and original array elements equals the integral expression. In other words, if the
expressionP points to thei-th element of an array object, the expressions(P)+N (equivalently,N+(P))
and (P)-N (whereN has the valuen) point to, respectively, thei+n-th andi– n-th elements of the array
object, provided they exist. Moreover, if the expressionP points to the last element of an array object, the
expression(P)+1 points one past the last element of the array object, and if the expressionQ points one
past the last element of an array object, the expression(Q)-1 points to the last element of the array object.
If both the pointer operand and the result point to elements of the same array object, or one past the last ele-
ment of the array object, the evaluation shall not produce an overflow; otherwise, the behavior is undefined.
If the result is used as an operand of the unary* operator, the behavior is undefined unless both the pointer
operand and the result point to elements of the same array object, or the pointer operand points one past the
last element of an array object and the result points to an element of the same array object.

5– 16 Expressions DRAFT: 25 January 1994 5.7 Additive operators

6 When two pointers to elements of the same array object are subtracted, the result is the difference of the
subscripts of the two array elements. The type of the result is an implementation-defined signed integral
type; this type shall be the same type that is defined asptrdiff_t in the<stddef.h> header. As with ∗
any other arithmetic overflow, if the result does not fit in the space provided, the behavior is undefined. In
other words, if the expressionsP andQpoint to, respectively, thei-th andj-th elements of an array object,
the expression(P)-(Q) has the valuei– j provided the value fits in an object of typeptrdiff_t . More-
over, if the expressionP points either to an element of an array object or one past the last element of an
array object, and the expressionQ points to the last element of the same array object, the expression
((Q)+1)-(P) has the same value as((Q)-(P))+1 and as-((P)-((Q)+1)) , and has the value zero
if the expressionP points one past the last element of the array object, even though the expression(Q)+1
does not point to an element of the array object. Unless both pointers point to elements of the same array
object, or one past the last element of the array object, the behavior is undefined.20)

[expr.shift] 5.8 Shift operators

1 The shift operators<< and>> group left-to-right.

shift-expression:
additive-expression
shift-expression<< additive-expression
shift-expression>> additive-expression

The operands must be of integral type and integral promotions are performed. The type of the result is that
of the promoted left operand. The result is undefined if the right operand is negative, or greater than or
equal to the length in bits of the promoted left operand. The value ofE1 << E2 is E1 (interpreted as a bit
pattern) left-shiftedE2 bits; vacated bits are zero-filled. The value ofE1 >> E2 is E1 right-shiftedE2 bit
positions. The right shift is guaranteed to be logical (zero-fill) ifE1 has an unsigned type or if it has a non-
negative value; otherwise the result is implementation dependent.

[expr.rel] 5.9 Relational operators

1 The relational operators group left-to-right, but this fact is not very useful;a<b<c means(a<b)<c and
not (a<b)&&(b<c) .

relational-expression:
shift-expression
relational-expression< shift-expression
relational-expression> shift-expression
relational-expression<= shift-expression
relational-expression>= shift-expression

The operands must have arithmetic or pointer type. The operators< (less than),> (greater than),<= (less
than or equal to), and>= (greater than or equal to) all yieldfalse or true . The type of the result is
bool .

2 The usual arithmetic conversions are performed on arithmetic operands. Pointer conversions are performed
on pointer operands to bring them to the same type, which must be a qualified or unqualified version of the
type of one of the operands. This implies that any pointer may be compared to a constant expression evalu-
ating to zero and any pointer can be compared to a pointer of qualified or unqualified typevoid* (in the
latter case the pointer is first converted tovoid*). Pointers to objects or functions of the same type (after
pointer conversions) may be compared; the result depends on the relative positions of the pointed-to objects
or functions in the address space.

20) Another way to approach pointer arithmetic is first to convert the pointer(s) to character pointer(s): In this scheme the integral
expression added to or subtracted from the converted pointer is first multiplied by the size of the object originally pointed to, and the
resulting pointer is converted back to the original type. For pointer subtraction, the result of the difference between the character point-
ers is similarly divided by the size of the object originally pointed to.

7 When viewed in this way, an implementation need only provide one extra byte (which may overlap another object in the program) just
after the end of the object in order to satisfy the“one past the last element” requirements.

5.9 Relational operators DRAFT: 25 January 1994 Expressions 5– 17

3 If two pointers of the same type point to the same object or function, or both point one past the end of the
same array, or are both null, they compare equal. If two pointers of the same type point to different objects
or functions, or only one of them is null, they compare unequal. If two pointers point to nonstatic data
members of the same object, the pointer to the later declared member compares higher provided the two
members not separated by anaccess-specifierlabel (11.1) and provided their class is not a union. If two
pointers point to nonstatic members of the same object separated by anaccess-specifierlabel (11.1) the
result is unspecified. If two pointers point to data members of the same union, they compare equal (after
conversion tovoid* , if necessary). If two pointers point to elements of the same array or one beyond the
end of the array, the pointer to the object with the higher subscript compares higher. Other pointer compar-
isons are implementation dependent.

[expr.eq] 5.10 Equality operators

1 equality-expression:
relational-expression
equality-expression== relational-expression
equality-expression!= relational-expression

The== (equal to) and the!= (not equal to) operators have the same semantic restrictions, conversions, and
result type as the relational operators except for their lower precedence and truth-value result. (Thusa<b
== c<d is true whenevera<b andc<d have the same truth-value.)

2 In addition, pointers to members of the same type may be compared. Pointer to member conversions (4.8)
are performed. A pointer to member may be compared to a constant expression that evaluates to zero.

[expr.bit.and] 5.11 BitwiseAND operator

1 and-expression:
equality-expression
and-expression& equality-expression

The usual arithmetic conversions are performed; the result is the bitwiseAND function of the operands. The
operator applies only to integral operands.

[expr.xor] 5.12 Bitwise exclusiveOR operator

1 exclusive-or-expression:
and-expression
exclusive-or-expression̂ and-expression

The usual arithmetic conversions are performed; the result is the bitwise exclusiveOR function of the
operands. The operator applies only to integral operands.

[expr.or] 5.13 Bitwise inclusiveOR operator

1 inclusive-or-expression:
exclusive-or-expression
inclusive-or-expression| exclusive-or-expression

The usual arithmetic conversions are performed; the result is the bitwise inclusiveOR function of its
operands. The operator applies only to integral operands.

[expr.log.and] 5.14 LogicalAND operator

1 logical-and-expression:
inclusive-or-expression
logical-and-expression&& inclusive-or-expression

The && operator groups left-to-right. The operands are both converted to typebool (4.9). The result is

5– 18 Expressions DRAFT: 25 January 1994 5.14 LogicalAND operator

true if both operands aretrue andfalse otherwise. Unlike&, && guarantees left-to-right evaluation:
the second operand is not evaluated if the first operand isfalse .

2 The result is abool . All side effects of the first expression except for destruction of temporaries (12.2)
happen before the second expression is evaluated.

[expr.log.or] 5.15 LogicalOR operator

1 logical-or-expression:
logical-and-expression
logical-or-expression|| logical-and-expression

The || operator groups left-to-right. The operands are both converted tobool (4.9). It returnstrue if
either of its operands istrue , and false otherwise. Unlike| , || guarantees left-to-right evaluation;
moreover, the second operand is not evaluated if the first operand evaluates totrue .

2 The result is abool . All side effects of the first expression except for destruction of temporaries (12.2)
happen before the second expression is evaluated.

[expr.cond] 5.16 Conditional operator

1 conditional-expression:
logical-or-expression
logical-or-expression? expression: assignment-expression

Conditional expressions group right-to-left. The first expression is converted tobool (4.9). It is evaluated
and if it is true , the result of the conditional expression is the value of the second expression, otherwise
that of the third expression. All side effects of the first expression except for destruction of temporaries
(12.2) happen before the second or third expression is evaluated.

2 If either the second or third expression is athrow-expression(15.2), the result is of the type of the other.

3 If both the second and the third expressions are of arithmetic type, then if they are of the same type the
result is of that type; otherwise the usual arithmetic conversions are performed to bring them to a common
type. Otherwise, if both the second and the third expressions are either a pointer or a constant expression
that evaluates to zero, pointer conversions (4.6) are performed to bring them to a common type which must
be a qualified or unqualified version of the type of either the second or the third expression. Otherwise, if
both the second and the third expressions are either a pointer to member or a constant expression that evalu-
ates to zero, pointer to member conversions (4.8) are performed to bring them to a common type21) which
must be a qualified or unqualified version of the type of either the second or the third expression. Other-∗
wise, if both the second and the third expressions are lvalues of related class types, they are converted to a
common type as if by a cast to a reference to the common type (4.7). Otherwise, if both the second and the
third expressions have type“cv void ”, the common type is“cv void .” Otherwise, if both the second and
the third expressions are of the same classT, the common type isT. Otherwise the expression is ill formed.
The result has the common type; only one of the second and third expressions is evaluated. The result is an
lvalue if the second and the third operands are of the same type and both are lvalues.

[expr.ass] 5.17 Assignment operators

1 There are several assignment operators, all of which group right-to-left. All require a modifiable lvalue as
their left operand, and the type of an assignment expression is that of its left operand. The result of the
assignment operation is the value stored in the left operand after the assignment has taken place; the result
is an lvalue.

21)This is one instance in which the“composite type”, as described in the C Standard, is still employed in C + +.

5.17 Assignment operators DRAFT: 25 January 1994 Expressions 5– 19

assignment-expression:
conditional-expression
unary-expression assignment-operator assignment-expression
throw-expression

assignment-operator:one of
= *= /= %= += -= >>= <<= &= ^= |=

2 In simple assignment (=), the value of the expression replaces that of the object referred to by the left
operand. If both operands have arithmetic type, the right operand is converted to the type of the left
preparatory to the assignment. There is no implicit conversion to an enumeration (7.2), so if the left
operand is of an enumeration type the right operand must be of the same type. If the left operand is of
pointer type, the right operand must be the null pointer (4.6) or of a type that can be converted to the type of
the left operand, which conversion takes place before the assignment.

3 An expression of type“pointer tocv1 T” can be assigned to a pointer of type“pointer tocv2 T” if the set
of cv-qualifierscv1 is a subset ofcv2(7.1.5 see also 8.5).

4 If the left operand is of pointer to member type, the right operand must be of pointer to member type or a
constant expression that evaluates to zero; the right operand is converted to the type of the left before the
assignment.

5 Assignment to objects of a class (9)X is defined by the functionX::operator=() (13.4.3). Unless the
user defines anX::operator=() , the default version is used for assignment (12.8). This implies that an
object of a class derived fromX (directly or indirectly) by unambiguous public derivation (4.6) can be
assigned to anX.

6 A pointer to a member of classB may be assigned to a pointer to a member of classD of the same type pro-
videdD is derived fromB (directly or indirectly) by unambiguous public derivation (10.2).

7 Assignment to an object of type“reference toT” assigns to the object of typeT denoted by the reference.

8 If E1 is not of typebool , the behavior of an expression of the formE1 op= E2 is equivalent to
E1 = E1 op E2 except thatE1 is evaluated only once. In+= and-= , the left operand may be a pointer to
completely defined object type, in which case the (integral) right operand is converted as explained in 5.7;
all right operands and all nonpointer left operands must have arithmetic type.

9 For class objects, assignment is not in general the same as initialization (8.5, 12.1, 12.6, 12.8).

10 See 15.2 for throw expressions.

[expr.comma] 5.18 Comma operator

1 The comma operator groups left-to-right.

expression:
assignment-expression
expression, assignment-expression

A pair of expressions separated by a comma is evaluated left-to-right and the value of the left expression is
discarded. All side effects of the left expression are performed before the evaluation of the right expres-
sion. The type and value of the result are the type and value of the right operand; the result is an lvalue if
its right operand is.

2 In contexts where comma is given a special meaning, for example, in lists of arguments to functions (5.2.2)
and lists of initializers (8.5), the comma operator as described in this clause can appear only in parentheses;
for example,

f(a, (t=3, t+2), c);

has three arguments, the second of which has the value5.

5– 20 Expressions DRAFT: 25 January 1994 5.19 Constant expressions

[expr.const] 5.19 Constant expressions

1 In several places, C + + requires expressions that evaluate to an integral constant: as array bounds (8.3.4), as
case expressions (6.4.2), as bit-field lengths (9.7), and as enumerator initializers (7.2).

constant-expression:
conditional-expression

A constant-expressioncan involve only literals (2.9), enumerators,const values of integral types initial-
ized with constant expressions (8.5), andsizeof expressions. Floating constants (2.9.3) must be cast to
integral types. Only type conversions to integral types may be used. In particular, except insizeof
expressions, functions, class objects, pointers, and references cannot be used. The comma operator and
assignment-operators may not be used in a constant expression.

_ ___ ___

6 Statements [stmt.stmt]
_ ___ ___

1 Except as indicated, statements are executed in sequence. ∗

statement:
labeled-statement
expression-statement
compound-statement
selection-statement
iteration-statement
jump-statement
declaration-statement
try-block

[stmt.label] 6.1 Labeled statement

1 A statement may be labeled.

labeled-statement:
identifier : statement
case constant-expression: statement
default : statement

An identifier label declares the identifier. The only use of an identifier label is as the target of agoto . The
scope of a label is the function in which it appears. Labels cannot be redeclared within a function. A label
can be used in agoto statement before its definition. Labels have their own name space and do not inter-
fere with other identifiers.

2 Case labels and default labels may occur only in switch statements.

[stmt.expr] 6.2 Expression statement

1 Most statements are expression statements, which have the form

expression-statement:
expressionopt ;

Usually expression statements are assignments or function calls. All side effects from an expression state-
ment are completed before the next statement is executed. An expression statement with the expression
missing is called a null statement; it is useful to carry a label just before the} of a compound statement and
to supply a null body to an iteration statement such aswhile (6.5.1).

[stmt.block] 6.3 Compound statement or block

1 So that several statements can be used where one is expected, the compound statement (also, and equiva-
lently, called“block”) is provided.

compound-statement:
{ statement-seqopt }

6– 2 Statements DRAFT: 25 January 1994 6.3 Compound statement or block

statement-seq:
statement
statement-seq statement

A compound statement defines a local scope (3.3).

2 Note that a declaration is astatement(6.7).

[stmt.select] 6.4 Selection statements

1 Selection statements choose one of several flows of control.

selection-statement:
if (condition) statement
if (condition) statementelse statement
switch (condition) statement

condition:
expression
type-specifier-seq declarator= assignment-expression

Thestatementin a selection-statement(both statements, in theelse form of theif statement) implicitly
defines a local scope (3.3). This can be expressed as a rewriting rule in which the statement is replaced by a
compound statement containing the original statement. For example,

if (x)
for (int i;;) {

// ...
}

may be equivalently rewritten as

if (x) {
for (int i;;) {

// ...
}

}

Thus after theif statement,i is no longer in scope.

2 The rules forconditions apply both toselection-statements and to thefor and while statements (6.5).
The declaratormay not specify a function or an array. Thetype-specifiermay not declare a new class or
enumeration.

3 A name introduced by a declaration in acondition is in scope from its point of declaration until the end of
the statements controlled by the condition. The value of aconditionthat is an initialized declaration is the
value of the initialized variable; the value of aconditionthat is an expression is the value of the expression.
The value of the condition will be referred to as simply“the condition” where the usage is unambiguous.

4 A variable, constant, etc. in the outermost block of a statement controlled by a condition may not have the
same name as a variable, constant, etc. declared in the condition.

5 If a conditioncan be syntactically resolved as either an expression or the declaration of a local name, it is
interpreted as a declaration.

[stmt.if] 6.4.1 Theif statement

1 The condition is converted to typebool ; if that is not possible, the program is ill-formed. If it yields
true the first substatement is executed. Ifelse is used and the condition yieldsfalse , the second sub-
statement is executed. Theelse ambiguity is resolved by connecting anelse with the last encountered
else -lessif .

6.4.2 Theswitch statement DRAFT: 25 January 1994 Statements 6– 3

[stmt.switch] 6.4.2 Theswitch statement

1 Theswitch statement causes control to be transferred to one of several statements depending on the value
of an expression.

2 The condition must be of integral type or of a class type for which an unambiguous conversion to integral
type exists (12.3). Integral promotion is performed. Any statement within the statement may be labeled
with one or more case labels as follows:

case constant-expression:

where theconstant-expression(5.19) is converted to the promoted type of the switch expression. No two of
the case constants in the same switch may have the same value.

3 There may be at most one label of the form

default :

within aswitch statement.

4 Switch statements may be nested; acase or default label is associated with the smallest switch enclos-
ing it.

5 When theswitch statement is executed, its condition is evaluated and compared with each case constant.
If one of the case constants is equal to the value of the condition, control is passed to the statement follow-
ing the matched case label. If no case constant matches the condition, and if there is adefault label,
control passes to the statement labeled by the default label. If no case matches and if there is nodefault
then none of the statements in the switch is executed.

6 case and default labels in themselves do not alter the flow of control, which continues unimpeded
across such labels. To exit from a switch, seebreak , 6.6.1.

7 Usually, the statement that is the subject of a switch is compound. Declarations may appear in the
statementof a switch-statement. ∗

[stmt.iter] 6.5 Iteration statements

1 Iteration statements specify looping.

iteration-statement:
while (condition) statement
do statement while (expression) ;
for (for-init-statement conditionopt ; expressionopt) statement

for-init-statement:
expression-statement
declaration-statement

2 Note that afor-init-statementends with a semicolon.

3 The statementin an iteration-statementimplicitly defines a local scope (3.3) which is entered and exited
each time through the loop. This can be expressed as a rewriting rule in which the statement is replaced by
a compound statement containing the original statement. For example,

while (x)
for (int i;;) {

// ...
}

may be equivalently rewritten as

6– 4 Statements DRAFT: 25 January 1994 6.5 Iteration statements

while (x) {
for (int i;;) {

// ...
}

}

Thus after thewhile statement,i is no longer in scope.

4 See 6.4 for the rules onconditions.

[stmt.while] 6.5.1 Thewhile statement

1 In thewhile statement the substatement is executed repeatedly until the value of the condition becomes
false . The test takes place before each execution of the statement.

2 The condition is converted tobool (4.9).

[stmt.do] 6.5.2 Thedo statement

1 In the do statement the substatement is executed repeatedly until the value of the condition becomes
false . The test takes place after each execution of the statement.

2 The condition is converted tobool (4.9).

[stmt.for] 6.5.3 Thefor statement

1 Thefor statement

for (for-init-statement conditionopt ; expressionopt) statement

is equivalent to

for-init-statement
while (condition) {

statement
expression;

}

except that acontinue in statement(not enclosed in another iteration statement) will executeexpression
before re-evaluatingcondition. Thus the first statement specifies initialization for the loop; the condition
specifies a test, made before each iteration, such that the loop is exited when the condition becomes
false ; the expression often specifies incrementing that is done after each iteration. The condition is con-
verted tobool (4.9).

2 Either or both of the condition and the expression may be dropped. A missingconditionmakes the implied
while clause equivalent towhile(true) .

3 If the for-init-statementis a declaration, the scope of the names declared extends to the end of the block
enclosing thefor-statement.

[stmt.jump] 6.6 Jump statements

1 Jump statements unconditionally transfer control.

jump-statement:
break ;
continue ;
return expressionopt ;
goto identifier ;

2 On exit from a scope (however accomplished), destructors (12.4) are called for all constructed named auto-
matic objects declared in that scope, in the reverse order of their declaration. Transfer out of a loop, out of
a block, or back past an initialized automatic variable involves the destruction of automatic variables that

6.6 Jump statements DRAFT: 25 January 1994 Statements 6– 5

are in scope at the point transferred from but not at the point transferred to. (See 6.7 for transfers into
blocks). However, the program may be terminated (by callingexit() or abort() , for example) with-
out destroying automatic class objects.

[stmt.break] 6.6.1 Thebreak statement

1 Thebreak statement may occur only in aniteration-statementor aswitch statement and causes termi-
nation of the smallest enclosingiteration-statementor switch statement; control passes to the statement
following the terminated statement, if any.

[stmt.cont] 6.6.2 Thecontinue statement

1 Thecontinue statement may occur only in aniteration-statementand causes control to pass to the loop-
continuation portion of the smallest enclosingiteration-statement, that is, to the end of the loop. More pre-
cisely, in each of the statements

while (foo) { do { for (;;) {
// ... // ... // ...

contin: ; contin: ; contin: ;
} } while (foo); }

acontinue not contained in an enclosed iteration statement is equivalent togoto contin .

[stmt.return] 6.6.3 Thereturn statement

1 A function returns to its caller by thereturn statement.

2 A return statement without an expression can be used only in functions that do not return a value, that is, a
function with the return value typevoid , a constructor (12.1), or a destructor (12.4). A return statement
with an expression can be used only in functions returning a value; the value of the expression is returned to
the caller of the function. If required, the expression is converted, as in an initialization, to the return type
of the function in which it appears. This may involve the construction and copy of a temporary object
(12.2). Flowing off the end of a function is equivalent to areturn with no value; this results in undefined
behavior in a value-returning function.

[stmt.goto] 6.6.4 Thegoto statement

1 Thegoto statement unconditionally transfers control to the statement labeled by the identifier. The identi-
fier must be a label (6.1) located in the current function.

[stmt.dcl] 6.7 Declaration statement

1 A declaration statement introduces one or more new identifiers into a block; it has the form

declaration-statement:
declaration

If an identifier introduced by a declaration was previously declared in an outer block, the outer declaration
is hidden for the remainder of the block, after which it resumes its force.

2 Automatic variables are initialized each time theirdeclaration-statementis executed. Automatic variables
declared in the block are destroyed on exit from the block (6.6).

3 It is possible to transfer into a block, but not in a way that bypasses declarations with initialization. A pro-
gram that jumps from a point where an automatic local variable is not in scope to a point where it is in
scope is ill-formed unless the variable is an aggregate (8.5.1) that is declared without aninitializer(8.5).
For example,

6– 6 Statements DRAFT: 25 January 1994 6.7 Declaration statement

void f()
{

// ...
goto lx; // ill-formed: jump into scope of ‘a’
// ...

ly:
X a = 1;
// ...

lx:
goto ly; // ok, jump implies destructor

// call for ‘a’ followed by construction
// again immediately following label ly

}

4 Initialization of a local object with storage classstatic (7.1.1) is done the first time control passes
through its declaration (only). Where astatic variable is initialized with an expression that is not a
constant-expression, default initialization to zero of the appropriate type (8.5) happens before its block is
first entered.

5 The destructor for a localstatic object will be executed if and only if the variable was constructed. The
destructor must be called either immediately before or as part of the calls of theatexit() functions (3.5).
Exactly when is unspecified.

[stmt.ambig] 6.8 Ambiguity resolution

1 There is an ambiguity in the grammar involvingexpression-statements anddeclarations: An expression-
statementwith a function-style explicit type conversion (5.2.3) as its leftmost subexpression can be indis-
tinguishable from adeclarationwhere the firstdeclaratorstarts with a(. In those cases thestatementis a
declaration.

2 To disambiguate, the wholestatementmay have to be examined to determine if it is anexpression-
statementor a declaration. This disambiguates many examples. For example, assumingT is a simple-
type-specifier(7.1.5),

T(a)->m = 7; // expression-statement
T(a)++; // expression-statement
T(a,5)<<c; // expression-statement

T(*d)(int); // declaration
T(e)[]; // declaration
T(f) = { 1, 2 }; // declaration
T(*g)(double(3)); // declaration

In the last example above,g, which is a pointer toT, is initialized todouble(3) . This is of course ill-
formed for semantic reasons, but that does not affect the syntactic analysis.

3 The remaining cases aredeclarations. For example,

T(a); // declaration
T(*b)(); // declaration
T(c)=7; // declaration
T(d),e,f=3; // declaration
T(g)(h,2); // declaration

4 The disambiguation is purely syntactic; that is, the meaning of the names, beyond whether they aretype-ids
or not, is not used in the disambiguation.

5 A slightly different ambiguity betweenexpression-statements anddeclarations is resolved by requiring a
type-idfor function declarations within a block (6.3). For example,

6.8 Ambiguity resolution DRAFT: 25 January 1994 Statements 6– 7

void g()
{

int f(); // declaration
int a; // declaration
f(); // expression-statement
a; // expression-statement

}

_ ___ ___

7 Declarations [dcl.dcl]
_ ___ ___

1 A declaration introduces one or more names into a program and specifies how those names are to be inter-
preted. Declarations have the form

declaration:
decl-specifier-seqopt init-declarator-listopt ;
function-definition ∗
template-declaration
asm-definition
linkage-specification
namespace-definition
namespace-alias-definition
using-declaration
using-directive

asm-definitions are described in 7.4, andlinkage-specifications are described in 7.5.Function-definitions
are described in 8.4 andtemplate-declarations are described in_temp.dcls_. The description of the general
form of declaration

decl-specifier-seqopt init-declarator-listopt ;

is divided into two parts:decl-specifiers, the components of adecl-specifier-seq, are described in 7.1 and
declarators, the components of aninit-declarator-list, are described in 8.

2 A declaration occurs in a scope (3.3); the scope rules are summarized in 10.5. A declaration that declares a
function or defines a class, template, or function also has one or more scopes nested within it. These nested
scopes, in turn, may have declarations nested within them. Unless otherwise stated, utterances in this chap-
ter about components in, of, or contained by a declaration or subcompoent thereof refer only to those com-
ponents of the declaration that arenot nested within scopes nested within the declaration.

3 In the general form of declaration, the optionalinit-declarator-list may be omitted only when declaring a
class (9) or enumeration (7.2), that is, when thedecl-specifier-seqcontains either aclass-specifier, an
elaborated-type-specifierwith a class-key(9.1), or anenum-specifier. In these cases and whenever a
class-specifieror enum-specifieris present in thedecl-specifier-seq, the identifiers in these specifiers are
among the names being declared by the declaration (asclass-names, enum-names, or enumeratorsdepend-
ing on the syntax).

4 Each init-declarator in the init-declarator-list contains exactly onedeclarator-id, which is the name
declared by thatinit-declarator and hence one of the names declared by the declaration. Thetype-
specifiers(7.1.5) in thedecl-specifier-seqand the recursivedeclarator structure of theinit-declarator
describe a type (_decl.meaning_), which is then associated with the name being declared by theinit-
declarator.

5 If the decl-specifier-seqcontains thetypedef specifier, the declaration is called atypedef declarationand
the name of eachinit-declarator is declared to be atypedef-name, synonymous with its associated type
(7.1.3). If thedecl-specifier-seqcontains notypedef specifier, the declaration is called afunction
declarationif the type associated with the name is a function type (8.3.5) and anobject declarationother-
wise.

7– 2 Declarations DRAFT: 25 January 1994 7 Declarations

6 Syntactic components beyond those found in the general form of declaration are added to a function decla-
ration to make afunction-definition. An object declaration, however, is also a definition unless it contains
theextern specifier and has no initializer (3.1). A definition causes the appropriate amount of storage to
be reserved and any appropriate initialization (8.5) to be done.

7 Only in function-definitions(8.4) and in function declarations for constructors, destructors, and type con-
versions may thedecl-specifier-seqbe omitted.

8 Generally speaking, the names declared by a declaration are introduced into the scope in which the declara-
tion occurs. The presence of afriend specifier and certain uses of theelaborated-type-speciferalter this
general behavior, however. (see 11.4 and 9.1)

[dcl.spec] 7.1 Specifiers

1 The specifiers that can be used in a declaration are

decl-specifier:
storage-class-specifier
type-specifier
function-specifier
friend ∗
typedef

decl-specifier-seq:
decl-specifier-seqopt decl-specifier

2 The longest sequence ofdecl-specifiers that could possibly be a type name is taken as thedecl-specifier-seq
of adeclaration. The sequence must be self-consistent as described below. For example,

typedef char* Pc;
static Pc; // error: name missing

Here, the declarationstatic Pc is ill-formed because no name was specified for the static variable of
type Pc. To get a variable of typeint calledPc, the type-specifierint must be present to indicate that
the typedef-namePc is the name being (re)declared, rather than being part of thedecl-specifiersequence.
For example,

void f(const Pc); // void f(char* const) (not const char*)
void g(const int Pc); // void g(const int)

3 Note that sincesigned , unsigned , long , andshort by default implyint , a type-nameappearing
after one of those specifiers is treated as the name being (re)declared. For example,

void h(unsigned Pc); // void h(unsigned int)
void k(unsigned int Pc); // void k(unsigned int)

[dcl.stc] 7.1.1 Storage class specifiers

1 The storage class specifiers are

storage-class-specifier:
auto
register
static
extern
mutable

At most onestorage-class-specifiermay appear in a givendecl-specifier-seq. If a storage-class-specifier
appears in adecl-specifier-seq, there can be notypedef specifier in the samedecl-specifier-seqand the
init-declarator-list of the declaration must not be empty. Thestorage-class-specifierapplies to the name
declared by eachinit-declarator in the list and not to any names declared by other specifiers. ∗

7.1.1 Storage class specifiers DRAFT: 25 January 1994 Declarations 7– 3

2 Theauto or register specifiers can be applied only to names of objects declared in a block (6.3) or to
function parameters (8.4). They specify that the named object is an automatic object (3.7). An object
declared without astorage-class-specifierat block scope or as a function parameter has automatic storage
class by default. Hence, theauto specifier is almost always redundant and not often used; one use of
auto is to distinguish adeclaration-statementfrom anexpression-statement(6.2) explicitly.

3 A register specifier has the same semantics as anauto specifier together with a hint to the compiler
that the object so declared will be heavily used. The hint may be ignored and in most implementations it
will be ignored if the address of the object is taken.

4 The static specifier can be applied only to names of objects and functions and to anonymous unions
(9.6). There can be nostatic function declarations within a block, nor anystatic function parame- ∗
ters. A static specifier used in the declaration of an object declares the object to be a static object
(_basic.stc). Astatic specifier may be used in the declaration of class members and its affect is
described in 9.5.

5 The extern specifier can be applied only to the names of objects and functions. Theextern specifier
cannot be used in the declaration of class members or function parameters.

6 A name declared with astatic specifier has internal linkage. For a nonmember function aninline ∗
specifier is equivalent to astatic specifier for linkage purposes (3.4). A name declared at file scope with
the extern specifier has external linkage. An object or function declared at block scope with the
extern specifier has external linkage unless the declaration matches a previous file scope declaration that
has internal linkage, in which case the object or function has internal linkage and refers to the same object
or function denoted by the file scope declaration.22)

7 A name declared at file scope without astorage-class-specifierhas external linkage unless it has internal
linkage because of a previous declaration and provided it is not declaredconst . Objects declaredconst
have internal linkage unless they have external linkage because of a previous declaration.

8 The linkages implied by successive declarations for a given entity must agree. That is, within a given
scope, each declaration declaring the same object name or the same overloading of a function name must
imply the same linkage. Each function in a given set of overloaded functions may have a different linkage,
however. For example,

static char* f(); // f() has internal linkage
char* f() // f() still has internal linkage

{ /* ... */ }

char* g(); // g() has external linkage
static char* g() // error: inconsistent linkage

{ /* ... */ }

static int a; // ‘a’ has internal linkage
int a; // error: two definitions

static int b; // ‘b’ has internal linkage
extern int b; // ‘b’ still has internal linkage

int c; // ‘c’ has external linkage
static int c; // error: inconsistent linkage

extern d; // ‘d’ has external linkage
static int d; // error: inconsistent linkage

22) Here, ‘‘previously’’ includes enclosing scopes. This implies that a name specifiedstatic and then specifiedextern in an
inner scope still has internal linkage.

7– 4 Declarations DRAFT: 25 January 1994 7.1.1 Storage class specifiers

9 The name of a declared but undefined class can be used in anextern declaration. Such a declaration,
however, cannot be used before the class has been defined. For example,

struct S;
extern S a;
extern S f();
extern void g(S);

void h()
{

g(a); // error: S undefined
f(); // error: S undefined

}

Themutable specifier can be applied only to names of class data members (9.2) and can not be applied to
names declaredconst or static . For example

class X {
mutable const int* p; // ok
mutable int* const q; // ill-formed

};

10 Themutable specifier on a class data member nullifies aconst specifier applied to the containing class
object and permits modification of the mutable class member even though the rest of the object isconst
(7.1.5).

[dcl.fct.spec] 7.1.2 Function specifiers

1 Function-specifierscan be used only in function declarations.

function-specifier:
inline
virtual

2 The inline specifier is a hint to the compiler that inline substitution of the function body is to be pre-
ferred to the usual function call implementation. The hint may be ignored. For a nonmember function, the
inline specifier also gives the function internal linkage (3.4). A function (5.2.2, 8.3.5) defined within the
declaration of a class is inline by default.

3 An inline member function must have exactly the same definition in every compilation in which it appears.

4 A class member function need not be explicitly declared with theinline specifier in the class declaration
to be inline. When noinline specifier is used, linkage will be external unless a definition with the
inline specifer appears before the first call.

class X {
public:

int f();
inline int g(); // X::g() has internal linkage
int h();

};

void k(X* p)
{

int i = p->f(); // now X::f() has external linkage
int j = p->g();
// ...

}

7.1.2 Function specifiers DRAFT: 25 January 1994 Declarations 7– 5

inline int X::f() // error: called before defined
// as inline

{
// ...

}

inline int X::g()
{

// ...
}

inline int X::h() // now X::h() has internal linkage
{

// ...
}

5 The virtual specifier may be used only in declarations of nonstatic class member functions within a
class declaration; see 10.3.

[dcl.typedef] 7.1.3 Thetypedef specifier

1 Declarations containing thedecl-specifiertypedef declare identifiers that can be used later for naming
fundamental or derived types. Thetypedef specifier may not be used in afunction-definition(8.4), and it
may not be combined in adecl-specifier-seqwith any other kind of specifier except atype-specifier.

typedef-name:
identifier

A name declared with thetypedef specifier becomes atypedef-name. Within the scope of its declaration,
a typedef-nameis syntactically equivalent to a keyword and names the type associated with the identifier in
the way described in 8. If, in adecl-specifier-seqcontaining thedecl-specifiertypedef , there is notype-
specifier, or the onlytype-specifiers arecv-qualifiers, thetypedef declaration is ill-formed. Atypedef-
nameis thus a synonym for another type. Atypedef-namedoes not introduce a new type the way a class
declaration (9.1) or enum declaration does. For example, after

typedef int MILES, *KLICKSP;

the constructions

MILES distance;
extern KLICKSP metricp;

are all correct declarations; the type ofdistance is int ; that ofmetricp is “pointer toint .”

2 In a given scope, atypedef specifier may be used to redefine the name of any type declared in that scope
to refer to the type to which it already refers. For example,

typedef struct s { /* ... */ } s;
typedef int I;
typedef int I;
typedef I I;

3 In a given scope, atypedef specifier may not be used to redefine the name of any type declared in that
scope to refer to a different type. For example,

class complex { /* ... */ };
typedef int complex; // error: redefinition

Similarly, in a given scope, a class may not be declared with the same name as atypedef-namethat is
declared in that scope and refers to a type other than the class itself. For example,

7– 6 Declarations DRAFT: 25 January 1994 7.1.3 Thetypedef specifier

typedef int complex;
class complex { /* ... */ }; // error: redefinition

4 A typedef-namethat names a class is aclass-name(9.1). The typedef-namemay not be used after a
class , struct , or union prefix and not in the names for constructors and destructors within the class
declaration itself. For example,

struct S {
S();
~S();

};

typedef struct S T;

S a = T(); // ok
struct T * p; // error

5 An unnamed class defined in a declaration with atypedef specifier gets a dummy name. For linkage
purposes only (3.4), thetypedef-namedeclared by the declaration is used to denote the class type in place of
the dummy name. Thetypedef-nameis still only a synonym for the dummy name and may not be used
where a true class name is required. Such a class cannot have explicit constructors or destructors because
they cannot be named by the user. For example,

typedef struct {
S(); // error: requires a return type since S is

// an ordinary member function, not a constructor
} S;

6 ∗A typedef-namethat names an enumeration is anenum-name(7.2). Thetypedef-namemay not be used
after anenum prefix.

[dcl.friend] 7.1.4 Thefriend specifier

1 Thefriend specifier is used to specify access to class members; see 11.4.

[dcl.type] 7.1.5 Type specifiers

1 The type-specifiers are

type-specifier:
simple-type-specifier
class-specifier
enum-specifier
elaborated-type-specifier
cv-qualifier

As a general rule, at most onetype-specifieris allowed in the completedecl-specifier-seqof a declaration.
The only exceptions to this rule are the following:

2
— const or volatile may be combined with any othertype-specifier.

— signed or unsigned may be combined withchar , long , short , or int .

— short or long may be combined withint .

— long may be combined withdouble .

3 At least onetype-specifieris required in a typedef declaration. At least onetype-specifieris required in a
function declaration unless it declares a constructor, destructor or type conversion operator. If there is no
type-specifieror if the only type-specifiers present in adecl-specifier-seqarecv-qualifiers, then theint
specifier is assumed as default.23) Regarding the prohibition of the defaultint specifier in typedef

23)Redundant cv-qualifiers are allowed to be introduced through the use of typedefs or template type arguments and are ignored.

7.1.5 Type specifiers DRAFT: 25 January 1994 Declarations 7– 7

declarations, see_typedef_; in all other instances, the use ofdecl-specifier-seqs which contain nosimple-
type-specifiers (and thus default to plainint) is deprecated.

4 class-specifiers andenum-specifiers are discussed in 9 and 7.2, respectively. The remainingtype-specifiers
are discussed in the rest of this section.

[dcl.type.cv]7.1.5.1 Thecv-qualifiers

1 The presence of aconst specifier in adecl-specifier-seqspecifies aconst object. Except that any class
member declaredmutable may be modified, any attempt to modify aconst object after it has been ini-
tialized and before it is destroyed results in undefined behavior.

2 Example

class X {
public:

mutable int i;
int j;

};
class Y { public: X x; }
const Y y;
y.x.i++; // defined behavior
y.x.j++; // undefined behavior
Y* p = const_cast<Y*>(&y); // cast away const-ness of y
p->x.i = 99; // defined behavior
p->x.j = 99; // undefined behavior

Unless explicitly declaredextern , aconst object does not have external linkage and must be initialized
(8.5; 12.1). An integralconst initialized by a constant expression may be used in constant expressions
(5.19). Each element of aconst array isconst and each non-function, non-static, non-mutable member
of aconst class object isconst (9.4.1).

3 There are no implementation-independent semantics forvolatile objects;volatile is a hint to the
compiler to avoid aggressive optimization involving the object because the value of the object may be
changed by means undetectable by a compiler. Each element of avolatile array isvolatile and
each nonfunction, nonstatic member of avolatile class object isvolatile (9.4.1). An object may be
bothconst andvolatile , with thetype-specifiers appearing in either order.

Box 33
Notwithstanding the description above, the semantics ofvolatile are intended to be the same in C + + as
they are in C. However, it’s not possible simply to copy the wording from the C standard until we under-
stand the ramifications of sequence points, etc. _ __

_ __

[dcl.type.simple]7.1.5.2 Simple type specifiers

1 The simple type specifiers are

7– 8 Declarations DRAFT: 25 January 1994 7.1.5.2 Simple type specifiers

simple-type-specifier:
:: opt nested-name-specifieropt type-name
char
wchar_t
bool
short
int
long
signed
unsigned
float
double
void

type-name:
class-name
enum-name
typedef-name

Thesimple-type-specifiers specify either a previously-declared user-defined type or one of the fundamental
types (3.8.1). Table 11 summarizes the valid combinations ofsimple-type-specifers and the types they
specify.

Table 11—simple-type-specifiers and the types they specify
__
Specifier(s) Type __
type-name the type named
char “char ”
unsigned char “unsigned char ”
signed char “signed char ”
bool “bool ”
unsigned “unsigned int ”
unsigned int “unsigned int ”
signed “int ”
signed int “int ”
int “int ”
unsigned short int “unsigned short int ”
unsigned short “unsigned short int ”
unsigned long int “unsigned long int ”
unsigned long “unsigned long int ”
signed long int “long int ”
signed long “long int ”
long int “long int ”
long “long int ”
signed short int “short int ”
signed short “short int ”
short int “short int ”
short “short int ”
wchar_t “wchar_t ”
float “float ”
double “double ”
long double “long double ”
void “void ” __

When multiplesimple-type-specifiersare allowed, they may be freely intermixed with otherdecl-specifiers
in any order. Thesigned specifier forceschar objects and bit-fields to be signed; it is redundant with

7.1.5.2 Simple type specifiers DRAFT: 25 January 1994 Declarations 7– 9

other integral types.

[dcl.type.elab]7.1.5.3 Elaborated type specifiers

1 Generally speaking, theelaborated-type-specifieris used to refer to a previously declaredclass-nameor
enum-nameeven though the name may be hidden by an intervening object, function, or enumerator declara-
tion (3.3), but in some cases it also can be used to declare aclass-name.

elaborated-type-specifier:
class-key :: opt nested-name-specifieropt identifier
enum :: opt nested-name-specifieropt identifier

class-key:
class
struct
union

2 If an elaborated-type-specifieris the sole constituent of adeclarationof the form

class-key identifier;

then theelaborated-type-specifierdeclares theidentifier to be aclass-namein the scope that contains the
declaration (9.1). Otherwise, theidentifier following the class-keyor enum keyword is resolved as
described in 10.5 according to its qualifications, if any, but ignoring any objects, functions, or enumerators
that have been declared. If theidentifier resolves to aclass-nameor enum-name, the elaborated-type-
specifierintroduces it into the declaration the same way asimple-type-speciferintroduces itstype-name. If
the identifier resolves to atypedef-name, the elaborated-type-specifieris ill-formed. If the resolution is
unsuccessful, theelaborated-type-specifieris ill-formed unless it is of the simple formclass-key identifier.
In this case, theidentifier is declared in the smallest non-class, non-function prototype scope enclosing the
elaborated-type-specifier(3.3).

3 Theclass-keyor enum keyword present in theelaborated-type-specifiermust agree in kind with the decla-
ration to which the name in theelaborated-type-specifierrefers. This rule also applies to the form of
elaborated-type-specifierthat declares aclass-namesince it can be construed as refering to the definition of
the class. Thus, in anyelaborated-type-specifier, theenum keyword must be used to refer to an enumera-
tion (7.2), theunion class-keymust be used to refer to a union (9), and either theclass or struct
class-keymust be used to refer to a structure (9) or to a class declared using theclass class-key. For
example:

7– 10 Declarations DRAFT: 25 January 1994 7.1.5.3 Elaborated type specifiers

struct Node {
struct Node* Next; // ok: Refers to Node at file scope
struct Data* Data; // ok: Declares type Data

// at file scope and member Data
};

struct Data {
struct Node* Node; // ok: Refers to Node at file scope
/* ... */

};

struct Base {
struct Data; // ok: Declares nested Data
struct ::Data* thatData; // ok: Refers to ::Data
struct Base::Data* thisData; // ok: Refers to nested Data

struct Data { /* ... */ }; // Defines nested Data

struct Data; // ok: Redeclares nested Data
};

struct Data; // ok: Redeclares Data at file scope

struct ::Data; // error: qualified and nothing declared.
struct Base::Data; // error: qualified and nothing declared.
struct Base::Datum; // error: Datum undefined

struct Base::Data* pBase; // ok: refers to nested Data

[dcl.enum] 7.2 Enumeration declarations

1 An enumeration is a distinct type (3.8.1) with named constants. Its name becomes anenum-name, that is, a
reserved word within its scope.

enum-name:
identifier

enum-specifier:
enum identifieropt { enumerator-listopt }

enumerator-list:
enumerator-definition
enumerator-list , enumerator-definition

enumerator-definition:
enumerator
enumerator = constant-expression

enumerator: ∗
identifier

The identifiers in anenumerator-listare declared as constants, and may appear wherever constants are
required. If noenumerator-definitionss with= appear, then the values of the corresponding constants begin
at zero and increase by one as theenumerator-listis read from left to right. Anenumerator-definitionwith
= gives the associatedenumeratorthe value indicated by theconstant-expression; subsequentenumerators
without initializers continue the progression from the assigned value. Theconstant-expressionmust be of
integral type.

2 For example, ∗

7.2 Enumeration declarations DRAFT: 25 January 1994 Declarations 7– 11

enum { a, b, c=0 };
enum { d, e, f=e+2 };

definesa, c , andd to be zero,b ande to be1, andf to be3.

3 The point of declaration for an enumerator is immediately after itsenumerator-definition. For example:

const int x = 12;
{ enum { x = x }; }

Here, the enumeratorx is initialized with the value of the constantx , namely 12.

4 Each enumeration defines a type that is different from all other types. The type of an enumerator is its enu-
meration.

5 Theunderlying typeof an enumeration is an integral type, not gratuitously larger thanint ,24) that can rep-
resent all enumerator values defined in the enumeration. If theenumerator-listis empty, the underlying
type is as if the enumeration had a single enumerator with value 0. The value ofsizeof() applied to an
enumeration type, an object of enumeration type, or an enumerator, is the value ofsizeof() applied to
the underlying type.

6 For an enumeration whereemin is the smallest enumerator andemax is the largest, the values of the enumer-
ation are the values of the underlying type in the rangebmin to bmax, wherebmin andbmax are, respectively,
the smallest and largest values of the smallest bit-field that can storeemin and emax. On a two’s-
complement machine,bmax is the smallest value greater than or equal to max (abs(emin) ,abs(emax)) of the
form 2M − 1; bmin is zero ifemin is non-negative and− (bmax + 1) otherwise. It is possible to define an enu-
meration that has values not defined by any of its enumerators.

7 The value of an enumerator or an object of an enumeration type is converted to an integer by integral pro-
motion (4.1). For example,

enum color { red, yellow, green=20, blue };
color col = red;
color* cp = &col;
if (*cp == blue) // ...

makescolor a type describing various colors, and then declarescol as an object of that type, andcp as a
pointer to an object of that type. The possible values of an object of typecolor are red , yellow ,
green , blue ; these values can be converted to the integral values0, 1, 20 , and21 . Since enumerations
are distinct types, objects of typecolor may be assigned only values of typecolor . For example,

color c = 1; // error: type mismatch,
// no conversion from int to color

int i = yellow; // ok: yellow converted to integral value 1
// integral promotion

See also C.3.

8 An expression of arithmetic type or of typewchar_t may be converted to an enumeration type explicitly.
The value is unchanged if it is in the range of enumeration values of the enumeration type; otherwise the
resulting enumeration value is unspecified.

Box 34

This means the program does not crash._ _________________________________

_ _________________________________

9
The enum-name and each enumerator declared by an enum-specifier is declared in the scope that immedi-
ately contains the enum-specifier. These names obey the scope rules defined for all names in (3.3) and

24)The type should be larger thanint only if the value of an enumerator won’t fit in anint .

7– 12 Declarations DRAFT: 25 January 1994 7.2 Enumeration declarations

(10.5). For example,

class X {
public:

enum direction { left=’l’, right=’r’ };
int f(int i)

{ return i==left ? 0 : i==right ? 1 : 2; }
};

void g(X* p)
{

direction d; // error: ‘direction’ not in scope
int i;
i = p->f(left); // error: ‘left’ not in scope
i = p->f(X::right); // ok
// ...

}

[basic.namespace]7.3 Namespaces

1 A namespace is a kind of declarative region that effectively attaches an additional identifier to any names
declared inside it. Unlike other declarative regions, the definition of a namespace may be split over several
parts of a single translation unit.

2 The declarations in file scope of a translation unit behave as if they appeared in a namespace called the
global namespace.

[namespace.def]7.3.1 Namespace definition

1 The grammar for anamespace-definitionis

original-namespace-name:
identifier

namespace-definition:
original-namespace-definition
extension-namespace-definition
unnamed-namespace-definition

original-namespace-definition:
namespace identifier { namespace-body}

extension-namespace-definition:
namespace original-namespace-name{ namespace-body}

unnamed-namespace-definition:
namespace { namespace-body}

namespace-body:
declaration-seqopt

2 The identifier in anoriginal-namespace-definitionshall not have been previously defined in the declarative
region in which theoriginal-namespace-definitionappears. Theidentifier in an original-namespace-
definition is the name of the namespace. Subsequently in that declarative region, it is treated as an
original-namespace-name.

3 Theoriginal-namespace-namein anextension-namespace-definitionshall have previously been defined in
anoriginal-namespace-defintionin the same declarative region.

4 Every namespace-definitionmust appear either at file scope or immediately within anothernamespace-
definition.

7.3.1 Namespace definition DRAFT: 25 January 1994 Declarations 7– 13

5 An unnamed-namespace-definitionbehaves as if it were replaced by

namespace unique { namespace-body}
using namespace unique;

where, for each translation unit, all occurrences ofunique in that translation unit are replaced by an identi-
fier that differs from all other identifiers in the entire program.25) For example:

namespace { int i; } // unique::i
void f() { i++; } // unique::i++
namespace A {

namespace {
int i; // A:: unique::i
int j; // A:: unique::j

}
void f() { i++; } // A:: unique::i++

}
using namespace A;
void h() {

i++; // error: unique::i or A:: unique::i
A::i++; // error: A::i undefined
j++; // A:: unique::j

}

6 The declarative region of anamespace-definitionis itsnamespace-body. The potential scope denoted by an
original-namespace-nameis the concatenation of the declarative regions established by each of the
namespace-definitions in the same declarative region with thatoriginal-namespace-name. Entities declared
in a namespace-bodyare said to bemembers of the namespace, and names introduced by these declarations
into the declarative region of the namespace are said to bemember namesof the namespace. For example

namespace N
{

int i;
int g(int a) { return a; }
void k();
void q();

}
namespace { int k=1; }
namespace N
{

int g(char a) // overloads N::g(int)
{

return k+a; // k is from unnamed namespace
}
int i; // error, duplicate definition
void k(); // OK, duplicate function declaration
void k() { // OK, definition of N::k()

return g(a); // calls N::g(int)
}
int q(); // error, different return type

}

7 Because anamespace-definitioncontainsdeclarations in itsnamespace-bodyand anamespace-definitionis
itself adeclaration, it follows thatnamespace-definitions may be nested. For example:

25)Entities in an unnamed namespace have internal linkage, and can never be seen from another translation unit.

7– 14 Declarations DRAFT: 25 January 1994 7.3.1 Namespace definition

namespace Outer {
int i;
namespace Inner {

void f() { i++; } // Outer::i
int i;
void g() { i++; } // Inner::i

}
}

8 The use of thestatic keyword is deprecated when declaring objects that are not class members (see
future.directions); theunnamed-namespaceprovides a superior alternative.

9 Members of a namespace may be defined within that namespace. For example:

namespace X { void f() { } }
class Y { void g() { } };

10 Members of a named namespace may also be defined outside that namespace by explicit qualification
(7.3.5) of the name being defined, provided that entity being defined was already declared in the name-
space. For example:

namespace Q {
namespace V {

void f();
}
void V::f() { } // fine
void V::g() { } // error, g() is not yet a member of V
namespace V {

void g();
}

}

11 Every name first declared in a namespace is a member of that namespace. Afriend function first
declared within a class is a member of the innermost enclosing non-class namespace. For example:

// Assume f and g have not yet been defined.
namespace A {

class X {
friend void f(X); // declaration of f
class Y {

friend void g();
};

};

void f(X) { } // definition of f declared above
X x;
void g() { f(x); } // f and g are members of A

}
using A::x;

main() {
A::f(x);
A::X::f(x); // error, f is not a member of A::X
A::X::Y::g(); // error, g is not a member of A::X::Y

}

Box 35
San Jose Motion 16: In "class X *p;" where is X introduced? This should be described here as well. _ __

_ __

7.3.1 Namespace definition DRAFT: 25 January 1994 Declarations 7– 15

12 When an entity declared with theextern specifier is not found to refer to some other declaration, then
that entity is a member of the innermost enclosing non-class namespace. For example:

namespace X {
void p() {

q(); // error: q not yet declared
extern void q(); // q is a member of namespace X

}
void q() { } // definition of q

}
void q() { } // some other, unrelated q

13
[namespace.alias]7.3.2 Namespace or class alias

1 A namespace-alias-definitiondeclares an alternate name for a namespace according to the following gram-
mar:

namespace-alias:
identifier

namespace-alias-definition:
namespace identifier = qualified-namespace-specifier ;

qualified-namespace-specifier:
:: opt nested-name-specifieropt class-or-namespace-name

2 The identifier in a namespace-alias-definitionis a synonym for the name of the namespace denoted by the
qualified-namespace-specifierand becomes anamespace-alias.

3 A namespace-nameshall not be declared as the name of any other entity in the same declarative region. A
namespace-namedefined at global scope shall not be declared as the name of any other entity in any global
scope of the program.

[namespace.udecl]7.3.3 Theusing declaration

1 A using-declarationintroduces a name into the declarative region in which it appears. That name is a syn-
onym for the name of some entity declared elsewhere.

using-declaration:
using :: opt nested-name-specifier unqualified-id;
using :: unqualified-id;

Box 36
There is still an open issue regarding the "opt" on the nested-name-specifier. _ ___

_ ___

2 The member names specified in ausing-declarationare declared in the declarative region in which the
using-declarationappears.

3 Every using-declarationis adeclarationand amember-declarationand so may be used in a class defini-
tion. For example:

7– 16 Declarations DRAFT: 25 January 1994 7.3.3 Theusing declaration

struct Base {
void f(char);
void g(char);

};
struct Derived: Base
{

using Base::f;
void f(int) { f(’c’); } // calls Base::f(char)
void g(int) { g(’c’); } // recursively calls Derived::g(int)

};

4 An entity with the name of theunqualified-idshall be known to the nominated class or namespace at the
point that theusing-declarationappears. Additional definitions added to the namespace after theusing-
declarationare not considered when a use of the name is made.

Box 37
Please check this example carefully. _______________________________

For example:

namespace A {
void f(int);

}

using A::f; // f is a synonym for A::f
namespace A {

void f(char);
}

void foo() {
f(’a’); // calls f(int),

} // even though f(char) exists

void bar() {
using A::f;
f(’a’); // calls f(char)

}

5 The names thus defined are aliases for their original declarations so that theusing-declarationdoes not
affect the type, linkage or other attributes of the members refered to.

6 If the set of local declarations andusing-declarations for a single name are given in a declarative region,
they shall all refer to the same entity, or all refer to functions. For example

namespace B
{

int i;
void f(int);
void f(double);

}
void g()
{

int i;
using B::i; // error: i declared twice
void f(char);
using B::f; // fine, each f is a function

}

7.3.3 Theusing declaration DRAFT: 25 January 1994 Declarations 7– 17

Box 38
This reflects paper 93-0105 but does not reflect the original namespace paper. According to the original
paper, the previous example should read:

void g()
{

int i;
using B::i; // error: i declared twice
void f(char);
using B::f; // error: f declared twice

}
_ __

_ __

7 During overload resolution, a locally declared function is prefered over an injected one when both have the
same signature. If the signature with the best match refers to more than one function, an ambiguity exists
and the program is ill-formed.

Box 39
This treatment is a mistake, but it was voted in San Jose.

Editorial proposal: if a local declaration conflicts with one introduced by ausing-declaration, the program
is ill-formed. Thus, in the example below, the declaration off(int) in function h should render the
example ill-formed. _ __

_ __

For example:

namespace C
{

void f(int);
void f(double);
void f(char);

}
void h()
{

using B::f; // B::f(int) and B::f(double)
using C::f;
f(1); // ambiguity B::f(int) or C::f(int)
void f(int);
f(1); // calls local f(int)
f(’h’); // calls C::f(char)
f(2.0); // ambiguity B::f(double) or C::f(double);

}

8 Omitting the name before:: implies a reference to the global namespace:

void f();
namespace X {

using ::f; // global f
};

main()
{

X::f(); // calls ::f
}

9 All instances of the name mentioned in ausing-declarationmust be accessible. In particular, if a derived
class uses ausing-declarationto access a non-static member of a base class, the member name must be
accessible, and if the name is that of a non-static member function, then all functions named must be

7– 18 Declarations DRAFT: 25 January 1994 7.3.3 Theusing declaration

accessible.

10 The alias created by theusing-declarationhas the usual accessibility for amember-declaration. For exam-
ple:

class A {
private:

void f(char);
public:

void f(int);
protected:

void g();
};
class B: public A {

using A::f; // error, A::f(char) is inaccessible
public:

using A::g; // B::g is a public synonym for A::g
};

11 Use of access specifiers is deprecated; memberusing-declarations provide a better alternative.

[namespace.udir]7.3.4 Using directive

1 using-directive:
using namespace :: opt nested-name-specifieropt namespace-name ;

2 A using-directivespecifies that the names in the namespace with the givennamespace-name, including
those specified by anyusing-directives in that namespace, can be used in the scope in which theusing-
directiveappears after the using directive, exactly as if the names from the namespace had been declared
outside a namespace at the points where the namespace was defined. Ausing-directivedoes not add any
members to the declarative region in which it appears. If a namespace is extended by anextended-
namespace-definitionafter ausing-directiveis given, the additional members of the extended namespace
may be used after theextended-namespace-definition.

3 The using-directiveis transitive: if a namespace contains ausing-directivethat nominates a second name-
space that itself containsusing-directives, the effect is as if theusing-directives from the second namespace
also appeared in the first. In particular, a name in a namespace does not hide names in a second namespace
which is the subject of ausing-declarationin the first namespace.

Box 40
An example would help. _ _____________________

_ _____________________

4 During overload resolution, all functions from the transitive search must be considered for argument match-
ing. An ambiguity exists if the best match finds two functions with the same signature, even if one might
seem to ‘‘hide’’ the other in theusing-directivelattice.

5 For example:

7.3.4 Using directive DRAFT: 25 January 1994 Declarations 7– 19

namespace D
{

int d1;
void f(int);
void f(char);

}
using namespace D;

int d1; // OK: no conflict with D::d1

namespace E
{

int e;
void f(int);

}
namespace D // namespace extension
{

int d2;
using namespace E;
void f(int);

}
void f()
{

d1++; // ambiguous ::d1 or D::d1
::d1++; // OK
D::d1++; // OK
d2++; // OK: D::d2
e++; // OK: E::e
f(1); // ambiguous D::f(int) or E::f(int)
f(’a’); // OK D::f(char)

}

[namespace.qual]7.3.5 Explict qualification

1 A name in a class or namespace may be accessed using qualification according to the grammar:

id-expression
unqualified-id
qualified-id

nested-name-specifier:
class-or-namespace-name:: nested-name-specifieropt

class-or-namespace-name:
class-name
namespace-name

namespace-name:
original-namespace-name
namespace-alias

2 The namespace-names in a nested-name-specifiershall have been previously defined by anamed-
namespace-definitionor anamespace-alias-definition.

Box 41
I believe "class-specifier" and "namespace-alias-definition" above should be replaced with "type-name" to
include "original-namespace-specifier" and "typedef" as well. _ __

_ __

Theclass-names in anested-namespace-specifiershall have been previously defined by aclass-specifieror
anamespace-alias-definition.

7– 20 Declarations DRAFT: 25 January 1994 7.3.5 Explict qualification

3 The search for the initial qualifier preceding any:: operator locates only the names of types or name-
spaces. The search for a name after a:: locates only names members of a namespace or class. In particu-
lar, using-directives are ignored, as is any enclosing declarative region.

[dcl.asm]7.4 Theasm declaration

1 An asm declaration has the form

asm-definition:
asm (string-literal) ;

The meaning of anasm declaration is implementation dependent. Typically it is used to pass information
through the compiler to an assembler.

[dcl.link] 7.5 Linkage specifications

1 Linkage (3.4) between C + + and non-C + + code fragments can be achieved using alinkage-specification:

linkage-specification:
extern string-literal { declaration-seqopt }
extern string-literal declaration

declaration-seq:
declaration
declaration-seq declaration

The string-literal indicates the required linkage. The meaning of thestring-literal is implementation
dependent. Every implementation shall provide for inkage to functions written in the C programming lan-
guage,"C" , and linkage to C + + function. "C++" . Default linkage is"C++" . For example,

complex sqrt(complex); // C++ linkage by default
extern "C" {

double sqrt(double); // C linkage
}

Box 42
This example may need to be revisited depending on what the rules ultimately are concerning C + + linkage
to standard library functions from the C library. _ __

_ __

2 Linkage specifications nest. A linkage specification does not establish a scope. Alinkage-specification
may occur only infile scope (3.3). Alinkage-specificationfor a class applies to nonmember functions and
objects declared within it. Alinkage-specificationfor a function also applies to functions and objects
declared within it. A linkage declaration with a string that is unknown to the implementation is ill-formed.

3 If a function has more than onelinkage-specification, they must agree; that is, they must specify the same
string-literal. A function declaration without a linkage specification may not precede the first linkage spec-
ification for that function. A function may be declared without a linkage specification after an explicit link-
age specification has been seen; the linkage explicitly specified in the earlier declaration is not affected by
such a function declaration.

4 At most one of a set of overloaded functions (13) with a particular name can have C linkage. ∗

5 Linkage can be specified for objects. For example,

7.5 Linkage specifications DRAFT: 25 January 1994 Declarations 7– 21

extern "C" {
// ...
_iobuf _iob[_NFILE];
// ...
int _flsbuf(unsigned,_iobuf*);
// ...

}

Functions and objects may be declaredstatic within the {} of a linkage specification. The linkage
directive is ignored for such a function or object. Otherwise, a function declared in a linkage specification
behaves as if it was explicitly declaredextern . For example,

extern "C" double f();
static double f(); // error

is ill-formed (7.1.1). An object defined within an

extern "C" { /* ... */ }

construct is still defined (and not just declared).

6 Linkage from C + + to objects defined in other languages and to objects defined in C + + from other languages
is implementation and language dependent. Only where the object layout strategies of two language imple-
mentations are similar enough can such linkage be achieved.

7 When the name of a programming language is used to name a style of linkage in thestring-literal in a
linkage-specification, it is recommended that the spelling be taken from the document defining that lan-
guage, for example,Ada (notADA) andFORTRAN(notFortran).

_ ___ ___

8 Declarators [dcl.decl]
_ ___ ___

1 A declarator declares a single object, function, or type, within a declaration. Theinit-declarator-list
appearing in a declaration is a comma-separated sequence of declarators, each of which may have an initial-
izer.

init-declarator-list:
init-declarator
init-declarator-list , init-declarator

init-declarator:
declarator initializeropt

2 The two components of adeclarationare the specifiers (decl-specifier-seq; 7.1) and the declarators (init-
declarator-list). The specifiers indicate the fundamental type, storage class, or other properties of the
objects and functions being declared. The declarators specify the names of these objects and functions and
(optionally) modify the type with operators such as* (pointer to) and() (function returning). Initial val-
ues can also be specified in a declarator; initializers are discussed in 8.5 and 12.6.

3 Eachinit-declarator in a declaration is analyzed separately as if it was in a declaration by itself.26)

4 Declarators have the syntax

declarator:
direct-declarator
ptr-operator declarator

direct-declarator:
declarator-id
direct-declarator (parameter-declaration-clause) cv-qualifier-seqopt exception-specificationopt

direct-declarator [constant-expressionopt]
(declarator)

26) A declaration with several declarators is usually equivalent to the corresponding sequence of declarations each with a single
declarator. That is

T D1, D2, ... Dn;

is usually equvalent to

T D1; T D2; ... T Dn;

whereT is adecl-specifier-seqand eachDi is a init-declarator. The exception occurs when one declarator modifies the name environ-
ment used by a following declarator, as in

struct S { ... };
S S, T; // declare two instances of struct S

which is not equivalent to

struct S { ... };
S S;
S T; // error

8– 2 Declarators DRAFT: 25 January 1994 8 Declarators

ptr-operator:
* cv-qualifier-seqopt

& cv-qualifier-seqopt

:: opt nested-name-specifier* cv-qualifier-seqopt

cv-qualifier-seq:
cv-qualifier cv-qualifier-seqopt

cv-qualifier:
const
volatile

declarator-id:
id-expression
nested-name-specifieropt type-name

A class-namehas special meaning in a declaration of the class of that name and when qualified by that
name using the scope resolution operator:: (12.1, 12.4). Thecv-qualifier const shall not appear more
than once in acv-qualifier-seq; similarly forvolatile .

[dcl.name] 8.1 Type names

1 To specify type conversions explicitly, and as an argument ofsizeof or new, the name of a type must be
specified. This can be done with atype-id, which is syntactically a declaration for an object or function of
that type that omits the name of the object or function.

type-id:
type-specifier-seq abstract-declaratoropt

type-specifier-seq:
type-specifier type-specifier-seqopt

abstract-declarator:
ptr-operator abstract-declaratoropt

direct-abstract-declarator

direct-abstract-declarator:
direct-abstract-declaratoropt (parameter-declaration-clause) cv-qualifier-seqopt exception-specificationopt

direct-abstract-declaratoropt [constant-expressionopt]
(abstract-declarator)

It is possible to identify uniquely the location in theabstract-declaratorwhere the identifier would appear
if the construction were a declarator in a declaration. The named type is then the same as the type of the
hypothetical identifier. For example,

int // int i
int * // int *pi
int *[3] // int *p[3]
int (*)[3] // int (*p3i)[3]
int *() // int *f()
int (*)(double) // int (*pf)(double)

name respectively the types“integer,” “pointer to integer,” “array of 3 pointers to integers,” “pointer to
array of 3 integers,” “function having no parameters and returning pointer to integer,” and“pointer to func-
tion of double returning an integer.”

2 A type can also be named (often more easily) by using atypedef(7.1.3).

3 Note that anexception-specificationdoes not affect the function type, so its appearance in anabstract-
declaratorwill have empty semantics.

8.2 Ambiguity resolution DRAFT: 25 January 1994 Declarators 8– 3

[dcl.ambig.res]8.2 Ambiguity resolution

1 The ambiguity arising from the similarity between a function-style cast and a declaration mentioned in 6.8
can also occur in the context of a declaration. In that context, it surfaces as a choice between a function
declaration with a redundant set of parentheses around a parameter name and an object declaration with a
function-style cast as the initializer. Just as for statements, the resolution is to consider any construct that
could possibly be a declaration a declaration. A declaration can be explicitly disambiguated by a
nonfunction-style cast or a= to indicate initialization. For example,

struct S {
S(int);

};

void foo(double a)
{

S x(int(a)); // function declaration
S y((int)a); // object declaration
S z = int(a); // object declaration

}

2 The ambiguity arising from the similarity between a function-style cast and atype-idcan occur in many dif-
ferent contexts. The ambiguity surfaces as a choice between a function-style cast expression and a declara-
tion of a type. The resolution is that any construct that could possibly be atype-id in its syntactic context
shall be considered atype-id.

3 For example,

#include <stddef.h>
char *p;
void *operator new(size_t, int);
void foo(int x) {

new (int(*p)) int; // new-placement expression
new (int(*[x])); // new type-id

}

4 For example,

template <class T>
struct S {
T *p;
};
S<int()> x; // type-id
S<int(1)> y; // expression (ill-formed)

5 For example,

void foo()
{

sizeof(int(1)); // expression
sizeof(int()); // type-id (ill-formed)

}

6 For example,

void foo()
{

(int(1)); // expression
(int())1; // type-id (ill-formed)

}

8– 4 Declarators DRAFT: 25 January 1994 8.3 Meaning of declarators

[dcl.meaning] 8.3 Meaning of declarators

1 A list of declarators appears after an optional (7)decl-specifier-seq(7.1). Each declarator contains exactly
one declarator-id; it names the identifier that is declared. Adeclarator-id shall be a simpleidentifier,
except for the following cases: the declaration of some special functions (12.3, 12.4, 13.4), the definition of
a member function (9.4), the definition of a static data member (9.5), the declaration of a friend function
that is a member of another class (11.4). Anauto , static , extern , register , friend , inline ,
virtual , or typedef specifier applies directly to eachdeclarator-id in a init-declarator-list; the type
specified for eachdeclarator-iddepends on both thedecl-specifier-seqand itsdeclarator.

2 Thus, a declaration of a particular identifier has the form

T D

whereT is adecl-specifier-seqandD is a declarator. The following subsections give an inductive proce-
dure for determining the type specified for the containeddeclarator-idby such a declaration.

3 First, thedecl-specifier-seqdetermines a type. For example, in the declaration

int unsigned i;

the type specifiersint unsigned determine the type“unsigned int .” Or in general, in the declara-
tion

T D

thedecl-specifier-seqT determines the type“T.”

4 In a declarationT DwhereD is an unadorned identifier the type of this identifier is“T.”

5 In a declarationT DwhereDhas the form

(D1)

the type of the containeddeclarator-idis the same as that of the containeddeclarator-idin the declaration

T D1

Parentheses do not alter the type of the embeddeddeclarator-id, but they may alter the binding of complex
declarators.

[dcl.ptr] 8.3.1 Pointers

1 In a declarationT DwhereDhas the form

* cv-qualifier-seqopt D1

and the type of the identifier in the declarationT D1 is “type-modifierT,” then the type of the identifier ofD
is “type-modifier cv-qualifier-seqpointer toT.” Thecv-qualifiers apply to the pointer and not to the object
pointed to.

2 For example, the declarations

const int ci = 10, *pc = &ci, *const cpc = pc, **ppc;
int i, *p, *const cp = &i;

declareci , a constant integer;pc , a pointer to a constant integer;cpc , a constant pointer to a constant
integer,ppc , a pointer to a pointer to a constant integer;i , an integer;p, a pointer to integer; andcp , a
constant pointer to integer. The value ofci , cpc , andcp cannot be changed after initialization. The value
of pc can be changed, and so can the object pointed to bycp . Examples of correct operations are

8.3.1 Pointers DRAFT: 25 January 1994 Declarators 8– 5

i = ci;
*cp = ci;
pc++;
pc = cpc;
pc = p;
ppc = &pc;

Examples of ill-formed operations are

ci = 1; // error
ci++; // error
*pc = 2; // error
cp = &ci; // error
cpc++; // error
p = pc; // error
ppc = &p; // error

Each is unacceptable because it would either change the value of an object declaredconst or allow it to be
changed through an unqualified pointer later, for example:

*ppc = &ci; // okay, but would make p point to ci ...
// ... because of previous error

*p = 5; // clobber ci

3 volatile specifiers are handled similarly.

4 See also 5.17 and 8.5.

5 There can be no pointers to references (8.3.2) or pointers to bit-fields (9.7).

[dcl.ref] 8.3.2 References

1 In a declarationT DwhereDhas the form

& cv-qualifier-seqopt D1

and the type of the identifier in the declarationT D1 is “type-modifierT,” then the type of the identifier ofD
is “type-modifier cv-qualifier-seqreference toT.” A declarator that specifies the type“reference tocv void”
is ill-formed.

Box 43

Should cv-qualifiers be allowed here? What does

int& const i=0;

mean?_ ___

_ ___

2 For example,

void f(double& a) { a += 3.14; }
// ...

double d = 0;
f(d);

declaresa to be a reference parameter off so the callf(d) will add 3.14 to d.

int v[20];
// ...
int& g(int i) { return v[i]; }
// ...
g(3) = 7;

declares the functiong() to return a reference to an integer sog(3)=7 will assign7 to the fourth element
of the arrayv .

8– 6 Declarators DRAFT: 25 January 1994 8.3.2 References

struct link {
link* next;

};

link* first;

void h(link*& p) // ‘p’ is a reference to pointer
{

p->next = first;
first = p;
p = 0;

}

void k()
{

link* q = new link;
h(q);

}

declaresp to be a reference to a pointer tolink soh(q) will leaveq with the value zero. See also 8.5.3.

3 There can be no references to references, no references to bit-fields (9.7), no arrays of references, and no
pointers to references. The declaration of a reference must contain aninitializer (8.5.3) except when the
declaration contains an explicitextern specifier (7.1.1), is a class member (9.2) declaration within a class
declaration, or is the declaration of an parameter or a return type (8.3.5); see 3.1. A reference must be ini-
tialized to refer to a valid object. In particular, null references are prohibited; no diagnostic is required.

[dcl.mptr] 8.3.3 Pointers to members

1 In a declarationT DwhereDhas the form

:: opt nested-name-specifier:: * cv-qualifier-seqopt D1

and thenested-name-specifiernames a class, and the type of the identifier in the declarationT D1 is “type-
modifier T,” then the type of the identifier ofD is “type-modifier cv-qualifier-seqpointer to member of
class nested-name-specifier of typeT.”

2 For example,

class X {
public:

void f(int);
int a;

};
class Y;

int X::* pmi = &X::a;
void (X::* pmf)(int) = &X::f;
double X::* pmd;
char Y::* pmc;

declarespmi , pmf , pmdandpmc to be a pointer to a member ofX of typeint , a pointer to a member ofX
of typevoid(int) , a pointer to a member ofX of typedouble and a pointer to a member ofY of type
char respectively. The declaration ofpmd is well-formed even thoughX has no members of type
double . Similarly, the declaration ofpmc is well-formed even thoughY is an incomplete type.pmi and
pmf can be used like this:

8.3.3 Pointers to members DRAFT: 25 January 1994 Declarators 8– 7

X obj;
//...
obj.*pmi = 7; // assign 7 to an integer

// member of obj
(obj.*pmf)(7); // call a function member of obj

// with the argument 7

3 Note that a pointer to member cannot point to a static member of a class (9.5), a member with reference
type, or“cv void .” There are no references to members. See also 5.5 and 5.3.

[dcl.array] 8.3.4 Arrays

1 In a declarationT DwhereDhas the form

D1 [constant-expressionopt]

and the type of the identifier in the declarationT D1 is “type-modifierT,” then the type of the identifier ofD
is an array type. If theconstant-expression(5.19) is present, it must be of enumeration or integral type and
have a value greater than zero. The constant expression specifies theboundof (number of elements in) the
array. If the value of the constant expression isN, the array hasN elements numbered0 to N-1 , and the
type of the identifier ofD is “type-modifierarray ofN T.” If the constant expression is omitted, the type of
the identifier ofD is “type-modifierarray of unknown bound ofT,” an incomplete object type. Any cv-
qualifiers that appear intype-modifierare applied to the typeT and not to the array type, as in this example:

typedef int A[5], AA[2][3];
const A x; // type is ‘‘array of 5 const int’’
const AA y; // type is ‘‘array of 2 array of 3 const int’’

2 An array may be constructed from one of the fundamental types27) (exceptvoid), from a pointer, from a
pointer to member, from a class, or from another array.

3 When several“array of” specifications are adjacent, a multidimensional array is created; the constant
expressions that specify the bounds of the arrays may be omitted only for the first member of the sequence.
This elision is useful for function parameters of array types, and when the array is external and the defini-
tion, which allocates storage, is given elsewhere. The firstconstant-expressionmay also be omitted when
the declarator is followed by aninitializer (8.5). In this case the bound is calculated from the number of
initial elements (say,N) supplied (8.5.1), and the type of the identifier ofD is “array ofN T.”

4 The declaration

float fa[17], *afp[17];

declares an array offloat numbers and an array of pointers tofloat numbers. The declaration

static int x3d[3][5][7];

declares a static three-dimensional array of integers, with rank 3×5×7. In complete detail,x3d is an array
of three items; each item is an array of five arrays; each of the latter arrays is an array of seven integers.
Any of the expressionsx3d , x3d[i] , x3d[i][j] , x3d[i][j][k] may reasonably appear in an
expression.

5 Conversions affecting lvalues of array type are described in 4.6. Except where it has been declared for a
class (13.4.5), the subscript operator[] is interpreted in such a way thatE1[E2] is identical to
*((E1)+(E2)) . Because of the conversion rules that apply to+, if E1 is an array andE2 an integer,
thenE1[E2] refers to theE2-th member ofE1. Therefore, despite its asymmetric appearance, subscript-
ing is a commutative operation.

27)The enumeration types are included in the fundamental types.

8– 8 Declarators DRAFT: 25 January 1994 8.3.4 Arrays

6 A consistent rule is followed for multidimensional arrays. IfE is an n-dimensional array of rank
i × j × . . . ×k, thenE appearing in an expression is converted to a pointer to an (n − 1)-dimensional array
with rankj × . . . ×k. If the* operator, either explicitly or implicitly as a result of subscripting, is applied to
this pointer, the result is the pointed-to (n − 1)-dimensional array, which itself is immediately converted
into a pointer.

7 For example, consider

int x[3][5];

Herex is a 3×5 array of integers. Whenx appears in an expression, it is converted to a pointer to (the first
of three) five-membered arrays of integers. In the expressionx[i] , which is equivalent to*(x+i) , x is
first converted to a pointer as described; thenx+i is converted to the type ofx , which involves multiplying
i by the length of the object to which the pointer points, namely five integer objects. The results are added
and indirection applied to yield an array (of five integers), which in turn is converted to a pointer to the first
of the integers. If there is another subscript the same argument applies again; this time the result is an inte-
ger.

8 It follows from all this that arrays in C + + are stored row-wise (last subscript varies fastest) and that the first
subscript in the declaration helps determine the amount of storage consumed by an array but plays no other
part in subscript calculations.

[dcl.fct] 8.3.5 Functions

1 In a declarationT DwhereDhas the form

D1 (parameter-declaration-clause) cv-qualifier-seqopt

and the type of the containeddeclarator-id in the declarationT D1 is “type-modifierT1,” the type of the
declarator-id in D is “type-modifier cv-qualifier-seqopt function with parameters of typeparameter-
declaration-clauseand returningT1”; a type of this form is afunction type28).

parameter-declaration-clause:
parameter-declaration-listopt ... opt

parameter-declaration-list, ...

parameter-declaration-list:
parameter-declaration
parameter-declaration-list, parameter-declaration

parameter-declaration:
decl-specifier-seq declarator
decl-specifier-seq declarator= assignment-expression
decl-specifier-seq abstract-declaratoropt

decl-specifier-seq abstract-declaratoropt = assignment-expression

2 The parameter-declaration-clausedetermines the arguments that can be specified, and their processing,
when the function is called. If theparameter-declaration-clauseterminates with an ellipsis, the number of
arguments is known only to be equal to or greater than the number of parameters specified; if it is empty,
the function takes no arguments. The parameter list(void) is equivalent to the empty parameter list.
Except for this special casevoid may not be a parameter type (though types derived fromvoid , such as
void* , may). Where syntactically correct,“, ... ” is synonymous with“... ”. The standard header
<stdarg.h> contains a mechanism for accessing arguments passed using the ellipsis, see_lib.stdarg_.
See 12.1 for the treatment of array arguments.

3 A single name may be used for several different functions in a single scope; this is function overloading
(13). All declarations for a function with a given parameter list must agree exactly both in the type of the
value returned and in the number and type of parameters; the presence or absence of the ellipsis is

28)As indicated by the syntax, cv-qualifiers are a significant component in function return types.

8.3.5 Functions DRAFT: 25 January 1994 Declarators 8– 9

considered part of the function type. The type of each parameter is determined from its owndecl-
specifier-seqanddeclarator. After determining the type of each parameter, any parameter of type“array of
T” or “function returningT” is adjusted to be“pointer toT” or “pointer to function returningT,” respec-
tively. After producing the list of parameter types, several transformations take place upon the types. Any
cv-qualifier modifying a parameter type is deleted; e.g., the typevoid(const int) becomes
void(int) . Suchcv-qualifiers affect only the definition of the parameter within the body of the func-
tion. If the storage-class-specifierregister modifies a parameter type, the specifier is deleted; e.g.,
register char* becomeschar* . Such storage-class-qualifiers affect only the definition of the
parameter within the body of the function. The resulting list of transformed parameter types is the
function’s listparametertype

Box 44
Issue: a definition for“signature” will be added as soon as the semantics are made precise. _ __

_ __

The return type and the parameter type list, but not the default arguments (8.3.6), are part of the function
type. If the type of a parameter includes a type of the form“pointer to array of unknown bound ofT” “ref-
erence to array of unknown bound ofT,” the program is ill-formed.29) A cv-qualifier-seqcan only be part
of a declaration or definition of a nonstatic member function, and of a pointer to a member function; see
9.4.1. It is part of the function type.

4 Functions cannot return arrays or functions, although they can return pointers and references to such things.
There are no arrays of functions, although there may be arrays of pointers to functions.

5 Types may not be defined in return or parameter types.

6 Theparameter-declaration-clauseis used to check and convert arguments in calls and to check pointer-to-
function and reference-to-function assignments and initializations.

7 An identifier can optionally be provided as a parameter name; if present in a function declaration, it cannot
be used since it goes out of scope at the end of the function declarator (3.3); if present in a function defini-
tion (8.4), it names a parameter (sometimes called“formal argument”). In particular, parameter names are
also optional in function definitions and names used for a parameter in different declarations and the defini-
tion of a function need not be the same.

8 The declaration

int i,
*pi,
f(),
*fpi(int),
(*pif)(const char*, const char*);
(*fpif(int))(int);

declares an integeri , a pointerpi to an integer, a functionf taking no arguments and returning an integer,
a functionfpi taking an integer argument and returning a pointer to an integer, a pointerpif to a function
which takes two pointers to constant characters and returns an integer, a functionfpif taking an integer
argument and returning a pointer to a function that takes an integer argument and returns an integer. It is
especially useful to comparefpi andpif . The binding of*fpi(int) is *(fpi(int)) , so the decla-
ration suggests, and the same construction in an expression requires, the calling of a functionfpi , and then
using indirection through the (pointer) result to yield an integer. In the declarator(*pif)(const
char*, const char*) , the extra parentheses are necessary to indicate that indirection through a pointer
to a function yields a function, which is then called.

29) This excludes parameters of type“ptr-arr-seq T2” whereT2 is “pointer to array of unknown bound ofT” and whereptr-arr-seq
means any sequence of“pointer to” and“array of” modifiers. This exclusion applies to the parameters of the function, and if a parame-
ter is a pointer to function then to its parameters also, etc.

8– 10 Declarators DRAFT: 25 January 1994 8.3.5 Functions

9 Typedefs are sometimes convenient when the return type of a function is complex. For example, the func-
tion fpif above could have been declared

typedef int IFUNC(int);
IFUNC* fpif(int);

10 The declaration

fseek(FILE*, long, int);

declares a function taking three arguments of the specified types. Since no return value type is specified it
is taken to beint (7.1.5). The declaration

printf(const char* ...);

declares a function that can be called with varying numbers and types of arguments. For example,

printf("hello world");
printf("a=%d b=%d", a, b);

It must always have a value, however, that can be converted to aconst char* as its first argument.

[dcl.fct.default]8.3.6 Default arguments

1 If an expression is specified in a parameter declaration this expression is used as a default argument. All
subsequent parameters must have default arguments supplied in this or previous declarations of this func-
tion. Default arguments will be used in calls where trailing arguments are missing. A default argument
shall not be redefined by a later declaration (not even to the same value). A declaration may add default
arguments, however, not given in previous declarations.

2 The declaration

point(int = 3, int = 4);

declares a function that can be called with zero, one, or two arguments of typeint . It may be called in any
of these ways:

point(1,2); point(1); point();

The last two calls are equivalent topoint(1,4) andpoint(3,4) , respectively.

3 Default argument expressions in non-member functions have their names bound and their types checked at
the point of declaration, and are evaluated at each point of call. In member functions, names in default
argument expressions are bound at the end of the class declaration, like names in inline member function
bodies (9.4.2). In the following example,g will be called with the valuef(2) :

int a = 1;
int f(int);
int g(int x = f(a)); // default argument: f(::a)

void h() {
a = 2;
{

int a = 3;
g(); // g(f(::a))

}
}

Local variables shall not be used in default argument expressions. For example,

8.3.6 Default arguments DRAFT: 25 January 1994 Declarators 8– 11

void f()
{

int i;
extern void g(int x = i); // error
// ...

}

4 Note that default arguments are evaluated before entry into a function and that the order of evaluation of
function arguments is implementation dependent. Consequently, parameters of a function may not be used
in default argument expressions. Paramaters of a function declared before a default argument expression
are in scope and may hide global and class member names. For example,

int a;
int f(int a, int b = a); // error: parameter ‘a’

// used as default argument
typedef int I;
int g(float I, int b = I(2)); // error: ‘float’ called

5 Similarly, the declaration ofX::mem1() in the following example is undefined because no object is sup-
plied for the nonstatic memberX::a used as an initializer.

int b;
class X {

int a;
mem1(int i = a); // error: nonstatic member ‘a’

// used as default argument
mem2(int i = b); // ok; use X::b
static b;

};

The declaration ofX::mem2() is meaningful, however, since no object is needed to access the static
memberX::b . Classes, objects, and members are described in 9.

6 A default argument is not part of the type of a function.

int f(int = 0);

void h()
{

int j = f(1);
int k = f(); // fine, means f(0)

}

int (*p1)(int) = &f;
int (*p2)() = &f; // error: type mismatch

7 An overloaded operator (13.4) shall not have default arguments.

[dcl.fct.def] 8.4 Function definitions

1 Function definitions have the form

function-definition:
decl-specifier-seqopt declarator ctor-initializeropt function-body

function-body:
compound-statement

Thedeclaratorin a function-definitionmust contain a declarator with the form

D1 (parameter-declaration-clause) cv-qualifier-seqopt

as described in 8.3.5.

8– 12 Declarators DRAFT: 25 January 1994 8.4 Function definitions

2 The parameters are in the scope of the outermost block of thefunction-body.

3 A simple example of a complete function definition is

int max(int a, int b, int c)
{

int m = (a > b) ? a : b;
return (m > c) ? m : c;

}

Hereint is thedecl-specifier-seq; max(int a, int b, int c) is thedeclarator; { /* ... */ } is
thefunction-body.

4 A ctor-initializer is used only in a constructor; see 12.1 and 12.6.

5 A cv-qualifier-seqcan be part of a non-static member function declaration, non-static member function def-
inition, or pointer to member function only; see 9.4.1. It is part of the function type.

6 Note that unused parameters need not be named. For example,

void print(int a, int)
{

printf("a = %d\n",a);
}

[dcl.init] 8.5 Initializers

1 A declarator may specify an initial value for the identifier being declared.30)

initializer:
= initializer-clause
(expression-list)

initializer-clause:
assignment-expression
{ initializer-list , opt }
{ }

initializer-list:
initializer-clause
initializer-list , initializer-clause

2 Automatic, register, static, and external variables at file scope may be initialized by arbitrary expressions
involving constants and previously declared variables and functions.

int f(int);
int a = 2;
int b = f(a);
int c(b);

3 An expression of type“pointer tocv1 T” can initialize a pointer of type“pointer tocv2 T” if the set of
cv-qualifierscv1 is a subset ofcv2. An expression of type“cv1 T” can initialize an object of type“cv2 T”
independently of the cv-qualifierscv1andcv2. For example,

30)The syntax provides for empty initializer clauses, but nonetheless C + + does not have zero length arrays.

8.5 Initializers DRAFT: 25 January 1994 Declarators 8– 13

int a;
const int b = a;
int c = b;

const int* p0 = &a;
const int* p1 = &b;
int* p2 = &b; // error: makes a pointer to

// nonconst point to a const

int *const p3 = p2;
int *const p4 = p1; // error: makes a pointer to

// nonconst point to a const
const int* p5 = p1;

The declarations ofp2 andp4 are ill-formed for the same reason: had those initializations been allowed,
they would have allowed the value of something declaredconst to be changed through an unqualified
pointer.

4 Default argument expressions are more restricted; see 8.3.6.

5 Initialization of objects of classes with constructors is described in 12.6.1. Copying of class objects is
described in 12.8. The order of initialization of static objects is described in 3.5 and 6.7.

6 Variables with storage class static (3.7) that are not initialized and do not have a constructor are guaranteed
to start off as zero converted to the appropriate type. If the object is aclass or struct , its data mem-
bers start off as zero converted to the appropriate type. If the object is aunion , its first data member starts
off as zero converted to the appropriate type. The initial values of automatic and register variables that are
not initialized are indeterminate.

7 When an initializer applies to a pointer or an object of enumeration or arithmetic type, it consists of a single
expression, perhaps in braces. The initial value of the object is taken from the expression; the same conver-
sions as for assignment are performed.

8 Note that since() is not an initializer,

X a();

is not the declaration of an object of classX, but the declaration of a function taking no argument and
returning anX.

9 An initializer for a static member is in the scope of the member’s class. For example,

int a;

struct X {
static int a;
static int b;

};

int X::a = 1;
int X::b = a; // X::b = X::a

See 8.3.6 for initializers used as default arguments.

[dcl.init.aggr] 8.5.1 Aggregates

1 An aggregateis an array or an object of a class (9) with no user-declared constructors (12.1), no private or
protected members (11), no base classes (10), and no virtual functions (10.3). When an aggregate is initial-
ized theinitializer may be aninitializer-clauseconsisting of a brace-enclosed, comma-separated list of ini-
tializers for the members of the aggregate, written in increasing subscript or member order. If the aggregate
contains subaggregates, this rule applies recursively to the members of the subaggregate. If there are fewer
initializers in the list than there are members of the aggregate, then the aggregate is padded with zeros of
the appropriate types.

8– 14 Declarators DRAFT: 25 January 1994 8.5.1 Aggregates

2 For example,

struct S { int a; char* b; int c; };
S ss = { 1, "asdf" };

initializesss.a with 1, ss.b with ,asdf"" andss.c with zero.

3 An aggregate that is a class may also be initialized with an object of its class or of a class publicly derived
from it (12.8).

4 Braces may be elided as follows. If theinitializer-clausebegins with a left brace, then the succeeding
comma-separated list of initializers initializes the members of the aggregate; it is erroneous for there to be
more initializers than members. If, however, theinitializer-clauseor a subaggregate does not begin with a
left brace, then only enough elements from the list are taken to account for the members of the aggregate;
any remaining members are left to initialize the next member of the aggregate of which the current aggre-
gate is a part.

5 For example,

int x[] = { 1, 3, 5 };

declares and initializesx as a one-dimensional array that has three members, since no size was specified
and there are three initializers.

float y[4][3] = {
{ 1, 3, 5 },
{ 2, 4, 6 },
{ 3, 5, 7 },

};

is a completely-bracketed initialization: 1, 3, and 5 initialize the first row of the arrayy[0] , namely
y[0][0] , y[0][1] , andy[0][2] . Likewise the next two lines initializey[1] andy[2] . The initial-
izer ends early and thereforey[3] is initialized with zeros. Precisely the same effect could have been
achieved by

float y[4][3] = {
1, 3, 5, 2, 4, 6, 3, 5, 7

};

The last (rightmost) index varies fastest (8.3.4).

6 The initializer fory begins with a left brace, but the one fory[0] does not, therefore three elements from
the list are used. Likewise the next three are taken successively fory[1] andy[2] . Also,

float y[4][3] = {
{ 1 }, { 2 }, { 3 }, { 4 }

};

initializes the first column ofy (regarded as a two-dimensional array) and leaves the rest zero.

7 Initialization of arrays of objects of a class with constructors is described in 12.6.1.

8 The initializer for a union with no constructor is either a single expression of the same type, or a brace-
enclosed initializer for the first member of the union. For example,

union u { int a; char* b; };

u a = { 1 };
u b = a;
u c = 1; // error
u d = { 0, "asdf" }; // error
u e = { "asdf" }; // error

9 There may not be more initializers than there are members or elements to initialize. For example,

8.5.1 Aggregates DRAFT: 25 January 1994 Declarators 8– 15

char cv[4] = { ’a’, ’s’, ’d’, ’f’, 0 }; // error

is ill-formed.

10 A POD-struct31) is an aggregate structure that contains neither references nor pointers to members. Simi-
larly, aPOD-unionis an aggregate union that contains neither references nor pointers to members.

[dcl.init.string] 8.5.2 Character arrays

1 A char array (whether signed or unsigned) may be initialized by a string; awchar_t array may be ini-
tialized by a wide-character string; successive characters of the string initialize the members of the array.
For example,

char msg[] = "Syntax error on line %s\n";

shows a character array whose members are initialized with a string. Note that because’\n’ is a single
character and because a trailing’\0’ is appended,sizeof(msg) is 25 .

2 There may not be more initializers than there are array elements. For example,

char cv[4] = "asdf"; // error

is ill-formed since there is no space for the implied trailing’\0’ .

[dcl.init.ref] 8.5.3 References

1 A variable declared to be aT&, that is“reference to typeT” (8.3.2), must be initialized by an object, or
function, of typeT or by an object that can be converted into aT. For example,

void f()
{

int i;
int& r = i; // ‘r’ refers to ‘i’
r = 1; // the value of ‘i’ becomes 1
int* p = &r; // ‘p’ points to ‘i’
int& rr = r; // ‘rr’ refers to what ‘r’ refers to,

// that is, to ‘i’
}

2 A reference cannot be changed to refer to another object after initialization. Note that initialization of a ref-
erence is treated very differently from assignment to it. Argument passing (5.2.2) and function value return
(6.6.3) are initializations.

3 The initializer may be omitted for a reference only in a parameter declaration (8.3.5), in the declaration of a
function return type, in the declaration of a class member within its class declaration (9.2), and where the
extern specifier is explicitly used. For example,

int& r1; // error: initializer missing
extern int& r2; // ok

4 If the initializer for a reference to typeT is an lvalue of typeT or of a type derived (10) fromT for whichT
is an unambiguous accessible base (4.6), the reference will refer to the (T part of the) initializer; otherwise,
if and only if the reference is to aconst and an object of typeT can be created from the initializer, such an
object will be created. The reference then becomes a name for that object. For example,

31)The acronym POD stands for“plain ol’ data.”

8– 16 Declarators DRAFT: 25 January 1994 8.5.3 References

double d = 2.0;

double& rd = d; // rd refers to ‘d’
const double& rcd = d; // rcd refers to ‘d’

double& rd2 = 2.0; // error: not an lvalue
int i = 2;
double& rd3 = i; // error: type mismatch
const double& rcd2 = 2; // rcd2 refers to temporary

// with value ‘2’

5 A reference to aconst object is required to beconst . Similarly a reference to avolatile or const
volatile object is required to bevolatile or const volatile (respectively). However, aconst ,
volatile , orconst volatile reference can refer to a plain object. For example,

const double d = 2.0;
double& rd = d; // error: non-const reference to const
const volatile double& rcvd = d; // okay: rcvd refers to ‘d’
const double& rcd = rcvd; // error: non-volatile reference to volatile

6 The lifetime of a temporary object created in this way is the scope in which it is created (3.7).

_ ___ ___

9 Classes [class]
_ ___ ___

1 A class is a type. Its name becomes aclass-name(9.1), that is, a reserved word within its scope. ∗

class-name:
identifier
template-id

Class-specifiers andelaborated-type-specifiers (7.1.5.3) are used to makeclass-names. An object of a class
consists of a (possibly empty) sequence of members.

class-specifier:
class-head{ member-specificationopt }

class-head:
class-key identifieropt base-clauseopt

class-key nested-name-specifier identifier base-clauseopt

class-key:
class
struct
union

2 The name of a class can be used as aclass-nameeven within themember-specificationof the class specifier
itself. A class-specifieris commonly referred to as a class definition. A class is considered defined after
the closing brace of itsclass-specifierhas been seen even though its member functions are in general not
yet defined.

3 Objects of an empty class have a nonzero size.

4 Class objects may be assigned, passed as arguments to functions, and returned by functions (except objects
of classes for which copying has been restricted; see 12.8). Other plausible operators, such as equality
comparison, can be defined by the user; see 13.4.

5 A structureis a class declared with theclass-keystruct ; its members and base classes (10) are public by
default (11). Aunion is a class declared with theclass-keyunion ; its members are public by default and it
holds only one member at a time (9.6).

[class.name] 9.1 Class names

1 A class definition introduces a new type. For example,

struct X { int a; };
struct Y { int a; };
X a1;
Y a2;
int a3;

declares three variables of three different types. This implies that

a1 = a2; // error: Y assigned to X
a1 = a3; // error: int assigned to X

are type mismatches, and that

9– 2 Classes DRAFT: 25 January 1994 9.1 Class names

int f(X);
int f(Y);

declare an overloaded (13) functionf() and not simply a single functionf() twice. For the same reason,

struct S { int a; };
struct S { int a; }; // error, double definition

is ill-formed because it definesS twice.

2 A class definition introduces the class name into the scope where it is defined and hides any class, object,
function, or other declaration of that name in an enclosing scope (3.3). If a class name is declared in a
scope where an object, function, or enumerator of the same name is also declared the class can be referred
to only using anelaborated-type-specifier(7.1.5.3). For example,

struct stat {
// ...

};

stat gstat; // use plain ‘stat’ to
// define variable

int stat(struct stat*); // redefine ‘stat’ as function

void f()
{

struct stat* ps; // ‘struct’ prefix needed
// to name struct stat

// ...
stat(ps); // call stat()
// ...

}

A declarationconsisting solely of:class-keyidentifier; is a forward declaration of the identifier as a class
name. It introduces the class name into the current scope. For example,

struct s { int a; };

void g()
{

struct s; // hide global struct ‘s’
s* p; // refer to local struct ‘s’
struct s { char* p; }; // declare local struct ‘s’

}

Such declarations allow definition of classes that refer to each other. For example,

class vector;

class matrix {
// ...
friend vector operator*(matrix&, vector&);

};

class vector {
// ...
friend vector operator*(matrix&, vector&);

};

Declaration offriend s is described in 11.4, operator functions in 13.4.

3 An elaborated-type-specifier(7.1.5.3) can also be used in the declarations of objects and functions. It dif-
fers from a class declaration in that if a class of the elaborated name is in scope the elaborated name will
refer to it. For example,

9.1 Class names DRAFT: 25 January 1994 Classes 9– 3

struct s { int a; };

void g(int s)
{

struct s* p = new struct s; // global ‘s’
p->a = s; // local ‘s’

}

4 A name declaration takes effect immediately after theidentifier is seen. For example,

class A * A;

first specifiesA to be the name of a class and then redefines it as the name of a pointer to an object of that
class. This means that the elaborated formclass A must be used to refer to the class. Such artistry with
names can be confusing and is best avoided.

5 A typedef-name(7.1.3) that names a class is aclass-name; see also 7.1.3.

[class.mem] 9.2 Class members

member-specification:
member-declaration member-specificationopt

access-specifier: member-specificationopt

member-declaration:
decl-specifier-seqopt member-declarator-listopt ;
function-definition ; opt

qualified-id ;
using-declaration

member-declarator-list:
member-declarator
member-declarator-list, member-declarator

member-declarator:
declarator pure-specifieropt

identifieropt : constant-expression

pure-specifier:
= 0

1 Themember-specificationin a class definition declares the full set of members of the class; no member can
be added elsewhere. Members of a class are data members, member functions (9.4), nested types, and
member constants. Data members and member functions are static or nonstatic; see 9.5. Nested types are
classes (9.1, 9.8) and enumerations (7.2) defined in the class, and arbitrary types declared as members by
use of a typedef declaration (7.1.3). The enumerators of an enumeration (7.2) defined in the class are mem-
ber constants of the class. Except when used to declare friends (11.4) or to adjust the access to a member of
a base class (11.3),member-declarations declare members of the class, and each suchmember-declaration
must declare at least one member name of the class. A member may not be declared twice in themember-
specification, except that a nested class may be declared and then later defined.

2 Note that a single name can denote several function members provided their types are sufficiently different
(13). Note that amember-declaratorcannot contain aninitializer (8.5). A member can be initialized using
a constructor; see 12.1.

3 A member may not beauto , extern , or register .

4 The decl-specifier-seqcan be omitted in function declarations only. Themember-declarator-listcan be
omitted only after aclass-specifier, an enum-specifier, or a decl-specifier-seqof the form friend
elaborated-type-specifier. A pure-specifiermay be used only in the declaration of a virtual function (10.3).

9– 4 Classes DRAFT: 25 January 1994 9.2 Class members

5 Non-static (9.5) members that are class objects must be objects of previously declared classes. In par-
ticular, a classcl may not contain an object of classcl , but it may contain a pointer or reference to an
object of classcl . When an array is used as the type of a nonstatic member all dimensions must be speci-
fied.

6 A simple example of a class definition is

struct tnode {
char tword[20];
int count;
tnode *left;
tnode *right;

};

which contains an array of twenty characters, an integer, and two pointers to similar structures. Once this
definition has been given, the declaration

tnode s, *sp;

declaress to be atnode andsp to be a pointer to atnode . With these declarations,sp->count refers
to thecount member of the structure to whichsp points;s.left refers to theleft subtree pointer of
the structures ; ands.right->tword[0] refers to the initial character of thetword member of the
right subtree ofs .

7 Nonstatic data members of a class declared without an interveningaccess-specifierare allocated so that
later members have higher addresses within a class object. The order of allocation of nonstatic data mem-
bers separated by anaccess-specifieris implementation dependent (11.1). Implementation alignment
requirements may cause two adjacent members not to be allocated immediately after each other; so may
requirements for space for managing virtual functions (10.3) and virtual base classes (10.1); see also 5.4.

8 If two typesT1 andT2 are the same type, thenT1 andT2 arelayout-compatibletypes.

9 Two POD-struct (8.5.1) types are layout-compatible if they have the same number of members, and corre-
sponding members (in order) have layout-compatible types.

10 Two POD-union (8.5.1) types are layout-compatible if they have the same number of members, and corre-
sponding members (in any order) have layout-compatible types.

Box 45

Shouldn’t this be the samesetof types?_ _________________________________

_ _________________________________

11 Two enumeration types are layout-compatible if they have the same sets of enumerator values.

Box 46

Shouldn’t this be the sameunderlying type?_ _____________________________________

_ _____________________________________

12 If a POD-union contains several POD-structs that share a common initial sequence, and if the POD-union
object currently contains one of these POD-structs, it is permitted to inspect the common initial part of any
of them. Two POD-structs share a common initial sequence if corresponding members have layout-
compatible types (and, for bit-fields, the same widths) for a sequence of one or more initial members.

13 A pointer to a POD-struct object, suitably converted, points to its initial member (or if that member is a
bit-field, then to the unit in which it resides) and vice versa. There may therefore be unnamed padding
within a POD-struct object, but not at its beginning, as necessary to achieve appropriate alignment.

14 The range of nonnegative values of a signed integral type is a subrange of the corresponding unsigned inte-
gral type, and the representation of the same value in each type is the same.

9.2 Class members DRAFT: 25 January 1994 Classes 9– 5

15 Even if the implementation defines two or more basic types to have the same representation, they are never-
theless different types.

16 The representations of integral types shall define values by use of a pure binary numeration system.

Box 47

Does this mean two’s complement? Is there a definition of“pure binary numeration system?”_ ___

_ ___

17 The qualified or unqualified versions of a type are distinct types that have the same representation and
alignment requirements.

18 A qualified or unqualifiedvoid* shall have the same representation and alignment requirements as a qual-
ified or unqualifiedchar* .

19 Similarly, pointers to qualified or unqualified versions of layout-compatible types shall have the same rep-
resentation and alignment requirements.

20 If the program attempts to access the stored value of an object other than through an lvalue of one of the
following types:

• the declared type of the object,

• a qualified version of the declared type of the object,

• a type that is the signed or unsigned type corresponding to the declared type of the object,

• a type that is the signed or unsigned type corresponding to a qualified version of the declared type of the
object,

• an aggregate or union type that includes one of the aforementioned types among its members (includ-
ing, recursively, a member of a subaggregate or contained union), or

• a character type.32)

the result is undefined.

21 A function member (9.4) with the same name as its class is a constructor (12.1). A static data member, enu-
merator, member of an anonymous union, or nested type may not have the same name as its class.

[class.scope0]9.3 Scope rules for classes

1 The following rules describe the scope of names declared in classes.

1) The scope of a name declared in a class consists not only of the text following the name’s declarator,
but also of all function bodies, default arguments, and constructor initializers in that class (including
such things in nested classes).

2) A nameN used in a classS must refer to the same declaration when re-evaluated in its context and
in the completed scope of S.

3) If reordering member declarations in a class yields an alternate valid program under (1) and (2), the
program’s meaning is undefined.

4) A declaration in a nested declarative region hides a declaration whose declarative region contains
the nested declarative region.

5) A declaration within a member function hides a declaration whose scope extends to or past the end
of the member function’s class.

6) The scope of a declaration that extends to or past the end of a class definition also extends to the

32)The intent of this list is to specify those circumstances in which an object may or may not be aliased.

9– 6 Classes DRAFT: 25 January 1994 9.3 Scope rules for classes

regions defined by its member definitions, even if defined lexically outside the class (this includes
both function member bodies and static data member i nitializations).

2 For example:

typedef int c;
enum { i = 1 };

class X {
char v[i]; // error: ’i’ refers to ::i

// but when reevaluated is X::i
int f() { return sizeof(c); } // okay: X::c
char c;
enum { i = 2 };

};

typedef char* T;
struct Y {

T a; // error: ’T’ refers to ::T
// but when reevaluated is Y::T

typedef long T;
T b;

};

struct Z {
int f(const R); // error: ’R’ is parameter name

// but swapping the two declarations
// changes it to a type

typedef int R;
};

[class.mfct] 9.4 Member functions

1 A function declared as a member (without thefriend specifier; 11.4) is called a member function, and is
called for an object using the class member syntax (5.2.4). For example,

struct tnode {
char tword[20];
int count;
tnode *left;
tnode *right;
void set(char*, tnode* l, tnode* r);

};

Hereset is a member function and can be called like this:

void f(tnode n1, tnode n2)
{

n1.set("abc",&n2,0);
n2.set("def",0,0);

}

2 The definition of a member function is considered to be within the scope of its class. This means that (pro-
vided it is nonstatic 9.5) it can use names of members of its class directly. Such names then refer to the
members of the object for which the function was called.

3 A static local variable in a member function always refers to the same object. A static member function can
use only the names of static members, enumerators, and nested types directly. If the definition of a member
function is lexically outside the class definition, the member function name must be qualified by the class
name using the:: operator. For example,

9.4 Member functions DRAFT: 25 January 1994 Classes 9– 7

void tnode::set(char* w, tnode* l, tnode* r)
{

count = strlen(w+1);
if (sizeof(tword)<=count)

error("tnode string too long");
strcpy(tword,w);
left = l;
right = r;

}

The notationtnode::set specifies that the functionset is a member of and in the scope of class
tnode . The member namestword , count , left , andright refer to members of the object for which
the function was called. Thus, in the call ,n1.set(abc",&n2,0)"tword refers ton1.tword, and in the
call n2.set(def",0,0)" it refers ton2.tword . The functionsstrlen , error , andstrcpy must be
declared elsewhere.

4 Members may be defined (3.1) outside their class definition if they have already been declared but not
defined in the class definition; they may not be redeclared. See also 3.4. Function members may be men-
tioned in friend declarations after their class has been defined. Each member function that is called must
have exactly one definition in a program, (no diagnostic required).

5 The effect of calling a nonstatic member function (9.5) of a classX for something that is not an object of
classX is undefined.

[class.this] 9.4.1 Thethis pointer

1 In a nonstatic (9.4) member function, the keywordthis is a non-lvalue expression whose value is the
address of the object for which the function is called. The type ofthis in a member function of a classX
is X* unless the member function is declaredconst or volatile ; in those cases, the type ofthis is
const X* or volatile X* , respectively. A function declaredconst andvolatile has athis with
the typeconst volatile X* . See also C.3.3. For example,

struct s {
int a;
int f() const;
int g() { return a++; }
int h() const { return a++; } // error

};

int s::f() const { return a; }

The a++ in the body ofs::h is ill-formed because it tries to modify (a part of) the object for which
s::h() is called. This is not allowed in aconst member function wherethis is a pointer toconst ,
that is,*this is aconst .

2 A const member function (that is, a member function declared with theconst qualifier) may be called
for const and non-const objects, whereas a non-const member function may be called only for a
non-const object. For example,

void k(s& x, const s& y)
{

x.f();
x.g();
y.f();
y.g(); // error

}

The cally.g() is ill-formed becausey is const and s::g() is a non-const member function that
could (and does) modify the object for which it was called.

9– 8 Classes DRAFT: 25 January 1994 9.4.1 Thethis pointer

3 Similarly, only volatile member functions (that is, a member function declared with thevolatile
specifier) may be invoked forvolatile objects. A member function can be bothconst and
volatile .

4 Constructors (12.1) and destructors (12.4) may be invoked for aconst or volatile object. Construc-
tors (12.1) and destructors (12.4) cannot be declaredconst or volatile .

[class.inline] 9.4.2 Inline member functions

1 A member function may be defined (8.4) in the class definition, in which case it isinline (7.1.2). Defin-
ing a function within a class definition is equivalent to declaring itinline and defining it immediately
after the class definition; this rewriting is considered to be done after preprocessing but before syntax analy-
sis and type checking of the function definition. Thus

int b;
struct x {

char* f() { return b; }
char* b;

};

is equivalent to

int b;
struct x {

char* f();
char* b;

};

inline char* x::f() { return b; } // moved

Thus theb used inx::f() is X::b and not the globalb. See also_class.local.type_.

2 Member functions can be defined even in local or nested class definitions where this rewriting would be
syntactically incorrect. See 9.9 for a discussion of local classes and 9.8 for a discussion of nested classes.

[class.static] 9.5 Static members

1 A data or function member of a class may be declaredstatic in the class definition. There is only one
copy of a static data member, shared by all objects of the class and any derived classes in a program. A
static member is not part of objects of a class. Static members of a global class have external linkage (3.4).
The declaration of a static data member in its class definition isnot a definition and may be of an incom-
plete type. A definition is required elsewhere; see also C.3. A static data member cannot be mutable.

2 A static member function does not have athis pointer so it can access nonstatic members of its class only
by using. or -> . A static member function cannot bevirtual . There cannot be a static and a nonstatic
member function with the same name and the same parameter types.

3 Static members of a local class (9.9) have no linkage and cannot be defined outside the class definition. It
follows that a local class cannot have static data members.

4 A static membermemof classcl can be referred to ascl::mem (5.1), that is, independently of any object.
It can also be referred to using the. and -> member access operators (5.2.4). When a static member is
accessed through a member access operator, the expression on the left side of the. or -> is not evaluated.
The static membermemexists even if no objects of classcl have been created. For example, in the follow-
ing, run_chain , idle , and so on exist even if noprocess objects have been created:

9.5 Static members DRAFT: 25 January 1994 Classes 9– 9

class process {
static int no_of_processes;
static process* run_chain;
static process* running;
static process* idle;
// ...

public:
// ...
int state();
static void reschedule();
// ...

};

andreschedule can be used without reference to aprocess object, as follows:

void f()
{

process::reschedule();
}

5 Static members of a global class are initialized exactly like global objects and only in file scope. For exam-
ple,

void process::reschedule() { /* ... */ };
int process::no_of_processes = 1;
process* process::running = get_main();
process* process::run_chain = process::running;

Static members obey the usual class member access rules (11) except that they can be initialized (in file
scope). The initializer of a static member of a class has the same access rights as a member function, as in
process::run_chain above.

6 The type of a static member does not involve its class name; thus the type ofprocess ::
no_of_processes is int and the type of&process :: reschedule is void(*)() .

[class.union] 9.6 Unions

1 A union may be thought of as a class whose member objects all begin at offset zero and whose size is suffi-
cient to contain any of its member objects. At most one of the member objects can be stored in a union at
any time. A union may have member functions (including constructors and destructors), but not virtual
(10.3) functions. A union may not have base classes. A union may not be used as a base class. An object
of a class with a constructor or a destructor or a user-defined assignment operator (13.4.3) cannot be a
member of a union. A union can have nostatic data members.

Box 48

Shouldn’t we prohibit references in unions?_____________________________________

2 A union of the form

union { member-specification} ;

is called an anonymous union; it defines an unnamed object (and not a type). The names of the members of
an anonymous union must be distinct from other names in the scope in which the union is declared; they are
used directly in that scope without the usual member access syntax (5.2.4). For example,

9– 10 Classes DRAFT: 25 January 1994 9.6 Unions

void f()
{

union { int a; char* p; };
a = 1;
// ...
p = "Jennifer";
// ...

}

Herea andp are used like ordinary (nonmember) variables, but since they are union members they have
the same address.

3 A global anonymous union must be declaredstatic . An anonymous union may not haveprivate or
protected members (11). An anonymous union may not have function members.

4 A union for which objects or pointers are declared is not an anonymous union. For example,

union { int aa; char* p; } obj, *ptr = &obj;
aa = 1; // error
ptr->aa = 1; // ok

The assignment to plainaa is ill formed since the member name is not associated with any particular
object.

5 Initialization of unions that do not have constructors is described in 8.5.1.

[class.bit] 9.7 Bit-fields

1 A member-declaratorof the form

identifieropt : constant-expression

specifies a bit-field; its length is set off from the bit-field name by a colon. Allocation of bit-fields within a
class object is implementation dependent. Fields are packed into some addressable allocation unit. Fields
straddle allocation units on some machines and not on others. Alignment of bit-fields is implementation
dependent. Fields are assigned right-to-left on some machines, left-to-right on others.

2 An unnamed bit-field is useful for padding to conform to externally-imposed layouts. Unnamed fields are
not members and cannot be initialized. As a special case, an unnamed bit-field with a width of zero speci-
fies alignment of the next bit-field at an allocation unit boundary.

3 A bit-field may not be a static member. A bit-field must have integral or enumeration type (3.8.1). It is
implementation dependent whether a plain (neither explicitly signed nor unsigned)int field is signed or
unsigned. The address-of operator& may not be applied to a bit-field, so there are no pointers to bit-fields.
Nor are there references to bit-fields.

[class.nest] 9.8 Nested class declarations

1 A class may be defined within another class. A class defined within another is called anestedclass. The
name of a nested class is local to its enclosing class. The nested class is in the scope of its enclosing class.
Except by using explicit pointers, references, and object names, declarations in a nested class can use only
type names, static members, and enumerators from the enclosing class.

int x;
int y;

class enclose {
public:

int x;
static int s;

class inner {

9.8 Nested class declarations DRAFT: 25 January 1994 Classes 9– 11

void f(int i)
{

x = i; // error: assign to enclose::x
s = i; // ok: assign to enclose::s
::x = i; // ok: assign to global x
y = i; // ok: assign to global y

}

void g(enclose* p, int i)
{

p->x = i; // ok: assign to enclose::x
}

};
};

inner* p = 0; // error ‘inner’ not in scope

Member functions of a nested class have no special access to members of an enclosing class; they obey the
usual access rules (11). Member functions of an enclosing class have no special access to members of a
nested class; they obey the usual access rules. For example,

class E {
int x;

class I {
int y;
void f(E* p, int i)
{

p->x = i; // error: E::x is private
}

};

int g(I* p)
{

return p->y; // error: I::y is private
}

};

Member functions and static data members of a nested class can be defined in the global scope. For exam-
ple,

class enclose {
class inner {

static int x;
void f(int i);

};
};

typedef enclose::inner ei;
int ei::x = 1;

void enclose::inner::f(int i) { /* ... */ }

A nested class may be declared in a class and later defined in the same or an enclosing scope. For example:

class E {
class I1; // forward declaration of nested class
class I2;
class I1 {}; // definition of nested class

};
class E::I2 {}; // definition of nested class

9– 12 Classes DRAFT: 25 January 1994 9.8 Nested class declarations

Like a member function, a friend function defined within a class is in the lexical scope of that class; it
obeys the same rules for name binding as the member functions (described above and in 10.5) and like
them has no special access rights to members of an enclosing class or local variables of an enclosing func-
tion (11).

[class.local] 9.9 Local class declarations

1 A class can be defined within a function definition; such a class is called alocal class. The name of a local
class is local to its enclosing scope. The local class is in the scope of the enclosing scope. Declarations in a
local class can use only type names, static variables,extern variables and functions, and enumerators
from the enclosing scope. For example,

int x;
void f()
{

static int s ;
int x;
extern int g();

struct local {
int g() { return x; } // error: ‘x’ is auto
int h() { return s; } // ok
int k() { return ::x; } // ok
int l() { return g(); } // ok

};
// ...

}

local* p = 0; // error: ‘local’ not in scope

2 An enclosing function has no special access to members of the local class; it obeys the usual access rules
(11). Member functions of a local class must be defined within their class definition. A local class may not
have static data members.

[class.nested.type] 9.10 Nested type names

1 Type names obey exactly the same scope rules as other names. In particular, type names defined within a
class definition cannot be used outside their class without qualification. For example,

class X {
public:

typedef int I;
class Y { /* ... */ };
I a;

};

I b; // error
Y c; // error
X::Y d; // ok
X::I e; // ok

_ ___ ___

10 Derived classes [class.derived]
_ ___ ___

1 A list of base classes may be specified in a class declaration using the notation: ∗

base-clause:
: base-specifier-list

base-specifier-list:
base-specifier
base-specifier-list, base-specifier

base-specifier:
:: opt nested-name-specifieropt class-name
virtual access-specifieropt :: opt nested-name-specifieropt class-name
access-specifier virtualopt :: opt nested-name-specifieropt class-name

access-specifier:
private
protected
public

Theclass-namein abase-specifiermust denote a previously declared class (9), which is called adirect base
classfor the class being declared. A classB is a base class of a classD if it is a direct base class ofD or a
direct base class of one ofD’s base classes. A class is anindirect base class of another if it is a base class
but not a direct base class. A class is said to be (directly or indirectly)derivedfrom its (direct or indirect)
base classes. For the meaning ofaccess-specifiersee 11. Unless redefined in the derived class, members
of a base class can be referred to in expressions as if they were members of the derived class. The base
class members are said to beinheritedby the derived class. The scope resolution operator:: (5.1) may be
used to refer to a base member explicitly. This allows access to a name that has been redefined in the
derived class. A derived class can itself serve as a base class subject to access control; see 11.2. A pointer
to a derived class may be implicitly converted to a pointer to an accessible unambiguous base class (4.6). A
reference to a derived class may be implicitly converted to a reference to an accessible unambiguous base
class (4.7).

2 For example,

class Base {
public:

int a, b, c;
};

class Derived : public Base {
public:

int b;
};

class Derived2 : public Derived {
public:

int c;
};

10– 2 Derived classes DRAFT: 25 January 1994 10 Derived classes

3 Here, an object of classDerived2 will have a sub-object of classDerived which in turn will have a
sub-object of classBase . A derived class and its base classes can be represented by a directed acyclic
graph (DAG) where an arrow means“directly derived from.” A DAG of classes is often referred to as a
“class lattice.” For example,

Base

Derived

Derived2

Note that the arrows need not have a physical representation in memory and the order in which the sub-
objects appear in memory is unspecified.

4 Name lookup proceeds from the original class (the named class in the case of aqualified-id) along the
edges of the lattice until the name is found. If a name is found in more than one class in the lattice, the
access is ambiguous (see 10.2) unless one occurrence of the name hides33) all the others. A nameB::f
hidesa nameA::f if its classB hasA as a base and the instance ofB containingB::f has the instance of
A containingA::f as a sub-object. The second part of this definition is trivially satisfied when multiple
inheritance is not used. For example,

void f()
{

Derived2 x;
x.a = 1; // Base::a
x.b = 2; // Derived::b
x.c = 3; // Derived2::c
x.Base::b = 4; // Base::b
x.Derived::c = 5; // Base::c
Base* bp = &x; // standard conversion:

// Derived2* to Base*
}

assigns to the five members ofx and makesbp point tox .

5 Note that in theclass-name:: id-expressionnotation,id-expressionneed not be a member ofclass-name;
the notation simply specifies a class in which to start looking forid-expression.

6 Initialization of objects representing base classes can be specified in constructors; see 12.6.2.

[class.mi] 10.1 Multiple base classes

1 A class may be derived from any number of base classes. For example,

class A { /* ... */ };
class B { /* ... */ };
class C { /* ... */ };
class D : public A, public B, public C { /* ... */ };

The use of more than one direct base class is often called multiple inheritance.

2 The order of derivation is not significant except possibly for default initialization by constructor (12.1), for
cleanup (12.4), and for storage layout (5.4, 9.2, 11.1).

3 A class may not be specified as a direct base class of a derived class more than once but it may be an indi-
rect base class more than once.

class B { /* ... */ };
class D : public B, public B { /* ... */ }; // illegal

33)This criterion is called“dominance” in the ARM.

10.1 Multiple base classes DRAFT: 25 January 1994 Derived classes 10– 3

class L { /* ... */ };
class A : public L { /* ... */ };
class B : public L { /* ... */ };
class C : public A, public B { /* ... */ }; // legal

Here, an object of classCwill have two sub-objects of classL as shown below.

L L

A B

C

4 The keywordvirtual may be added to a base class specifier. A single sub-object of the virtual base
class is shared by every base class that specified the base class to be virtual. For example,

class V { /* ... */ };
class A : virtual public V { /* ... */ };
class B : virtual public V { /* ... */ };
class C : public A, public B { /* ... */ };

Here classChas only one sub-object of classV, as shown below.

V

A B

C

5 A class may have both virtual and nonvirtual base classes of a given type.

class B { /* ... */ };
class X : virtual public B { /* ... */ };
class Y : virtual public B { /* ... */ };
class Z : public B { /* ... */ };
class AA : public X, public Y, public Z { /* ... */ };

Here classAAhas two sub-objects of classB: Z’s B and the virtualB shared byX andY, as shown below.

B B

X Y Z

AA

[class.ambig]10.2 Ambiguities

1 Access to base class members must be unambiguous. Access to a base class member is ambiguous if the
id-expressionor qualified-id used does not refer to a unique function, object, type, or enumerator. The
check for ambiguity takes place before access control (11). For example,

10– 4 Derived classes DRAFT: 25 January 1994 10.2 Ambiguities

class A {
public:

int a;
int (*b)();
int f();
int f(int);
int g();

};

class B {
int a;
int b();

public:
int f();
int g;
int h();
int h(int);

};

class C : public A, public B {};

void g(C* pc)
{

pc->a = 1; // error: ambiguous: A::a or B::a
pc->b(); // error: ambiguous: A::b or B::b
pc->f(); // error: ambiguous: A::f or B::f
pc->f(1); // error: ambiguous: A::f or B::f
pc->g(); // error: ambiguous: A::g or B::g
pc->g = 1; // error: ambiguous: A::g or B::g
pc->h(); // ok
pc->h(1); // ok

}

If the name of an overloaded function is unambiguously found overloading resolution also takes place
before access control. Ambiguities can be resolved by qualifying a name with its class name. For example,

class A {
public:

int f();
};

class B {
public:

int f();
};

class C : public A, public B {
int f() { return A::f() + B::f(); }

};

A single function, object, type, or enumerator may be reached through more than one path through the
directed acyclic graph of base classes. This is not an ambiguity. For example,

10.2 Ambiguities DRAFT: 25 January 1994 Derived classes 10– 5

class V { public: int v; };
class A {
public:

int a;
static int s;
enum { e };

};
class B : public A, public virtual V {};
class C : public A, public virtual V {};

class D : public B, public C { };

void f(D* pd)
{

pd->v++; // ok: only one ‘v’ (virtual)
pd->s++; // ok: only one ‘s’ (static)
int i = pd->e; // ok: only one ‘e’ (enumerator)
pd->a++; // error, ambiguous: two ‘a’s in ‘D’

}

When virtual base classes are used, a hidden function, object, or enumerator may be reached along a path
through the inheritance DAG that does not pass through the hiding function, object, or enumerator. This is
not an ambiguity. The identical use with nonvirtual base classes is an ambiguity; in that case there is no
unique instance of the name that hides all the others. For example,

class V { public: int f(); int x; };
class W { public: int g(); int y; };
class B : public virtual V, public W
{
public:

int f(); int x;
int g(); int y;

};
class C : public virtual V, public W { };

class D : public B, public C { void g(); };

V W W

B C

D

The names defined inV and the left hand instance ofWare hidden by those inB, but the names defined in
the right hand instance ofWare not hidden at all.

void D::g()
{

x++; // ok: B::x hides V::x
f(); // ok: B::f() hides V::f()
y++; // error: B::y and C’s W::y
g(); // error: B::g() and C’s W::g()

}

An explicit or implicit conversion from a pointer to or an lvalue of a derived class to a pointer or reference
to one of its base classes must unambiguously refer to a unique object representing the base class. For
example,

10– 6 Derived classes DRAFT: 25 January 1994 10.2 Ambiguities

class V { };
class A { };
class B : public A, public virtual V { };
class C : public A, public virtual V { };
class D : public B, public C { };

void g()
{

D d;
B* pb = &d;
A* pa = &d; // error, ambiguous: C’s A or B’s A ?
V* pv = &d; // fine: only one V sub-object

}

[class.virtual] 10.3 Virtual functions

1 Virtual functions support dynamic binding and object-oriented programming. A class that declares or
inherits a virtual function is called apolymorphic class.

2 If a virtual member functionvf is declared in a classBase and in a classDerived , derived directly or
indirectly fromBase , a member functionvf with the same name and same parameter list asBase::vf is
declared, thenDerived::vf is also virtual (whether or not it is so declared) and itoverrides34)

Base::vf . For convenience we say that any virtual function overrides itself. Then in any well-formed
class, for each virtual function declared in that class or any of its direct or indirect base classes there is a
uniquefinal overriderthat overrides that function and every other overrider of that function.

3 A program is ill-formed if the return type of any overriding function differs from the return type of the
overridden function unless the return type of the latter is pointer or reference (possibly cv-qualified) to a
classB, and the return type of the former is pointer or reference (respectively) to a classD such thatB is an
unambiguous direct or indirect base class ofD, accessible in the class of the overriding function, and the
cv-qualification in the return type of the overriding function is less than or equal to the cv-qualification in
the return type of the overridden function. In that case when the overriding function is called as the final
overrider of the overridden function, its result is converted to the type returned by the (statically chosen)
overridden function. See 5.2.2. For example,

class B {};
class D : private B { friend class Derived; };
struct Base {

virtual void vf1();
virtual void vf2();
virtual void vf3();
virtual B* vf4();
void f();

};

struct No_good : public Base {
D* vf4(); // error: B (base class of D) inaccessible

};

34) A function with the same name but a different parameter list (see 13) as a virtual function is not necessarily virtual and does not
override. The use of thevirtual specifier in the declaration of an overriding function is legal but redundant (has empty semantics).
Access control (11) is not considered in determining overriding.

10.3 Virtual functions DRAFT: 25 January 1994 Derived classes 10– 7

struct Derived : public Base {
void vf1(); // virtual and overrides Base::vf1()
void vf2(int); // not virtual, hides Base::vf2()
char vf3(); // error: invalid difference in return type only
D* vf4(); // okay: returns pointer to derived class
void f();

};

void g()
{

Derived d;
Base* bp = &d; // standard conversion:

// Derived* to Base*
bp->vf1(); // calls Derived::vf1()
bp->vf2(); // calls Base::vf2()
bp->f(); // calls Base::f() (not virtual)
B* p = bp->vf4(); // calls Derived::pf() and converts the

// result to B*
Derived* dp = &d;
D* q = dp->vf4(); // calls Derived::pf() and does not

// convert the result to B*
dp->vf2(); // ill-formed: argument mismatch

}

4 That is, the interpretation of the call of a virtual function depends on the type of the object for which it is
called (the dynamic type), whereas the interpretation of a call of a nonvirtual member function depends
only on the type of the pointer or refe rence denoting that object (the static type). See 5.2.2.

5 Thevirtual specifier implies membership, so a virtual function cannot be a global (nonmember) (7.1.2)
function. Nor can a virtual function be a static member, since a virtual function call relies on a specific
object for determining which function to invoke. A virtual function can be declared afriend in another
class. A virtual function declared in a class must be defined or declared pure (10.4) in that class.

6 Following are some examples of virtual functions used with multiple base classes:

struct A {
virtual void f();

};

struct B1 : A { // note non-virtual derivation
void f();

};

struct B2 : A {
void f();

};

struct D : B1, B2 { // D has two separate A sub-objects
};

void foo()
{

D d;
// A* ap = &d; // would be ill-formed: ambiguous
B1* b1p = &d;
A* ap = b1p;
D* dp = &d;
ap->f(); // calls D::B1::f
dp->f(); // ill-formed: ambiguous

}

10– 8 Derived classes DRAFT: 25 January 1994 10.3 Virtual functions

In classD above there are two occurrences of classA and hence two occurrences of the virtual member
function A::f . The final overrider ofB1::A::f is B1::f and the final overrider ofB2::A::f is
B2::f .

7 The following example shows a function that does not have a unique final overrider:

struct A {
virtual void f();

};

struct VB1 : virtual A { // note virtual derivation
void f();

};

struct VB2 : virtual A {
void f();

};

struct Error : VB1, VB2 { // ill-formed
};

struct Okay : VB1, VB2 {
void f();

};

Both VB1::f andVB2::f overrideA::f but there is no overrider of both of them in classError . This
example is therefore ill-formed. ClassOkay is well formed, however, becauseOkay::f is a final over-
rider.

8 The following example uses the well-formed classes from above.

struct VB1a : virtual A { // does not declare f
};

struct Da : VB1a, VB2 {
};

void foe()
{

VB1a* vb1ap = new Da;
vb1ap->f(); // calls VB2:f

}

9 Explicit qualification with the scope operator (5.1) suppresses the virtual call mechanism. For example,

class B { public: virtual void f(); };
class D : public B { public: void f(); };

void D::f() { /* ... */ B::f(); }

Here, the function call inD::f really does callB::f and notD::f .

[class.abstract] 10.4 Abstract classes

1 The abstract class mechanism supports the notion of a general concept, such as ashape , of which only
more concrete variants, such ascircle andsquare , can actually be used. An abstract class can also be
used to define an interface for which derived classes provide a variety of implementations.

2 An abstract classis a class that can be used only as a base class of some other class; no objects of an
abstract class may be created except as sub-objects of a class derived from it. A class is abstract if it has at
least onepure virtual function(which may be inherited: see below). A virtual function is specifiedpureby
using apure-specifier(9.2) in the function declaration in the class declaration. A pure virtual function need

10.4 Abstract classes DRAFT: 25 January 1994 Derived classes 10– 9

be defined only if explicitly called with thequalified-idsyntax (5.1). For example,

class point { /* ... */ };
class shape { // abstract class

point center;
// ...

public:
point where() { return center; }
void move(point p) { center=p; draw(); }
virtual void rotate(int) = 0; // pure virtual
virtual void draw() = 0; // pure virtual
// ...

};

An abstract class may not be used as an parameter type, as a function return type, or as the type of an
explicit conversion. Pointers and references to an abstract class may be declared. For example,

shape x; // error: object of abstract class
shape* p; // ok
shape f(); // error
void g(shape); // error
shape& h(shape&); // ok

3 Pure virtual functions are inherited as pure virtual functions. For example,

class ab_circle : public shape {
int radius;

public:
void rotate(int) {}
// ab_circle::draw() is a pure virtual

};

Sinceshape::draw() is a pure virtual functionab_circle::draw() is a pure virtual by default.
The alternative declaration,

class circle : public shape {
int radius;

public:
void rotate(int) {}
void draw(); // must be defined somewhere

};

would make classcircle nonabstract and a definition ofcircle::draw() must be provided.

4 An abstract class may be derived from a class that is not abstract, and a pure virtual function may override a
virtual function which is not pure.

5 Member functions can be called from a constructor of an abstract class; the effect of calling a pure virtual
function directly or indirectly for the object being created from such a constructor is undefined.

[class.scope] 10.5 Summary of scope rules

1 The scope rules for C + + programs can now be summarized. These rules apply uniformly for all names
(including typedef-names(7.1.3) andclass-names(9.1)) wherever the grammar allows such names in the
context discussed by a particular rule. This section discusses lexical scope only; see 3.4 for an explanation
of linkage issues. The notion of point of declaration is discussed in (3.3).

2 Any use of a name must be unambiguous (up to overloading) in its scope (10.2). Only if the name is found
to be unambiguous in its scope are access rules considered (11). Only if no access control errors are found
is the type of the object, function, or enumerator named considered.

3 A name used outside any function and class or prefixed by the unary scope operator:: (andnot qualified
by the binary:: operator or the-> or . operators) must be the name of a global object, function, or enu-
merator.

10– 10 Derived classes DRAFT: 25 January 1994 10.5 Summary of scope rules

4 A name specified afterX:: , afterobj. , whereobj is anX or a reference toX, or afterptr-> , where
ptr is a pointer toX must be the name of a member of classX or be a member of a base class ofX. In
addition, ptr in ptr-> may be an object of a classY that hasoperator->() declared soptr-
>operator->() eventually resolves to a pointer toX (13.4.6).

5 A name that is not qualified in any of the ways described above and that is used in a function that is not a
class member must be declared before its use in the block in which it occurs or in an enclosing block or
globally. The declaration of a local name hides previous declarations of the same name in enclosing blocks
and at file scope. In particular, no overloading occurs of names in different scopes (13.4).

6 A name that is not qualified in any of the ways described above and that is used in a function that is a non-
static member of classX must be declared in the block in which it occurs or in an enclosing block, be a
member of classX or a base class of classX, or be a global name. The declaration of a local name hides
declarations of the same name in enclosing blocks, members of the function’s class, and global names. The
declaration of a member name hides declarations of the same name in base classes and global names.

7 A name that is not qualified in one of the ways described above and is used in a static member function of a
classX must be declared in the block in which it occurs, in an enclosing block, be a static member of class
X, or a base class of classX, or be a global name.

8 A function parameter name in a function definition (8.4) is in the scope of the outermost block of the func-
tion (in particular, it is a local name). A function parameter name in a function declaration (8.3.5) that is
not a function definition is in a local scope that disappears immediately after the function declaration. A
default argument is in the scope determined by the point of declaration (3.3) of its parameter, but may not
access local variables or nonstatic class members; it is evaluated at each point of call (8.3.6).

9 A ctor-initializer (12.6.2) is evaluated in the scope of the outermost block of the constructor it is specified
for. In particular, it can refer to the constructor’s parameter names.

_ ___ ___

11 Member access control [class.access]
_ ___ ___

1 A member of a class can be ∗

— private ; that is, its name can be used only by member functions and friends of the class in
which it is declared.

— protected ; that is, its name can be used only by member functions and friends of the class in
which it is declared and by member functions and friends of classes derived from this class (see
11.5).

— public ; that is, its name can be used by any function.

2 Members of a class declared with the keywordclass areprivate by default. Members of a class
declared with the keywordsstruct or union arepublic by default. For example,

class X {
int a; // X::a is private by default

};

struct S {
int a; // S::a is public by default

};

[class.access.spec] 11.1 Access specifiers

1 Member declarations may be labeled by anaccess-specifier(10):

access-specifier: member-specificationopt

An access-specifierspecifies the access rules for members following it until the end of the class or until
anotheraccess-specifieris encountered. For example,

class X {
int a; // X::a is private by default: ‘class’ used

public:
int b; // X::b is public
int c; // X::c is public

};

Any number of access specifiers is allowed and no particular order is required. For example,

struct S {
int a; // S::a is public by default: ‘struct’ used

protected:
int b; // S::b is protected

private:
int c; // S::c is private

public:
int d; // S::d is public

};

11– 2 Member access control DRAFT: 25 January 1994 11.1 Access specifiers

2 The order of allocation of data members with separateaccess-specifierlabels is implementation dependent
(9.2).

[class.access.base] 11.2 Access specifiers for base classes

1 If a class is declared to be a base class (10) for another class using thepublic access specifier, the
public members of the base class are accessible aspublic members of the derived class and
protected members of the base class are accessible asprotected members of the derived class (but
see 13.1). If a class is declared to be a base class for another class using theprotected access specifier,
the public andprotected members of the base class are accessible asprotected members of the
derived class. If a class is declared to be a base class for another class using theprivate access specifier,
the public and protected members of the base class are accessible asprivate members of the
derived class35).

2 In the absence of anaccess-specifierfor a base class,public is assumed when the derived class is
declaredstruct andprivate is assumed when the class is declaredclass . For example,

class B { /* ... */ };
class D1 : private B { /* ... */ };
class D2 : public B { /* ... */ };
class D3 : B { /* ... */ }; // ‘B’ private by default
struct D4 : public B { /* ... */ };
struct D5 : private B { /* ... */ };
struct D6 : B { /* ... */ }; // ‘B’ public by default
class D7 : protected B { /* ... */ };
struct D8 : protected B { /* ... */ };

HereB is a public base ofD2, D4, andD6, a private base ofD1, D3, andD5, and a protected base ofD7
andD8.

3 Because of the rules on pointer conversion (4.6), a static member of a private base class may be inaccessi-
ble as an inherited name, but accessible directly. For example,

class B {
public:

int mi; // nonstatic member
static int si; // static member

};
class D : private B {
};
class DD : public D {

void f();
};

void DD::f() {
mi = 3; // error: mi is private in D
si = 3; // error: si is private in D
B b;
b.mi = 3; // okay (b.mi is different from this->mi)
b.si = 3; // okay (b.si is the same as this->si)
B::si = 3; // okay
B* bp1 = this; // error: B is a private base class
B* bp2 = (B*)this; // okay with cast
bp2->mi = 3; // okay and bp2->mi is the same as this->mi

}

35) As specified previously in 11, private members of a base class remain inaccessible even to derived classes unlessfriend declara-
tions within the base class declaration are used to grant access explicitly.

11.2 Access specifiers for base classes DRAFT: 25 January 1994 Member access control 11– 3

4 Members and friends of a classX can implicitly convert anX* to a pointer to a private or protected immedi-
ate base class ofX.

[class.access.dcl] 11.3 Access declarations

1 The access of public or protected member of a private or protected base class can be restored to the same
level in the derived class by mentioning itsqualified-id in the public (for public members of the base
class) orprotected (for protected members of the base class) part of a derived class declaration. Such
mention is called anaccess declaration.

2 For example,

class A {
public:

int z;
int z1;

};

class B : public A {
int a;

public:
int b, c;
int bf();

protected:
int x;
int y;

};

class D : private B {
int d;

public:
B::c; // adjust access to ‘B::c’
B::z; // adjust access to ‘A::z’
A::z1; // adjust access to ‘A::z1’
int e;
int df();

protected:
B::x; // adjust access to ‘B::x’
int g;

};

class X : public D {
int xf();

};

int ef(D&);
int ff(X&);

The external functionef can use only the namesc , z , z1 , e, anddf . Being a member ofD, the function
df can use the namesb, c , z , z1 , bf , x , y , d, e, df , andg, but nota. Being a member ofB, the function
bf can use the membersa, b, c , z , z1 , bf , x , andy . The functionxf can use the public and protected
names fromD, that is,c , z , z1 , e, anddf (public), andx , andg (protected). Thus the external function
ff has access only toc , z , z1 , e, anddf . If D were a protected or private base class ofX, xf would have
the same privileges as before, butff would have no access at all.

3 An access declaration may not be used to restrict access to a member that is accessible in the base class, nor
may it be used to enable access to a member that is not accessible in the base class. For example,

11– 4 Member access control DRAFT: 25 January 1994 11.3 Access declarations

class A {
public:

int z;
};

class B : private A {
public:

int a;
int x;

private:
int b;

protected:
int c;

};

class D : private B {
public:

B::a; // make ‘a’ a public member of D
B::b; // error: attempt to grant access

// can’t make ‘b’ a public member of D
A::z; // error: attempt to grant access

protected:
B::c; // make ‘c’ a protected member of D
B::x; // error: attempt to reduce access

// can’t make ‘x’ a protected member of D
};

class E : protected B {
public:

B::a; // make ‘a’ a public member of E
};

The namesc andx are protected members ofE by virtue of its protected derivation fromB. An access dec-
laration for the name of an overloaded function adjusts the access to all functions of that name in the base
class. For example,

class X {
public:

f();
f(int);

};

class Y : private X {
public:

X::f; // makes X::f() and X::f(int) public in Y
};

4 The access to a base class member cannot be adjusted in a derived class that also defines a member of that
name. For example,

class X {
public:

void f();
};

class Y : private X {
public:

void f(int);
X::f; // error: two declarations of f

};

11.4 Friends DRAFT: 25 January 1994 Member access control 11– 5

[class.friend] 11.4 Friends

1 A friend of a class is a function that is not a member of the class but is permitted to use the private and pro-
tected member names from the class. The name of a friend is not in the scope of the class, and the friend is
not called with the member access operators (5.2.4) unless it is a member of another class. The following
example illustrates the differences between members and friends:

class X {
int a;
friend void friend_set(X*, int);

public:
void member_set(int);

};

void friend_set(X* p, int i) { p->a = i; }
void X::member_set(int i) { a = i; }

void f()
{

X obj;
friend_set(&obj,10);
obj.member_set(10);

}

2 When afriend declaration refers to an overloaded name or operator, only the function specified by the
parameter types becomes a friend. A member function of a classX can be a friend of a classY. For exam-
ple,

class Y {
friend char* X::foo(int);
// ...

};

All the functions of a classX can be made friends of a classY by a single declaration using anelaborated-
type-specifier36) (9.1):

class Y {
friend class X;
// ...

};

Declaring a class to be a friend also implies that private and protected names from the class granting friend-
ship can be used in the class receiving it. For example,

class X {
enum { a=100 };
friend class Y;

};

class Y {
int v[X::a]; // ok, Y is a friend of X

};

class Z {
int v[X::a]; // error: X::a is private

};

36)Note that theclass-keyof theelaborated-type-specifieris required.

11– 6 Member access control DRAFT: 25 January 1994 11.4 Friends

3 If a class or function mentioned as a friend has not been declared, see 7.3.1.

4 A function first declared in a friend declaration is equivalent to anextern declaration (3.4, 7.1.1).

5 A global (but not a member)friend function may be defined in a class definition other than a local class
definition (9.9). The function is theninline and the rewriting rule specified for member functions (9.4.2)∗
is applied. Afriend function defined in a class is in the (lexical) scope of the class in which it is defined.
A friend function defined outside the class is not.

6 Friend declarations are not affected byaccess-specifiers(9.2).

7 Friendship is neither inherited nor transitive. For example,

class A {
friend class B;
int a;

};

class B {
friend class C;

};

class C {
void f(A* p)
{

p->a++; // error: C is not a friend of A
// despite being a friend of a friend

}
};

class D : public B {
void f(A* p)
{

p->a++; // error: D is not a friend of A
// despite being derived from a friend

}
};

[class.protected] 11.5 Protected member access

1 A friend or a member function of a derived class can access a protected static member of a base class. A
friend or a member function of a derived class can access a protected nonstatic member of one of its base
classes only through a pointer to, reference to, or object of the derived class itself (or any class derived from
that class). When a protected member of a base class appears in aqualified-id in a friend or a member
function of a derived class, thenested-name-specifiermust name the derived class. For example,

class B {
protected:

int i;
};

class D1 : public B {
};

class D2 : public B {
friend void fr(B*,D1*,D2*);
void mem(B*,D1*);

};

11.5 Protected member access DRAFT: 25 January 1994 Member access control 11– 7

void fr(B* pb, D1* p1, D2* p2)
{

pb->i = 1; // illegal
p1->i = 2; // illegal
p2->i = 3; // ok (access through a D2)
int B::* pmi_B = &B::i; // illegal
int D2::* pmi_D2 = &D2::i; // ok

}

void D2::mem(B* pb, D1* p1)
{

pb->i = 1; // illegal
p1->i = 2; // illegal
i = 3; // ok (access through ‘this’)

}

void g(B* pb, D1* p1, D2* p2)
{

pb->i = 1; // illegal
p1->i = 2; // illegal
p2->i = 3; // illegal

}

[class.access.virt] 11.6 Access to virtual functions

1 The access rules (11) for a virtual function are determined by its declaration and are not affected by the
rules for a function that later overrides it. For example,

class B {
public:

virtual f();
};

class D : public B {
private:

f();
};

void f()
{

D d;
B* pb = &d;
D* pd = &d;

pb->f(); // ok: B::f() is public,
// D::f() is invoked

pd->f(); // error: D::f() is private
}

Access is checked at the call point using the type of the expression used to denote the object for which the
member function is called (B* in the example above). The access of the member function in the class in
which it was defined (D in the example above) is in general not known.

[class.paths] 11.7 Multiple access

1 If a name can be reached by several paths through a multiple inheritance graph, the access is that of the path
that gives most access. For example,

11– 8 Member access control DRAFT: 25 January 1994 11.7 Multiple access

class W { public: void f(); };
class A : private virtual W { };
class B : public virtual W { };
class C : public A, public B {

void f() { W::f(); } // ok
};

SinceW::f() is available toC::f() along the public path throughB, access is allowed.

_ ___ ___

12 Special member functions [special]
_ ___ ___

1 Some member functions are special in that they affect the way objects of a class are created, copied, and∗
destroyed, and how values may be converted to values of other types. Often such special functions are
called implicitly. Also, the compiler may generate instances of these functions when the programmer does
not supply them. Compiler-generated special functions may be referred to in the same ways that
programmer-written functions are.

2 These member functions obey the usual access rules (11). For example, declaring a constructor
protected ensures that only derived classes and friends can create objects using it.

[class.ctor] 12.1 Constructors

1 A member function with the same name as its class is called a constructor; it is used to construct values of
its class type. An object of class type will be initialized before any use is made of the object; see 12.6.

2 A constructor can be invoked for aconst or volatile object.37) A constructor may not be declared
const or volatile (9.4.1). A constructor may not bevirtual . A constructor may not bestatic .

3 Constructors are not inherited. Default constructors and copy constructors, however, are generated (by the
compiler) where needed (12.8). Generated constructors arepublic .

4 A default constructorfor a classX is a constructor of classX that can be called without an argument. If no
constructor has been declared for classX, a default constructor is implicitly declared. The definition for an
implicitly-declared default constructor is generated only if that constructor is called. An implicitly-declared
default constructor is non-trivial if and only if either the class has direct virtual bases or virtual functions or
if the class has direct bases or members of a class (or array thereof) requiring non-trivial initialization
(12.6).

5 A copy constructorfor a classX is a constructor whose first parameter is of typeX& or const X& and
whose other parameters, if any, all have defaults, so that it can be called with a single argument of typeX.
For example,X::X(const X&) andX::X(X&, int=0) are copy constructors. If no copy constructor is
declared in the class definition, a copy constructor is implicitly declared38). The definition for an
implicitly-declared copy constructor is generated only if that copy constructor is called.

3 The body of a destructor is executed before the destructors for member or base objects. Destructors for
nonstatic member objects are executed in reverse order of their declaration before the destructors for base
classes. Destructors for nonvirtual base classes are executed in reverse order of their declaration in the

37)Volatile semantics might or might not be used.
38)Thus the class definition

struct X {
X(const X&, int);

};

causes a copy constructor to be generated and the member function definition

X::X(const X& x, int i =0) { ... }

is ill-formed because of ambiguity.
39)Volatile semantics might or might not be used.

12– 2 Special member functions DRAFT: 25 January 1994 12.4 Destructors

derived class before destructors for virtual base classes. Destructors for virtual base classes are executed in
the reverse order of their appearance in a depth-first left-to-right traversal of the directed acyclic graph of
base classes;“left-to-right” is the order of appearance of the base class names in the declaration of the
derived class. Destructors for elements of an array are called in reverse order of their construction.

4 A destructor may be declaredvirtual or purevirtual . In either case if any objects of that class or
any derived class are created in the program the destructor must be defined.

5 Member functions may be called from within a destructor; see 12.7.

6 An object of a class with a destructor cannot be a member of a union.

7 Destructors are invoked implicitly (1) when an automatic variable (3.7) or temporary (12.2, 8.5.3) object
goes out of scope, (2) for constructed static (3.7) objects at program termination (3.5), and (3) through use
of a delete-expression(5.3.5) for objects allocated by anew-expression(5.3.4). Destructors can also be
invoked explicitly. A delete-expressioninvokes the destructor for the referenced object and passes the
address of its memory to a dealloation function (5.3.5, 12.5). For example,

class X {
// ...

public:
X(int);
~X();

};

void g(X*);

void f() // common use:
{

X* p = new X(111); // allocate and initialize
g(p);
delete p; // cleanup and deallocate

}

8 Explicit calls of destructors are rarely needed. One use of such calls is for objects placed at specific
addresses using anew-expressionwith the placement option. Such use of explicit placement and
destruction of objects can be necessary to cope with dedicated hardware resources and for writing memory
management facilities. For example,

void* operator new(size_t, void* p) { return p; }

void f(X* p);

static char buf[sizeof(X)];

void g() // rare, specialized use:
{

X* p = new(buf) X(222); // use buf[]
// and initialize

f(p);
p->X::~X(); // cleanup

}

9 Invocation of destructors is subject to the usual rules for member functions, e.g., an object of the appropri-
ate type is required (except invokingdelete on a null pointer has no effect). When a destructor is
invoked for an object, the object no longer exists; if the destructor is explicitly invoked again for the same
object the behavior is undefined. For example, if the destructor for an automatic object is explicitly
invoked, and the block is subsequently left in a manner that would ordinarily invoke implicit destruction of
the object, the behavior is undefined.

12.4 Destructors DRAFT: 25 January 1994 Special member functions 12– 3

10 The notation for explicit call of a destructor may be used for any simple type name. For example,

int* p;
// ...
p->int::~int();

Using the notation for a type that does not have a destructor has no effect. Allowing this enables people to
write code without having to know if a destructor exists for a given type.

[class.free] 12.5 Free store

1 When an object is created with anew-expression, anallocation function(operator new() for non-array
objects oroperator new[]() for arrays) is (implicitly) called to get the required storage. Allocation
functions may be static class member functions or global functions. They may be overloaded, but the
return type must always bevoid* and the first parameter type must always besize_t , an
implementation-defined integral type defined in the standard header<stddef.h> . Overloading resolu-
tion is done by assembling an argument list from the amount of space requested (the first argument) and the
expressions in thenew-placementpart of thenew-expression, if used (the second and succeeding argu-
ments). When a non-array object or an array of classT is created by anew-expression, the allocation func-
tion is looked up in the scope of classT using the usual rules.

2 The default::operator new(size_t) and ::operator new[](size_t) are always declared
and definitions are provided in the library (_lib.free_). If a program contains a definition of::operator
new(size_t) or ::operator new[](size_t) , that definition is used in preference to the library
version.

3 When anew-expressionis executed, the selected allocation function will be called with the amount of space
requested (possibly zero) as its first argument. The function may return the address of a block of available
storage (suitably aligned) of the requested size or, if it is unable to allocate such a block, it may throw an
exception (15) of classxalloc (17.3.3.1) or a class derived fromxalloc . For a request for a block of
zero size, the pointer returned should be non-null and distinct from the address of any currently allocated
object or zero-sized block. If the allocation function returns the null pointer the result is implementation
defined. Any other result is undefined.

Box 51

Can a user-supplied allocation function call the currently installednew_handler ? How?_ ___

_ ___

4 Any X::operator new() or X::operator new[]() for a classX is a static member (even if not
explicitly declaredstatic). For example,

class Arena; class Array_arena;
struct B {

void* operator new(size_t, Arena*);
};
struct D1 : B {
};

Arena* ap; Array_arena* aap;
void foo(int i)
{

new (ap) D1; // calls B::operator new(size_t, Arena*)
new D1[i]; // calls ::operator new[](size_t)
new D1; // ill-formed: ::operator new(size_t) hidden

}

5 When an object is deleted with adelete-expression, a deallocation function (operator delete() for
non-array objects oroperator delete[]() for arrays) is (implicitly) called to reclaim the storage
occupied by the object. Like allocation functions, deallocation functions may be static class member func-
tions or global functions.

12– 4 Special member functions DRAFT: 25 January 1994 12.5 Free store

6 The return type of each deallocation function must bevoid and its first parameter must bevoid* . For
class member deallocation functions (only) a second parameter of typesize_t may be added but deallo-
cation functions may not be overloaded. When an object is deleted by adelete-expression, the deallocation
function is looked up in the scope of class of the executed destructor (see 5.3.5) using the usual rules.

7 Default versions of::operator delete(void*) and::operator delete[](void*) , are pro-
vided in the library (_lib.free_). If a program contains a definition of::operator delete(void*) or
::operator delete[](void*) , that definition is used in preference to the library version. When a
delete-expressionis executed, the selected deallocation function will be called with the address of the block
of storage to be reclaimed as its first argument and (if the two-parameter style is used) the size of the
block40) as its second argument.

8 An X::operator delete() or X::operator delete[]() for a classX is a static member (even
if not explicitly declaredstatic). For example,

class X {
// ...
void operator delete(void*);
void operator delete[](void*, size_t);

};

class Y {
// ...
void operator delete(void*, size_t);
void operator delete[](void*);

};

9 Since member allocation and deallocation functions arestatic they cannot be virtual. However, the
deallocation function actually called is determined by the destructor actually called, so if the destructor is
virtual the effect is the same. For example,

struct B {
virtual ~B();
void operator delete(void*, size_t);

};

struct D : B {
void operator delete(void*);
void operator delete[](void*, size_t);

};

void f(int i)
{

B* bp = new D;
delete bp; // uses D::operator delete(void*)
D* dp = new D[i];
delete dp; // uses D::operator delete[](void*, size_t)

}

Here, storage for the non-array object of classD is deallocated byD::operator delete() , due to the
virtual destructor. Access to the deallocation function is checked statically. Thus even though a different
one may actually be executed, the statically visible deallocation function must be accessible. In the exam-
ple above, ifB::operator delete() had beenprivate , the delete expression would have been ill-
formed.

40) If the static class in thedelete-expressionis different from the dynamic class and the destructor is not virtual the size might be
incorrect, but that case is already undefined.

12.6 Initialization DRAFT: 25 January 1994 Special member functions 12– 5

[class.init] 12.6 Initialization

1 A class having a user-defined constructor or having a non-trivial implicitly-declared default constructor is
said to require non-trivial initialization.

2 An object of a class (or array thereof) with no private or protected non-static data members and that does
not require non-trivial initialization can be initialized using an initializer list; see 8.5.1. An object of a class
(or array thereof) with a user-declared constructor must either be initialized or have a default constructor
(12.1) (whether user- or compiler-declared). The default constructor is used if the object (or array thereof) is
not explicitly initialized.

[class.expl.init] 12.6.1 Explicit initialization

1 Objects of classes with constructors (12.1) can be initialized with a parenthesized expression list. This list
is taken as the argument list for a call of a constructor doing the initialization. Alternatively a single value
is specified as the initializer using the= operator. This value is used as the argument to a copy constructor.
Typically, that call of a copy constructor can be eliminated. For example,

class complex {
// ...

public:
complex();
complex(double);
complex(double,double);
// ...

};

complex sqrt(complex,complex);

complex a(1); // initialize by a call of
// complex(double)

complex b = a; // initialize by a copy of ‘a’
complex c = complex(1,2); // construct complex(1,2)

// using complex(double,double)
// copy it into ‘c’

complex d = sqrt(b,c); // call sqrt(complex,complex)
// and copy the result into ‘d’

complex e; // initialize by a call of
// complex()

complex f = 3; // construct complex(3) using
// complex(double)
// copy it into ‘f’

Overloading of the assignment operator= has no effect on initialization.

2 The initialization that occurs in argument passing and function return is equivalent to the form

T x = a;

The initialization that occurs innew expressions (5.3.4) and in base and member initializers (12.6.2) is
equivalent to the form

T x(a);

3 Arrays of objects of a class with constructors use constructors in initialization (12.1) just as do individual
objects. If there are fewer initializers in the list than elements in the array, a default constructor (12.1) must
be declared (whether by the compiler or the user), and it is used; otherwise theinitializer-clausemust be
complete. For example,

complex cc = { 1, 2 }; // error; use constructor
complex v[6] = { 1,complex(1,2),complex(),2 };

Here,v[0] and v[3] are initialized withcomplex::complex(double) , v[1] is initialized with

12– 6 Special member functions DRAFT: 25 January 1994 12.6.1 Explicit initialization

complex::complex(double,double) , and v[2] , v[4] , and v[5] are initialized with
complex::complex() .

4 An object of classMcan be a member of a classX only if (1) Mhas a default constructor, or (2)X has a
user-declared constructor and if every user-declared constructor of classX specifies actor-initializer
(12.6.2) for that member. In case 1 the default constructor is called when the aggregate is created. If a
member of an aggregate has a destructor, then that destructor is called when the aggregate is destroyed.

5 Constructors for nonlocal static objects are called in the order they occur in a file; destructors are called in
reverse order. See also 3.5, 6.7, 9.5.

[class.base.init] 12.6.2 Initializing bases and members

1 Initializers for immediate base classes and for members not inherited from a base class may be specified in
the definition of a constructor. This is most useful for class objects, constants, and references where the
semantics of initialization and assignment differ. Actor-initializer has the form

ctor-initializer:
: mem-initializer-list

mem-initializer-list:
mem-initializer
mem-initializer , mem-initializer-list

mem-initializer:
:: opt nested-name-specifieropt class-name(expression-listopt)
identifier (expression-listopt)

The argument list is used to initialize the named nonstatic member or base class object. This (or for an
aggregate (8.5.1), initialization by a brace-enclosed list) is the only way to initialize nonstaticconst and
reference members. For example,

struct B1 { B1(int); /* ... */ };
struct B2 { B2(int); /* ... */ };

struct D : B1, B2 {
D(int);
B1 b;
const c;

};

D::D(int a) : B2(a+1), B1(a+2), c(a+3), b(a+4)
{ /* ... */ }

D d(10);

First, the base classes are initialized in declaration order (independent of the order ofmem-initializers), then
the members are initialized in declaration order (independent of the order ofmem-initializers), then the
body ofD::D() is executed (12.1). The declaration order is used to ensure that sub-objects and members
are destroyed in the reverse order of initialization.

2 Virtual base classes constitute a special case. Virtual bases are constructed before any nonvirtual bases and
in the order they appear on a depth-first left-to-right traversal of the directed acyclic graph of base classes;
“left-to-right” is the order of appearance of the base class names in the declaration of the derived class.

3 The class of acomplete object(1.5) is said to be themost derivedclass for the sub-objects representing base
classes of the object. All sub-objects for virtual base classes are initialized by the constructor of the most
derived class. If a constructor of the most derived class does not specify amem-initializerfor a virtual base
class then that virtual base class must have a default constructor. Anymem-initializers for virtual classes
specified in a constructor for a class that is not the class of the complete object are ignored. For example,

12.6.2 Initializing bases and members DRAFT: 25 January 1994 Special member functions 12– 7

class V {
public:

V();
V(int);
// ...

};

class A : public virtual V {
public:

A();
A(int);
// ...

};

class B : public virtual V {
public:

B();
B(int);
// ...

};

class C : public A, public B, private virtual V {
public:

C();
C(int);
// ...

};

A::A(int i) : V(i) { /* ... */ }
B::B(int i) { /* ... */ }
C::C(int i) { /* ... */ }

V v(1); // use V(int)
A a(2); // use V(int)
B b(3); // use V()
C c(4); // use V()

4 A mem-initializeris evaluated in the scope of the constructor in which it appears. For example,

class X {
int a;

public:
const int& r;
X(): r(a) {}

};

initializesX::r to refer toX::a for each object of classX.

[class.cdtor] 12.7 Constructors and destructors

1 Member functions may be called in constructors and destructors. This implies that virtual functions may be
called (directly or indirectly). The function called will be the one defined in the constructor’s (or
destructor’s) own class or its bases, butnot any function overriding it in a derived class. This ensures that
unconstructed parts of objects will not be accessed during construction or destruction. For example,

12– 8 Special member functions DRAFT: 25 January 1994 12.7 Constructors and destructors

class X {
public:

virtual void f();
X() { f(); } // calls X::f()
~X() { f(); } // calls X::f()

};

class Y : public X {
int& r;

public:
void f()
{

r++; // disaster if ‘r’ is uninitialized
}
Y(int& rr) :r(rr) {} // calls X::X() which calls X::f()

};

2 The effect of calling a pure virtual function directly or indirectly for the object being constructed from a
constructor, except using explicit qualification, is undefined (10.4).

[class.copy] 12.8 Copying class objects

1 A class object can be copied in two ways, by assignment (5.17) and by initialization (12.1, 8.5) including
function argument passing (5.2.2) and function value return (6.6.3). Conceptually, for a classX these two
operations are implemented by an assignment operator and a copy constructor (12.1). If not declared by the
programmer, they will if possible be automatically defined (“synthesized”) as memberwise assignment and
memberwise initialization of the base classes and non-static data members ofX, respectively. An explicit
declaration of either of them will suppress the synthesized definition.

2 If all bases and members of a classX have copy constructors acceptingconst parameters, the synthesized
copy constructor forX will have a single parameter of typeconst X&, as follows:

X::X(const X&)

Otherwise it will have a single parameter of typeX&:

X::X(X&)

and programs that attempt initialization by copying ofconst X objects will be ill-formed.

3 Similarly, if all bases and members of a classX have assignment operators acceptingconst parameters,
the synthesized assignment operator forX will have a single parameter of typeconst X&, as follows:

X& X::operator=(const X&)

Otherwise it will have a single parameter of typeX&:

X& X::operator=(X&)

and programs that attempt assignment by copying ofconst X objects will be ill-formed. The synthesized
assignment operator will return a reference to the object for which is invoked.

4 Objects representing virtual base classes will be initialized only once by a generated copy constructor.
Objects representing virtual base classes will be assigned only once by a generated assignment operator.

5 Memberwise assignment and memberwise initialization implies that if a classX has a member or base of a
classM, M’s assignment operator andM’s copy constructor are used to implement assignment and initial-
ization of the member or base, respectively, in the synthesized operations. The default assignment opera-
tion cannot be generated for a class if the class has:

— a non-static data member that is aconst or a reference,

— a non-static data member or base class whose assignment operator is inaccessible to the class, or

12.8 Copying class objects DRAFT: 25 January 1994 Special member functions 12– 9

— a non-static data member or base class with no assignment operator for which a default assign-
ment operation cannot be generated.

Similarly, the default copy constructor cannot be generated for a class if a non-static data member or a
base of the class has an inaccessible copy constructor, or has no copy constructor and the default copy
constructor cannot be generated for it.

6 The default assignment and copy constructor will be declared, but they will not be defined (that is, a
function body generated) unless needed. That is,X::operator=() will be generated only if no
assignment operation is explicitly declared and an object of classX is assigned an object of classX or an
object of a class derived fromX or if the address ofX::operator= is taken. Initialization is handled
similarly.

7 If implicitly declared, the assignment and the copy constructor will be public members and the assign-
ment operator for a classX will be defined to return a reference of typeX& referring to the object
assigned to.

8 If a classX has anyX::operator=() that has a parameter of classX, the default assignment will not
be generated. If a class has any copy constructor defined, the default copy constructor will not be gen-
erated. For example,

class X {
// ...

public:
X(int);
X(const X&, int = 1);

};

X a(1); // calls X(int);
X b(a, 0); // calls X(const X&, int);
X c = b; // calls X(const X&, int);

9 Assignment of class objectsX is defined in terms ofX::operator=(const X&) . This implies (12.3)
that objects of a derived class can be assigned to objects of a public base class. For example,

class X {
public:

int b;
};

class Y : public X {
public:

int c;
};

void f()
{

X x1;
Y y1;

x1 = y1; // ok
y1 = x1; // error

}

Herey1.b is assigned tox1.b andy1.c is not copied.

10 Copying one object into another using the default copy constructor or the default assignment operator does
not change the structure of either object. For example,

12– 10 Special member functions DRAFT: 25 January 1994 12.8 Copying class objects

struct s {
virtual f();
// ...

};

struct ss : public s {
f();
// ...

};

void f()
{

s a;
ss b;
a = b; // really a.s::operator=(b)
b = a; // error
a.f(); // calls s::f
b.f(); // calls ss::f
(s&)b = a; // assign to b’s s part

// really ((s&)b).s::operator=(a)
b.f(); // still calls ss::f

}

The calla.f() will invoke s::f() (as is suitable for an object of classs (10.3)) and the callb.f() will
call ss::f() (as is suitable for an object of classss).

_ ___ ___

13 Overloading [over]
_ ___ ___

1
Box 52
This intro and section 13.1 need to be rewritten. I would introduce the notion of acall profile, which is
related to a full parameter type profile, but is defined such that two functions with the same call profile can-
not be overloaded. _ __

_ __

When several different function declarations are specified for a single name in the same scope, that name is
said to beoverloaded. When that name is used, the correct function is selected by comparing the types of
the arguments with the types of the parameters. For example,

double abs(double);
int abs(int);

abs(1); // call abs(int);
abs(1.0); // call abs(double);

Since for any typeT, aT and aT& accept the same set of initializer values, functions with parameter types
differing only in this respect may not have the same name. For example,

int f(int i)
{

// ...
}

int f(int& r) // error: function types
// not sufficiently different

{
// ...

}

It is, however, possible to distinguish betweenconst T&, volatile T&, and plainT& so functions that ∗
differ only in this respect may be defined. Similarly, it is possible to distinguish betweenconst T* ,
volatile T* , and plainT* so functions that differ only in this respect may be defined.

2 Functions that differ only in the return type may not have the same name.

3 Member functions that differ only in that one is astatic member and the other isn’t may not have the
same name (9.5).

4 A typedef is not a separate type, but only a synonym for another type (7.1.3). Therefore, functions that
differ by typedef“types” only may not have the same name. For example,

typedef int Int;

void f(int i) { /* ... */ }
void f(Int i) { /* ... */ } // error: redefinition of f

Enumerations, on the other hand, are distinct types and can be used to distinguish overloaded functions.
For example,

13– 2 Overloading DRAFT: 25 January 1994 13 Overloading

enum E { a };

void f(int i) { /* ... */ }
void f(E i) { /* ... */ }

5 Parameter types that differ only in a pointer* versus an array[] are identical, that is, the array declaration
is adjusted to become a pointer declaration (8.3.5). Note that only the second and subsequent array dimen-
sions are significant in parameter types (8.3.4).

f(char*);
f(char[]); // same as f(char*);
f(char[7]); // same as f(char*);
f(char[9]); // same as f(char*);

g(char(*)[10]);
g(char[5][10]); // same as g(char(*)[10]);
g(char[7][10]); // same as g(char(*)[10]);
g(char(*)[20]); // different from g(char(*)[10]);

6 Parameter types that differ only in the presence or absence ofconst and/orvolatile are identical. That
is, theconst andvolatile type-specifiers for each parameter type are ignored when determining which
function is being declared, defined, or called. For example,

typedef const int cInt;

int f (int);
int f (const int); // redeclaration of f (int);
int f (int) { ... } // definition of f (int)
int f (cInt) { ... } // error: redefinition of f (int)

Only theconst andvolatile type-specifiers at the outermost level of the parameter type specification
are ignored in this fashion;const andvolatile type-specifiers buried within a parameter type specifi-
cation are significant and may be used to distinguish overloaded function. In particular, for any typeT, T* ,
const T* , and volatile T* are considered distinct parameter types, as areT&, const T& , and
volatile T&.

[over.dcl] 13.1 Declaration matching

1 Two function declarations of the same name refer to the same function if they are in the same scope and
have identical parameter types (13). A function member of a derived class isnot in the same scope as a
function member of the same name in a base class. For example,

class B {
public:

int f(int);
};

class D : public B {
public:

int f(char*);
};

HereD::f(char*) hidesB::f(int) rather than overloading it.

void h(D* pd)
{

pd->f(1); // error:
// D::f(char*) hides B::f(int)

pd->B::f(1); // ok
pd->f("Ben"); // ok, calls D::f

}

13.1 Declaration matching DRAFT: 25 January 1994 Overloading 13– 3

A locally declared function is not in the same scope as a function in a containing scope.

int f(char*);
void g()
{

extern f(int);
f("asdf"); // error: f(int) hides f(char*)

// so there is no f(char*) in this scope
}

void caller ()
{

void callee (int, int);
{

void callee (int); // hides callee (int, int)
callee (88, 99); // error: only callee (int) in scope

}
)

2 Different versions of an overloaded member function may be given different access rules. For example,∗

class buffer {
private:

char* p;
int size;

protected:
buffer(int s, char* store) { size = s; p = store; }
// ...

public:
buffer(int s) { p = new char[size = s]; }
// ...

};

[over.match]13.2 Overload resolution

1 Recall from 5.2.2, that a function call is apostfix-expressionfollowed by an optionalexpression-list
enclosed in parentheses. Of interest in this section are only those function calls in which thepostfix-
expressionhas the following forms:

postfix-expression:
primary-expression
postfix-expression. id-expression
postfix-expression-> id-expression

In these cases, thepostfix-expressionultimately contains a name that must be resolved against visible decla-
rations to identify which function is being called.

2 Since, through overloading declarations, a name may refer to more than one function, the function refer-
enced by a function call is determined not only by the name, but also by the kind of function call, the num-
ber of arguments present, and their types. The name and the kind of function call determine a set of
candidate functionsthat could be referenced by the name. From this set of candidate functions a function is
chosen whose parameters best match the arguments in the call in number and type.

[over.match.funcs]13.2.1 Candidate functions

1 There are two kinds of function calls: member function calls and ordinary (or non-member) function calls.

2 In member function calls, the name to be resolved is anid-expressionand is preceded by an-> or . opera-
tor. Since the constructA.B is generally equivalent to(&A) -> B, the rest of this chapter assumes, without
loss of generality, that all member function calls have beennormalizedto the form that uses an object

13– 4 Overloading DRAFT: 25 January 1994 13.2.1 Candidate functions

pointer and the-> operator. Furthermore, the left operand of the-> operator has typeT* , whereT denotes
some classX optionally qualified byconst and/orvolatile .41) Thus, in a member function call, the
id-expressionin the call is looked up as a member function ofX following the rules for looking up names in
classes (10). If a member function is found, that function and its overloaded declarations (in the same
scope) constitute the set of candidate functions submitted to argument matching (13.2.2).

3 In non-member calls, the name is not qualified by an-> or . operator and has the more general form of a
primary-expression. The name is looked up in the context of the function call following the normal rules
for name lookup. If the name resolves to a function declaration, that function and its overloaded declara-
tions (in the same scope) constitute the set of candidate functions submitted to argument matching (13.2.2).

4 If the name in the ordinary function call resolves to a member function and the keywordthis is in scope
and refers to the class of that member function, then the ordinary-looking function call is actually a member
function call using an implicitthis pointer. In this case, the function call is put into normalized member
call form using an explicitthis pointer.

5 In either kind of function call, the name may resolve to something other than a function name. This section,
13.2, will not consider this case further since such a name cannot be overloaded.

6 Section 13.4.8 describes the set of candidate functions constructed for the resolution of an overloaded oper-
ator in an expression.

[over.match.args]13.2.2 Argument matching

1 From the set of candidate functions constructed for a function call (13.2.1) or an operator in an expression
(13.4.8), a function is chosen whose parameters best match the arguments in the call according to the rules
described in this section.

2 To be considered at all, a candidate function must have enough parameters to satisfy the arguments in the
call. If there arem arguments in the call, all candidate functions having exactlymparameters remain candi-
dates unconditionally. A candidate function having fewer thanm parameters remains a candidate only if it
has an ellipsis in its parameter list (8.3.5). For the purposes of argument matching, its parameter list is
extended to the right with ellipses so that there are exactlym parameters. A candidate function having
more thanm parameters remains a candidate only if them+1st parameter has a default initializer (8.3.6).
For the purposes of argument matching, the parameter list is truncated on the right, so that there are exactly
mparameters.

3 From the subset of candidate functions with the correct number of parameters a function is chosen that best
matches the arguments in the call. The choice is made in two steps. First, for each individual argument in
the call, the subset of the candidate functions that best match that argument is determined according to the
rules forbest-matchdescribed below. Then, the function that best matches the call is obtained by forming
the intersection of the subsets obtained for each argument. Unless this intersection has exactly one func-
tion, the call is ill-formed.

4 The function thus selected must be a better match to the call than any other candidate function. Otherwise,
the call is ill-formed. One function is a better match to the call than another if for each argument in the call,
the first function is at least as good a match as the second function, and for some argument the first function
is a better match.

5 For purposes of argument matching, a non-static member function is considered to have an extra parameter,
which must match the pointer specified in the normalized member function call (13.2.1) as if the pointer
were also an argument in the call. No temporaries will be introduced for this extra parameter and no user-
defined conversions will be applied to achieve a type match. The type of this extra parameter is the type of
the keywordthis (9.4.1) within the member function. For example, for aconst member function of
classX, the extra parameter is assumed to have typeconst X* .

41)Note thatcv-qualifierson the type of objects are significant in overload resolution for both lvalue and rvalue objects.

13.2.2 Argument matching DRAFT: 25 January 1994 Overloading 13– 5

6 How well a functionmatchesan argument is based on the sequence of implicit conversions that can be
applied to the argument to yield a value of the type required by the corresponding parameter of the func-
tion. For the purposes of argument matching, no sequence of conversions is considered that

(a) does not lead to the type required by the parameter, or

(b) contains more than one user-defined conversion, or

(c) can be shortened into another considered sequence by deleting one or more conversions. (For
example,int →float →double is a sequence of conversions fromint to double , but it is
not considered because it contains the shorter sequenceint →double .)

7 Some sequences of conversions are better than others according to rules that are given below. If,
according to these rules, there is a single sequence of conversions that is uniquely better than all the rest,
it is called the function’sbest-matchingsequence for the argument. One function matches an argument
better than another if it has a best-matching sequence for that argument and its best-matching sequence
is better than the best-matching sequence of the other function. A function is a best match for an argu-
ment if it has a best-matching sequence for that argument and no other function is a better match for the
argument.

Box 53
I feel I’ve gone out on a limb with the preceding paragraph. I don’t honestly believe that earlier drafts
actually explained how a best-matching function is derived from best-matching sequences. Nor did it
explain what happens if there is more than one best-matching sequence. _ __

_ __

8 An ellipsis in a parameter list (8.3.5) is a match for an argument of any type.

9 Except as mentioned below, the followingtrivial conversionsinvolving a typeT do not affect which of
two conversion sequences is better: the conversion of an argument of type“pointer tocv1 T” to the
type“pointer tocv2 T” if the set of cv-qualifierscv1 is a subset ofcv2(7.1.5 see also 8.5). Where nec-
essary,const andvolatile are used as tie-breakers as described in rule [1] below.

Box 54
The table was removed. "T"->"T&", "T&"- >"T", "T&"- >"const T&", "T&"->"volatile T&", "T&"-
>"const volatile T&" were removed because a reference initialization is considered a binding and not a
conversion. As well, expressions of reference type are transformed into lvalue expressions very early
during expression processing, before argument matching takes place. "T[]"->"T*", "T(args)"-
>"(*T)(args)" were removed because expressions of type "array of" and of type "function of" are trans-
formed into expressions of type "pointer to" and "pointer to function of" very early during expression
processing, before argument matching takes place. "T"->"const T", "T"->"volatile T", "T"->"const
volatile T" were removed because the cv-qualifiers of pass-by-value parameters do not participate in the
function type. _ __

_ __

10 If a parameter is of typeconst T&, the effect of binding the reference to a temporary (8.5.3) does not
affect argument matching. Any function that would require initializing a non-const reference with a
temporary (8.3.2) is excluded as a match during overload resolution.

11 Sequences of conversions are considered according to these rules:

12
[1] Exact match: Sequences of zero or more trivial conversions are better than all other sequences.∗

[2] Match with promotions: Of sequences not mentioned in [1], those that contain only integral pro-
motions (4.1), conversions fromfloat to double , and trivial conversions are better than all
others.

[3] Match with standard conversions: Of sequences not mentioned in [2], those with only standard
(4) and trivial conversions are better than all others. Of these, ifB is derived directly or

13– 6 Overloading DRAFT: 25 January 1994 13.2.2 Argument matching

indirectly fromA, converting aB* to A* is better than converting tovoid* or const void* .
Further, if C is publicly derived directly or indirectly fromB, converting aC* to B* is better
than converting toA* and converting aC to B& is better than converting toA&. Similarly, con-
verting anA::* to B::* is better than converting anA::* to C::*.

[4] Match with user-defined conversions: Of sequences not mentioned in [3], those that involve only
user-defined conversions (12.3), standard (4) and trivial conversions are better than all other
sequences.

[5] Match with ellipsis: Sequences that involve matches with the ellipsis are worse than all others.

13 User-defined conversions are selected based on the type of variable being initialized or assigned to.

14
Box 55
Where did this come from? It relates to conversion sequences and ambiguities therein, but it is not in
the context of overload resolution. Are there other places that these conversion sequences are used in
the language? _ __

_ __

15 class Y {
// ...

public:
operator int();
operator double();

};

void f(Y y)
{

int i = y; // call Y::operator int()
double d;
d = y; // call Y::operator double()
float f = y; // error: ambiguous

}

16 Standard conversions (4) may be applied to the argument of a user-defined conversion, and to the result of a
user-defined conversion.

struct S { S(long); operator int(); };

void f(long), f(char*);
void g(S), g(char*);
void h(const S&), h(char*);

void k(S& a)
{

f(a); // f(long(a.operator int()))
g(1); // g(S(long(1)))
h(1); // h(S(long(1)))

}

Except when one conversion sequence is a subsequence of another, if two conversion sequences each con-
tain a user-defined conversion, any standard conversions also used in the sequences do not affect which
sequence is better. For example,

13.2.2 Argument matching DRAFT: 25 January 1994 Overloading 13– 7

class X {
public:

X(int);
};

class Y {
public:

Y(long);
};
class Z {
public:

operator int();
};

void f(X);
void f(Y);
void g(int);
void g(double);

void g()
{

f(1); // ambiguous
Z z;
g(z); // okay -- g(int(z))

}

The call f(1) is ambiguous despitef(y(long(1))) needing one more standard conversion than
f(x(1)) , and the callg(z) is unambiguous even thoughg(double(int(z)) has only one user-
defined conversion. The difference is that the two conversion sequences found forf() contain two
differentuser-defined conversions and neither sequence is a subsequence of the other, while the two con-
version sequences found forg() contain the same user-defined conversion and one is a subsequence of the
other.

17 No preference is given to conversion by constructor (12.1) over conversion by conversion function (12.3.2)
or vice versa.

struct X {
operator int();

};

struct Y {
Y(X);

};

Y operator+(Y,Y);

void f(X a, X b)
{

a+b; // error, ambiguous:
// operator+(Y(a), Y(b)) or
// a.operator int() + b.operator int()

}

[over.over] 13.3 Address of overloaded function

1 A use of a function name without arguments selects, among all functions of that name that are in scope, the
(only) function that exactly matches the target. The target may be

— an object being initialized (8.5)

— the left side of an assignment (5.17)

13– 8 Overloading DRAFT: 25 January 1994 13.3 Address of overloaded function

— a parameter of a function (5.2.2)

— a parameter of a user-defined operator (13.4)

— the return value of a function, operator function, or conversion (6.6.3)

— an explicit type conversion (5.2.3, 5.4)

2 Note that iff() andg() are both overloaded functions, the cross product of possibilities must be con-
sidered to resolvef(&g) , or the equivalent expressionf(g) .

3 For example,

int f(double);
int f(int);
(int (*)(int))&f; // cast expression as selector
int (*pfd)(double) = &f; // selects f(double)
int (*pfi)(int) = &f; // selects f (int)
int (*pfe)(...) = &f; // error: type mismatch

The last initialization is ill-formed because nof() with type int(...) has been defined, and not
because of any ambiguity.

4 Note also that there are no standard conversions (4) of one pointer to function type into another (4.6). In
particular, even ifB is a public base ofDwe have

D* f();
B* (*p1)() = &f; // error

void g(D*);
void (*p2)(B*) = &g; // error

[over.oper] 13.4 Overloaded operators

1 A function declaration having one of the followingoperator-function-ids as its name declares anoperator
function. An operator function is said toimplementthe operator named in itsoperator-function-id.

operator-function-id:
operator operator

operator: one of
new delete new[] delete[]
+ - * / % ^ & | ~
! = < > += -= *= /= %=
^= &= |= << >> >>= <<= == !=
<= >= && || ++ -- , ->* ->
() []

The last two operators are function call (5.2.2) and subscripting (5.2.1).

2 Both the unary and binary forms of

+ - * &

can be overloaded.

3 The following operators cannot be overloaded:

. .* :: ?:

nor can the preprocessing symbols# and## (16).

4 Operator functions are usually not called directly; instead they are invoked to evaluate the operators they
implement (13.4.1 - 13.4.7). They can be explicitly called, though. For example,

13.4 Overloaded operators DRAFT: 25 January 1994 Overloading 13– 9

complex z = a.operator+(b); // complex z = a+b;
void* p = operator new(sizeof(int)*n);

5 The allocation and deallocation functions,operator new , operator new[] , operator delete
andoperator delete[] , are described completely in 12.5. The attributes and restrictions found in the
rest of this section do not apply to them unless explicitly stated in 12.5.

6 An operator function must either be a non-static member function or have at least one parameter whose
type is a class, a reference to a class, an enumeration, or a reference to an enumeration. It is not possible to
change the precedence, grouping, or number of operands of operators. The meaning of the operators=,
(unary)&, and, (comma), predefined for each type, may be changed for specific types by defining operator
functions that implement these operators. Except foroperator= , operator functions are inherited; see
12.8 for the rules foroperator= .

7 The identities among certain predefined operators applied to basic types (for example,++a ≡ a+=1) need
not hold for operator functions. Some predefined operators, such as+=, require an operand to be an lvalue
when applied to basic types; this is not required by operator functions.

8 An operator function cannot have default arguments (8.3.6).

9 Operators not mentioned explicitly below in 13.4.3 to 13.4.7 act as ordinary unary and binary operators
obeying the rules of section 13.4.1 or 13.4.2.

[over.unary] 13.4.1 Unary operators

1 A prefix unary operator may be implemented by a non-static member function (9.4) with no parameters or a
non-member function with one parameter. Thus, for any prefix unary operator@, @xcan be interpreted as
eitherx.operator@() or operator@(x) . If both forms of the operator function have been declared,
the rules in 13.4.8 determine which, if any, interpretation is used. See 13.4.7 for an explanation of the post-
fix unary operators++ and-- .

[over.binary] 13.4.2 Binary operators

1 A binary operator may be implemented either by a non-static member function (9.4) with one parameter or
by a non-member function with two parameters. Thus, for any binary operator@, x@ycan be interpreted as
either x.operator@(y) or operator@(x,y) . If both forms of the operator function have been
declared, the rules in 13.4.8 determines which, if any, interpretation is used.

[over.ass] 13.4.3 Assignment

1 The assignment functionoperator= must be a non-static member function with exactly one parameter.
It implements the assigment operator,=. It is not inherited (12.8). Instead, unless the user defines
operator= for a classX, operator= is defined, by default, as memberwise assignment of the members
of classX.

X& X::operator=(const X& from)
{

// copy members of X
}

[over.call] 13.4.4 Function call

1 operator() must be a non-static member function. It implements the function call syntax

postfix-expression(expression-listopt)

where thepostfix-expressionevaluates to a class object and the possibly emptyexpression-listmatches the
parameter list of anoperator() member function of the class. Thus, a callx(arg1,arg2,arg3) is
interpreted asx.operator()(arg1,arg2,arg3) for a class objectx . ∗

13– 10 Overloading DRAFT: 25 January 1994 13.4.5 Subscripting

[over.sub] 13.4.5 Subscripting

1 operator[] must be a non-static member function. It implements the subscripting syntax

postfix-expression[expression]

Thus, a subscripting expressionx[y] is interpreted asx.operator[](y) for a class objectx . ∗

[over.ref] 13.4.6 Class member access

1 operator-> must be a non-static member function taking no parameters. It implements class member
access using->

postfix-expression-> primary-expression

An expressionx->m is interpreted as(x.operator->())->m for a class objectx . It follows that
operator-> must return either a pointer to a class that has a membermor an object of or a reference to a
class for whichoperator-> is defined.

[over.inc] 13.4.7 Increment and decrement

1 The prefix and postfix increment operators can be implemented by a function calledoperator++ . If this
function is a member function with no parameters, or a non-member function with one class parameter, it
defines the prefix increment operator++ for objects of that class. If the function is a member function with
one parameter (which must be of typeint) or a non-member function with two parameters (the second
must be of typeint), it defines the postfix increment operator++ for objects of that class. When the post-
fix increment is called, theint argument will have value zero. For example,

class X {
public:

const X& operator++(); // prefix ++a
const X& operator++(int); // postfix a++

};

class Y {
public:
};
const Y& operator++(Y&); // prefix ++b
const Y& operator++(Y&, int); // postfix b++

void f(X a, Y b)
{

++a; // a.operator++();
a++; // a.operator++(0);
++b; // operator++(b);
b++; // operator++(b, 0);

a.operator++(); // explicit call: like ++a;
a.operator++(0); // explicit call: like a++;
operator++(b); // explicit call: like ++b;
operator++(b, 0); // explicit call: like b++;

}

2 The prefix and postfix decrement operators-- are handled similarly. ∗

13.4.8 DRAFT: 25 January 1994 Overloading 13– 11
Overloaded operators in expressions

[over.oper.funcs]13.4.8 Overloaded operators in expressions

1 To determine which operator function is to be invoked to implement an expression involving an operator,
the operator notation is first transformed to the equivalent function-call notation as summarized in the Table
12 (where @ denotes one of the operators covered in the specified section).

Table 12—relationship between operator and function call notation
_ __
Section Expression Member function Non-member function _ ___ __
13.4.1 @a (&a)->operator@ () operator@ (a)
13.4.2 a@b (&a)->operator@ (b) operator@ (a, b)
13.4.3 a=b (&a)->operator= (b) ---
13.4.4 a(b,...) (&a)->operator()(b,...) ---
13.4.5 a[b] (&a)->operator[](b) ---
13.4.6 a-> (&a)->operator-> () ---
13.4.7 a@ (&a)->operator@ (1) operator@ (a, 1) _ __

2 If the first operand of the operator is an object or reference to an object of classX, the operator could be
implemented by a member operator function ofX. A set of candidate member functions is constructed for
theoperator-function-idas if it were named in a member call as a member of the first operand according to
the rules in 13.2.1.

3 If the operator is either a unary or binary operator (sections 13.4.1, 13.4.2, or 13.4.7) and either operand has
a type that is a class, reference to a class, an enumeration, or a reference to an enumeration, the operator
could be implemented by a non-member operator function. A set of candidate functions is constructed for
theoperator-function-idas if it were named in an ordinary call according to the rules in 13.2.1.

4 If both sets of candidate functions described above are empty, the operator is assumed to be a built-in oper-
ator and interpreted accordingly. Otherwise, the two sets are combined into one set of candidate functions
from which an appropriate function is selected according to the argument matching rules defined in 13.2.2.

_ ___ ___

14 Templates [temp]
_ ___ ___

1 A classtemplatedefines the layout and operations for an unbounded set of related types. For example, a
single class templateList might provide a common definition for list ofint , list of float , and list of
pointers toShapes. A functiontemplatedefines an unbounded set of related functions. For example, a
single function templatesort() might provide a common definition for sorting all the types defined by
theList class template. ∗

2 A templatedefines a family of types or functions. ∗

template-declaration:
template < template-parameter-list> declaration

template-parameter-list:
template-parameter
template-parameter-list, template-parameter

Thedeclarationin a template-declarationmust declare or define a function or a class, or define a static data
member of a template class. Atemplate-declarationis adeclaration. A template-declarationis a defini-
tion (also) if itsdeclarationdefines a function, a class, or a static data member of a template class. There
must be exactly one definition for each template in a program. There can be many declarations.

3 The names of a template obeys the usual scope and access control rules. Atemplate-declarationmay
appear only as a global declaration or as a member of a namespace.

Box 56
This restriction is unnecessary and constraining. See §1 of N0413/94– 0026. _ ___

_ ___

4 A vector class template might be declared like this:

template<class T> class vector {
T* v;
int sz;

public:
vector(int);
T& operator[](int);
T& elem(int i) { return v[i]; }
// ...

};

The prefixtemplate <class T> specifies that a template is being declared and that atype-idT will be
used in the declaration. In other words,vector is a parameterized type withT as its parameter. A class
template specifies how individual classes can be constructed much as a class declaration specifies how indi-
vidual objects can be constructed.

14– 2 Templates DRAFT: 25 January 1994 14.1 Template names

[temp.names]14.1 Template names

1 A template can be referred to by atemplate-id:

template-id:
template-name< template-argument-list>

template-name:
identifier

template-argument-list:
template-argument
template-argument-list, template-argument

template-argument:
assignment-expression
type-id

2 A template-idthat names a template class is aclass-name(9).

3 A template-idthat names a defined template class can be used exactly like the names of other defined
classes. For example:

vector<int> v(10);
vector<int>* p = &v;

Template-ids that name functions are discussed in 14.9.

4 A template-idthat names a template class that has been declared but not defined can be used exactly like
the names of other declared but undefined classes. For example:

template<class T> class X; // X is a class template

X<int>* p; // ok: pointer to undefined class X<int>
X<int> x; // error: object of undefined class X<int>

5 The name of a template followed by a< is always taken as the beginning of atemplate-idand never as a
name followed by the less-than operator. Similarly, the first non-nested> is taken as the end of the
template-argument-listrather than a greater-than operator. For example:

template<int i> class X { /* ... */ }

X< 1>2 >x1; // syntax error
X<(1>2)>x2; // ok

template<class T> class Y { /* ... */ }
X< Y<1> > x3; // ok

Box 57
Should we bless a hack allowingX<Y<1>>? _ _____________________________________

_ _____________________________________

6 The name of a class template may not be declared to refer to any other template, class, function, object,
namespace, value, or type in the same scope. A global template name shall be unique in a program.

[temp.res]14.2 Name resolution

1 A name used in a template is assumed not to name a type unless it has been explicitly declared to refer to a
type in the context enclosing the template declaration or in the template itself before its use. For example:

14.2 Name resolution DRAFT: 25 January 1994 Templates 14– 3

// no B declared here

class X;

template<class T> class Y {
class Z; // forward declaration of member class
typedef T::A; // A is a type name

void f() {
X* a; // declare pointer to X
T* a; // declare pointer to T
Y* b; // declare pointer to Y
Z* c; // declare pointer to Z
T::A* d; // declare pointer to A
B* e; // B is not a type name:

// multiply B by e
}

};

2 The construct:

typedef qualified-name ;

states thatqualified-namemust name a type, but gives no clue to what that type might be. The leftmost
identifier of thequalified-namemust be atemplate-argumentname.

Box 58
I have chosen the most restrictive variant of this idea. We ought to consider if the construct should be
allowed for a nonqualified name, and if the construct would be useful outside templates. _ __

_ __

3 Knowing which names are type names allows the syntax of every template declaration to be checked. Syn-
tax errors in a template declaration can therefore be diagnosed at the point of the declaration exactly as
errors for non-template constructs. Other errors, such as type errors, cannot be diagnosed until later; such
errors may be diagnosed at the point of instantiation or at the point where member functions are generated.
Errors that can be diagnosed at the point of a template declaration, may be diagnosed there or later together
with the type errors.

4 Three kinds of names can be used within a template definition:

— The name of the template itself, the names of the template parameters, and names declared within
the template itself.

— Names from the scope of the template definition.

— Names dependent on a template argument from the scope of a template instantiation.

5 For example:

14– 4 Templates DRAFT: 25 January 1994 14.2 Name resolution

#include<iostream.h>

template<class T> class Set {
T* p;
int cnt;

public:
Set();
Set<T>(const Set<T>&);
void printall()
{

for (int i = 0; i<cnt; i++)
cout << p[i] << ’\n’;

}
// ...

};

When looking for the declaration of a name used in a template definition the usual lookup rules (9.3) are
first applied. Thus, in the example,i is the local variablei declared inprintall, cnt is the member
cnt declared inSet , andcout is the standard output stream declared iniostream.h . However, not
every name can be found this way, the resolution of some names must be postponed until the actual tem-
plate argument is known. For example, theoperator<< needed to printp[i] cannot be known until it
is known what typeT is (14.2.3).

[temp.local]14.2.1 Locally declared names

1 Within the scope of a template the name of the template is equivalent to the name of the template qualified
by the template parameter. Thus, the constructor forSet can be referred to asSet() or Set<T>() .
Other specializations (14.5) of the class can be referred to by explicitly qualifying the template name with
appropriate template arguments. For example:

template<class T> class X {
X* p; // meaning X<T>
X<T>* p2;
X<int>* p3;

};

[temp.encl]14.2.2 Names from the template’s enclosing scope

1 If a name used in a template isn’t defined in the template definition itself, names declared in the scope
enclosing the template are considered. If the name used is found there, the name used refers to the name in
the enclosing context. For example:

void g(double);
void h();

template<class T> class Z {
public:

void f() {
g(1); // calls g(double)
h++; // error: cannot increment function

}
};

void g(int); // not in scope at the point of the template
// definition, not considered for the call g(1)

In this, a template definition behaves exactly like other definitions. For example:

14.2.2 DRAFT: 25 January 1994 Templates 14– 5
Names from the template’s enclosing scope

void g(double);
void h();

class ZZ {
public:

void f() {
g(1); // calls g(double)
h++; // error: cannot increment function

}
};

void g(int); // not in scope at the point of class ZZ
// definition, not considered for the call g(1)

Note that if an implementation somehow replicates class or template definitions so that names used in the
class or template bind to different names in different compilations, the one-definition rule has been violated
and any use of the class or template is an error. Violation of the one-definition rule by template instantia-
tion is a non-required diagnostic.

Box 59
Are violations of the one-definition rule required if violation is in a single file? (no) _ ___

_ ___

[temp.dep]14.2.3 Dependent names

1 Some names used in a template are neither known at the point of the template definition nor declared within
the template definition. Such names shall depend on a template argument and shall be in scope at the point
of the template instantiation (14.3). For example:

class Horse {
// ...

};

operator<<(ostream&,const Horse&);

void hh(Set<Horse>& h)
{

h.printall();
}

In the call ofSet<Horse>::printall() , the meaning of the<< operator used to printp[i] in the
definition ofSet<T>::printall() (14.2), is

operator<<(ostream&,const Horse&);

This function takes an argument of typeHorse and is called from a template for which the template argu-
ment isHorse . Because this function depends on a template argument for the template parameterT the
call is legal.

2 A function calldepends ona template argument if the call would have a different resolution or no resolu-
tion if the actual template type were missing from the program. Examples of calls that depend on an argu-
ment typeT are:

— The function called has a parameter that depends onT according to the type deduction rules (14.9.2).
For example:f(T) , f(Vector<T>) , andf(const T*) .

— The type of the actual argument depends onT. For example:f(T(1)) , f(t) , f(g(t)) , and
f(&t) assuming thatt is aT.

— A call is resolved by the use of a conversion toT without either an argument or a parameter of the
called function being of a type that depended onT as specified in [1] and [2]. For example:
f(g(t)) andf(T(1)) wheref() takes an argument of classB that is a public base ofT.

14– 6 Templates DRAFT: 25 January 1994 14.2.3 Dependent names

Box 60
It has been suggested that a full list of cases would be a better definition than the general rule we
decided on in San Jose. I strongly prefer a general rule, but we should be open to clarifications if people
feel the need for them. _ __

_ __

3 This incorrect template instantiation uses a function that does not depend on a template arguments:

void h();

template<class T> class Z {
public:

void f() {
g(1); // g() not found in Z’s context.

// Look again at point of instantiation
}

};

void g(int);

void h(const Z<Horse>& h)
{

h.f(); // error: g(int) called by g(1) do not depend
// on template parameter ‘‘Horse’’

}

The callh.f() gives raise to the specialization:

Z<Horse>::f() { g(1); }

The callg(1) would callg(int) , but since that call in no way depends on the template argumentHorse
and becauseg(int) wasn’t in scope at the point of the definition of the template, the callh.f() is an
error.

4 On the other hand:

void h(const Z<int>& h)
{

h.f(); // fine: g(int) called by g(1) depend
// on template parameter ‘‘int’’

}

Here, the callh.f() gives raise to the specialization:

Z<int>::f() { g(1); }

The callg(1) callsg(int) , and since that call depends on the template argumentint , the callh.f() is
acceptable eventhoughg(int) wasn’t in scope at the point of the definition of the template.

[temp.inject]14.2.4 Non-local names declared within a template

1 Names that are not template members can be declared within a template class or function. However, such
declarations must match names in the scope at the point of their declaration. Such declarations cannot give
raise to injection of names into the scope surrounding the template declaration or any other scope. For
example:

14.2.4 DRAFT: 25 January 1994 Templates 14– 7
Non-local names declared within a template

class X;
void f();
// no Y, Z, or g here

template<class T> class X {
friend class Y; // error: No Y in scope
class Z * p; // error: No Z in scope
friend X operator+(const X&, const X&); // overloads +
friend void f(T); // overloads f
friend void g(T); // error: no g in scope

};

class Z;

// no R here
template<class T> void f(class Z*, class R*); // error: no R in scope

A function can be declared a friend within a template definition only provided a function of that name is in
scope. The operators are always in scope.

Box 61
This is new, but I could find no reasonable rule allowing general name injection. This section should be
reviewed. See issue 2.10 in N0407/94– 0020. _ __

_ __

[temp.inst]14.3 Template instantiation

1 A class generated from a class template is called a generated class. A function generated from a function
template is called a generated function. A static data member generated from a static data member template
is called a generated static data member. A class defined with atemplate-idas its name is called an explic-
itly specialized class. A function defined with atemplate-idas its name is called an explicitly specialized
function. A static data member defined with atemplate-idas its name is called an explicitly specialized
static data member. A specialization is a class, function, or static data member that is either generated or
explicitly specialized; see_temp.dcls_.

2 The act of generating a class, function, or static data member from a template is commonly referred to as
template instantiation.

3 The point of instantiation of a template is the point where names dependent on the template argument are
bound. That point is immediately before the non-local (not local to a class or a function) declaration con-
taining the first use of the template requiring its definition. This implies that names used in a template defi-
nition cannot be bound to local names. For example:

// void g(int); not declared here

template<class T> class Y {
public:

void f() { g(1); }
};

void k(const Z<int>& h)
{

void g(int);
h.f(); // error: g(int) called by g(1) not found

}

Each compilation unit in which the definition of a template is used has a point of instantiation for the class.
If this causes names used in the template definition to bind to different names in different compilations, the
one-definition rule has been violated and any use of the template is an error. Such violation is a non-
required diagnostic.

14– 8 Templates DRAFT: 25 January 1994 14.3 Template instantiation

4 A template can be either explicitly instantiated for a given argument list or be implicitly instantiated. A
template that has been used in a way that require a specialization of its definition will have the specializa-
tion implicitly generated unless it has either been explicitly instantiated (14.4) or explicitly specialized
(14.5) A specialization will not be implicitly generated unless the definition of a template specialization is
required. For example:

template<class T> class Z {
void f();
void g();

};

void h()
{

Z<int> a; // instantiation of class Z<int> required
Z<char>* p; // instantiation of class Z<char> not required
Z<double>* q; // instantiation of class Z<double> not required

a.f(); // instantiation of Z<int>::f() required
p->g(); // instantiation of class Z<char> required, and

// instantiation of Z<char>::g() required
}

Nothing in this example requiresclass Z<double> , Z<int>::g() , or Z<char>::f() to be instan-
tiated. An implementation may not instantiate a function or a class that does not require instantiation.

5 If a template for which a definition is in scope is used in a way that involves overload resolution the defini-
tion is of a template specialization is required. For example:

template<class T> class B { /* ... */ };
template<class T> class D : public B { /* ... */ };

void f(void*);
void f(B<int>*);

void g(D<int>* p)
{

f(p); // instantiation of D<int> required: call f(B<int>*)
}

6 The result of an infinite recursion in instantiation is undefined. In particular, an implementation is allowed
to report an infinite recursion as being ill-formed. For example:

template<class T> class X {
X<T>* p; // ok
X<T*> a; // instantiation of X<T> requires

// the instantiation of X<T*> which requires
// the instantiation of X<T**> which ...

};

7 No program shall explicitly instantiate any template more once, both explicitly instantiate and explicitly
specialize a template, or specialize a template more than once for a given set of template arguments.
Explicitly specializing or explicitly instantiating the same function or class twice for the same template
arguments in different translation units is a non-required diagnostic.

8 An explicit specialization or explicit instantiation of a template must be in the namespace that the template
was defined in. Implicitly generated template classes, functions, and static data members are placed in the
namespace where the template was defined.

14.4 Explicit instantiation DRAFT: 25 January 1994 Templates 14– 9

[temp.explicit]14.4 Explicit instantiation

1 The syntax for explicit instantiation is:

instantiation:
template specialization

A specializationis a declaration or a definition where the name being declared is atemplate-idqualified by
a template-argument-list:

template-id < template-argument-list>

A trailing template argument may be left unspecified in an explicit instantiation or explicit specialization of
a template function provided it can be deduced from the function argument type. For example:

// instantiate vector<char>:
template class vector<char> { /* ... */ };

// instantiate sort(vector<char>&):
template void sort<char>(vector<char>&);

// instantiate sort(vector<int>&):
template void sort<>(vector<int>&);

// declare specialized vector<unsigned char>:
class vector<unsigned char> { /* ... */ };

// declare specialized sort(vector<double>&):
void sort<double>(vector<double>&);

// declare specialized sort(vector<float>&):
// deduce template argument:

void sort<>(vector<float>&);

Box 62
Can we instantiate if there is no definition in scope? Yes, but answering this question requires a model for
compilation of templates. See §4 of N0413/94– 0026. _ __

_ __

2 The explicit instantiation of a class implies the instantiation of all of its members. Thus, it is not possible to
both explicitly instantiate a class and to specialize some of its members for a giventemplate-argument-list.

Box 63
Can we instantiate a class if the definition of some of its member functions are not in scope? Yes, but
answering this question requires a model for compilation of templates. See §4 of ANSI X3J16/94-0026,
ISO WG21/N0413. _ __

_ __

[temp.spec]14.5 Template specialization

1
2 A specialized template function, template class, or static member of a template can be declared by a decla-

ration where the declared name is atemplate-id, that is:

template-id < template-argument-list>

For example:

template<class T> class stream { /* ... */ };

class stream<char> { /* ... */ };

14– 10 Templates DRAFT: 25 January 1994 14.5 Template specialization

template<class T> void sort(vector<T>& v) { /* ... */ }

void sort<char>(vector<char*>& v) { /* ... */ }

Given these declarations,stream<char> will be used as the definition of streams ofchar s; other
streams will be handled by template classes generated from the class template. Similarly,sort<char>
will be used as the sort function for arguments of typevector<char*> ; othervector types will be
sorted by functions generated from the template.

3 A declaration of the template being specialized must be in scope at the point of declaration of a specializa-
tion. For example:

class X<int> { /* ... */ }; // error: X not a template

template<class T> class X { ... };

class X<char*> { /* ... */ }; // fine: X is a template

4 An explicitly specialized class or an explicitly specialized function must be declared before it can be used.
Specializing a class or a function after it has been used or in another translation unit in an error. For exam-
ple:

template<class T> void sort(vector<T>& v) { /* ... */ }

void f(vector<String>& v)
{

sort(v); // use general template
// sort(vector<T>&), T is String

}

void sort<String>(vector<String>& v); // error: specialize after use
void sort<>(vector<char*>& v); // fine sort<char*> not yet used

If a function or class template has been explicitly specialized for template argument list no specialization
will be implicitly generated for that template argument list.

5 Note that a function with the same name as a template and a type that exactly matches that of a template is
not a specialization (14.3).

[temp.param]14.6 Template parameters

1 The syntax for template parameters is:

template-parameter:
type-parameter
parameter-declaration

type-parameter:
class identifieropt
class identifieropt = type-name
typedef identifieropt
typedef identifieropt = type-name

Box 64
This grammar unnecessarily leaves out two kinds of usefultemplate-parameters: namespace template
parameters and template template parameters. See §2 and §3 of ANSI X3J16/94-0026, ISO WG21/N0413. _ __

_ __

2 A type-parameterdefines itsidentifier to be atype-id in the scope of the template declaration. Atype-
parametermay not be redeclared within its scope (including nested scopes). A non-typetype-parameter
may not be assigned to or in any other way have its value changed. For example:

14.6 Template parameters DRAFT: 25 January 1994 Templates 14– 11

template<class T, int i> class Y {
int T; // error: template parameter redefined
void f() {

char T; // error: template parameter redefined
i++; // error: change ot template argument value

}
};

template<class X> class X; // error: template parameter redefined

3 A template-parameterthat could be interpreted as either anparameter-declarationor a type-parameter
(because itsidentifier is the name of an already existing class) is taken as atype-parameter. For example:

class T { /* ... */ };
template<class T> void f(T);

Here, the templatef has atype-parametercalledT, rather than an unnamed non-type parameter of classT.
There is no semantic difference betweenclass andtypedef in a template-parameter.

4 There are no restrictions on what can be atemplate-argumenttype beyond the constraints imposed by the
set of legal argument types (14.7). In particular, reference types and types containingcv-qualifiers
are allowed. A non-referencetemplate-argumentcannot have its address taken. For example:

template<const X& x, int i> void f()
{

&x; // ok
&i; // error: address of non-reference template argument

}

5 A default template argument is a type or a value specified after= in a template-parameter. A default tem-
plate argument may be specified in a template declaration or a template definition. A function template
may not have default template arguments. The set of default template arguments available for use with a
template declaration or definition is obtained by merging the default arguments from the definition (if in
scope) and all declarations in scope in the same way default function arguments are (8.3.6). For example:

template<class T1, class T2 = int> class A;
template<class T1 = int, class T2> class A;

is equivalent to

template<class T1 = int, class T2 = int> class A;

After merging default template arguments a parameter with a default argument may not be followed by a
parameter without a default argument. For example:

template<class T1 = int, class T2> class B; // error

A template parameter may not be given default arguments by two different declarations in the same scope.

template<class T = int> class X;
template<class T = int> class X { /*... */ }; // error

The scope of a template argument extends from its point of declaration until the end of its template. In par-
ticular, a template argument can be used in the declaration of subsequent template parameter and their
default arguments. For example:

template<class T, T* p, class U = T> class X { /* ... */ };
template<class T> void f(T* p = new T);

A template parameter cannot be used in preceding template parameters or their default arguments.

6 Similarly, a template argument may be used in the specification of base classes. For example:

14– 12 Templates DRAFT: 25 January 1994 14.6 Template parameters

template<class T> class X : public vector<T> { /* ... */ };
template<class T> class Y : public T { /* ... */ };

Note that the use of a template parameter as a base class implies that a class used as a template argument
must be defined and not just declared.

[temp.arg]14.7 Template arguments

1 The types of thetemplate-arguments specified in atemplate-idmust match the types specified for the tem-
plate in itstemplate-parameter-list. For example,vector s as defined in 14 can be used like this:

vector<int> v1(20);
vector<complex> v2(30);

typedef vector<complex> cvec; // make cvec a synonym
// for vector<complex>

cvec v3(40); // v2 and v3 are of the same type

v1[3] = 7;
v2[3] = v3.elem(4) = complex(7,8);

2 Non-typetemplate-arguments must beconstant-expressions or addresses of objects or functions with exter-
nal linkage. In particular, a string literal (2.9.4) isnot an acceptable template argument because a string lit-
eral is the address of an object with static linkage. For example:

template<class T, char* p> class X {
// ...
X(const char* q) q(p) { /* ... */ }

};

X<int,"Studebaker"> x1; // error: string literal as template argument

char* p = "Vivisectionist";
X<int,p> x2; // ok

Nor is a local type or an unnamed type an acceptable template argument. For example:

void f()
{

struct S { /* ... */ };

X<S,p> x3; // error: local type used as template argument
}

A template has no special access rights to its template argument types. However, often a template doesn’t
need any. For example:

class Y {
private:

struct S { /* ... */ };
X<S> x; // most operations by X on S do not lead to errors

};

X<Y::S> y; // most operations by X on Y::S leads to errors

The templateX can useY::S without violating any access rules as long as it uses only the access through a
template argument that does not explicitly mentionY.

Box 65
This is new, but appears to follow directly from accepted principles in C + + _ ___

_ ___

A template type parameter can be used in an elaborated type specifier. However, a specialization of a

14.7 Template arguments DRAFT: 25 January 1994 Templates 14– 13

template for which a type parameter used this way is not in agreement with the elaboration (7.1.5) is ill-
formed. For example:

template<class T> class X {
class T* p;

};

struct S { /* ... */ };
union U { /* ... */ };
enum E { /* ... */ };

X<S> s; // fine
X<int> i; // error: template argument must be a class
X<U> i; // error: template argument must be a class
X<E> i; // error: template argument must be a class

3 An argument for atemplate-parameterof reference type must be aconstant-expression, an object or func-
tion with external linkage, or a static class member. A temporary object is not an acceptable argument to a
template-parameterof reference type.

4 When default template arguments are used, a template argument list can be empty. In that case the empty<
> brackets must still be used. For example:

template<class T = char> class String;
String<>* p; // ok: String<char>
String* q; // syntax error

The notion of ‘‘array type decay’’ does not apply to template parameters. For example:

template<int a[5]> struct S;
int v[5];
int* p = v;
S<v> x; // fine
S<p> y; // error

[temp.type]14.8 Type equivalence

1 Two template-ids refer to the same class or function if theirtemplatenames are identical and their argu-
ments have identical values. For example,

template<class E, int size> class buffer;

buffer<char,2*512> x;
buffer<char,1024> y;

declaresx andy to be of the same type, and

template<class T, void(*err_fct)()>
class list { /* ... */ };

list<int,&error_handler1> x1;
list<int,&error_handler2> x2;
list<int,&error_handler2> x3;
list<char,&error_handler2> x4;

declaresx2 andx3 to be of the same type. Their type differs from the types ofx1 andx4 .

[temp.fct]14.9 Function templates

1 A function template specifies how individual functions can be constructed. A family of sort functions, for
example, might be declared like this:

template<class T> void sort(vector<T>);

14– 14 Templates DRAFT: 25 January 1994 14.9 Function templates

A function template specifies an unbounded set of (overloaded) functions. A function generated from a
function template is called a template function, as is a function defined with a type that matches a function
template; see_temp.dcls_. Template arguments can either be explicitly specified in a call or be deduced
from the function arguments.

[temp.arg.explicit]14.9.1 Explicit template argument specification

1 Template arguments can be specified in a call by qualifying the template function name by the list of tem-
plate arguments exactly as template arguments are specified in uses of a class template. For example:

void f(vector<complex>& cv, vector<int>& ci)
{

sort<complex>(cv); // sort(vector<complex>)
sort<int>(ci); // sort(vector<int>)

}

and

template<class U, class V> U convert(V v);

void g(int double)
{

int i = convert<int,double>(i); // int convert(double)
int c = convert<char,double>(i); // char convert(double)

}

Standard conversions (4) are accepted for a function argument for which the formal parameter has been
fixed by explicit specification of atemplate-argument. For example:

template<class T> void f(T);

class complex {
// ...
complex(double);

};

void g()
{

f<complex>(1); // ok, means f<complex>((complex(1))
}

[temp.deduct]14.9.2 Template argument deduction

1 Template arguments that can be deduced from the function arguments need not be explicitly specified. For
example,

void f(vector<complex>& cv, vector<int>& ci)
{

sort(cv); // sort(vector<complex>)
sort(ci); // sort(vector<int>)

}

and

void g(int double)
{

int i = convert<int>(i); // int convert(double)
int c = convert<char>(i); // char convert(double)

}

A template type argumentT or a template non-typei can be deduced from a function argument composed
from these elements:

14.9.2 Template argument deduction DRAFT: 25 January 1994 Templates 14– 15

T
cv-list T
T*
T&
T[integer-constant]
class-template-name<T>
type (*)(T)
type T::*
T(*)()
identifier[i]
class-template-name<i>

where theT in argument list form

type (*)(T)

includes argument lists with more than one arguments where at least one argument contains aT. Also, the
identifier[i] and class-template-name<i> forms can be used in the same way asT is for further composition
of types.

Box 66
The formT::id may be added to the list. See issue 3.7 in N0407/94– 0020. _ ___

_ ___

Note that a major array bound is not part of parameter type so it can’t be deduced from an argument:

template<int i> void f1(int a[10][i]);

template<int i> void f2(int a[i][10]);

void g(int v[10][10])
{

f1(v); // ok: i deduced to be 10
f1<int v[10][10]>(v); // ok
f2(v); // error: cannot deduce template argument i
f2<int v[10][10]>(v); // ok

}

Nontype parameters may not be used in expressions in the function declaration. The type of the function
template parameter must match the type of the template argument exactly. For example:

template<char i> class A { /* ... */ };
template<int c> void f(A<i>); // error: conversion not allowed
template<int i> void f(A<i+1>); // error: expression not allowed

2 Every template-parameterspecified in thetemplate-parameter-listmust be either explicitly specified or
deduced from a function argument. If function template arguments are specified in a call they are specified
in declaration order. Trailing arguments can be left out of a list of explicit template arguments. For exam-
ple,

template<class X, class Y, class Z> X f(Y,Z);

void g()
{

f<int,char*,double>("aa",3.0);
f<int,char*>("aa",3.0); // Z is deduced to be double
f<int>("aa",3.0); // Y is deduced to be char*, and

// Z is deduced to be double
f("aa",3.0); // error X cannot be deduced

}

14– 16 Templates DRAFT: 25 January 1994 14.9.2 Template argument deduction

A template parameter cannot be deduced from a default function argument. For example:

template <class T> void f(T = 5, T = 7);

void g()
{

f(1); // fine: call f<int>(1,7)
f(); // error: cannot deduce T
f<int>(); // fine: call f<int>(5,7)

}

[temp.over]14.9.3 Overload resolution

1 A template function may be overloaded either by (other) functions of its name or by (other) template func-
tions of that same name. Overloading resolution for template functions and other functions of the same
name is done in three steps:

[1] Look for an exact match (13.2) on functions; if found, call it.

[2] Look for a function template from which a function that can be called with an exact match can
be generated; if found, call it.

[3] Try ordinary overloading resolution (13.2) for the functions; if a function is found, call it.
If no match is found the call is ill-formed. In each case, if there is more than one alternative in the first
step that finds a match, the call is ambiguous and is ill-formed.

2 A match on a template (step [2]) implies that a specific template function with parameters that exactly
match the types of the arguments will be generated (_temp.dcls_). Not even trivial conversions (13.2)
will be applied in this case.

Box 67
This is too strict. To match existing usage, a proposal for allowing at least some conversions will
undoubtedly be accepted. See the proposal for a more general overloaded mechanism in
N0407/94– 0020 (issue 3.9). _ __

_ __

3 The same process is used for type matching for pointers to functions (13.3).

4 Here is an example:

template<class T> T max(T a, T b) { return a>b?a:b; };

void f(int a, int b, char c, char d)
{

int m1 = max(a,b); // max(int a, int b)
char m2 = max(c,d); // max(char a, char b)
int m3 = max(a,c); // error: cannot generate max(int,char)

}

5 For example, adding

int max(int,int);

to the example above would resolve the third call, by providing a function that could be called for
max(a,c) after using the standard conversion ofchar to int for c .

6 A function template definition is needed to generate specific versions of the template; only a function tem-
plate declaration is needed to generate calls to specific versions.

7 In case a call has explicitly qualified template arguments and requires overload resolution, the explicit qual-
ification is used first to determine the set of overloaded functions to be considered and overload resolution
then takes place for the remaining arguments. For example:

14.9.3 Overload resolution DRAFT: 25 January 1994 Templates 14– 17

template<class X, class Y, class Z> f(X,Y*,Z);
template<class X, class Y, class Z> f(X*,Y,Z);

void g(char* pc, int* pi)
{

f(0,0,0); // error: ambiguous: f<int,int,int>(int,int*,int)
// or f<int,int,int>(int*,int,int) ?

f<char>(pc,pi,0); // f<char,int*,int>(char*,int*,int)
f<char*>(pc,pi,0); // f<char*,int*,int>(char*,int*,int)

}

[temp.over.spec]14.9.4 Overloading and specialization

1 A template function can be overloaded by a function with the same type as a potentially generated function.
For example:

template<class T> T max(T a, T b) { return a>b?a:b; }
int max(int a, int b);

int min(int a, int b);
template<class T> T min(T a, T b) { return a<b?a:b; }

Such an overloaded function is not a specialization. The declaration simply guides the overload resolution.
This implies that a definition ofmax(int,int) andmin(int,int) will be implicitly generated from
the templates. If such implicit instantiation is not wanted, the specialization syntax should be used instead:

template<class T> T max(T a, T b) { return a>b?a:b; }
int max<int>(int a, int b);

Defining a function with the same type as a template specialization that is called is an error. For example:

template<class T> T max(T a, T b) { return a>b?a:b; }
int max(int a, int b) { return a>b?a:b; }

void f(int x, int y)
{

max(x,y); // error: double definition of max()
}

If the two definitions ofmax() are not in the same translation unit the diagnostic is optional.

[temp.mem.func]14.10 Member function templates

1 A member function of a template class is implicitly a template function with the template parameters of its∗
class as its template parameters. For example,

template<class T> class vector {
T* v;
int sz;

public:
vector(int);
T& operator[](int);
T& elem(int i) { return v[i]; }
// ...

};

declares three function templates. The subscript function might be defined like this:

template<class T> T& vector<T>::operator[](int i)
{

if (i<0 || sz<=i) error("vector: range error");
return v[i];

}

14– 18 Templates DRAFT: 25 January 1994 14.10 Member function templates

2 The template argument forvector<T>::operator[]() will be determined by the vector to which the
subscripting operation is applied.

vector<int> v1(20);
vector<complex> v2(30);

v1[3] = 7; // vector<int>::operator[]()
v2[3] = complex(7,8); // vector<complex>::operator[]()

[temp.friend]14.11 Friends

1 A friend function of a template may or may not be a template function. For example,

template<class T> class task {
// ...
friend void next_time();
friend task<T>* preempt(task<T>*);
friend task* prmt(task*); // task is task<T>
friend class task<int>;
// ...

};

Here,next_time() andtask<int> become friends of alltask classes, and eachtask has an appro-
priately typed functionspreempt() andprmt() as friends. Thepreempt functions might be defined
as a template.

template<class T>
task<T>* preempt(task<T>* t) { /* ... */ }

[temp.static]14.12 Static members and variables

1 Each template class or function generated from a template has its own copies of any static variables or
members. For example,

template<class T> class X {
static T s;
// ...

};

X<int> aa;
X<char*> bb;

HereX<int> has a static members of typeint andX<char*> has a static members of typechar* .

2 Static class member templates are defined similarly to member function templates. For example,

template<class T> T X<T>::s = 0;

int X<int>::s = 3;

3 Similarly,

template<class T> f(T* p)
{

static T s;
// ...

};

14.12 Static members and variables DRAFT: 25 January 1994 Templates 14– 19

void g(int a, char* b)
{

f(&a);
f(&b);

}

Here f(int*) has a static members of type int and f(char**) has a static members of type
char* .

_ ___ ___

15 Exception handling [except]
_ ___ ___

1 The exception handling design is a variant of the scheme presented in Andrew Koenig and Bjarne Strous-
trup: Exception Handling for C + + (revised), Proc. USENIX C + + Conference, San Francisco, April 1990.

[except.intro]15.1 Exception handling

1 Exception handling provides a way of transferring control and information from a point in the execution of
a program to anexception handlerassociated with a point previously passed by the execution. A handler
will be invoked only by athrow-expressioninvoked in code executed in the handler’stry-blockor in func-
tions called from the handler’stry-block.

try-block:
try compound-statement handler-seq

handler-seq:
handler handler-seqopt

handler:
catch (exception-declaration) compound-statement

exception-declaration:
type-specifier-seq declarator
type-specifier-seq abstract-declarator
type-specifier-seq
...

throw-expression:
throw assignment-expressionopt

A try-block is a statement(6). A throw-expressionis of typevoid . A throw-expressionis sometimes
referred to as a“throw-point.” Code that executes athrow-expressionis said to“throw an exception;” code
that subsequently gets control is called a“handler.”

2 A goto statement may be used to transfer control out of a handler, but not into one.

[except.throw]15.2 Throwing an exception

1 Throwing an exception transfers control to a handler. An object is passed and the type of that object deter-
mines which handlers can catch it. For example,

throw "Help!";

can be caught by ahandlerof somechar* type:

try {
// ...

}
catch(const char* p) {

// handle character string exceptions here
}

and

15– 2 Exception handling DRAFT: 25 January 1994 15.2 Throwing an exception

class Overflow {
// ...

public:
Overflow(char,double,double);

};

void f(double x)
{

// ...
throw Overflow(’+’,x,3.45e107);

}

can be caught by a handler

try {
// ...
f(1.2);
// ...

}
catch(Overflow& oo) {

// handle exceptions of type Overflow here
}

2 When an exception is thrown, control is transferred to the nearest handler with an appropriate type;“near-
est” means the handler whosetry-block was most recently entered by the thread of control and not yet
exited;“appropriate type” is defined in 15.4.

3 A throw-expressioninitializes a temporary object of the static type of the operand ofthrow and uses that
temporary to initialize the appropriately-typed variable named in the handler. Except for the restrictions on
type matching mentioned in 15.4 and the use of a temporary variable, the operand ofthrow is treated
exactly as a function argument in a call (5.2.2) or the operand of areturn statement.

4 If the use of the temporary object can be eliminated without changing the meaning of the program except
for the execution of constructors and destructors associated with the use of the temporary object (12.2), then
the exception in the handler may be initialized directly with the argument of the throw expression.

5 A throw-expressionwith no operand rethrows the exception being handled. Athrow-expressionwith no
operand may appear only in a handler or in a function directly or indirectly called from a handler. For
example, code that must be executed because of an exception yet cannot completely handle the exception
can be written like this:

try {
// ...

}
catch (...) { // catch all exceptions

// respond (partially) to exception

throw; // pass the exception to some
// other handler

}

[except.ctor]15.3 Constructors and destructors

1 As control passes from a throw-point to a handler, destructors are invoked for all automatic objects con-
structed since thetry-blockwas entered.

2 An object that is partially constructed will have destructors executed only for its fully constructed sub-
objects. Also, should a constructor for an element of an automatic array throw an exception, only the con-
structed elements of that array will be destroyed.

15.3 Constructors and destructors DRAFT: 25 January 1994 Exception handling 15– 3

3 The process of calling destructors for automatic objects constructed on the path from atry-block to a
throw-expressionis called“stack unwinding.”

[except.handle]15.4 Handling an exception

1 A handlerwith typeT, const T, T&, or const T& is a match for athrow-expressionwith an object of
typeE if

[1] T andE are the same type, or

[2] T is an accessible (4.6) base class ofE at the throw point, or

[3] T is a pointer type andE is a pointer type that can be converted toT by a standard pointer con-
version (4.6) at the throw point.

2 For example,

class Matherr { /* ... */ virtual vf(); };
class Overflow: public Matherr { /* ... */ };
class Underflow: public Matherr { /* ... */ };
class Zerodivide: public Matherr { /* ... */ };

void f()
{

try {
g();

}

catch (Overflow oo) {
// ...

}
catch (Matherr mm) {

// ...
}

}

Here, theOverflow handler will catch exceptions of typeOverflow and theMatherr handler will
catch exceptions of typeMatherr and all types publicly derived fromMatherr includingUnderflow
andZerodivide .

3 The handlers for atry-blockare tried in order of appearance. A program is ill-formed if it places a handler
for a base class ahead of a handler for its derived class (or a handler for a pointer or reference to base ahead
of a handler for a pointer or reference to derived) since that would ensure that the handler for the derived
class would never be invoked. The processor shall diagnose this error if the classes are defined at the
beginning of the try block.

4 A ... in a handler’sexception-declarationfunctions similarly to... in a function parameter declara-
tion; it specifies a match for any exception. If present, a... handler must be the last handler for itstry-
block.

5 If no match is found among the handlers for atry-block, the search for a matching handler continues in a
dynamically surroundingtry-block. If no matching handler is found in a program, the function
terminate() (15.6.1) is called.

6 An exception is considered handled upon entry to a handler. The stack will have been unwound at that
point.

15– 4 Exception handling DRAFT: 25 January 1994 15.5 Exception specifications

[except.spec]15.5 Exception specifications

1 A function declaration may list exceptions that its function might directly or indirectly throw by using an
exception-specificationas a suffix of its declarator.

exception-specification:
throw (type-id-listopt)

type-id-list:
type-id
type-id-list , type-id

If any declaration of a function has anexception-specification, all declarations, including the definition, of
that function shall have anexception-specificationwith the same set oftype-ids.

2 If a classX is in thetype-id-listof theexception-specificationof a function, that function is said toallow
exception objects of classX or any class publicly derived fromX. Similarly, if a pointer typeY* is in the
type-id-listof the exception-specificationof a function, the function allows exceptions of typeY* or that
are pointers to any type publicly derived fromY* .

Box 68
This still needs to deal withconst andvolatile _ __

_ __

Whenever an exception is thrown and the search for a handler (15.4) encounters the outermost block of a
function with anexception-specification, the functionunexpected() is called (15.6.2) if theexception-
specificationdoes not allow the exception. For example,

class Z: public X { };
class W { };

void f() throw (X,Y)
{

int n = 0;
if (n) throw X(); // OK
if (n) throw Y(); // also OK
throw W(); // will call unexpected()

}

3 An implementation shall not reject an expression merely because when executed it throws or might throw
an exception that the containing function does not allow. For example,

extern void f() throw(X,Y);

void g() throw(X)
{

f(); // OK
}

the call tof is well-formed even though when called,f might throw exceptionY thatg does not allow.

4 A function with noexception-specificationallows all exceptions. A function with an emptyexception-
specification, throw() , does not allow any exceptions.

5 An exception-specificationis not considered part of a function’s type.

[except.special]15.6 Special functions

1 The exception handling mechanism relies on two functions,terminate() and unexpected() , for
coping with errors related to the exception handling mechanism itself.

15.6.1 Theterminate() function DRAFT: 25 January 1994 Exception handling 15– 5

[except.terminate]15.6.1 Theterminate() function

1 Occasionally, exception handling must be abandoned for less subtle error handling techniques. For exam-
ple,

– when the exception handling mechanism cannot find a handler for a thrown exception,

– when the exception handling mechanism finds the stack corrupted, or

– when a destructor called during stack unwinding caused by an exception tries to exit using an
exception.

2 In such cases,

void terminate();

is called;terminate() calls the function given on the most recent call ofset_terminate() :

typedef void(*PFV)();
PFV set_terminate(PFV);

3 The previous function given toset_terminate() will be the return value; this enables users to imple-
ment a stack strategy for usingterminate() . The default function called byterminate() is
abort() .

4 Selecting a terminate function that does not in fact terminate but tries to return to its caller either with
return or by throwing an exception is an error.

[except.unexpected]15.6.2 Theunexpected() function

1 If a function with anexception-specificationthrows an exception that is not listed in theexception-
specification, the function

void unexpected();

is called;unexpected() calls the function given on the most recent call ofset_unexpected() :

typedef void(*PFV)();
PFV set_unexpected(PFV);

The previous function given toset_unexpected() will be the return value; this enables users to imple-
ment a stack strategy for usingunexpected() . The default function called byunexpected() is
terminate() . Since the default function called byterminate() is abort() , this leads to immedi-
ate and precise detection of the error.

2 Theunexpected() function may not return, but it may throw an exception. Handlers for this exception
will be looked for starting at the call of the function whoseexception-specificationwas violated. Thus an
exception-specificationdoes not guarantee that only the listed classes will be thrown. For example,

void pass_through() { throw; }
void f(PFV pf) throw() // f claims to throw no exceptions
{

(*pf)(); // but the argument function might
}
void g(PFV pf)
{

set_unexpected(&pass_through);
f(pf);

}

After the call ing() to set_unexpected() , f() behaves as if it had noexception-specificationat all.

15– 6 Exception handling DRAFT: 25 January 1994 15.7 Exceptions and access

[except.access]15.7 Exceptions and access

1 The parameter of a catch clause obeys the same access rules as a parameter of the function in which the
catch clause occurs.

2 An object may be thrown if it can be copied and destroyed in the context of the function in which the throw
occurs.

_ ___ ___

16 Preprocessing directives [cpp]
_ ___ ___

1 A preprocessing directive consists of a sequence of preprocessing tokens that begins with a# preprocessing
token that is either the first character in the source file (optionally after white space containing no new-line
characters) or that follows white space containing at least one new-line character, and is ended by the next
new-line character.42)

preprocessing-file:
groupopt

group:
group-part
group group-part

group-part:
pp-tokensopt new-line
if-section
control-line

if-section:
if-group elif-groupsopt else-groupopt endif-line

if-group:
if constant-expression new-line groupopt

ifdef identifier new-line groupopt

ifndef identifier new-line groupopt

elif-groups:
elif-group
elif-groups elif-group

elif-group:
elif constant-expression new-line groupopt

else-group:
else new-line groupopt

endif-line:
endif new-line

42)Thus, preprocessing directives are commonly called“lines.” These“lines” have no other syntactic significance, as all white space is
equivalent except in certain situations during preprocessing (see the# character string literal creation operator in 16.3.2, for example).

16– 2 Preprocessing directives DRAFT: 25 January 1994 16 Preprocessing directives

control-line:
include pp-tokens new-line
define identifier replacement-list new-line
define identifier lparen identifier-listopt) replacement-list new-line
undef identifier new-line
line pp-tokens new-line
error pp-tokensopt new-line
pragma pp-tokensopt new-line
new-line

lparen:
the left-parenthesis character without preceding white-space

replacement-list:
pp-tokensopt

pp-tokens:
preprocessing-token
pp-tokens preprocessing-token

new-line:
the new-line character

2 The only white-space characters that shall appear between preprocessing tokens within a preprocessing
directive (from just after the introducing# preprocessing token through just before the terminating new-line
character) are space and horizontal-tab (including spaces that have replaced comments or possibly other
white-space characters in translation phase 3).

3 The implementation can process and skip sections of source files conditionally, include other source files,
and replace macros. These capabilities are calledpreprocessing, because conceptually they occur before
translation of the resulting translation unit.

4 The preprocessing tokens within a preprocessing directive are not subject to macro expansion unless other-
wise stated.

[cpp.cond] 16.1 Conditional inclusion

1 The expression that controls conditional inclusion shall be an integral constant expression except that: it
shall not contain a cast; identifiers (including those lexically identical to keywords) are interpreted as
described below;43) and it may contain unary operator expressions of the form

defined identifier
or

defined (identifier)

which evaluate to1 if the identifier is currently defined as a macro name (that is, if it is predefined or if it
has been the subject of a#define preprocessing directive without an intervening#undef directive with
the same subject identifier), zero if it is not.

2 Each preprocessing token that remains after all macro replacements have occurred shall be in the lexical
form of a token (2.5).

3 Preprocessing directives of the forms

if constant-expression new-line groupopt

elif constant-expression new-line groupopt

check whether the controlling constant expression evaluates to nonzero.

43)Because the controlling constant expression is evaluated during translation phase 4, all identifiers either are or are not macro names
— there simply are no keywords, enumeration constants, and so on.

16.1 Conditional inclusion DRAFT: 25 January 1994 Preprocessing directives 16– 3

4 Prior to evaluation, macro invocations in the list of preprocessing tokens that will become the controlling
constant expression are replaced (except for those macro names modified by thedefined unary operator),
just as in normal text. If the tokendefined is generated as a result of this replacement process or use of
the defined unary operator does not match one of the two specified forms prior to macro replacement,
the behavior is undefined. After all replacements due to macro expansion and thedefined unary operator
have been performed, all remaining identifiers are replaced with the pp-number0, and then each prepro-
cessing token is converted into a token. The resulting tokens comprise the controlling constant expression
which is evaluated according to the rules of 5.19 using arithmetic that has at least the ranges specified in
<<<<<<???>>>>>>, except thatint andunsigned int act as if they have the same representation as,
respectively,long and unsigned long . This includes interpreting character constants, which may
involve converting escape sequences into execution character set members. Whether the numeric value for
these character constants matches the value obtained when an identical character constant occurs in an
expression (other than within a#if or #elif directive) is implementation-defined.44) Also, whether a
single-character character constant may have a negative value is implementation-defined.

5 Preprocessing directives of the forms

ifdef identifier new-line groupopt

ifndef identifier new-line groupopt

check whether the identifier is or is not currently defined as a macro name. Their conditions are equivalent
to #if defined identifier and#if !defined identifier respectively.

6 Each directive’s condition is checked in order. If it evaluates to false (zero), the group that it controls is
skipped: directives are processed only through the name that determines the directive in order to keep track
of the level of nested conditionals; the rest of the directives’ preprocessing tokens are ignored, as are the
other preprocessing tokens in the group. Only the first group whose control condition evaluates to true
(nonzero) is processed. If none of the conditions evaluates to true, and there is a#else directive, the
group controlled by the#else is processed; lacking a#else directive, all the groups until the#endif
are skipped.45)

[cpp.include] 16.2 Source file inclusion

1 A #include directive shall identify a header or source file that can be processed by the implementation.

2 A preprocessing directive of the form

include < h-char-sequence> new-line

searches a sequence of implementation-defined places for a header identified uniquely by the specified
sequence between the< and> delimiters, and causes the replacement of that directive by the entire contents
of the header. How the places are specified or the header identified is implementation-defined.

3 A preprocessing directive of the form

include " q-char-sequence" new-line

causes the replacement of that directive by the entire contents of the source file identified by the specified
sequence between the" delimiters. The named source file is searched for in an implementation-defined
manner. If this search is not supported, or if the search fails, the directive is reprocessed as if it read

include < h-char-sequence> new-line

with the identical contained sequence (including> characters, if any) from the original directive.

44) Thus, the constant expression in the following#if directive andif statement is not guaranteed to evaluate to the same value in
these two contexts.

#if ’z’ - ’a’ = = 25
if (’z’ - ’a’ = = 25)

45) As indicated by the syntax, a preprocessing token shall not follow a#else or #endif directive before the terminating new-line
character. However, comments may appear anywhere in a source file, including within a preprocessing directive.

16– 4 Preprocessing directives DRAFT: 25 January 1994 16.2 Source file inclusion

4 A preprocessing directive of the form

include pp-tokens new-line

(that does not match one of the two previous forms) is permitted. The preprocessing tokens afterinclude
in the directive are processed just as in normal text. (Each identifier currently defined as a macro name is
replaced by its replacement list of preprocessing tokens.)The directive resulting after all replacements shall
match one of the two previous forms.46) The method by which a sequence of preprocessing tokens between
a < and a> preprocessing token pair or a pair of" characters is combined into a single header name prepro-
cessing token is implementation-defined.

5 There shall be an implementation-defined mapping between the delimited sequence and the external source
file name. The implementation shall provide unique mappings for sequences consisting of one or more
nondigits (2.7) followed by a period (.) and a singlenondigit. The implementation may ignore the distinc-
tions of alphabetical case and restrict the mapping to six significant characters before the period.

Box 69
Does this restriction still make sense for C + +? _ ______________________________________

_ ______________________________________

6 A #include preprocessing directive may appear in a source file that has been read because of a
#include directive in another file, up to an implementation-defined nesting limit (see<<<<???>>>>).

7 The most common uses of#include preprocessing directives are as in the following:

#include <stdio.h>
#include "myprog.h"

8 This example illustrates a macro-replaced#include directive:

#if VERSION = = 1
#define INCFILE "vers1.h"

#elif VERSION = = 2
#define INCFILE "vers2.h" /* and so on*/

#else
#define INCFILE "versN.h"

#endif
#include INCFILE

[cpp.replace] 16.3 Macro replacement

1 Two replacement lists are identical if and only if the preprocessing tokens in both have the same number,
ordering, spelling, and white-space separation, where all white-space separations are considered identical.

2 An identifier currently defined as a macro without use of lparen (anobject-likemacro) may be redefined by
another#define preprocessing directive provided that the second definition is an object-like macro defi-
nition and the two replacement lists are identical.

3 An identifier currently defined as a macro using lparen (afunction-likemacro) may be redefined by another
#define preprocessing directive provided that the second definition is a function-like macro definition
that has the same number and spelling of parameters, and the two replacement lists are identical.

4 The number of arguments in an invocation of a function-like macro shall agree with the number of parame-
ters in the macro definition, and there shall exist a) preprocessing token that terminates the invocation.

5 A parameter identifier in a function-like macro shall be uniquely declared within its scope.

46) Note that adjacent string literals are not concatenated into a single string literal (see the translation phases in 2.1); thus, an expan-
sion that results in two string literals is an invalid directive.

16.3 Macro replacement DRAFT: 25 January 1994 Preprocessing directives 16– 5

6 The identifier immediately following thedefine is called themacro name. There is one name space for
macro names. Any white-space characters preceding or following the replacement list of preprocessing
tokens are not considered part of the replacement list for either form of macro.

7 If a # preprocessing token, followed by an identifier, occurs lexically at the point at which a preprocessing
directive could begin, the identifier is not subject to macro replacement.

8 A preprocessing directive of the form

define identifier replacement-list new-line

defines an object-like macro that causes each subsequent instance of the macro name47) to be replaced by
the replacement list of preprocessing tokens that constitute the remainder of the directive. The replacement
list is then rescanned for more macro names as specified below.

9 A preprocessing directive of the form

define identifier lparen identifier-listopt) replacement-list new-line

defines a function-like macro with parameters, similar syntactically to a function call. The parameters are
specified by the optional list of identifiers, whose scope extends from their declaration in the identifier list
until the new-line character that terminates the#define preprocessing directive. Each subsequent
instance of the function-like macro name followed by a(as the next preprocessing token introduces the
sequence of preprocessing tokens that is replaced by the replacement list in the definition (an invocation of
the macro). The replaced sequence of preprocessing tokens is terminated by the matching) preprocessing
token, skipping intervening matched pairs of left and right parenthesis preprocessing tokens. Within the
sequence of preprocessing tokens making up an invocation of a function-like macro, new-line is considered
a normal white-space character.

10 The sequence of preprocessing tokens bounded by the outside-most matching parentheses forms the list of
arguments for the function-like macro. The individual arguments within the list are separated by comma
preprocessing tokens, but comma preprocessing tokens between matching inner parentheses do not separate
arguments. If (before argument substitution) any argument consists of no preprocessing tokens, the behav-
ior is undefined. If there are sequences of preprocessing tokens within the list of arguments that would oth-
erwise act as preprocessing directives, the behavior is undefined.

[cpp.subst] 16.3.1 Argument substitution

1 After the arguments for the invocation of a function-like macro have been identified, argument substitution
takes place. A parameter in the replacement list, unless preceded by a# or ## preprocessing token or fol-
lowed by a## preprocessing token (see below), is replaced by the corresponding argument after all macros
contained therein have been expanded. Before being substituted, each argument’s preprocessing tokens are
completely macro replaced as if they formed the rest of the translation unit; no other preprocessing tokens
are available.

[cpp.stringize]16.3.2 The# operator

1 Each# preprocessing token in the replacement list for a function-like macro shall be followed by a parame-
ter as the next preprocessing token in the replacement list.

2 If, in the replacement list, a parameter is immediately preceded by a# preprocessing token, both are
replaced by a single character string literal preprocessing token that contains the spelling of the preprocess-
ing token sequence for the corresponding argument. Each occurrence of white space between the
argument’s preprocessing tokens becomes a single space character in the character string literal. White
space before the first preprocessing token and after the last preprocessing token comprising the argument is
deleted. Otherwise, the original spelling of each preprocessing token in the argument is retained in the
character string literal, except for special handling for producing the spelling of string literals and character

47) Since, by macro-replacement time, all character constants and string literals are preprocessing tokens, not sequences possibly con-
taining identifier-like subsequences (see 2.1.1.2, translation phases), they are never scanned for macro names or parameters.

16– 6 Preprocessing directives DRAFT: 25 January 1994 16.3.2 The# operator

constants: a\ character is inserted before each" and \ character of a character constant or string literal
(including the delimiting " characters). If the replacement that results is not a valid character string literal,
the behavior is undefined. The order of evaluation of# and## operators is unspecified.

[cpp.concat]16.3.3 The## operator

1 A ## preprocessing token shall not occur at the beginning or at the end of a replacement list for either form
of macro definition.

2 If, in the replacement list, a parameter is immediately preceded or followed by a## preprocessing token,
the parameter is replaced by the corresponding argument’s preprocessing token sequence.

3 For both object-like and function-like macro invocations, before the replacement list is reexamined for
more macro names to replace, each instance of a## preprocessing token in the replacement list (not from
an argument) is deleted and the preceding preprocessing token is concatenated with the following prepro-
cessing token. If the result is not a valid preprocessing token, the behavior is undefined. The resulting
token is available for further macro replacement. The order of evaluation of## operators is unspecified.

[cpp.rescan] 16.3.4 Rescanning and further replacement

1 After all parameters in the replacement list have been substituted, the resulting preprocessing token
sequence is rescanned with all subsequent preprocessing tokens of the source file for more macro names to
replace.

2 If the name of the macro being replaced is found during this scan of the replacement list (not including the
rest of the source file’s preprocessing tokens), it is not replaced. Further, if any nested replacements
encounter the name of the macro being replaced, it is not replaced. These nonreplaced macro name prepro-
cessing tokens are no longer available for further replacement even if they are later (re)examined in con-
texts in which that macro name preprocessing token would otherwise have been replaced.

3 The resulting completely macro-replaced preprocessing token sequence is not processed as a preprocessing
directive even if it resembles one.

[cpp.scope] 16.3.5 Scope of macro definitions

1 A macro definition lasts (independent of block structure) until a corresponding#undef directive is
encountered or (if none is encountered) until the end of the translation unit.

2 A preprocessing directive of the form

undef identifier new-line

causes the specified identifier no longer to be defined as a macro name. It is ignored if the specified identi-
fier is not currently defined as a macro name.

3 The simplest use of this facility is to define a“manifest constant,” as in

#define TABSIZE 100

int table[TABSIZE];

4 The following defines a function-like macro whose value is the maximum of its arguments. It has the
advantages of working for any compatible types of the arguments and of generating in-line code without the
overhead of function calling. It has the disadvantages of evaluating one or the other of its arguments a sec-
ond time (including side effects) and generating more code than a function if invoked several times. It also
cannot have its address taken, as it has none.

#define max(a, b) ((a) > (b) ? (a) : (b))

The parentheses ensure that the arguments and the resulting expression are bound properly.

16.3.5 Scope of macro definitions DRAFT: 25 January 1994 Preprocessing directives 16– 7

5 To illustrate the rules for redefinition and reexamination, the sequence

#define x 3
#define f(a) f(x * (a))
#undef x
#define x 2
#define g f
#define z z[0]
#define h g(~
#define m(a) a(w)
#define w 0,1
#define t(a) a

f(y+1) + f(f(z)) % t(t(g)(0) + t)(1);
g(x+(3,4)-w) | h 5) & m

(f)^m(m);

results in

f(2 * (y+1)) + f(2 * (f(2 * (z[0])))) % f(2 * (0)) + t(1);
f(2 * (2+(3,4)-0,1)) | f(2 * (~ 5)) & f(2 * (0,1))^m(0,1);

6 To illustrate the rules for creating character string literals and concatenating tokens, the sequence

#define str(s) # s
#define xstr(s) str(s)
#define debug(s, t) printf("x" # s "= %d, x" # t "= %s", \

x ## s, x ## t)
#define INCFILE(n) vers ## n /* from previous#include example */
#define glue(a, b) a ## b
#define xglue(a, b) glue(a, b)
#define HIGHLOW "hello"
#define LOW LOW ", world"

debug(1, 2);
fputs(str(strncmp("abc\0d", "abc", ’\4’) /* this goes away */

= = 0) str(: @\n), s);
#include xstr(INCFILE(2).h)
glue(HIGH, LOW);
xglue(HIGH, LOW)

results in

printf("x" "1" "= %d, x" "2" "= %s", x1, x2);
fputs("strncmp(\"abc\\0d\", \"abc\", ’\\4’) = = 0" ": @\n", s);
#include "vers2.h" (after macro replacement, before file access)
"hello";
"hello" ", world"

or, after concatenation of the character string literals,

printf("x1= %d, x2= %s", x1, x2);
fputs("strncmp(\"abc\\0d\", \"abc\", ’\\4’) = = 0: @\n", s);
#include "vers2.h" (after macro replacement, before file access)
"hello";
"hello, world"

Space around the# and## tokens in the macro definition is optional.

7 And finally, to demonstrate the redefinition rules, the following sequence is valid.

16– 8 Preprocessing directives DRAFT: 25 January 1994 16.3.5 Scope of macro definitions

#define OBJ_LIKE (1-1)
#define OBJ_LIKE /* white space */ (1-1) /* other */
#define FTN_LIKE(a) (a)
#define FTN_LIKE(a)(/* note the white space */ \

a /* other stuff on this line
*/)

But the following redefinitions are invalid:

#define OBJ_LIKE (0) /* different token sequence*/
#define OBJ_LIKE (1 - 1) /* different white space*/
#define FTN_LIKE(b) (a) /* different parameter usage*/
#define FTN_LIKE(b) (b) /* different parameter spelling*/

[cpp.line] 16.4 Line control

1 The string literal of a#line directive, if present, shall be a character string literal.

2 The line numberof the current source line is one greater than the number of new-line characters read or
introduced in translation phase 1 (2.1) while processing the source file to the current token.

3 A preprocessing directive of the form

line digit-sequence new-line

causes the implementation to behave as if the following sequence of source lines begins with a source line
that has a line number as specified by the digit sequence (interpreted as a decimal integer). The digit
sequence shall not specify zero, nor a number greater than 32767.

4 A preprocessing directive of the form

line digit-sequence" s-char-sequenceopt" new-line

sets the line number similarly and changes the presumed name of the source file to be the contents of the
character string literal.

5 A preprocessing directive of the form

line pp-tokens new-line

(that does not match one of the two previous forms) is permitted. The preprocessing tokens afterline on
the directive are processed just as in normal text (each identifier currently defined as a macro name is
replaced by its replacement list of preprocessing tokens). The directive resulting after all replacements
shall match one of the two previous forms and is then processed as appropriate.

[cpp.error] 16.5 Error directive

1 A preprocessing directive of the form

error pp-tokensopt new-line

causes the implementation to produce a diagnostic message that includes the specified sequence of prepro-
cessing tokens.

[cpp.pragma] 16.6 Pragma directive

1 A preprocessing directive of the form

pragma pp-tokensopt new-line

causes the implementation to behave in an implementation-defined manner. Any pragma that is not recog-
nized by the implementation is ignored.

16.7 Null directive DRAFT: 25 January 1994 Preprocessing directives 16– 9

[cpp.null] 16.7 Null directive

1 A preprocessing directive of the form

new-line

has no effect.

[cpp.predefined] 16.8 Predefined macro names

1 The following macro names shall be defined by the implementation:

_ _LINE_ _The line number of the current source line (a decimal constant).

_ _FILE_ _The presumed name of the source file (a character string literal).

_ _DATE_ _The date of translation of the source file (a character string literal of the form
"Mmm dd yyyy" , where the names of the months are the same as those generated by the
asctime function, and the first character ofdd is a space character if the value is less than 10). If
the date of translation is not available, an implementation-defined valid date shall be supplied.

_ _TIME_ _The time of translation of the source file (a character string literal of the form
"hh:mm:ss" as in the time generated by theasctime function). If the time of translation is not
available, an implementation-defined valid time shall be supplied.

_ _STDC_ _Whether_ _STDC_ _ is defined and if so, what its value is, are implementation dependent.

_ _cplusplus The name_ _cplusplus is defined (to an unspecified value) when compiling a C + +
translation unit.

2 The values of the predefined macros (except for_ _LINE_ _ and_ _FILE_ _) remain constant throughout
the translation unit.

3 None of these macro names, nor the identifierdefined , shall be the subject of a#define or a#undef
preprocessing directive. All predefined macro names shall begin with a leading underscore followed by an
uppercase letter or a second underscore.

_ ___ ___

17 Library [lib.library]
_ ___ ___

Box 70
Library WG issue: Michael Vilot, January 14, 1994

This section ordering has not been discussed by the Library Working Group. Once they do have a chance
to discuss it, the section order, munbering, and names are likely to be changed. _ __

_ __

Box 71
Library WG issue: Charles Allison, December 22, 1993

Long monocase class names without underscores are hard to read. _ __

_ __

Box 72
Library WG issue: Charles Allison, December 22, 1993

We must do something about typebool . _ ___

_ ___

[lib.introduction]17.1 Introduction

Box 73
Library WG issue: Bjarne Stroustrup, January 14, 1994

The standard C + + library contains components for: language support, predefined exceptions, iostreams,
strings, bitsets, bitstrings, dynamic arrays, and complex numbers. The language support components are
required by certain parts of the C + + language, such as memory allocation (5.3.4, 5.3.5) and exception pro-
cessing (15.1); the predefined exceptions provide support for a uniform error reporting from the standard
library; the iostreams components are the primary mechanism for C + + program input/output; the strings and
other containers provide some of the most commonly-used data types not directly defined in the C + + lan-
guage; and the complex components provide support for numeric processing. This library also makes
available the facilities of the Standard C library, suitably adjusted to ensure static type safety. _ __

_ __

Box 74
Library WG issue: Beman Dawes, December 19, 1993

Last sentence; Does this need an ‘‘as if?’’ We don’t want to prohibit dynamic linking. We will have to
revisit this once linkage is defined more precisely. _ __

_ __

17– 2 Library DRAFT: 25 January 1994 17.1 Introduction

Box 75
Library WG issue: Beman Dawes, December 19, 1993

Last sentence; ‘‘link time’’ is not previously defined! _ __

_ __

Box 76
Library WG issue: Michael Vilot, November 22, 1993

How much of ‘‘Introduction’’ section has to be made global to the entire clasue? The various C rules about
reserved identifiers could be made irrelevant if C in C + + programs were prohibited from defining macros
(except, presumably, for a few things likeassert) If we don’t define the standard namespace in a way
that obviates the need for so many rules, then we haven’t used the language feature effectively. _ __

_ __

1 A C + + implementation provides aStandard C + + library that defines various entities: types, macros, objects,
and functions. Each of these entities is declared or defined (as appropriate) in aheader,whose contents are
made available to a translation unit when it contains the appropriate#include preprocessing directive.48)
Objects and functions defined in the library and required by a C + + program are included in the program
prior to program startup.

[lib.intro.standard.c]17.1.1 Standard C library

1 This International Standard includes by reference clause 7 of the C Standard and clause 4 of Amendment 1
to the C Standard (1.2). The combined library described in those clauses is hereinafter called theStandard
C library. With the qualifications noted in this subclause 17.1 and in subclause 17.2, the Standard C library
is a subset of the Standard C + + library.

[lib.headers]17.1.2 Headers

48) A header is not necessarily a source file, nor are the sequences delimited by< and> in header names necessarily valid source file
names.

17.1.2 Headers DRAFT: 25 January 1994 Library 17– 3

Box 77

Library WG issue: Michael Vilot, January 14, 1994

At the San Jose meeting, the Library WG modified the proposal 93-0136/N0343, Namespaces for the Stan-
dard Library. Through an oversight, these modifiactions were not written down and presented as part of the
X3J16/WG21 vote on the proposal. This section should be revised as follows:

The elements of the standard library are declared or defined (as appropriate) in aheader, whose contents are
made available to a translation unit when it contains the appropriate#include preprocessing directive.

[Footnote: A header is not necessarily source file, not are the sequences delimited by< and> in header
names necessarily valid source file names.]

The Standard C + + library provides the following headers:

<bits> <istream> <cassert> <csignal>
<bitstring> <new> <cctype> <cstdarg>
<complex> <ostream> <cerrno> <cstddef>
<defines> <ptrdynarray> <cfloat> <cstdio>
<dynarray> <sstream> <ciso646> <cstdlib>
<exception> <streambuf> <climits> <cstring>
<fstream> <string> <clocale> <ctime>
<iomanip> <strstream> <cmath> <cwchar>
<ios> <typeinfo> <csetjmp> <cwctype>
<iostream> <wstring> <all>

For compatibility with the Standard C library, the Standard C + + library provides the followingC headers:

<assert.h> <iso646.h> <setjmp.h> <stdio.h> <wchar.h>
<ctype.h> <limits.h> <signal.h> <stdlib.h> <wctype.h>
<errno.h> <locale.h> <stdarg.h> <string.h>
<float.h> <math.h> <stddef.h> <time.h> _ __

_ __

Box 78
Library WG issue: Michael Vilot, November 22, 1993

The issue of global names isn’t strictly aheaderinclusion problem—it’s a namespace organization issue.
The headers are just convenient packagings of names. This will become more apparent as the details of
C + +’s namespace mechanism percolate throughout the library. _ __

_ __

Box 79
Library WG issue: Michael Vilot, November 22, 1993

The rule that ‘‘any of the C + + headers can include any of the other C + + headers’’ imposes a restriction on
C + + programmers beyond any that C programmers must endure. Since we are changing the names of the
headers from current usage anyway (by dropping the.h), we can be unambiguous about the declarations
used across components in the standard library. Implementations that support precompiled headers will do
just fine with a more precise specification. _ __

_ __

17– 4 Library DRAFT: 25 January 1994 17.1.2 Headers

Box 80
Library WG issue: Michael Vilot, November 22, 1993

The description of ‘‘C headers’’ is a good candidate for either 17.1.1, C Library, or C.2, C + + and ISO C. _ ___

_ ___

1 The Standard C + + library provides 39primary headers,each with a correspondingsecondary header, as
shown in Table 13:

Table 13—library headers

PRIMARY SECONDARY PRIMARY SECONDARY

<all.ns> <all> <bits.ns> <bits>
<cassert.ns> <assert.h> <bitstring.ns> <bitstring>
<cctype.ns> <ctype.h> <defines.ns> <defines>
<cerrno.ns> <errno.h> <dynarray.ns> <dynarray>
<cfloat.ns> <float.h> <exception.ns> <exception>
<ciso646.ns> <iso646.h> <fstream.ns> <fstream>
<climits.ns> <limits.h> <iomanip.ns> <iomanip>
<clocale.ns> <locale.h> <ios.ns> <ios>
<cmath.ns> <math.h> <iostream.ns> <iostream>
<complex.ns> <complex> <istream.ns> <istream>
<csetjmp.ns> <setjmp.h> <new.ns> <new>
<csignal.ns> <signal.h> <ostream.ns> <ostream>
<cstdarg.ns> <stdarg.h> <ptrdynarray.ns> <ptrdynarray>
<cstddef.ns> <stddef.h> <sstream.ns> <sstream>
<cstdio.ns> <stdio.h> <streambuf.ns> <streambuf>
<cstdlib.ns> <stdlib.h> <string.ns> <string>
<cstring.ns> <string.h> <strstream.ns> <strstream>
<ctime.ns> <time.h> <typeinfo.ns> <typeinfo>
<cwchar.ns> <wchar.h> <wstring.ns> <wstring>
<cwctype.ns> <wctype.h>

2 If the name (enclosed in angle brackets) of a secondary header ends in.h , that header and its correspond-
ing primary header are associated with the Standard C library and are calledC headers.All other headers
are calledC + + headers.

3 If a header is implemented as a source file, the derivation of the file name from the header name is
implementation-defined. If a file has a name equivalent to the derived file name for one of the above head-
ers, is not provided as part of the implementation, and is placed in any of the standard places for a source
file to be included, the behavior is undefined.

4 The header<all.ns> includes all other primary headers. The header<all> includes all other secondary
headers.

5 A translation unit may include these headers in any order. Each may be included more than once, with no
effect different from being included exactly once, except that the effect of including either
<cassert.ns> or <assert.h> depends each time on the lexically current definition ofNDEBUG. A
translation unit shall include a header only outside of any external declaration or definition, and shall
include the header lexically before the first reference to any of the entities it declares or first defines in that
translation unit.

17.1.2 Headers DRAFT: 25 January 1994 Library 17– 5

6 Certain types, macros, and namespace aliases are defined in more than one header. For such an entity, a
second or subsequent header that also defines it may be included after the header that provides its initial
definition.

7 None of the C headers includes any of the other headers, except that each secondary C header includes its
corresponding primary C header. Except for the headers<all.ns> and<all> , none of the C + + headers
includes any of the C headers. However, any of the C + + headers can include any of the other C + + headers,
and must include a C + + header that contains any needed definition.49)

[lib.namespaces]17.1.3 Namespaces

49) Including any one of the C + + headers can introduce all of the C + + headers into a translation unit, or just the one that is named in the
#include preprocessing directive.

17– 6 Library DRAFT: 25 January 1994 17.1.3 Namespaces

Box 81
Library WG issue: Beman Dawes, January 16, 1994

Nathan Myers in message c++std-lib-1532 writes:

>In Message c++std-lib-1517, Beman writes:
>> B. If the program supplies an alternate implementation of a library
>> component then the program shall also supply a header which declares
>> that component.
>>
>> Comment: In other words, the compiler has to be told of the alternate
>> implementation at compile time. You can’t wait and later just tell the
>> linker. Thus compilers can still generate in-line code for their
>> implementation of standard library components. This also means alternate
>> implementations can have inline’s in their headers.
>
>I would like to register an exception to this rule: the global
>operators new and delete are usable without declaration, and
>must be replaceable without a header.

Yes, you are right - new and delete are exceptions. They are
covered by 17.3 and section E of the proposal (see below).
Section 17.3 of the library chapter draft talks about
‘‘...the function signatures that are called
implicitly, and the types of objects generated implicitly...’’, in
other words, the things likenew anddelete that are usable without
declaration.

>
>The rule has interesting implications: binary-only libraries
>(for which you have no access to the source code) can only
>operate with the vendor’s library, not the user’s preferred
>library, unless you can persuade somebody to recompile with your
>headers. Is this what we want? Or is it a "quality of
>implementation" issue, where no serious vendor would enforce such
>a rule?

To me this is very much a quality-of-implementation. In some markets
it is of critical importance to vendors, while in other markets it
just doesn’t matter. Not an area where a language standard should
tread.

By the way, I am now pretty well convinced Jerry Schwarz’s suggested wording
‘‘independent implementation’’ is clearer than ‘‘alternate implementation’’
and will probably change the proposal accordingly. _ __

_ __

17.1.3 Namespaces DRAFT: 25 January 1994 Library 17– 7

Box 82
Library WG issue: Nathan Myers, January 15, 1994

In Message c++std-lib-1517, Beman writes:
> B. If the program supplies an alternate implementation of a library
> component then the program shall also supply a header which declares
> that component.
>
> Comment: In other words, the compiler has to be told of the alternate
> implementation at compile time. You can’t wait and later just tell the
> linker. Thus compilers can still generate in-line code for their
> implementation of standard library components. This also means alternate
> implementations can have inline’s in their headers.

I would like to register an exception to this rule: the global operatorsnew anddelete are usable without
declaration, and must be replaceable without a header.

The rule has interesting implications: binary-only libraries (for which you have no access to the source
code) can only operate with the vendor’s library, not the user’s preferred library, unless you can persuade
somebody to recompile with your headers. Is this what we want? Or is it a ‘‘quality of implementation’’
issue, where no serious vendor would enforce such a rule? _ __

_ __

17– 8 Library DRAFT: 25 January 1994 17.1.3 Namespaces

Box 83
Library WG issue (continued): Beman Dawes, January 14, 1994

In message c++std-lib-1396, several improvements to standard library namespaces were discussed, but two
issued remained open. This message addresses those issues.

The proposal:

A. The program can supply alternate implementations of standard library components including language
support.

B. If the program supplies an alternate implementation of a library component then the program shall also
supply a header which declares that component.

C. How the program supplies an alternate header is implementation defined.

D. 17.1.2 Headers, now reads in part:

<<If a file has a name equivalent to the derived file name for one of the above headers, is not provided as
part of the implementation, and is placed in any of the standard places for a source file to be included, the
behavior is undefined.>>

Change the wording to reflect that the behavior is no longer undefined, but rather the behavior is to supply
an alternate header.

E. 17.3 Language support, now reads:

<<This subclause describes the function signatures that are called implicitly, and the types of objects gener-
ated implicitly, during the execution of some C + + programs. It also describes the headers that declare these
function signatures and define any related types.>>

Add words to the effect:

A program that calls any of these functions or uses these types without first including a header declaring the
function signature or defining the types behaves as if it first included the appropriate header named in this
subclause. Such a implicit header is found according to the same rules as explicitly included headers and
may be an alternate implementation.

F. 17.1.4 Reserved identifiers, now specifies that<<Certain identifiers and function signatures are reserved
whether or not a translation unit includes a header: ...>>. Cases include:

* Each identifier declared as an object with external linkage...
* Each global function signature declared with external linkage...
* Each identifier declared with external linkage in a C header...
* Each function signature declared with external linkage in a C hdr...

Change the wording to the effect that in these four cases these identifiers are allowed in alternate headers
and that these identifiers are allowed if in a different namespace. _ __

_ __

17.1.3 Namespaces DRAFT: 25 January 1994 Library 17– 9

Box 84
Library WG issue: Michael Vilot, January 14, 1994

All declarations and definitions in the Standard C + + library are members of thenamespace
iso_standard_library , which has the alternative namestd . That is,

namespace std = iso_standard_library;

Within this namespace, the library defines namespacesiostreams and c . Within the namespaces
std::iostreams andstd::c , each header declares or defines entities in the library, as follows:

Header Namespace Header Namespace

<bits> bits <istream> iostreams::istream
<bitstring> bitstring <new> new
<complex> complex <ostream>
<defines> defines <ptrdynarray> ptrdynarray
<dynarray> dynarray <sstream> iostreams::sstream
<exception> exception <streambuf> iostreams::streambuf
<fstream> iostreams::fstream <string> string
<iomanip> iostreams::iomanip <strstream> iostreams::strstream
<ios> iostreams::ios <typeinfo> typeinfo
<iostream> iostreams::iostream <wstring> wstring

<cassert> c::assert <csignal> c::signal
<cctype> c::ctype <cstdarg> c::stdarg
<cerrno> c::errno <cstddef> c::stddef
<cfloat> c::float <cstdio> c::stdio
<ciso646> c::iso646 <cstdlib> c::stdlib
<climits> c::limits <cstring> c::string
<clocale> c::locale <ctime> c::time
<cmath> c::math <cwchar> c::wchar
<csetjmp> c::setmp <cwctype> c::wctype

Each of the C headers of named<name.h> #include s the corresponding header<cname>, followed by
the using-declarations(_basic.scope.namespace.udecl_) that make the declarations available at global
scope.

[Footnote: Including a C header permits references of the form:: X.]

Headers that declare operator functions (13.4) provideusing-declarationsthat make the declarations avail-
able at global scope.

[Footnote: For example, including the header<complex> permits references of the formc1 + c2 ,
where c1 and c2 are instances ofclass complex .] _ __

_ __

17– 10 Library DRAFT: 25 January 1994 17.1.3 Namespaces

Box 85
Library WG issue: Beman Dawes, December 18, 1993

Since the San Jose meeting there has been additional discussion on the reflectors leading toward reduced
standard library namespace complexity in general.

Here are some suggestions to fix these problems:

* The original proposal talked about allowing portable ‘‘replacement’’ of the standard library. ‘‘Indepen-
dent implementation’’ (suggested by Jerry Schwarz) or ‘‘alternate implementation’’ would be a better
choice of words.

* The using-formlibrary headers should give explicitusing s for each name.

* Eliminate inner (nested) library namespaces.

* Use the same naming convention for both both C and C + + headers.Namespace-formheaders should be in
the form<name> andusing-formheaders should be in the form<name.h> .

* Use the namestd rather thaniso_standard_library for the standard library namespace. Elimi-
nate the alias header<std> . _ __

_ __

1 Except for the header<all.ns> , each C + + header whose name has the formname.ns declares or defines
all entities within the namespaceiso_standard_library:: name.50)

2 Except for the header<all> , each C + + header whose name has the formname includes its corresponding
primary headername.ns , followed by the declaration:

using namespace iso_standard_library:: name

3 In addition, the header<new> contains the declarations:51)

using iso_standard_library::new::operator delete
using iso_standard_library::new::operator new

4 Each C header whose name has the formcname.ns declares or defines all entities within the namespace
iso_standard_library::c:: name.

5 Each C header whose name has the formname.h includes its corresponding primary headercname.ns ,
followed by the declaration

using namespace iso_standard_library::c:: name

6 In addition, for each function or objectX declared with external linkage in its corresponding primary header
cname.ns , the headername.h contains the declaration52)

using iso_standard_library::c:: name:: X

7 Descriptions of header contents in this clause name the secondary headers instead of the primary headers.
A statement such asX is defined or declared in<ios> is equivalent toX is defined or declared by includ-
ing <ios> , which includes<ios.ns> to obtain the actual declaration or definition.

50)Macro definitions nevertheless occupy a disjoint name space.
51) Including the header<new> permits references of the form::operator new .
52) Including the C secondary header permits references of the form:: X.

17.1.4 Reserved names DRAFT: 25 January 1994 Library 17– 11

[lib.reserved.names]17.1.4 Reserved names

Box 86

Library WG issue: Michael Vilot, January 14, 1994

This section has not been discussed by the Library Working Group. Once they do have a chance to discuss
it, the contents are likely to be removed or changed._ __

_ __

Box 87
Library WG issue: Mark Terribile, December 20, 1993

>Reserved identifiers
>
>A translation unit that includes a header shall not contain
>any macros that define identifiers declared or defined in that header.
>Nor shall such a translation unit define macros for identifiers lexically
>identical to keywords.

Is this strong enough? Under this, one standard header could contain a macro conflicting with an identifier
defined (and required) in another standard header. Shouldn’t the standard headers be required to be consis-
tent when taken as a group? _ __

_ __

1 A translation unit that includes a header shall not contain any macros that define names declared or defined
in that header. Nor shall such a translation unit define macros for names lexically identical to keywords.

2 Each header defines the namespaceiso_standard_library and its aliasstd . Each header declares
or defines all names listed in its associated subclause. Each header also optionally declares or defines
names which are always reserved to the implementation for any use and names reserved to the implementa-
tion for use at file scope.

3 Each name defined as a macro in a header is reserved to the implementation for any use if the translation
unit includes the header.53)

4 Certain sets of names and function signatures are reserved whether or not a translation unit includes a
header:

— Each name that begins with an underscore and either an uppercase letter or another underscore is
reserved to the implementation for any use.

— Each name that begins with an underscore is reserved to the implementation for use as a name with file
scope or within the namespaceiso_standard_library in the ordinary name name spaces.

— Each name declared as an object with external linkage in a header is reserved to the implementation to
designate that library object with external linkage.54)

— Each global function signature declared with external linkage in a header is reserved to the implementa-
tion to designate that function signature with external linkage.55)

— Each name having two consecutive underscores is reserved to the implementation for use as a name
with bothextern "C" andextern "C++" linkage.

— Each name declared with external linkage in a C header is reserved to the implementation for use as a

53) It is not permissible to remove a library macro definition by using the#undef directive.
54)The list of such reserved names includeserrno , declared or defined in<errno.h> .
55) The list of such reserved function signatures with external linkage includessetjmp(jmp_buf) , declared or defined in
<setjmp.h> , andva_end(va_list) , declared or defined in<stdarg.h> .

17– 12 Library DRAFT: 25 January 1994 17.1.4 Reserved names

name withextern "C" linkage.

— Each function signature declared with external linkage in a C header is reserved to the implementation
for use as a function signature with bothextern "C" andextern "C++" linkage. 56)

5 It is unspecified whether a name declared with external linkage in a C header has eitherextern "C" or
extern "C++" linkage.57)

6 If the program declares or defines a name in a context where it is reserved, other than as explicitly allowed
by this clause, the behavior is undefined.

7 No other names or global function signatures are reserved to the implementation.58)

[lib.res.and.conventions]17.1.5 Restrictions and conventions

Box 88

Library WG issue: Michael Vilot, January 14, 1994

This section has not been discussed by the Library Working Group. Once they do have a chance to discuss
it, the contents of this section and its subsections are likely to be removed or changed._ __

_ __

[lib.res.on.macro.definitions]17.1.5.1 Restrictions on macro definitions

1 All object-like macros defined by the Standard C + + library and described in this clause as expanding to inte-
gral constant expressions are also suitable for use in#if preprocessing directives, unless explicitly stated
otherwise.

[lib.res.on.arguments]17.1.5.2 Restrictions on arguments

1 Each of the following statements applies to all arguments to functions defined in the Standard C + + library,
unless explicitly stated otherwise in this clause.

— If an argument to a function has an invalid value (such as a value outside the domain of the function, or
a pointer invalid for its intended use), the behavior is undefined.

— If a function argument is described as being an array, the pointer actually passed to the function shall
have a value such that all address computations and accesses to objects (that would be valid if the
pointer did point to the first element of such an array) are in fact valid.

[lib.res.on.exception.handling]17.1.5.3 Restrictions on exception handling

56)The function signatures declared in<wchar.h> and<wctype.h> are always reserved, notwithstanding the restrictions imposed
in subclause 4.5.1 of Amendment 1 to the C Standard for their corresponding secondary headers.
57) The only reliable way to declare an object or function signature from the Standard C library is by including the header that declares
it, notwithstanding the latitude granted in subclause 7.1.7 of the C Standard.
58)A global function cannot be declared by the implementation as taking additional default arguments. Also, the use of masking mac-
ros for function signatures declared in C headers is disallowed, notwithstanding the latitude granted in subclause 7.1.7 of the C Stan-
dard. The use of a masking macro can often be replaced by defining the function signature asinline.

17.1.5.3 DRAFT: 25 January 1994 Library 17– 13
Restrictions on exception handling

Box 89

Library WG issue: Dag Br
. .
uck, January 23, 1994

> Jerry Schwarz writes:
>
>> I think this should be changed to allow any function
>> to throwxalloc .
>
> ‘‘Any of the functions defined in the Standard C + + library
> can report a failure to allocate storage by calling ex.raise()
> for an object ex of type xalloc.

Pardon me for being picky and generally difficult, but I think Jerry’s wording is significantly superior, and I
ask for a change.

I think the current wording is circuitous, and the prevailing terminology is "throw an exception" when talk-
ing about the concept, not the actual implementation.

Here’s my suggested wording:

‘‘Any of the functions defined in the Standard C + + library can report a failure to allocate storage by throw-
ing xalloc.’’_ __

_ __

Box 90 ∗
Library WG issue: Charles Allison, December 22, 1993

I’m a little unclear on 17.1.5.3. Aren’t most of the exceptions intended to be caught outside the function
that throws them? I guess I have a fundamental confusion about exceptions._ __

_ __

1 Any of the functions defined in the Standard C + + library can report a failure to allocate storage by calling
ex .raise() for an objectex of typexalloc . Otherwise, none of the functions defined in the Standard
C + + library throw an exception that must be caught outside the function, unless explicitly stated otherwise.

2 None of the functions defined in the Standard C + + library catch any exceptions, unless explicitly stated oth-
erwise.59)

[lib.alternate.definitions.for.functions]17.1.5.4 Alternate definitions for functions

1 This clause describes the behavior of numerous functions defined by the Standard C + + library. Under some
circumstances, however, certain of these function descriptions also apply to functions defined in the pro-
gram:

— Four function signatures defined in the Standard C + + library may be displaced by definitions in the pro-
gram. Such displacement occurs prior to program startup.60)

— Certain handler functions are determined by the values stored in pointer objects within the Standard C + +
library. Initially, these pointer objects store null pointers or designate functions defined in the Standard
C + + library. Other functions, however, when executed at run time, permit the program to alter these
stored values to point at functions defined in the program.

— Virtual member function signatures defined for a base class in the Standard C + + library may be

59)A function can catch an exception not documented in this clause provided it rethrows the exception.
60) The function signatures, all declared in<new>, areoperator delete(void*) , operator delete[](void*) , oper-
ator new(size_t) , andoperator new[](size_t) .

17– 14 Library DRAFT: 25 January 1994 17.1.5.4
Alternate definitions for functions

overridden in a derived class by definitions in the program.

2 In all such cases, this clause distinguishes two behaviors for the functions in question:

— Required behaviordescribes both the behavior provided by the implementation and the behavior that
shall be provided by any function definition in the program.

— Default behaviordescribes any specific behavior provided by the implementation, within the scope of
the required behavior.

3 Where no distinction is explicitly made in the description, the behavior described is the required behavior.

4 If a function defined in the program fails to meet the required behavior when it executes, the behavior is
undefined.

[lib.objects.within.classes]17.1.5.5 Objects within classes

1 Objects of certain classes are sometimes required by the external specifications of their classes to store data,
apparently in member objects. For the sake of exposition, this clause provides representative declarations,
and semantic requirements, for private member objects of classes that meet the external specifications of
the classes. The declarations for such member objects and the definitions of related member types in this
clause are enclosed in a comment that ends withexposition only, as in:

// streambuf* sb ; exposition only

2 Any alternate implementation that provides equivalent external behavior is equally acceptable.

[lib.optional.members]17.1.5.6 Optional members

1 The definitions of some member types and the declarations of some member functions in this clause are
enclosed in a comment that ends withoptional, as in:

// void clear(io_state state_arg = 0); optional

2 Whether such definitions and declarations are actually present is implementation-defined.

[lib.functions.within.classes]17.1.5.7 Functions within classes

Box 91

Library WG issue: Beman Dawes, January 2, 1994

17.1.5.7 lists three cases where ‘‘An implementation can declare additional non-virtual member function
signatures within a class.’’

All three cases are for adding members with the same name as a member function which is part of the class
as described. What about adding a member function with a name not already a member of the class?

Seems like it should be explicitly allowed or disallowed._ __

_ __

Box 92
Library WG issue: Mats Henricson, December 31, 1993

It bugs me a bit that implementations are allowed to add a virtual destructor, since that is not what is gener-
ated by default. The default destructor is not virtual. _ __

_ __

17.1.5.7 Functions within classes DRAFT: 25 January 1994 Library 17– 15

Box 93
Library WG issue: Charles Allison, December 22, 1993

Last paragraph on_lib.functions.within_classes_ mentions ‘‘virtual destructors that can be generated by
default.’’ The ARM, page 278, specifically states that destructors are not virtual by default. Is there some-
thing in the WP that I missed? _ __

_ __

1 For the sake of exposition, this clause repeats in a derived class declarations for all the virtual member
functions inherited from a base class. All such declarations are enclosed in a comment that ends with
inherited, as in:

// virtual void do_raise(); inherited

2 If a virtual member function in the base class meets the semantic requirements of the derived class, it is
unspecified whether the derived class provides an overriding definition for the function signature.

3 An implementation can declare additional non-virtual member function signatures within a class:

— by adding arguments with default values to a member function signature described in this clause;61)

— by replacing a member function signature with default values by two or more member function signa-
tures with equivalent behavior;

— by adding a member function signature for a member function name described in this clause.

4 A call to a member function signature described in this clause behaves the same as if the implementation
declares no additional member function signatures.62)

5 For the sake of exposition, this clause describes no copy constructors, assignment operators, or (non-
virtual) destructors with the same apparent semantics as those that can be generated by default. It is
unspecified whether the implementation provides explicit definitions for such member function signatures,
or for virtual destructors that can be generated by default.

[lib.global.functions]17.1.5.8 Global functions

1 A call to a global function signature described in this clause behaves the same as if the implementation
declares no additional global function signatures.63)

[lib.unreserved.names]17.1.5.9 Unreserved names

61) Hence, taking the address of a member function has an unspecified type. The same latitude doesnot extend to the implementation
of virtual or global functions, however.
62) A valid C + + program always calls the expected library member function, or one with equivalent behavior. An implementation may
also define additional member functions that would otherwise not be called by a valid C + + program.
63) A valid C + + program always calls the expected library global function. An implementation may also define additional global func-
tions that would otherwise not be called by a valid C + + program.

17– 16 Library DRAFT: 25 January 1994 17.1.5.9 Unreserved names

Box 94

Library WG issue: Uwe Steinm
. .
uller, September 2, 1993

I dislike the approach to have these private membersptr , len , res , because we specify only the public
interface. I understand, this only should help to get a better description.

Let me try a differnet way (a more ADT like approach)

A string can be thought of being a sequence of bytes (this does not imply it to be implemented this way)
and has three properties:

len: number of bytes of this sequence

res (res>= len) hint to implementation to keep more byte than len to do some growth in place.

string content: sequence of bytes counted from 0 to len - 1

Now every function can be described to what it does to these properties and nothing is said how these prop-
erties are implemented.

res (res>= len) hint to implementation to keep more byte than len to do some growth in place.

string content: sequence of bytes counted from 0 to len - 1

Now every function can be described to what it does to these properties and nothing is said how these prop-
erties are implemented._ __

_ __

1 Certain types defined in C headers are sometimes needed to express declarations in other headers, where the
required type names are neither defined nor reserved. In such cases, the implementation provides a syn-
onym for the required type, using a name reserved to the implementation. Such cases are explicitly stated
in this clause, and indicated by writing the required type name inconstant-width italic charac-
ters.

2 Certain names are sometimes convenient to supply for the sake of exposition, in the descriptions in this
clause, even though the names are neither defined nor reserved. In such cases, the implementation either
omits the name, where that is permitted, or provides a name reserved to the implementation. Such cases are
also indicated in this clause by writing the convenient name inconstant-width italic characters.

3 For example:

4 The classfilebuf , defined in<fstream> , is described as containing the private member object:

FILE * file ;

5 This notation indicates that the memberfile is a pointer to the typeFILE , defined in<stdio.h> , but
the namesfile andFILE are neither defined nor reserved in<fstream> . An implementation need not
implement classfilebuf with an explicit member of typeFILE* . If it does so, it can choose 1) to
replace the namefile with a name reserved to the implementation, and 2) to replaceFILE with an
incomplete type whose name is reserved, such as in:

struct _Filet* _Fname;

6 If the program needs to have typeFILE defined, it must also include<stdio.h> , which completes the
definition of_Filet .

17.1.5.10 Implementation types DRAFT: 25 January 1994 Library 17– 17

[lib.implementation.types]17.1.5.10 Implementation types

1 Certain types defined in this clause are based on other types, but with added constraints.

[lib.enumerated.types]17.1.5.10.1 Enumerated types

Box 95

Library WG issue: Charles Allison, December 22, 1993

4) I know you’ve used the notation in 17.1.5.10.1 before:

static const enumerated C0(V0);

I just don’t understand it. Is bitmask a type that requires an initializer?_ __

_ __

1 Several types defined in this clause areenumerated types.Each enumerated type can be implemented as an
enumeration or as a synonym for an enumeration. The enumerated typeenumerated can be written:

enum secret {
V0, V1, V2, V3,};

typedef secret enumerated ;
static const enumerated C0 (V0);
static const enumerated C1 (V1);
static const enumerated C2 (V2);
static const enumerated C3 (V3);

.....

2 Here, the namesC0, C1, etc. representenumerated elementsfor this particular enumerated type. All such
elements have distinct values.

[lib.bitmask.types]17.1.5.10.2 Bitmask types

Box 96
Library WG issue: Mark Terribile, December 20, 1993

>Bitmask types
...
>The following terms apply to objects and values of bitmask
>types:

>To set a value Y in an object X is
>to evaluate the expression X= Y.

>To clear a value Y in an object X is
>to evaluate the expression X &= ˜Y.

>The value Y is set in the object
>X if the expression X & Y

ˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆ
>is nonzero.
ˆˆˆˆˆˆˆˆˆˆ

‘If the expression ... is non-zero’ or ‘if the expression ... is equal to Y’ ? The former only works if the value
Y is restricted to a single bit. I think that the I/O system requires multibit values (but I could be mistaken). _ __

_ __

17– 18 Library DRAFT: 25 January 1994 17.1.5.10.2 Bitmask types

1 Several types defined in this clause arebitmask types.Each bitmask type can be implemented as an enumer-
ated type that overloads certain operators. The bitmask typebitmask can be written:

enum secret {
V0 = 1 << 0, V1 = 1 << 1, V2 = 1 << 2, V3 = 1 << 3,};

typedef secret bitmask ;
static const bitmask C0 (V0);
static const bitmask C1 (V1);
static const bitmask C2 (V2);
static const bitmask C3 (V3);

.....
bitmask & operator&=(bitmask & X, bitmask Y)

{ X = (bitmask)(X & Y); return (X); }
bitmask & operator|=(bitmask & X, bitmask Y)

{ X = (bitmask)(X | Y); return (X); }
bitmask & operator^=(bitmask & X, bitmask Y)

{ X = (bitmask)(X ^ Y); return (X); }
bitmask operator&(bitmask X , bitmask Y)

{return ((bitmask)(X & Y)); }
bitmask operator|(bitmask X , bitmask Y)

{return ((bitmask)(X | Y)); }
bitmask operator^(bitmask X , bitmask Y)

{return ((bitmask)(X ^ Y)); }
bitmask operator~(bitmask X)

{return ((bitmask)~ X); }

2 Here, the namesC0, C1, etc. representbitmask elementsfor this particular bitmask type. All such ele-
ments have distinct values such that, for any pairCi andCj , Ci & Ci is nonzero andCi & Cj is zero.

3 The following terms apply to objects and values of bitmask types:

— To seta valueY in an objectX is to evaluate the expressionX |= Y.

— To cleara valueY in an objectX is to evaluate the expressionX &= ~ Y.

— The valueY is setin the objectX if the expressionX & Y is nonzero.

[lib.derived.classes]17.1.5.10.3 Derived classes

1 Certain classes defined in this clause are derived from other classes in the Standard C + + library:

— It is unspecified whether a class described in this clause as a base class is itself derived from other base
classes (with names reserved to the implementation).

— It is unspecified whether a class described in this clause as derived from another class is derived from
that class directly, or through other classes (with names reserved to the implementation) that are derived
from the specified base class.

2 In any case:

— A base class described as virtual in this clause is always virtual;

— A base class described as non-virtual in this clause is never virtual;

— Unless explicitly stated otherwise, types with distinct names in this clause are distinct types.64)

64)An implicit exception to this rule are types described as synonyms for basic integral types, such assize_t andstreamoff .

17.1.5.11 Protection within classes DRAFT: 25 January 1994 Library 17– 19

[lib.protection.within.classes]17.1.5.11 Protection within classes

1 It is unspecified whether a member described in this clause as private is private, protected, or public. It is
unspecified whether a member described as protected is protected or public. A member described as public
is always public.

2 It is unspecified whether a function signature or class described in this clause is a friend of another class
described in this clause.

[lib.definitions]17.1.5.12 Definitions

Box 97

Library WG issue: Michael Vilot, November 22, 1993

Subclause 17.1.5.12, Definitions, should be merged with Section 1.4._ ___

_ ___

1 The Standard C + + library makes widespread use of characters and character sequences that follow a few
uniform conventions:

— A letter is any of the 26 lowercase or 26 uppercase letters in the basic execution character set.

— The decimal-point characteris the (single-byte) character used by functions that convert between a
(single-byte) character sequence and a value of one of the floating-point types. It is used in the charac-
ter sequence to denote the beginning of a fractional part. It is represented in this clause by a period,
’.’ , which is also its value in the"C" locale, but may change during program execution by a call to
setlocale(int, const char*) , declared in<locale.h> .

— A character sequenceis an array objectA that can be declared asT A [N] , whereT is any of the types
char , unsigned char , or signed char , optionally qualified by any combination ofconst or
volatile . The initial elements of the array have defined contents up to and including an element
determined by some predicate. A character sequence can be designated by a pointer valueS that points
to its first element.

— A null-terminated byte string,or NTBS, is a character sequence whose highest-addressed element with
defined content has the value zero (theterminating nullcharacter).65)

— The length of anNTBSis the number of elements that precede the terminating null character. Anempty
NTBShas a length of zero.

— Thevalue of anNTBSis the sequence of values of the elements up to and including the terminating null
character.

— A staticNTBSis anNTBS with static storage duration.66)

— A null-terminated multibyte string,or NTMBS, is anNTBS that constitutes a sequence of valid multibyte
characters, beginning and ending in the initial shift state.67)

— A staticNTMBSis anNTMBS with static storage duration.

— A wide-character sequenceis an array objectA that can be declared asT A [N] , whereT is type
wchar_t , optionally qualified by any combination ofconst or volatile . The initial elements of
the array have defined contents up to and including an element determined by some predicate. A char-
acter sequence can be designated by a pointer valueS that designates its first element.

65) Many of the objects manipulated by function signatures declared in<string.h> are character sequences orNTBSs. The size of
some of these character sequences is limited by a length value, maintained separately from the character sequence.
66)A string literal, such as"abc" , is a staticNTBS.
67) An NTBS that contains characters only from the basic execution character set is also anNTMBS. Each multibyte character then con-
sists of a single byte.

17– 20 Library DRAFT: 25 January 1994 17.1.5.12 Definitions

— A null-terminated wide-character string,or NTWCS, is a wide-character sequence whose highest-
addressed element with defined content has the value zero.68)

— The length of anNTWCSis the number of elements that precede the terminating null wide character. An
emptyNTWCShas a length of zero.

— Thevalue of anNTWCSis the sequence of values of the elements up to and including the terminating null
character.

— A staticNTWCSis anNTWCS with static storage duration.69)

[lib.standard.c.library]17.2 Standard C library

1 This subclause summarizes the explicit changes in definitions, declarations, or behavior within the Standard
C library when it is part of the Standard C + + library. (Subclause 17.2 imposes someimplicit changes in the
behavior of the Standard C library.)

[lib.mods.to.headers]17.2.1 Modifications to headers

1 Each C header whose name has the formcname.ns declares or defines those entities declared or defined
in the corresponding headername.h in the C Standard.70)

[lib.mods.to.definitions]17.2.2 Modifications to definitions

[lib.wchar.t]17.2.2.1 Typewchar_t

1 wchar_t is a keyword in this International Standard. It does not appear as a type name defined in any of
<stddef.h> , <stdlib.h> , or<wchar.h> .

[lib.null]17.2.2.2 MacroNULL

1 The macroNULL, defined in any of<locale.h> , <stddef.h> , <stdio.h> , <stdlib.h> ,
<string.h> , <time.h> , or <wchar.h> , is an implementation-defined C + + null-pointer constant in
this International Standard.71)

[lib.header.iso646.h]17.2.2.3 Header<iso646.h>

1 The tokensand , and_eq , bitand , bitor , compl , not_eq , not , or , or_eq , xor , andxor_eq are
keywords in this International Standard. They do not appear as macro names defined in<iso646.h> .

[lib.mods.to.declarations]17.2.3 Modifications to declarations

[lib.memchr]17.2.3.1memchr(const void*, int, size_t)

1 The function signaturememchr(const void*, int, size_t) , declared in<string.h> in the C
Standard, does not have the declaration

void* memchr(const void* s, int c, size_t n);

2 in this International Standard. Its declaration in<string.h> is replaced by the two declarations:

68)Many of the objects manipulated by function signatures declared in<wchar.h> are wide-character sequences orNTWCSs.
69)A wide string literal, such asL"abc" , is a staticNTWCS.
70) The header<stdlib.h> , for example, makes all declarations and definitions available in the global name space, much as in the
C Standard. The header<cstdlib.ns> provides the same declarations and definitions within the namespace
iso_standard_library::c::stdlib .
71)Possible definitions include0 and0L , but not(void*)0 .

17.2.3.1 DRAFT: 25 January 1994 Library 17– 21
memchr(const void*, int, size_t)

const void* memchr(const void* s, int c, size_t n);
void* memchr(void* s, int c, size_t n);

3 both of which have the same behavior as the original declaration.

[lib.strchr]17.2.3.2strchr(const char*, int)

1 The function signaturestrchr(const char*, int) , declared in<string.h> in the C Standard,
does not have the declaration:

char* strchr(const char* s, int c);

2 in this International Standard. Its declaration in<string.h> is replaced by the two declarations:

const char* strchr(const char* s, int c);
char* strchr(char* s, int c);

3 both of which have the same behavior as the original declaration.

[lib.strpbrk]17.2.3.3strpbrk(const char*, const char*)

1 The function signaturestrpbrk(const char*, const char*) , declared in<string.h> in the
C Standard, does not have the declaration:

char* strpbrk(const char* s1 , const char* s2);

2 in this International Standard. Its declaration in<string.h> is replaced by the two declarations:

const char* strpbrk(const char* s1 , const char* s2);
char* strpbrk(char* s1 , const char* s2);

3 both of which have the same behavior as the original function signature.

[lib.strrchr]17.2.3.4strrchr(const char*, int)

1 The function signaturestrrchr(const char*, int) , declared in<string.h> in the C Standard,
does not have the declaration:

char* strrchr(const char* s, int c);

2 in this International Standard. Its declaration in<string.h> is replaced by the two declarations:

const char* strrchr(const char* s, int c);
char* strrchr(char* s, int c);

3 both of which have the same behavior as the original declaration.

[lib.strstr]17.2.3.5strstr(const char*, const char*)

1 The function signaturestrstr(const char*, const char*) , declared in<string.h> in the C
Standard, does not have the declaration:

char* strstr(const char* s1 , const char* s2);

2 in this International Standard. Its declaration in<string.h> is replaced by the two declarations:

const char* strstr(const char* s1 , const char* s2);
char* strstr(char* s1 , const char* s2);

3 both of which have the same behavior as the original declaration.

17– 22 Library DRAFT: 25 January 1994 17.2.4 Modifications to behavior

[lib.mods.to.behavior]17.2.4 Modifications to behavior

[lib.offsetof]17.2.4.1 Macrooffsetof

1 The macrooffsetof(type , member-designator) , defined in<stddef.h> , accepts a restricted
set oftype arguments in this International Standard.type shall be a POD structure or a POD union.

[lib.longjmp]17.2.4.2 longjmp(jmp_buf, int)

1 The function signaturelongjmp(jmp_buf jbuf , int val) , declared in<setjmp.h> , has more
restricted behavior in this International Standard. If any automatic objects would be destroyed by a thrown
exception transferring control to another (destination) point in the program, then a call to
longjmp(jbuf , val) at the throw point that transfers control to the same (destination) point has unde-
fined behavior.

[lib.storage.allocation.functions]17.2.4.3 Storage allocation functions

1 The function signaturescalloc(size_t) , malloc(size_t) , andrealloc(void*, size_t) ,
declared in<stdlib.h> , do not attempt to allocate storage by callingoperator new(size_t) ,
declared in<new>.

[lib.exit]17.2.4.4exit(int)

1 The function signatureexit(int status) , declared in<stdlib.h> , has additional behavior in this
International Standard:

— First, all functionsf registered by callingatexit(f) , are called, in the reverse order of their registra-
tion.72) The function signatureatexit(void (*)()) , is declared in<stdlib.h> .

— Next, all static objects are destroyed in the reverse order of their construction. (Automatic objects are
not destroyed as a result of callingexit(int) .)73)

— Next, all open C streams (as mediated by the function signatures declared in<stdio.h>) with unwrit-
ten buffered data are flushed, all open C streams are closed, and all files created by callingtmpfile()
are removed.74) The function signaturetmpfile() is declared in<stdio.h> .

— Finally, control is returned to the host environment. Ifstatus is zero orEXIT_SUCCESS, an
implementation-defined form of the statussuccessful terminationis returned. If status is
EXIT_FAILURE , an implementation-defined form of the statusunsuccessful terminationis returned.
Otherwise the status returned is implementation-defined. The macrosEXIT_FAILURE and
EXIT_SUCCESSare defined in<stdlib.h> .

2 The function signatureexit(int) never returns to its caller.

[lib.language.support]17.3 Language support

Box 98

Library WG issue: Michael Vilot, November 22, 1993

This text should be moved to an example or other non-normative explanation._ __

_ __

72)A function is called for every time it is registered.
73) Automatic objects are all destroyed in a program whose functionmain contains no automatic objects and executes the call to
exit . Control can be transferred directly to such amain by throwing an exception that is caught inmain .
74)Any C streams associated withcin , cout , etc. are flushed and closed when static objects are destroyed in the previous phase.

17.3 Language support DRAFT: 25 January 1994 Library 17– 23

1 This subclause describes the function signatures that are called implicitly, and the types of objects gener-
ated implicitly, during the execution of some C + + programs. It also describes the headers that declare these
function signatures and define any related types.

[lib.header.defines]17.3.1 Header<defines>

1 The header<defines> defines a constant and several types used widely throughout the Standard C + +
library. Some are also defined in C headers.

2 The constant is:

const size_t NPOS = (size_t)(-1);

3 which is the largest representable value of typesize_t .

[lib.fvoid.t]17.3.1.1 Typefvoid_t

typedef void fvoid_t();

1 The typefvoid_t is a function type used to simplify the writing of several declarations in this clause.

[lib.ptrdiff.t]17.3.1.2 Typeptrdiff_t

typedef T ptrdiff_t;

1 The typeptrdiff_t is a synonym forT, the implementation-defined signed integral type of the result of
subtracting two pointers.

[lib.size.t]17.3.1.3 Typesize_t

typedef T size_t;

1 The typesize_t is a synonym forT, the implementation-defined unsigned integral type of the result of
thesizeof operator.

[lib.wint.t]17.3.1.4 Typewint_t

typedef T wint_t;

1 The typewint_t is a synonym forT, the implementation-defined integral type, unchanged by integral
promotions, that can hold any value of typewchar_t as well as at least one value that does not correspond
to the code for any member of the extended character set.75)

[lib.capacity]17.3.1.5 Typecapacity

typedef T capacity;
static const capacity default_size;
static const capacity reserve;

1 The typecapacity is an enumerated type (indicated here asT), with the elements:

— default_size , as an argument value indicates that no reserve capacity argument is present in the
argument list;

— reserve , as an argument value indicates that the preceding argument specifies a reserve capacity.

75) The extra value is denoted by the macroWEOF, defined in<wchar.h> . It is permissible forWEOFto be in the range of values
representable bywchar_t .

17– 24 Library DRAFT: 25 January 1994 17.3.2 Header<exception>

[lib.header.exception]17.3.2 Header<exception>

Box 99

Library WG issue: Mats Henricson, December 31, 1993

Why is the what-part removed from this exception class?__

__

Box 100
Library WG issue: Mats Henricson, December 31, 1993

Is the behavior of this code unspecified:

invalidargument myI;
cout << myI.what() << endl; __

__

Box 101
Library WG issue: Charles Allison, December 22, 1993

Point 1 in 17.1.5.2 says, ‘‘If an argument to a function has an invalid value (such as a value outside the
domain of the function or a pointer invalid for its intended use), the behavior is undefined.’’ We have
designed many of the member functions to throw exceptions in these cases. Is that undefined behavior? _ __

_ __

Box 102
Library WG issue: Michael Vilot, November 22, 1993

The real issue at stake revolves around exception specifications, not the names of exceptions thrown from
the library. That’s a different topic entirely.

The San Diego rewrite dropped all uses of exception specifications, but that was not (as far as I can tell) a
decision the Library WG reached. They need to be retained until we make an explicit decision to remove
them. _ __

_ __

Box 103
Library WG issue: Michael Vilot, November 22, 1993

Also, the introduction of class ‘‘reraise’’ should be removed. First of all, it’s not needed globally, so
should be localized where needed. Secondly, it’s not needed even in your wording ofios::setstate .
The semantics of exception propagation, together with the usual rules of inheritance and virtual functions,
already cover the semantics you were trying to introduce. Leave this class out. If it turns out to be needed,
we can consider a separate proposal for it. _ __

_ __

1 The header<exception> defines several types and functions related to the handling of exceptions in a
C + + program.

17.3.2.1 Classxmsg DRAFT: 25 January 1994 Library 17– 25

[lib.xmsg]17.3.2.1 Classxmsg

Box 104
Library WG issue: Charles Allison, January 3, 1994

What is the current state ofchar * vs. string arguments to xmsg and xalloc constructors. Did we offi-
cially decide that we shouldn’t use string? I notice that 17 use null-terminated strings. _ __

_ __

class xmsg {
public:

typedef void(*raise_handler)(xmsg&);
static raise_handler set_raise_handler(raise_handler handler_arg);
xmsg(const char* what_arg = 0, const char* where_arg = 0,

const char* why_arg = 0);
virtual ~xmsg();
void raise();
const char* what() const;
const char* where() const;
const char* why() const;

protected:
virtual void do_raise();
xmsg(const char* what_arg , const char* where_arg ,

const char* why_arg , int copyfl);
private:
// static raise_handler handler ; exposition only
// const char* what ; exposition only
// const char* where ; exposition only
// const char* why; exposition only
// int alloced ; exposition only
};

1 The classxmsg defines the base class for the types of objects thrown as exceptions by Standard C + + library
functions, and certain expressions, to report errors detected during program execution. Every exceptionex
thrown by a function defined within the Standard C + + library is thrown by evaluating an expression of the
form ex .raise() . The class defines a member typeraise_handler and maintains several kinds of
data. For the sake of exposition, the stored data is presented here as:

— static raise_handler handler , points to the function called by the member function
raise . Its initial value is a null pointer;

— const char* what , stores a null pointer or points to anNTMBS intended to briefly describe the gen-
eral nature of the exception thrown;

— const char* where , stores a null pointer or points to anNTMBS intended to briefly describe the
point at which the exception is thrown;

— const char* why, stores a null pointer or points to anNTMBS intended to briefly describe any spe-
cial circumstances behind the exception;

— int alloced , stores a nonzero value if storage for the threeNTMBSs has been allocated by the object
of classxmsg.

[lib.xmsg::raise.handler]17.3.2.1.1 Typexmsg::raise_handler

typedef void(* raise_handler)(xmsg&);

1 The typeraise_handler describes a pointer to a function called by the member functionraise to per-
form operations common to all objects of classxmsg.

17– 26 Library DRAFT: 25 January 1994 17.3.2.1.2
xmsg::set_raise_handler(raise_handler)

[lib.xmsg::set.raise.handler]17.3.2.1.2xmsg::set_raise_handler(raise_handler)

static raise_handler set_raise_handler(raise_handler handler_arg);

1 Assignshandler_arg to handler and then returns the previous value stored inhandler .

[lib.cons.xmsg.sss]17.3.2.1.3xmsg::xmsg(const char*, const char*,
const char*)

xmsg(const char* what_arg = 0, const char* where_arg = 0,
const char* why_arg = 0);

1 Behaves the same asxmsg(what_arg , where_arg , why_arg , 1) .

[lib.des.xmsg]17.3.2.1.4xmsg::~xmsg()

virtual ~xmsg();

1 Destroys an object of classxmsg. If alloced is nonzero, the function frees storage pointed to bywhat ,
where , andwhy.

[lib.xmsg::raise]17.3.2.1.5xmsg::raise()

void raise();

1 If handler is nonzero, calls(* handler)(*this) . The function then callsdo_raise() , then eval-
uates the expressionthrow *this .

[lib.xmsg::what]17.3.2.1.6xmsg::what()

const char* what() const;

1 If what is not a null pointer, returnswhat . Otherwise, the function returns a pointer to an emptyNTBS.76)

[lib.xmsg::where]17.3.2.1.7xmsg::where()

const char* where() const;

1 If where is not a null pointer, returnswhere . Otherwise, the function returns a pointer to an emptyNTBS.

[lib.xmsg::why]17.3.2.1.8xmsg::why()

const char* why() const;

1 If why is not a null pointer, returnswhy. Otherwise, the function returns a pointer to an emptyNTBS.

[lib.xmsg::do.raise]17.3.2.1.9xmsg::do_raise()

Box 105

Library WG issue: Michael Vilot, November 22, 1993

The use of a virtual.raise() member function, instead of actually throwing exceptions, is a significant
departure from the intent of the language. The rationale, ‘‘to provide a central point for debugging hooks,’’
seems to be inappropriate overspecification. It precludes other options that would achieve the same goal._ __

_ __

76)An emptyNTBS is also an emptyNTMBS.

17.3.2.1.9xmsg::do_raise() DRAFT: 25 January 1994 Library 17– 27

virtual void do_raise();

1 Called by the member functionraise to perform operations common to all objects of a class derived from
xmsg. The default behavior is to return.

[lib.cons.xmsg.sssi]17.3.2.1.10xmsg::xmsg(const char*, const char*,
const char*, int)

xmsg(const char* what_arg , const char* where_arg ,
const char* why_arg , int copyfl);

1 Constructs an object of classxmsg and initializeswhat to what_arg , where to where_arg , why to
why_arg , andalloced to copyfl .

2 If alloced is nonzero, for each of the three stored pointers toNTMBSs that is not a null pointer the func-
tion allocates storage for theNTMBS, copies theNTMBS to the allocated storage, and replaces the stored
pointer with a pointer to the allocated storage. Otherwise, the three pointers shall either be null pointers or
point toNTMBSs that have static lifetimes or lifetimes that exceed that of the constructed object.

[lib.xlogic]17.3.2.2 Classxlogic

class xlogic : public xmsg {
public:

xlogic(const char* what_arg = 0, const char* where_arg = 0,
const char* why_arg = 0);

virtual ~xlogic();
protected:
// virtual void do_raise(); inherited
};

1 The classxlogic defines the type of objects thrown as exceptions by the implementation to report errors
presumably detectable before the program executes, such as violations of logical preconditions.

[lib.cons.xlogic]17.3.2.2.1xlogic::xlogic(const char*, const char*,
const char*)

xlogic(const char* what_arg = 0, const char* where_arg = 0,
const char* why_arg = 0);

1 Constructs an object of classxlogic , initializing the base class withxmsg(what_arg , where_arg ,
why_arg) .

[lib.des.xlogic]17.3.2.2.2xlogic::~xlogic()

virtual ~xlogic();

1 Destroys an object of classxlogic .

[lib.xlogic::do.raise]17.3.2.2.3xlogic::do_raise()

// virtual void do_raise(); inherited

1 Behaves the same asxmsg::do_raise() .

17– 28 Library DRAFT: 25 January 1994 17.3.2.3 Classxruntime

[lib.xruntime]17.3.2.3 Classxruntime

class xruntime : public xmsg {
public:

xruntime(const char* what_arg = 0, const char* where_arg = 0,
const char* why_arg = 0);

virtual ~xruntime();
protected:
// virtual void do_raise(); inherited

xruntime(const char* what_arg , const char* where_arg ,
const char* why_arg , int copyfl);

};

1 The classxruntime defines the type of objects thrown as exceptions by the implementation to report
errors presumably detectable only when the program executes.

[lib.cons.xruntime.sss]17.3.2.3.1xruntime::xruntime(const char*, const char*,
const char*)

xruntime(const char* what_arg = 0, const char* where_arg = 0,
const char* why_arg = 0);

1 Constructs an object of classxruntime , initializing the base class withxmsg(what_arg ,
where_arg , why_arg) .

[lib.des.xruntime]17.3.2.3.2xruntime::~xruntime()

virtual ~xruntime();

1 Destroys an object of classxruntime .

[lib.xruntime::do.raise]17.3.2.3.3xruntime::do_raise()

// virtual void do_raise(); inherited

1 Behaves the same asxmsg::do_raise() .

[lib.cons.xruntime.sssi]17.3.2.3.4xruntime::xruntime(const char*, const char*,
const char*, int)

xruntime(const char* what_arg = 0, const char* where_arg = 0,
const char* why_arg = 0, int copyfl);

1 Constructs an object of classxruntime , initializing the base class withxmsg(what_arg ,
where_arg , why_arg , copyfl) .

[lib.badcast]17.3.2.4 Classbadcast

class badcast : public xlogic {
public:

badcast();
virtual ~badcast();

protected:
// virtual void do_raise(); inherited
};

1 The classbadcast defines the type of objects thrown as exceptions by the implementation to report the
execution of an invaliddynamic-castexpression.

17.3.2.4.1badcast::badcast() DRAFT: 25 January 1994 Library 17– 29

[lib.cons.badcast]17.3.2.4.1badcast::badcast()

badcast();

1 Constructs an object of classbadcast , initializing the base classxlogic with an unspecified construc-
tor.

[lib.des.badcast]17.3.2.4.2badcast::~badcast()

virtual ~badcast();

1 Destroys an object of classbadcast .

[lib.badcast::do.raise]17.3.2.4.3badcast::do_raise()

// virtual void do_raise(); inherited

1 Behaves the same asxmsg::do_raise() .

[lib.invalidargument]17.3.2.5 Classinvalidargument

class invalidargument : public xlogic {
public:

invalidargument(const char* where_arg , const char* why_arg);
virtual ~invalidargument();

protected:
// virtual void do_raise(); inherited
};

1 The classinvalidargument defines the base class for the types of all objects thrown as exceptions, by
functions in the Standard C + + library, to report an invalid argument.

[lib.cons.invalidargument]17.3.2.5.1
invalidargument::invalidargument(const char*,
const char*)

invalidargument(const char* where_arg = 0, const char* why_arg = 0);

1 Constructs an object of classinvalidargument , initializing the base class withxlogic(what_arg ,
where_arg , why_arg) , where theNTMBS pointed to bywhat_arg is unspecified.

[lib.des.invalidargument]17.3.2.5.2invalidargument::~invalidargument()

virtual ~invalidargument();

1 Destroys an object of classinvalidargument .

[lib.invalidargument::do.raise]17.3.2.5.3invalidargument::do_raise()

// virtual void do_raise(); inherited

1 Behaves the same asxmsg::do_raise() .

[lib.lengtherror]17.3.2.6 Classlengtherror

17– 30 Library DRAFT: 25 January 1994 17.3.2.6 Classlengtherror

class lengtherror : public xlogic {
public:

lengtherror(const char* where_arg , const char* why_arg);
virtual ~lengtherror();

protected:
// virtual void do_raise(); inherited
};

1 The classlengtherror defines the base class for the types of all objects thrown as exceptions, by func-
tions in the Standard C + + library, to report an attempt to produce an object whose length equals or exceeds
NPOS.

[lib.cons.lengtherror]17.3.2.6.1lengtherror::lengtherror(const char*,
const char*)

lengtherror(const char* where_arg = 0, const char* why_arg = 0);

1 Constructs an object of classlengtherror , initializing the base class withxlogic(what_arg ,
where_arg , why_arg) , where theNTMBS pointed to bywhat_arg is unspecified.

[lib.des.lengtherror]17.3.2.6.2lengtherror::~lengtherror()

virtual ~lengtherror();

1 Destroys an object of classlengtherror .

[lib.lengtherror::do.raise]17.3.2.6.3lengtherror::do_raise()

// virtual void do_raise(); inherited

1 Behaves the same asxmsg::do_raise() .

[lib.outofrange]17.3.2.7 Classoutofrange

class outofrange : public xlogic {
public:

outofrange(const char* where_arg , const char* why_arg);
virtual ~outofrange();

protected:
// virtual void do_raise(); inherited
};

1 The classoutofrange defines the base class for the types of all objects thrown as exceptions, by func-
tions in the Standard C + + library, to report an out-of-range argument.

[lib.cons.outofrange]17.3.2.7.1outofrange::outofrange(const char*,
const char*)

outofrange(const char* where_arg = 0, const char* why_arg = 0);

1 Constructs an object of classoutofrange , initializing the base class withxlogic(what_arg ,
where_arg , why_arg) , where theNTMBS pointed to bywhat_arg is unspecified.

[lib.des.outofrange]17.3.2.7.2outofrange::~outofrange()

virtual ~outofrange();

17.3.2.7.2 DRAFT: 25 January 1994 Library 17– 31
outofrange::~outofrange()

1 Destroys an object of classoutofrange .

[lib.outofrange::do.raise]17.3.2.7.3outofrange::do_raise()

// virtual void do_raise(); inherited

1 Behaves the same asxmsg::do_raise() .

[lib.overflow]17.3.2.8 Classoverflow

Box 106
Library WG issue: Mats Henricson, December 31, 1993

Should we have a classunderflow as well???? __

__

class overflow : public xruntime {
public:

overflow(const char* where_arg , const char* why_arg);
virtual ~overflow();

protected:
// virtual void do_raise(); inherited
};

1 The classoverflow defines the base class for the types of all objects thrown as exceptions, by functions
in the Standard C + + library, to report an arithmetic overflow.

[lib.cons.overflow]17.3.2.8.1overflow::overflow(const char*, const char*)

overflow(const char* where_arg = 0, const char* why_arg = 0);

1 Constructs an object of classoverflow , initializing the base class withxruntime(what_arg ,
where_arg , why_arg) , where theNTMBS pointed to bywhat_arg is unspecified.

[lib.des.overflow]17.3.2.8.2overflow::~overflow()

virtual ~overflow();

1 Destroys an object of classoverflow .

[lib.overflow::do.raise]17.3.2.8.3overflow::do_raise()

// virtual void do_raise(); inherited

1 Behaves the same asxmsg::do_raise() .

[lib.xdomain]17.3.2.9 Classxdomain

class xdomain : public xlogic {
public:

xdomain(const char* what_arg = 0, const char* where_arg = 0,
const char* why_arg = 0);

virtual ~xdomain();
protected:
// virtual void do_raise(); inherited
};

1 The classxdomain defines the type of objects thrown as exceptions by the implementation to report viola-
tions of a precondition.

17– 32 Library DRAFT: 25 January 1994 17.3.2.9.1
xdomain::xdomain(const char*, const char*, const char*)

[lib.cons.xdomain]17.3.2.9.1xdomain::xdomain(const char*, const char*,
const char*)

xdomain(const char* what_arg = 0, const char* where_arg = 0,
const char* why_arg = 0);

1 Constructs an object of classxdomain , initializing the base class withxlogic(what_arg ,
where_arg , why_arg) .

[lib.des.xdomain]17.3.2.9.2xdomain::~xdomain()

virtual ~xdomain();

1 Destroys an object of classxdomain .

[lib.xdomain::do.raise]17.3.2.9.3xdomain::do_raise()

// virtual void do_raise(); inherited

1 Behaves the same asxmsg::do_raise() .

[lib.xrange]17.3.2.10 Classxrange

Box 107
Library WG issue: Mats Henricson, December 31, 1993

We have three classes:

invalidargument
outofrange
xdomain

that all are thrown if a function argument is invalid, i.e. precondition violation. We are not checking for
preconditions in all functions, and therefore I think we should skip the xdomain class.

Some arguments are checked at run time, for example op[] for a string, but we have explicitly said so. It is
not default to check arguments.

I also think we should rething the what, where and why char*. It is too much information to be useful. _ __

_ __

class xrange : public xruntime {
public:

xrange(const char* what_arg = 0, const char* where_arg = 0,
const char* why_arg = 0);

virtual ~xrange();
protected:
// virtual void do_raise(); inherited
};

1 ∗The classxrange defines the type of objects thrown as exceptions by the implementation to report viola-
tions of a postcondition.

17.3.2.10.1 DRAFT: 25 January 1994 Library 17– 33
xrange::xrange(const char*, const char*, const char*)

[lib.cons.xrange]17.3.2.10.1xrange::xrange(const char*, const char*,
const char*)

xrange(const char* what_arg = 0, const char* where_arg = 0,
const char* why_arg = 0);

1 Constructs an object of classxrange , initializing the base class withxruntime(what_arg ,
where_arg , why_arg) .

[lib.des.xrange]17.3.2.10.2xrange::~xrange()

virtual ~xrange();

1 Destroys an object of classxrange .

[lib.xrange::do.raise]17.3.2.10.3xrange::do_raise()

// virtual void do_raise(); inherited

1 Behaves the same asxmsg::do_raise() .

[lib.set.terminate]17.3.2.11set_terminate(fvoid_t*)

Box 108

Library WG issue: Mats Henricson, December 31, 1993

What happens if set_terminate() is passed a null pointer? The same question for
set_unexpected() . _ __

_ __

Box 109

Library WG issue: Michael Vilot, November 22, 1993

17.3.2.11 set_terminate ‘‘The function stores new_p in a static object

17.3.2.12 ditto for unexpected_handler.

17.3.3.2 ditto for new_handler. _ ___

_ ___

fvoid_t* set_terminate(fvoid_t* new_p);

1 Establishes a new handler for terminating exception processing. The function storesnew_p in a static
object that, for the sake of exposition, can be declared as:

fvoid_t* terminate_handler = &abort;

2 where the function signatureabort() is defined in<stdlib.h> . new_p shall not be a null pointer.

3 The function returns the previous contents ofterminate_handler .

[lib.set.unexpected]17.3.2.12set_unexpected(fvoid_t*)

fvoid_t* set_unexpected(fvoid_t* new_p);

1 Establishes a new handler for an unexpected exception thrown by a function with anexception-
specification.The function storesnew_p in a static object that, for the sake of exposition, can be declared
as:

17– 34 Library DRAFT: 25 January 1994 17.3.2.12
set_unexpected(fvoid_t*)

fvoid_t* unexpected_handler = &terminate;

2 new_p shall not be a null pointer.

3 The function returns the previous contents ofunexpected_handler .

[lib.terminate]17.3.2.13terminate()

void terminate();

1 Called by the implementation when exception handling must be abandoned for any of several reasons, such
as:

— when a thrown exception has no corresponding handler;

— when a thrown exception determines that the the execution stack is corrupted;

— when a thrown exception calls a destructor that tries to transfer control to a calling function by throwing
another exception.

2 Using the notation of subclause 17.3.2.11, the function evaluates the expression:

(* terminate_handler)()

3 The required behavior of any function called by this expression is to terminate execution of the program
without returning to the caller. The default behavior is to callabort() , declared in<stdlib.h> .

[lib.unexpected]17.3.2.14unexpected()

Box 110
Library WG issue: Mats Henricson, December 31, 1993

Isn’t this something that should be in chapter 15 on exception handling? _ ___

_ ___

void unexpected();

1 Called by the implementation when a function with anexception-specificationthrows an exception that is
not listed in theexception-specification. Using the notation of subclause 17.3.2.12, the function evaluates
the expression:

(* unexpected_handler)()

2 The required behavior of any function called by this expression is to throw an exception or terminate execu-
tion of the program without returning to the caller. The called function may perform any of the following
operations:

— rethrow the exception;

— throw another exception;

— call terminate() ;

— call eitherabort() or exit(int) , declared in<stdlib.h> .

3 The default behavior is to callterminate() .

17.3.3 Header<new> DRAFT: 25 January 1994 Library 17– 35

[lib.header.new]17.3.3 Header<new>

Box 111

Library WG issue: Michael Vilot, November 22, 1993

The wording has disappeared that required an implementation that uses the global versions ofoperator
new anddelete to pick up program-supplied versions that replace them._ __

_ __

1 The header<new> defines a type and several functions that manage the allocation of storage in a program,
as described in subclauses 5.3 and 12.5.

[lib.xalloc]17.3.3.1 Classxalloc

Box 112
Library WG issue: John Max Skaller, January 1, 1994

>Even if I have called set_new_handler(0) I cannot
>be sure to get the implementation to let new return 0 on failure. I cannot
>help but get a very uneasy feeling about how new handles failures.

I have the same gut feeling. The whole interaction of memory allocation and exception handling seems a bit
suspect. _ __

_ __

Box 113
Library WG issue: John Max Skaller, January 1, 1994

>Has anyone tried to use an xalloc class? If so, what have they supplied
>as arguments to the constructor? What is why, what and where?

Borland C + + version 4.0 has xalloc. The constructor supplied is:

xalloc(const string&, size_t);

is also supplies

size_t requested()const

which returns the amount of store requested that causes the failure. _ ___

_ ___

Box 114
Library WG issue: Mats Henricson, December 31, 1993

Has anyone tried to use an xalloc class? If so, what have they supplied as arguments to the constructor?
What is why, what and where? _ __

_ __

17– 36 Library DRAFT: 25 January 1994 17.3.3.1 Classxalloc

class xalloc : public xruntime {
public:

xalloc(const char* where_arg = 0, const char* why_arg = 0);
virtual ~xalloc();

protected:
// virtual void do_raise(); inherited
};

1 The classxalloc defines the type of objects thrown as exceptions by the implementation to report a fail-
ure to allocate storage.

[lib.cons.xalloc]17.3.3.1.1xalloc::xalloc(const char*, const char*)

xalloc(const char* where_arg = 0, const char* why_arg = 0);

1 Constructs an object of classxalloc , initializing the base class withxruntime(what_arg ,
where_arg , why_arg , 0) , where theNTMBS pointed to bywhat_arg is unspecified.77)

[lib.des.xalloc]17.3.3.1.2xalloc::~xalloc()

virtual ~xalloc();

1 Destroys an object of classxalloc .

[lib.xalloc::do.raise]17.3.3.1.3xalloc::do_raise()

// virtual void do_raise(); inherited

1 Behaves the same asxmsg::do_raise() .

[lib.set.new.handler]17.3.3.2set_new_handler(fvoid_t*)

Box 115

Library WG issue: Michael Vilot, November 22, 1993

Keeping a separate subsection for the handlers in 93-0148/N0355 also served two other purposes. First, it
gave us a place to introduce a appropriate typedefs. As indicated, ‘‘the type fvoid_t needs to be defined or
replaced.’’ And actually, the use of fvoid_t is less precise than the use of the three handler typedefs in 93-
0148/N0355. Second, it gave us a place to describe the default implementation: the description of the
new-handler in 93-0108 section 17.3.2.5 seems out of place, and artifically removed from 17.3.2.2.

We should retain the wording in 93-0148/N0355, because it avoids another global name and it conveys the
semantics of each handler more succinctly._ __

_ __

77) Note thatwhere_arg andwhy_arg must either be null pointers or point toNTMBSs whose lifetime exceeds that of the con-
structed object.

17.3.3.2 DRAFT: 25 January 1994 Library 17– 37
set_new_handler(fvoid_t*)

Box 116
Library WG issue: Michael Vilot, November 22, 1993

It took us 9 months or so to work out the wording in 93-0148/N0355 to describe ‘‘installing’’ handler func-
tions in such a way as to get reasonably clear semantics without overly constraining a multithreded imple-
mentation. There is no reason to discard that work lightly, although I would like to see a more precise
description of ‘‘installing’’ and ‘‘invoking’’ a handler function that doesn’t involve the overspecification of
requiring a global pointer. _ __

_ __

Box 117
Library WG issue: Michael Vilot, November 22, 1993

In particular, the following changes added in 93-0108 should be removed: 17.1.4.3 ‘‘Certain handler func-
tions are determined by the values stored in pointer objects within the Standard C + + library. Initially, these
pointer objects designate functions defined in the Standard C + + library. Other functions, however, when
executed at run time, permit the program to alter these stored values to point at functions defined in the pro-
gram.’’ _ __

_ __

Box 118
Library WG issue: Michael Vilot, November 22, 1993

The treatment of all 3 handlers in 93-0148/N0355 was simpler and clearer. The San Diego rewrite amounts
to overspecification, particularly in light of the ongoing interest in keeping this library viable in multi-
threaded environments. _ __

_ __

fvoid_t* set_new_handler(fvoid_t* new_p);

1 Establishes a new handler to be called by the default versions ofoperator new(size_t) andoper-
ator new[](size_t) when they cannot satisfy a request for additional storage. The function stores
new_p in a static object that, for the sake of exposition, can be callednew_handler and can be declared
as:

fvoid_t* new_handler = & new_hand ;

2 ∗where, in turn,new_hand can be defined as:

static void new_hand ()
{ // raise xalloc exception
static const xalloc ex("operator new");
ex.raise();

}

3 ∗The function returns the previous contents ofnew_handler .

[lib.op.delete]17.3.3.3operator delete(void*)

17– 38 Library DRAFT: 25 January 1994 17.3.3.3operator delete(void*)

Box 119

Library WG issue: Mats Henricson, December 31, 1993

Is the behavior of this program unspecified?

{
T* t = new T[1];
delete t[0];

}

I think it should be legal, even though I call delete without [] on memory allocated with new WITH []._ ___

_ ___

void operator delete(void* ptr);

1 Called by adelete expression to render the value ofptr invalid. The program can define a function
with this function signature that displaces the default version defined by the Standard C + + library. The
required behavior is to accept a value ofptr that is null or that was returned by an earlier call toopera-
tor new(size_t) .

2 The default behavior for a null value ofptr is to do nothing. Any other value ofptr shall be a value
returned earlier by a call to the defaultoperator new(size_t) . 78) The default behavior for such a
non-null value ofptr is to reclaim storage allocated by the earlier call to the defaultoperator
new(size_t) . It is unspecified under what conditions part or all of such reclaimed storage is allocated
by a subsequent call tooperator new(size_t) or any ofcalloc(size_t) , malloc(size_t) ,
or realloc(void*, size_t) , declared in<stdlib.h> .

[lib.op.delete.array]17.3.3.4operator delete[](void*)

void operator delete[](void* ptr);

1 Called by adelete[] expression to render the value ofptr invalid. The program can define a function
with this function signature that displaces the default version defined by the Standard C + + library.

2 The required behavior is to accept a value ofptr that is null or that was returned by an earlier call to
operator new[](size_t) .

3 The default behavior for a null value ofptr is to do nothing. Any other value ofptr shall be a value
returned earlier by a call to the defaultoperator new[](size_t) . 79) The default behavior for such
a non-null value ofptr is to reclaim storage allocated by the earlier call to the defaultoperator
new[](size_t) . It is unspecified under what conditions part or all of such reclaimed storage is allo-
cated by a subsequent call tooperator new(size_t) or any of calloc(size_t) ,
malloc(size_t) , or realloc(void*, size_t) , declared in<stdlib.h> .

[lib.op.new]17.3.3.5operator new(size_t)

78) The value must not have been invalidated by an intervening call tooperator delete(size_t) , or it would be an invalid
argument for a Standard C + + library function call.
79) The value must not have been invalidated by an intervening call tooperator delete[](size_t) , or it would be an invalid
argument for a Standard C + + library function call.

17.3.3.5 operator new(size_t) DRAFT: 25 January 1994 Library 17– 39

Box 120

Library WG issue: Jonathan Shopiro, January 20, 1994

Mats Henricson, in c++std-lib-1629 --
>
>
> The September 28 version of the WP says in section 5.3.3:
>
> When the value of the first array dimension is zero, an array with no
> elements is allocated. The pointer returned by the new-expression will
> be non-null and distinct from the pointer to any other object.
>
> The wording is different from what is written in ARM page 59. Maybe the
> new WP in the pre San Diego mailing will be different. I’d like to know:
>
> 1. Why have we chosen this behaviour? What is wrong with returning 0?

This was the outcome of a long battle/discussion. Briefly, zero was already
used as indicating allocation failure (this decidion was taken before
allocation failure threw an exception) and returning a non-zero pointer
to an array of no elements was seen as the most natural result.
>
> 2. Is the pointer returned from new[0] different at each call to new[0],

yes.
> i.e.:
>
> char* cp1 = new char[0];
> char* cp2 = new char[0];
>
then
>
> cp1 != cp2 _ ___

_ ___

Box 121
Library WG issue: Michael Vilot, November 22, 1993

The words in 93-0148/N0355 section 17.1.1.1, paragraph 4, were intentionally copied, in order, from the C
standard. The Rationale statement clearly expresses our intent to pattern our description of storage manage-
ment after the same words for malloc/calloc/free.

The concept of ‘‘invalidating’’ is probably more appropriate wording. Let’s see if we can’t keep the advan-
tages of the wording of 93-0148/N0355 with this suggested improvement. _ __

_ __

Box 122
Library WG issue: Michael Vilot, November 22, 1993

The change to split these out and reorder them is counterproductive. By repeating the descriptions, you’ve
introduced a lot of wordiness and potential for error. In particular, the wording about storage allocation and
reclamation lost something in the translation. _ __

_ __

17– 40 Library DRAFT: 25 January 1994 17.3.3.5operator new(size_t)

Box 123
Library WG issue: Michael Vilot, November 22, 1993

The 3 paragraphs of 93-0148/N0355 section 17.1.1 should be retained. _ __

_ __

void* operator new(size_t size);

1 Called by anew expression to allocatesize bytes of storage suitably aligned to represent any object of
that size. The program can define a function with this function signature that displaces the default version
defined by the Standard C + + library.

2 The required behavior is to return a non-null pointer only if storage can be allocated as requested. Each
such allocation shall yield a pointer to storage disjoint from any other allocated storage. The order and con-
tiguity of storage allocated by successive calls tooperator new(size_t) is unspecified. The initial
stored value is unspecified. The returned pointer points to the start (lowest byte address) of the allocated
storage. Ifsize is zero, the value returned shall not compare equal to any other value returned byoper-
ator new(size_t) .80)

3 The default behavior is to execute a loop. Within the loop, the function first attempts to allocate the
requested storage. Whether the attempt involves a call to the Standard C library functionmalloc is
unspecified. If the attempt is successful, the function returns a pointer to the allocated storage. Otherwise
(using the notation of subclause 17.3.3.2), ifnew_handler is a null pointer, the result is
implementation-defined.81) Otherwise, the function evaluates the expression(* new_handler)() . If
the called function returns, the loop repeats. The loop terminates when an attempt to allocate the requested
storage is successful or when a called function does not return.

4 The required behavior of a function called by(* new_handler)() is to perform one of the following
operations:

— make more storage available for allocation and then return;

— execute an expression of the formex .raise() , whereex is an object of typexalloc , declared in
<exception> ;

— call eitherabort() or exit(int) , declared in<stdlib.h> .

5 The default behavior of a function called by(* new_handler)() is described by the function
new_hand , as shown in subclause 17.3.3.2.

6 The order and contiguity of storage allocated by successive calls tooperator new(size_t) is
unspecified, as are the initial values stored there.

[lib.op.new.array]17.3.3.6operator new[](size_t)

void* operator new[](size_t size);

1 Called by anew[] expression to allocatesize bytes of storage suitably aligned to represent any array
object of that size or smaller.82) The program can define a function with this function signature that dis-
places the default version defined by the Standard C + + library.

80) The value cannot legitimately compare equal to one that has been invalidated by a call tooperator delete(size_t) , since
any such comparison is an invalid operation.
81) A common extension whennew_handler is a null pointer is foroperator new(size_t) to return a null pointer, in accor-
dance with many earlier implementations of C + +.
82) It is not the direct responsibility ofoperator new[](size_t) or operator delete[](void*) to note the repetition
count or element size of the array. Those operations are performed elsewhere in the arraynew anddelete expressions. The array
new expression, may, however, increase thesize argument tooperator new[](size_t) to obtain space to store supplemental
information.

17.3.3.6 operator new[](size_t) DRAFT: 25 January 1994 Library 17– 41

2 The required behavior is the same as foroperator new(size_t) .

3 The default behavior is to returnoperator new(size) .

[lib.placement.op.new]17.3.3.7operator new(size_t, void*)

Box 124
Library WG issue: Anthony Scian, January 12, 1994

I received some mail from one of the authors of thenew []/delete [] extension. He claimed that
there was a placement version of opnew [] in the original proposal 92-0093. Consider this a request for
a library document fix to properly reflect the contents of the original proposal for opnew [] /op delete
[] . _ __

_ __

Box 125
Library WG issue: Anthony Scian, January 10, 1994

Is the lack of a placement version ofoperator new [] an oversight or an intended omission? This
will break existing code that used the placement syntax to initialize an array of classes into a special mem-
ory location (it just broke some code here).

If we have a special placementoperator new() , I think we should have a placement version ofoper-
ator new []() for consistency.

Will this be an editorial change (assuming we vote in the current lib doc) or is there more to this issue than
I can see? _ __

_ __

void* operator new(size_t size , void* ptr);

1 Returnsptr .

[lib.placement.op.new.array]17.3.3.8operator new[](size_t, void*)

void* operator new[](size_t size , void* ptr);

1 Returnsptr .

[lib.header.typeinfo]17.3.4 Header<typeinfo>

1 The header<typeinfo> defines two types associated with type information generated by the implemen-
tation.

[lib.badtypeid]17.3.4.1 Classbadtypeid

class badtypeid : public xlogic {
public:

badtypeid();
virtual ~badtypeid();

protected:
// virtual void do_raise(); inherited
};

1 The classbadtypeid defines the type of objects thrown as exceptions by the implementation to report a
null pointerp in an expression of the formtypeid (* p) .

17– 42 Library DRAFT: 25 January 1994 17.3.4.1.1
badtypeid::badtypeid()

[lib.cons.badtypeid]17.3.4.1.1badtypeid::badtypeid()

badtypeid();

1 Constructs an object of classbadtypeid , initializing the base classxlogic with an unspecified con-
structor.

[lib.des.badtypeid]17.3.4.1.2badtypeid::~badtypeid()

virtual ~badtypeid();

1 Destroys an object of classbadtypeid .

[lib.badtypeid::do.raise]17.3.4.1.3badtypeid::do_raise()

// virtual void do_raise(); inherited

1 Behaves the same asxmsg::do_raise() .

[lib.typeinfo]17.3.4.2 Classtypeinfo

Box 126

Library WG issue: Mats Henricson, December 31, 1993

It should be explicit that the first part of the class header is private, i.e. add private before
const char *name; // exposition only_ ___

_ ___

class typeinfo {
public:

virtual ~typeinfo();
int operator==(const typeinfo& rhs) const;
int operator!=(const typeinfo& rhs) const;
int before(const typeinfo& rhs);
const char* name() const;

private:
// const char* name; exposition only
// const T desc ; exposition only

typeinfo(const typeinfo& rhs);
typeinfo& operator=(const typeinfo& rhs);

};

1 The classtypeinfo describes type information generated within the program by the implementation.
Objects of this class effectively store a pointer to a name for the type, and an encoded value suitable for
comparing two types for equality or collating order. The names, encoding rule, and collating sequence for
types are all unspecified and may differ between programs.

2 For the sake of exposition, the stored objects are presented here as:

— const char* name, points at a staticNTMBS;

— T desc , an object of a typeT that has distinct values for all the distinct types in the program, stores
the value corresponding toname.

17.3.4.2.1 typeinfo::~typeinfo() DRAFT: 25 January 1994 Library 17– 43

[lib.des.typeinfo]17.3.4.2.1typeinfo::~typeinfo()

virtual ~typeinfo();

1 Destroys an object of typetypeinfo .

[lib.typeinfo::op==]17.3.4.2.2typeinfo::operator==(const typeinfo&)

Box 127

Library WG issue: Mats Henricson, December 31, 1993

operator==, operator!= andbefore() should returnbool ._ __

_ __

int operator==(const typeinfo& rhs) const;

1 Compares the value stored indesc with rhs . desc . Returns a nonzero value if the two values represent
the same type.

[lib.typeinfo::op!=]17.3.4.2.3typeinfo::operator!=(const typeinfo&)

int operator!=(const typeinfo& rhs) const;

1 Returns a nonzero value if!(*this == rhs) .

[lib.typeinfo::before]17.3.4.2.4typeinfo::before(const typeinfo&)

int before(const typeinfo& rhs) const;

1 Compares the value stored indesc with rhs . desc . Returns a nonzero value if*this precedesrhs in
the collation order.

[lib.typeinfo::name]17.3.4.2.5typeinfo::name()

const char* name() const;

1 Returnsname.

[lib.cons.typeinfo]17.3.4.2.6typeinfo::typeinfo(const typeinfo&)

typeinfo(const typeinfo& rhs);

1 Constructs an object of classtypeinfo and initializesname to rhs . name anddesc to rhs . desc .
83)

[lib.typeinfo::op=]17.3.4.2.7typeinfo::operator=(const typeinfo&)

typeinfo& operator=(const typeinfo& rhs);

1 Assignsrhs . name to name andrhs . desc to desc .

83) Since the copy constructor and assignment operator fortypeinfo are private to the class, objects of this type cannot be copied,
but objects of derived classes possibly can be.

17– 44 Library DRAFT: 25 January 1994 17.4 Input/output

[lib.input/output]17.4 Input/output

Box 128

Library WG issue: Nobuo Saito, January 17, 1994

In the current library draft, there is nothing about the I/O functions for wide characters. For Asian nations
like Japan, it is crucial to be able to use the multibyte characters flexibly in all the areas like I/O functions.
Therefore, it is very important to prepare I/O functions for the wide characters in the current library draft.

We understand that there is no decisions made at San Jose, and then we would like to know the library
working group plan and the pocily to deal with this problems.

At least, we would like to avoid to be delayed like C (included in the first ammendment). We also want to
prepare the sophisticated solutions using the high functionalities in the C + + language(like the overloading).
Then, the following design policy will be reasonable.

1) Use the overloaded function names both for characters and wide
characters.

2) Use the character base buffers in the streambuf.

Anyway, we would like to know the future plan for dealing with I/O functions for wide characters, and we
expect to hear from Mike, Bill and Jerry, especially._ __

_ __

Box 129
Library WG issue: Jerry Schwarz, January 3, 1994

We should deprecateopen_mode, seek_dir, andio_state . _ ___

_ ___

Box 130
Library WG issue: Jerry Schwarz, January 3, 1994

A. I have given a preliminary review to the latest draft. Several of
the points of the critique (including some non-trivial issues) have
not been addressed. I’ve attached the list of remaining issues
below.

In several cases Bill has clearly tried to address the
issue, but has come up with something that doesn’t work.

B. I looked at the description of stringbuf. I found a couple of errors.

C. The draft doesn’t properly incorporate the "uflow" decisions.

D. I didn’t give it all a thorough review, but I did notice some "new"
problems. (I don’t know if these existed in the earlier draft and I
missed them or whether they are the result of recent edits.) I’ve
listed them below. _ ___

_ ___

17.4 Input/output DRAFT: 25 January 1994 Library 17– 45

Box 131
Library WG issue: Mats Henricson, December 31, 1993

[was 17.3.2.1]: Is it meaningful to have the member data alloced as negative, i.e. shouldn’t it be an
unsigned int ? The same question applys to thecopyfl argument to the protected constructor. _ __

_ __

Box 132
Library WG issue: Jerry Schwarz, September 28, 1993

[was 17.4.1.7]: editorial concern about multiple uses of ‘‘stream’’ _ __

_ __

1 This subclause describes a number of headers that together support input, output, and internal data conver-
sions.

[lib.header.ios]17.4.1 Header<ios>

1 The Header<ios> defines a type and several function signatures for controlling how to interpret text input
from a sequence of characters and how to generate text output to a sequence of characters.

[lib.ios]17.4.1.1 Classios

17– 46 Library DRAFT: 25 January 1994 17.4.1.1 Classios

class ios {
public:

class failure public: xmsg {
public:

failure(const char* where_val = 0, const char* why_val = 0);
virtual ~failure();

protected:
// virtual void do_raise(); inherited

};
typedef T1 fmtflags;
static const fmtflags dec;
static const fmtflags fixed;
static const fmtflags hex;
static const fmtflags internal;
static const fmtflags left;
static const fmtflags oct;
static const fmtflags right;
static const fmtflags scientific;
static const fmtflags showbase;
static const fmtflags showpoint;
static const fmtflags showpos;
static const fmtflags skipws;
static const fmtflags unitbuf;
static const fmtflags uppercase;
static const fmtflags adjustfield;
static const fmtflags basefield;
static const fmtflags floatfield;
typedef T2 iostate;
static const iostate badbit;
static const iostate eofbit;
static const iostate failbit;
static const iostate goodbit;
typedef T3 openmode;
static const openmode app;
static const openmode ate;
static const openmode binary;
static const openmode in;
static const openmode out;
static const openmode trunc;
typedef T4 seekdir;
static const seekdir beg;
static const seekdir cur;
static const seekdir end;

// typedef T5 io_state; optional
// typedef T6 open_mode; optional
// typedef T7 seek_dir; optional

class Init {
public:

Init();
~Init();

private:
// static int init_cnt ; exposition only

};
ios(streambuf* sb_arg);
virtual ~ios();
operator void*() const
int operator!() const
ios& copyfmt(const ios& rhs);
ostream* tie() const;
ostream* tie(ostream* tiestr_arg);
streambuf* rdbuf() const;
streambuf* rdbuf(streambuf* sb_arg);

17.4.1.1 Classios DRAFT: 25 January 1994 Library 17– 47

iostate rdstate() const;
void clear(iostate state_arg = 0);

// void clear(io_state state_arg = 0); optional
void setstate(iostate state_arg);

// void setstate(io_state state_arg); optional
int good() const;
int eof() const;
int fail() const;
int bad() const;
iostate exceptions() const;
void exceptions(iostate except_arg);

// void exceptions(io_state except_arg); optional
fmtflags flags() const;
fmtflags flags(fmtflags fmtfl_arg);
fmtflags setf(fmtflags fmtfl_arg);
fmtflags setf(fmtflags fmtfl_arg , fmtflags mask);
void unsetf(fmtflags mask);
int fill() const;
int fill(int ch);
int precision() const;
int precision(int prec_arg);
int width() const;
int width(int wide_arg);
static int xalloc();
long& iword(int index_arg);
void*& pword(int index_arg);

protected:
ios();
init(streambuf* sb_arg);

private:
// streambuf* sb ; exposition only
// ostream* tiestr ; exposition only
// iostate state ; exposition only
// iostate except ; exposition only
// fmtflags fmtfl ; exposition only
// int prec ; exposition only
// int wide ; exposition only
// char fillch ; exposition only
// static int index ; exposition only
// int* iarray ; exposition only
// void** parray ; exposition only
};

1 The classios serves as a base class for the classesistream andostream . It defines several member
types:

— a classfailure derived fromxmsg;

— a classInit ;

— three bitmask types,fmtflags , iostate , andopenmode;

— an enumerated type,seekdir .

2 It maintains several kinds of data:

— a pointer to astream buffer,an object of classstreambuf , that controls sources (input) and sinks
(output) of character sequences;

— state information that reflects the integrity of the stream buffer;

— control information that influences how to interpret (format) input sequences and how to generate (for-
mat) output sequences;

17– 48 Library DRAFT: 25 January 1994 17.4.1.1 Classios

— additional information that is stored by the program for its private use.

3 For the sake of exposition, the maintained data is presented here as:

— streambuf* sb , points to the stream buffer;

— ostream* tiestr , points to an output sequence that istied to (synchronized with) an input
sequence controlled by the stream buffer;

— iostate state , holds the control state of the stream buffer;

— iostate except , holds a mask that determines what elements set instate cause exceptions to be
thrown;

— fmtflags fmtfl , holds format control information for both input and output;

— int wide , specifies the field width (number of characters) to generate on certain output conversions;

— int prec , specifies the precision (number of digits after the decimal point) to generate on certain out-
put conversions;

— char fillch , specifies the character to use to pad (fill) an output conversion to the specified field
width;

— static int index , specifies the next available unique index for the integer or pointer arrays main-
tained for the private use of the program, initialized to an unspecified value;

— int* iarray , points to the first element of an arbitrary-length integer array maintained for the pri-
vate use of the program;

— void** parray , points to the first element of an arbitrary-length pointer array maintained for the
private use of the program.

[lib.ios::failure]17.4.1.1.1 Classios::failure

Box 133

Library WG issue: Jerry Schwarz, September 28, 1993

[was 17.4.1.8.23]:Library assumes that all exceptions derive from xmsg._ __

_ __

Box 134
Library WG issue: Jerry Schwarz, September 28, 1993

[was 17.4.1.2]:Library drops theios component fromios::failure . _ ___

_ ___

class failure : public xmsg {
public:

failure(const char* where_arg = 0, const char* why_arg = 0);
virtual ~failure();

protected:
// virtual void do_raise(); inherited
};

1 The classfailure defines the base class for the types of all objects thrown as exceptions, by functions in
the Standard C + + library, to report errors detected during stream buffer operations.

17.4.1.1.1.1 DRAFT: 25 January 1994 Library 17– 49
ios::failure::failure(const char*, const char*)

[lib.cons.ios::failure]17.4.1.1.1.1ios::failure::failure(const char*,
const char*)

failure(const char* where_arg = 0, const char* why_arg = 0);

1 Constructs an object of classfailure , initializing the base class withxmsg(what_arg ,
where_arg , why_arg) , where theNTMBS pointed to bywhat_arg is unspecified.

[lib.des.ios::failure]17.4.1.1.1.2ios::failure::~failure()

virtual ~failure();

1 Destroys an object of classfailure .

[lib.ios::failure::do.raise]17.4.1.1.1.3ios::failure::do_raise()

// virtual void do_raise(); inherited

1 Behaves the same asxmsg::do_raise() .

[lib.ios::fmtflags]17.4.1.1.2 Typeios::fmtflags

typedef T1 fmtflags;

1 The typefmtflags is a bitmask type (indicated here asT1) with the elements:

— dec , set to convert integer input or to generate integer output in decimal base;

— fixed , set to generate floating-point output in fixed-point notation;

— hex , set to convert integer input or to generate integer output in hexadecimal base;

— internal , set to add fill characters at a designated internal point in certain generated output;

— left , set to add fill characters on the left (initial positions) of certain generated output;

— oct , set to convert integer input or to generate integer output in octal base;

— right , set to add fill characters on the right (final positions) of certain generated output;

— scientific , set to generate floating-point output in scientific notation;

— showbase , set to generate a prefix indicating the numeric base of generated integer output;

— showpoint , set to generate a decimal-point character unconditionally in generated floating-point out-
put;

— showpos , set to generate a+ sign in non-negative generated numeric output;

— skipws , set to skip leading white space before certain input operations;

— unitbuf , set to flush output after each output operation;

— uppercase , set to replace certain lowercase letters with their uppercase equivalents in generated out-
put.

2 Typefmtflags also defines the constants:

— adjustfield , the valueleft | right | internal ;

— basefield , the valuedec | oct | hex ;

— floatfield , the valuescientific | fixed .

17– 50 Library DRAFT: 25 January 1994 17.4.1.1.3 Typeios::iostate

[lib.ios::iostate]17.4.1.1.3 Typeios::iostate

typedef T2 iostate;

1 The typeiostate is a bitmask type (indicated here asT2) with the elements:

— badbit , set to indicate a loss of integrity in an input or output sequence (such as an irrecoverable read
error from a file);

— eofbit , set to indicate that an input operation reached the end of an input sequence;

— failbit , set to indicate that an input operation failed to read the expected characters, or that an output
operation failed to generate the desired characters.

2 Type iostate also defines the constant:

— goodbit , the value zero.

[lib.ios::openmode]17.4.1.1.4 Typeios::openmode

Box 135
Library WG issue: Jerry Schwarz, January 3, 1994

[was 17.4.1.4]:openmode ’s are used in contexts that have nothing to do with
files (or open for that matter). The name is obviously a mis-
nomer (as are many of the names in iostreams).

Not fixed. _ __

_ __

Box 136
Library WG issue: Jerry Schwarz, September 28, 1993

[was 17.4.1.4]:openmode is a misnomer. ___

typedef T3 openmode;

1 The typeopenmode is a bitmask type (indicated here asT3) with the elements:

— app , set to seek to end-of-file before each write to the file;

— ate , set to open a file and seek to end-of-file immediately after opening the file;

— binary , set to perform input and output in binary mode (as opposed to text mode);

— in , set to open a file for input;

— out , set to open a file for output;

— trunc , set to truncate an existing file when opening it.

17.4.1.1.5 Typeios::seekdir DRAFT: 25 January 1994 Library 17– 51

[lib.ios::seekdir]17.4.1.1.5 Typeios::seekdir

typedef T4 seekdir;

1 The typeseekdir is an enumerated type (indicated here asT4) with the elements:

— beg , to request a seek (positioning for subsequent input or output within a sequence) relative to the
beginning of the stream;

— cur , to request a seek relative to the current position within the sequence;

— end , to request a seek relative to the current end of the sequence.

[lib.ios::io.state]17.4.1.1.6 Typeios::io_state

// typedef T5 io_state; optional

1 The typeio_state is a synonym for an integer type (indicated here asT5) that permits certain member
functions to overload others on parameters of typeiostate and provide the same behavior.

[lib.ios::open.mode]17.4.1.1.7 Typeios::open_mode

// typedef T6 open_mode; optional

1 The typeopen_mode is a synonym for an integer type (indicated here asT6) that permits certain member
functions to overload others on parameters of typeopenmode and provide the same behavior.

[lib.ios::seek.dir]17.4.1.1.8 Typeios::seek_dir

// typedef T7 seek_dir; optional

1 The typeseek_dir is a synonym for an integer type (indicated here asT7) that permits certain member
functions to overload others on parameters of typeiostate and provide the same behavior.

[lib.ios::init]17.4.1.1.9 Classios::Init

class Init {
public:

Init();
~Init();

private:
// static int init_cnt ; exposition only
};

1 The classInit describes an object whose construction ensures the construction of the four objects
declared in<iostream> that associate file stream buffers with the standard C streams provided for by the
functions declared in<stdio.h> . For the sake of exposition, the maintained data is presented here as:

— static int init_cnt , counts the number of constructor and destructor calls for classInit , ini-
tialized to zero.

[lib.cons.ios::init]17.4.1.1.9.1ios::Init::Init()

Init();

1 Constructs an object of classInit . If init_cnt is zero, the function stores the value one ininit_cnt ,
then constructs and initializes the four objectscin (17.4.9.1),cout (17.4.9.2),cerr (17.4.9.3), and
clog (17.4.9.4). In any case, the function then adds one to the value stored ininit_cnt .

17– 52 Library DRAFT: 25 January 1994 17.4.1.1.9.2ios::Init::~Init()

[lib.des.ios::init]17.4.1.1.9.2ios::Init::~Init()

~Init();

1 Destroys an object of classInit . The function subtracts one from the value stored ininit_cnt and, if
the resulting stored value is one, callscout.flush() , cerr.flush() , andclog.flush() .

[lib.cons.ios.sb]17.4.1.1.10ios::ios(streambuf*)

ios(streambuf* sb_arg);

1 Constructs an object of classios , assigning initial values to its member objects by calling
init(sb_arg) .

[lib.des.ios]17.4.1.1.11ios::~ios()

virtual ~ios();

1 Destroys an object of classios .

[lib.ios::operator.void*]17.4.1.1.12ios::operator void*()

operator void*() const

1 Returns a non-null pointer (whose value is otherwise unspecified) iffailbit | badbit is set in
state .

[lib.ios::operator!]17.4.1.1.13ios::operator!()

int operator!() const

1 Returns a nonzero value iffailbit | badbit is set instate .

[lib.ios::copyfmt]17.4.1.1.14ios::copyfmt(const ios&)

ios& copyfmt(const ios& rhs);

1 Assigns to the member objects of*this the corresponding member objects ofrhs , except that:

— sb andstate are left unchanged;

— except is altered last by callingexception(rhs.except) .

2 If any newly stored pointer values in*this point at objects stored outside the objectrhs , and those
objects are destroyed whenrhs is destroyed, the newly stored pointer values are altered to point at newly
constructed copies of the objects.

3 The function returns*this .

[lib.ios::tie]17.4.1.1.15ios::tie()

ostream* tie() const;

1 Returnstiestr .

17.4.1.1.16ios::tie(ostream*) DRAFT: 25 January 1994 Library 17– 53

[lib.ios::tie.os]17.4.1.1.16ios::tie(ostream*)

ostream* tie(ostream* tiestr_arg);

1 Assignstiestr_arg to tiestr and then returns the previous value stored intiestr .

[lib.ios::rdbuf]17.4.1.1.17ios::rdbuf()

streambuf* rdbuf() const;

1 Returnssb .

[lib.ios::rdbuf.sb]17.4.1.1.18ios::rdbuf(streambuf*)

streambuf* rdbuf(streambuf* sb_arg);

1 Assignssb_arg to sb , then callsclear() . The function returns the previous value stored insb .

[lib.ios::rdstate]17.4.1.1.19ios::rdstate()

iostate rdstate() const;

1 Returnsstate .

[lib.ios::clear.ios]17.4.1.1.20ios::clear(iostate)

Box 137
Library WG issue: Jerry Schwarz, September 28, 1993

[was 17.4.1.2]: the base bits (dec, oct, hex) affect output too. __

__

Box 138
Library WG issue: Jerry Schwarz, September 28, 1993

[was 17.4.1.2]:Library addsxmsg arguments toios::clear andios::setstate . _ ___

_ ___

void clear(iostate state_arg = 0);

1 Assignsstate_arg to state . If sb is a null pointer, the function then setsbadbit in state . If
state & except is zero, the function returns. Otherwise, the function callsfail .raise() for an
objectfail of classfailure , constructed with argument values that are implementation-defined.

[lib.ios::clear.ios.old]17.4.1.1.21ios::clear(io_state)

// void clear(io_state state_arg = 0); optional

1 Callsclear((iostate) state_arg) .

[lib.ios::setstate.ios]17.4.1.1.22ios::setstate(iostate)

void setstate(iostate state_arg);

1 Callsclear(state | state_arg) .

17– 54 Library DRAFT: 25 January 1994 17.4.1.1.23
ios::setstate(io_state)

[lib.ios::setstate.ios.old]17.4.1.1.23ios::setstate(io_state)

// void setstate(io_state state_arg); optional

1 Callsclear((iostate)(state | state_arg)) .

[lib.ios::good]17.4.1.1.24ios::good()

int good() const;

1 Returns a nonzero value ifstate is zero.

[lib.ios::eof]17.4.1.1.25ios::eof()

int eof() const;

1 Returns a nonzero value ifeofbit is set instate .

[lib.ios::fail]17.4.1.1.26ios::fail()

Box 139
Library WG issue: Jerry Schwarz, September 28, 1993

[was 17.4.1.8.13]:Library should setfailbit when the input can’t be represented in the object. _ __

_ __

int fail() const;

1 Returns a nonzero value iffailbit is set instate .

[lib.ios::bad]17.4.1.1.27ios::bad()

int bad() const;

1 Returns a nonzero value ifbadbit is set instate .

[lib.ios::exceptions]17.4.1.1.28ios::exceptions()

iostate exceptions() const;

1 Returnsexcept .

[lib.ios::exceptions.ios]17.4.1.1.29ios::exceptions(iostate)

void exceptions(iostate except_arg);

1 Assignsexcept_arg to except , then callsclear(state) .

[lib.ios::exceptions.ios.old]17.4.1.1.30ios::exceptions(io_state)

// void exceptions(io_state except_arg); optional

1 Callsexceptions((iostate) except_arg) .

17.4.1.1.31ios::flags() DRAFT: 25 January 1994 Library 17– 55

[lib.ios::flags]17.4.1.1.31ios::flags()

fmtflags flags() const;

1 Returnsfmtfl .

[lib.ios::flags.f]17.4.1.1.32ios::flags(fmtflags)

fmtflags flags(fmtflags fmtfl_arg);

1 Assignsfmtfl_arg to fmtfl and then returns the previous value stored infmtfl .

[lib.ios::setf.f]17.4.1.1.33ios::setf(fmtflags)

fmtflags setf(fmtflags fmtfl_arg);

1 Setsfmtfl_arg in fmtfl and then returns the previous value stored infmtfl .

[lib.ios::setf.ff]17.4.1.1.34ios::setf(fmtflags, fmtflags)

fmtflags setf(fmtflags fmtfl_arg , fmtflags mask);

1 Clearsmask in fmtfl , setsfmtfl_arg & mask in fmtfl , and then returns the previous value stored
in fmtfl .

[lib.ios::unsetf]17.4.1.1.35ios::unsetf(fmtflags)

void unsetf(fmtflags mask);

1 Clearsmask in fmtfl .

[lib.ios::fill]17.4.1.1.36ios::fill()

int fill() const;

1 Returnsfill .

[lib.ios::fill.i]17.4.1.1.37ios::fill(int)

int fill(int fillch_arg);

1 Assignsfillch_arg to fillch and then returns the previous value stored infillch .

[lib.ios::precision]17.4.1.1.38ios::precision()

int precision() const;

1 Returnsprec .

[lib.ios::precision.i]17.4.1.1.39ios::precision(int)

int precision(int prec_arg);

1 Assignsprec_arg to prec and then returns the previous value stored inprec .

17– 56 Library DRAFT: 25 January 1994 17.4.1.1.40ios::width()

[lib.ios::width]17.4.1.1.40ios::width()

int width() const;

1 Returnswide .

[lib.ios::width.i]17.4.1.1.41ios::width(int)

int width(int wide_arg);

1 Assignswide_arg to wide and then returns the previous value stored inwide .

[lib.ios::xalloc]17.4.1.1.42ios::xalloc()

Box 140
Library WG issue: Jerry Schwarz, September 28, 1993

[was 17.4.1.1.34]: is it clear thatxalloc doesn’t have to start at zero? _ __

_ __

static int xalloc();

1 Returnsindex ++.

[lib.ios::iword]17.4.1.1.43ios::iword(int)

long& iword(int idx);

1 If iarray is a null pointer, allocates an array ofint of unspecified size and stores a pointer to its first
element iniarray . The function then extends the array pointed at byiarray as necessary to include the
elementiarray [idx] . Each newly allocated element of the array is initialized to zero. The function
returnsiarray [idx] . After a subsequent call toiword(int) for the same object, the earlier return
value may no longer be valid.84)

[lib.ios::pword]17.4.1.1.44ios::pword(int)

void* & pword(int idx);

1 If parray is a null pointer, allocates an array of pointers tovoid of unspecified size and stores a pointer
to its first element inparray . The function then extends the array pointed at byparray as necessary to
include the elementparray [idx] . Each newly allocated element of the array is initialized to a null
pointer. The function returnsparray [idx] . After a subsequent call topword(int) for the same
object, the earlier return value may no longer be valid.

[lib.cons.ios]17.4.1.1.45ios::ios()

Box 141
Library WG issue: Jerry Schwarz, September 28, 1993

[was 17.4.1.2]: default added toios::ios(streambuf * = 0) . _ __

_ __

ios();

84) An implementation is free to implement both the integer array pointed at byiarray and the pointer array pointed at byparray
as sparse data structures, possibly with a one-element cache for each.

17.4.1.1.45ios::ios() DRAFT: 25 January 1994 Library 17– 57

1 Constructs an object of classios , assigning initial values to its member objects by callinginit(0) .

[lib.ios::init.sb]17.4.1.1.46ios::init(streambuf*)

init(streambuf* sb_arg);

1 Assigns:

— sb_arg to sb ;

— a null pointer totiestr ;

— zero tostate if sb_arg is not a null pointer, otherwisebadbit to state ;

— zero toexcept ;

— skipws | dec to fmtfl ;

— zero towide ;

— 6 toprec ;

— the space character tofillch ;

— a null pointer toiarray ;

— a null pointer toparray .

[lib.dec]17.4.1.2dec(ios&)

ios& dec(ios& str);

1 Callsstr .setf(ios::dec, ios::basefield) and then returnsstr .85)

[lib.fixed]17.4.1.3 fixed(ios&)

ios& fixed(ios& str);

1 Callsstr .setf(ios::fixed, ios::floatfield) and then returnsstr .

[lib.hex]17.4.1.4hex(ios&)

ios& hex(ios& str);

1 Callsstr .setf(ios::hex, ios::basefield) and then returnsstr .

[lib.internal]17.4.1.5 internal(ios&)

ios& internal(ios& str);

1 Callsstr .setf(ios::internal, ios::adjustfield) and then returnsstr .

[lib.left]17.4.1.6 left(ios&)

ios& left(ios& str);

1 Callsstr .setf(ios::left, ios::adjustfield) and then returnsstr .

85) The function signaturedec(ios&) can be called by the function signatureostream& stream::operator<<(ostream&
(*)(ostream&)) to permit expressions of the formcout << dec to change the format flags stored incout .

17– 58 Library DRAFT: 25 January 1994 17.4.1.7noshowbase(ios&)

[lib.noshowbase]17.4.1.7noshowbase(ios&)

ios& noshowbase(ios& str);

1 Callsstr .unsetf(ios::showbase) and then returnsstr .

[lib.noshowpoint]17.4.1.8noshowpoint(ios&)

ios& noshowpoint(ios& str);

1 Callsstr .unsetf(ios::showpoint) and then returnsstr .

[lib.noshowpos]17.4.1.9noshowpos(ios&)

ios& noshowpos(ios& str);

1 Callsstr .unsetf(ios::showpos) and then returnsstr .

[lib.noskipws]17.4.1.10noskipws(ios&)

ios& noskipws(ios& str);

1 Callsstr .unsetf(ios::skipws) and then returnsstr .

[lib.nouppercase]17.4.1.11nouppercase(ios&)

ios& nouppercase(ios& str);

1 Callsstr .unsetf(ios::uppercase) and then returnsstr .

[lib.oct]17.4.1.12oct(ios&)

ios& oct(ios& str);

1 Callsstr .setf(ios::oct, ios::basefield) and then returnsstr .

[lib.right]17.4.1.13right(ios&)

ios& right(ios& str);

1 Callsstr .setf(ios::right, ios::adjustfield) and then returnsstr .

[lib.scientific]17.4.1.14scientific(ios&)

ios& scientific(ios& str);

1 Callsstr .setf(ios::scientific, ios::floatfield) and then returnsstr .

[lib.showbase]17.4.1.15showbase(ios&)

ios& showbase(ios& str);

1 Callsstr .setf(ios::showbase) and then returnsstr .

[lib.showpoint]17.4.1.16showpoint(ios&)

ios& showpoint(ios& str);

1 Callsstr .setf(ios::showpoint) and then returnsstr .

17.4.1.17showpos(ios&) DRAFT: 25 January 1994 Library 17– 59

[lib.showpos]17.4.1.17showpos(ios&)

ios& showpos(ios& str);

1 Callsstr .setf(ios::showpos) and then returnsstr .

[lib.skipws]17.4.1.18skipws(ios&)

ios& skipws(ios& str);

1 Callsstr .setf(ios::skipws) and then returnsstr .

[lib.uppercase]17.4.1.19uppercase(ios&)

ios& uppercase(ios& str);

1 Callsstr .setf(ios::uppercase) and then returnsstr .

[lib.header.streambuf]17.4.2 Header<streambuf>

1 The header<streambuf> defines a macro and three types that control input from and output to character
sequences.

2 The macro is:

— EOF, which expands to a negative integral constant expression, representable as typeint , that is
returned by several functions to indicate end-of-file (no more input from an input sequence or no more
output permitted to an output sequence), or to indicate an invalid return value.86)

[lib.streamoff]17.4.2.1 Typestreamoff

Box 142
Library WG issue: Jerry Schwarz, September 28, 1993

[was 17.4.1.6.2]: the reference to ‘‘streamoff that represents the position infp ’’ doesn’t make sense. _ ___

_ ___

typedef T1 streamoff;

1 The typestreamoff is a synonym for one of the signed basic integral typesT1 whose representation has
at least as many bits as typelong . It is used to represent:

— a signed displacement, measured in bytes, from a specified position within a sequence;

— an absolute position within a sequence, not necessarily measured in uniform units.

2 In the second case, the value(streamoff)(-1) indicates an invalid position, or a position that cannot
be represented as a value of typestreamoff .

[lib.streampos]17.4.2.2 Classstreampos

86)This macro is also defined, with the same value and meaning, in<stdio.h> .

17– 60 Library DRAFT: 25 January 1994 17.4.2.2 Classstreampos

Box 143
Library WG issue: Jerry Schwarz, January 3, 1994

[was 17.4.1.6.2]:
Bill has a lot more experience withfpos_t than I do, but the
reference to "streamoff that represents the position infp "
doesn’t make sense to me. I thought thatfpos_t ’s could be
magic cookies. What is important is the identity

long(streampos(n)) == n
Is it really possible in general to add an offset to anfpos_t
without having a file to which it is attached?

Even if it is possible to do this arithmetic forfpos_t , it isn’t
necessarily the case for arbitrarystreambuf ’s. In particular it
isn’t possible for thembstreambuf class proposed in x3j16/93-
0125.

The immediate problem is solved, but there is still a lot of discussion of adding offsets tofpos_t ’s. This
isn’t an operation that the C standard allows, and I think it is a mistake to go beyond the C standard here.
I’m not sure of the operational consequence of what Bill is doing. _ __

_ __

Box 144
Library WG issue: Jerry Schwarz, January 3, 1994

[was 17.4.1.6] streampos:This is a substantial change from rev 7.

I think what Rev 7 is trying to say is more like
class streampos {

union { fpos_t fp; long n; };
friend class filebuf ; // so it can get at fp

public:
streampos(long i) { n = i; }
operator long() { return n; }

};

The draft usesstreamoff where I have long . I don’t think there is a guarantee that
sizeof(streamoff) is at leastsizeof(long) so there is a problem. (E.g.stringbuf stores
size_t ’s in streampos ’s) _ __

_ __

1 In this subclause, the type namefpos_t is a synonym for the typefpos_t defined in<stdio.h> .

17.4.2.2 Classstreampos DRAFT: 25 January 1994 Library 17– 61

class streampos {
public:

streampos(streamoff off = 0);
streamoff offset() const;
streamoff operator-(streampos& rhs);
streampos& operator+=(streamoff off);
streampos& operator-=(streamoff off);
streampos operator+(streamoff off);
streampos operator-(streamoff off);
int operator==(streampos& rhs) const;
int operator!=(streampos& rhs) const;

private:
// streamoff pos ; exposition only
// fpos_t fp ; exposition only
};

2 The classstreampos describes an object that can store all the information necessary to restore an arbi-
trary sequence, controlled by the Standard C + + library, to a previousstream positionand conversion
state.87) For the sake of exposition, the data it stores is presented here as:

— streamoff pos , specifies the absolute position within the sequence;

— fpos_t fp , specifies the stream position and conversion state in the implementation-dependent form
required by functions declared in<stdio.h> .

3 It is unspecified how these two member objects combine to represent a stream position.

[lib.cons.streampos]17.4.2.2.1streampos::streampos(streamoff)

Box 145
Library WG issue: Jerry Schwarz, September 28, 1993

[was 17.4.1.6.1]streampos::streampos talks about conversion states for multibyte. _ ___

_ ___

streampos(streamoff off = 0);

1 Constructs an object of classstreampos , initializing pos to zero andfp to the stream position at the
beginning of the sequence, with the conversion state at the beginning of a new multibyte sequence in the
initial shift state.88) The constructor then evaluates the expression*this += pos .

[lib.streampos::offset]17.4.2.2.2streampos::offset()

streamoff offset() const;

1 Determines the value of typestreamoff that represents the stream position stored inpos andfp , if pos-
sible, and returns that value. Otherwise, the function returns(streamoff)(-1) . For a sequence requir-
ing a conversion state, even a representable value of typestreamoff may not supply sufficient informa-
tion to restore the stored stream position.

87) The conversion state is used for sequences that translate between wide-character and generalized multibyte encoding, as described
in Amendment 1 to the C Standard.
88)The next character to read or write is the first character in the sequence.

17– 62 Library DRAFT: 25 January 1994 17.4.2.2.3
streampos::operator-(streampos&)

[lib.streampos::op-.sp]17.4.2.2.3streampos::operator-(streampos&)

streamoff operator-(streampos& rhs);

1 Determines the value of typestreamoff that represents the difference in stream positions between
*this andrhs , if possible, and returns that value. (If*this is a stream position nearer the beginning of
the sequence thanrhs , the difference is negative.) Otherwise, the function returns(streamoff)(-1) .
For a sequence that does not represent stream positions in uniform units, even a representable value may
not be meaningful.

[lib.streampos::op+=]17.4.2.2.4streampos::operator+=(streamoff)

Box 146
Library WG issue: Jerry Schwarz, January 3, 1994

At any rate, the wording needs to be clarified. E.g.
streampos& streampos::operator+=(streampos& rhs)

Adds off to the stream offset stored inpos andfp , if possible,
and replaces the stored value. Otherwise ...

The problem is that this wording seems to say that if you can’t add the offset to fp you take the otherwise. _ __

_ __

streampos& operator+=(streamoff off);

1 Addsoff to the stream position stored inpos andfp , if possible, and replaces the stored values. Other-
wise, the function stores an invalid stream position inpos andfp . For a sequence that does not represent
stream positions in uniform units, the resulting stream position may not be meaningful. The function
returns*this .

[lib.streamos::op-=]17.4.2.2.5streampos::operator-=(streamoff)

streampos& operator-=(streamoff off);

1 Subtractsoff from the stream position stored inpos and fp , if possible, and replaces the stored value.
Otherwise, the function stores an invalid stream position inpos andfp . For a sequence that does not rep-
resent stream positions in uniform units, the resulting stream position may not be meaningful. The function
returns*this .

[lib.streampos::op+]17.4.2.2.6streampos::operator+(streamoff)

streampos operator+(streamoff off);

1 Returnsstreampos(*this) += off .

[lib.streampos::op-.off]17.4.2.2.7streampos::operator-(streamoff)

streampos operator-(streamoff off);

1 Returnsstreampos(*this) -= off .

[lib.streampos::op==]17.4.2.2.8streampos::operator==(streampos&)

int operator==(streampos& rhs) const;

1 Compares the stream position stored in*this to the stream position stored inrhs , and returns a nonzero
value if the two correspond to the same position within a file or if both store an invalid stream position.

17.4.2.2.9 DRAFT: 25 January 1994 Library 17– 63
operator!=(streampos&)

[lib.op!=.streampos]17.4.2.2.9operator!=(streampos&)

int operator!=(streampos& rhs) const;

1 Returns a nonzero value if!(*this == rhs) .

[lib.streambuf]17.4.2.3 Classstreambuf

Box 147
Library WG issue: Jerry Schwarz, January 3, 1994

Rev 7 also contained an explicit statement that except where explicitly noted none of the istream members
call pbackfail, seekoff, or seekpos . This is an important constraint.

The draft now says ‘‘All input characters are obtained or extracted by calls to the function signatures
sb.sbumpc(), sb.sgetc(), sputbackc() ’’.

Perhaps that sentence is intended to address this issue, but it doesn’t. Note that what is important is the vir-
tuals that might be called, not the non-virtuals. And note that Rev 7 explicitly prohibit pbackfail from
being called. That was deliberate. _ __

_ __

Box 148
Library WG issue: Jerry Schwarz, January 3, 1994

[was 17.4.1.8.]: Rev 7 defined a bunch of terms like ‘‘extracting a character.’’ I can’t find the equivalent
here. In specifying members of istream,Library use phrases like ‘‘characters are read .. until end-of-file’’
without ever defining them (at least as far as I can find.) In particular Rev 7’s definitions specified what
happens when a virtual throws an exception, and I can’t find that inLibrary.

This is still not fixed. As far as I can determine, the draft doesn’t say what happens when a virtual throws
an exception. _ __

_ __

Box 149
Library WG issue: Jerry Schwarz, January 3, 1994

[was 17.4.1.7] streambuf: This is only an editorial point, but I think it is important.Library says ‘‘stream
classes whose object each control two character sequences or streams’’. It then uses ‘‘stream’’ almost
exclusively in the sequel. I think this is wrong. We already have two notions of ‘‘stream’’ in the standard.
The one we inherited from the C discussion of files, and the classes istream and ostream. Especially since
Library generally expands the class names (e.g. it refers to ‘‘stream buffers’’ where I would have written
streambuf) there is bound to be confusion
...

and istream associated with the streambuf.
I prefer using ‘‘sequence’’ instead of ‘‘stream’’.

The more I look at this, the less I like this method of describing streambuf’s. My point about the use of
‘‘stream’’ has not been addressed. _ __

_ __

17– 64 Library DRAFT: 25 January 1994 17.4.2.3 Classstreambuf

class streambuf {
public:

virtual ~streambuf();
streampos pubseekoff(streamoff off , ios::seekdir way,

ios::openmode which = ios::in | ios::out);
// streampos pubseekoff(streamoff off , ios::seek_dir way,
// ios::open_mode which = ios::in | ios::out); optional

streampos pubseekpos(streampos sp ,
ios::openmode which = ios::in | ios::out);

// streampos pubseekpos(streampos sp ,
// ios::open_mode which = ios::in | ios::out); optional

streambuf* pubsetbuf(char* s, int n);
int pubsync();
int sbumpc();
int sgetc();
int sgetn(char* s, int n);
int snetxc();
int sputbackc(char c);
int sungetc();
int sputc(int c);
int sputn(const char* s, int n);

protected:
streambuf();
char* eback() const;
char* gptr() const;
char* egptr() const;
void gbump(int n);
void setg(char* gbeg_arg , char* gnext_arg , char* gend_arg);
char* pbase() const;
char* pptr() const;
char* epptr() const;
void pbump(int n);
void setp(char* pbeg_arg , char* pend_arg);
virtual int overflow(int c = EOF);
virtual int pbackfail(int c = EOF);
virtual int underflow();
virtual int uflow();
virtual int xsgetn(char* s, int n);
virtual int xsputn(const char* s, int n);
virtual streampos seekoff(streamoff off , ios::seekdir way,

ios::openmode which = ios::in | ios::out);
virtual streampos seekpos(streampos sp ,

ios::openmode which = ios::in | ios::out);
virtual streambuf* setbuf(char* s, int n);
virtual int sync();

private:
// char* gbeg ; exposition only
// char* gnext ; exposition only
// char* gend ; exposition only
// char* pbeg ; exposition only
// char* pnext ; exposition only
// char* pend ; exposition only
};

1 The classstreambuf serves as an abstract base class for deriving variousstream bufferswhose objects
each control two character sequences:

— a (single-byte) character input sequence;

— a (single-byte) character output sequence.

17.4.2.3 Classstreambuf DRAFT: 25 January 1994 Library 17– 65

2 Stream buffers can impose various constraints on the sequences they control. Some constraints are:

— The controlled input sequence can be not readable.

— The controlled output sequence can be not writable.

— The controlled sequences can be associated with the contents of other representations for character
sequences, such as external files.

— The controlled sequences can support operationsdirectly to or from associated sequences.

— The controlled sequences can impose limitations on how the program can read characters from a
sequence, write characters to a sequence, put characters back into an input sequence, or alter the stream
position.

3 Each sequence is characterized by three pointers which, if non-null, all point into the same array object.
The array object represents, at any moment, a (sub)sequence of characters from the sequence. Operations
performed on a sequence alter the values stored in these pointers, perform reads and writes directly to or
from associated sequences, and alter the stream position and conversion state as needed to maintain this
subsequence relationship. The three pointers are:

— thebeginning pointer,or lowest element address in the array (calledxbeg here);

— the next pointer,or next element address that is a current candidate for reading or writing (called
xnext here);

— theend pointer,or first element address beyond the end of the array (calledxend here).

4 The following semantic constraints shall always apply for any set of three pointers for a sequence, using the
pointer names given immediately above:

— If xnext is not a null pointer, thenxbeg andxend shall also be non-null pointers into the same array,
as described above.

— If xnext is not a null pointer andxnext < xend for an output sequence, then awrite positionis
available. In this case,* xnext shall be assignable as the next element to write (to put, or to store a
character value, into the sequence).

— If xnext is not a null pointer andxbeg < xnext for an input sequence, then aputback positionis
available. In this case,xnext [-1] shall have a defined value and is the next (preceding) element to
store a character that is put back into the input sequence.

— If xnext is not a null pointer andxnext < xend for an input sequence, then aread positionis
available. In this case,* xnext shall have a defined value and is the next element to read (to get, or to
obtain a character value, from the sequence).

5 For the sake of exposition, the maintained data is presented here as:

— char* gbeg , the beginning pointer for the input sequence;

— char* gnext , the next pointer for the input sequence;

— char* gend , the end pointer for the input sequence;

— char* pbeg , the beginning pointer for the output sequence;

— char* pnext , the next pointer for the output sequence;

— char* pend , the end pointer for the output sequence.

17– 66 Library DRAFT: 25 January 1994 17.4.2.3.1
streambuf::~streambuf()

[lib.des.streambuf]17.4.2.3.1streambuf::~streambuf()

virtual ~streambuf();

1 Destroys an object of classstreambuf .

[lib.streambuf::pubseekoff]17.4.2.3.2streambuf::pubseekoff(streamoff,
ios::seekdir, ios::openmode)

streampos pubseekoff(streamoff off , ios::seekdir way,
ios::openmode which = ios::in | ios::out);

1 Returnsseekoff(off , way, which) .

[lib.streambuf::pubseekoff.old]17.4.2.3.3streambuf::pubseekoff(streamoff,
ios::seek_dir, ios::open_mode)

// streampos pubseekoff(streamoff off , ios::seek_dir way,
// ios::open_mode which = ios::in | ios::out); optional

1 Returnspubseekoff(off , (ios::seekdir) way, (ios::openmode) which) .

[lib.streambuf::pubseekpos]17.4.2.3.4streambuf::pubseekpos(streampos,
ios::openmode)

streampos pubseekpos(streampos sp ,
ios::openmode which = ios::in | ios::out);

1 Returnsseekpos(sp , which) .

[lib.streambuf::pubseekpos.old]17.4.2.3.5streambuf::pubseekpos(streampos,
ios::open_mode)

// streampos pubseekpos(streampos sp ,
// ios::open_mode which = ios::in | ios::out); optional

1 Returnspubseekpos(sp , (ios::openmode) which) .

[lib.streambuf::pubsetbuf]17.4.2.3.6streambuf::pubsetbuf(char*, int)

streambuf* pubsetbuf(char* s, int n);

1 Returnssetbuf(s, n) .

[lib.streambuf::pubsync]17.4.2.3.7streambuf::pubsync()

int pubsync();

1 Returnssync() .

[lib.streambuf::sbumpc]17.4.2.3.8streambuf::sbumpc()

int sbumpc();

1 If the input sequence does not have a read position available, returnsuflow() . Otherwise, the function
returns(unsigned char)* gnext ++.

17.4.2.3.9streambuf::sgetc() DRAFT: 25 January 1994 Library 17– 67

[lib.streambuf::sgetc]17.4.2.3.9streambuf::sgetc()

int sgetc();

1 If the input sequence does not have a read position available, returnsunderflow() . Otherwise, the func-
tion returns(unsigned char)* gnext .

[lib.streambuf::sgetn]17.4.2.3.10streambuf::sgetn(char*, int)

int sgetn(char* s, int n);

1 Returnsxsgetn(s, n) .

[lib.streambuf::snextc]17.4.2.3.11streambuf::snextc()

int snetxc();

1 Calls sbumpc() and, if that function returnsEOF, returns EOF. Otherwise, the function returns
sgetc() .

[lib.streambuf::sputbackc]17.4.2.3.12streambuf::sputbackc(char)

int sputbackc(char c);

1 If the input sequence does not have a putback position available, or ifc != gnext [-1] , returns
pbackfail(c) . Otherwise, the function returns(unsigned char)*-- gnext .

[lib.streambuf::sungetc]17.4.2.3.13streambuf::sungetc()

int sungetc();

1 If the input sequence does not have a putback position available, returnspbackfail() . Otherwise, the
function returns(unsigned char)*-- gnext .

[lib.streambuf::sputc]17.4.2.3.14streambuf::sputc(int)

int sputc(int c);

1 If the output sequence does not have a write position available, returnsoverflow(c) . Otherwise, the
function returns(unsigned char)(* pnext ++ = c) .

[lib.streambuf::sputn]17.4.2.3.15streambuf::sputn(const char*, int)

int sputn(const char* s, int n);

1 Returnsxsputn(s, n) .

[lib.cons.streambuf]17.4.2.3.16streambuf::streambuf()

Box 150
Library WG issue: Jerry Schwarz, September 28, 1993

[was 17.4.1.7.17]:streambuf copy constructor explicitly undefined. _ __

_ __

streambuf();

17– 68 Library DRAFT: 25 January 1994 17.4.2.3.16
streambuf::streambuf()

1 Constructs an object of classstreambuf() and initializes all its pointer member objects to null point-
ers.89)

[lib.streambuf::eback]17.4.2.3.17streambuf::eback()

char* eback() const;

1 Returnsgbeg .

[lib.streambuf::gptr]17.4.2.3.18streambuf::gptr()

char* gptr() const;

1 Returnsgnext .

[lib.streambuf::egptr]17.4.2.3.19streambuf::egptr()

char* egptr() const;

1 Returnsgend .

[lib.streambuf::gbump]17.4.2.3.20streambuf::gbump(int)

Box 151
Library WG issue: Jerry Schwarz, September 28, 1993

[was 17.4.1.7.5]:gbump out of range should be undefined. _ __

_ __

void gbump(int n);

1 Assignsgnext + n to gnext .

[lib.streambuf::setg]17.4.2.3.21streambuf::setg(char*, char*, char*)

void setg(char* gbeg_arg , char* gnext_arg , char* gend_arg);

1 Assignsgbeg_arg to gbeg , gnext_arg to gnext , andgend_arg to gend .

[lib.streambuf::pbase]17.4.2.3.22streambuf::pbase()

char* pbase() const;

1 Returnspbeg .

[lib.streambuf::pptr]17.4.2.3.23streambuf::pptr()

char* pptr() const;

1 Returnspnext .

89) The default constructor is protected for classstreambuf to assure that only objects for classes derived from this class may be
constructed.

17.4.2.3.24streambuf::epptr() DRAFT: 25 January 1994 Library 17– 69

[lib.streambuf::epptr]17.4.2.3.24streambuf::epptr()

char* epptr() const;

1 Returnspend .

[lib.streambuf::pbump]17.4.2.3.25streambuf::pbump(int)

void pbump(int n);

1 Assignspnext + n to pnext .

[lib.streambuf::setp]17.4.2.3.26streambuf::setp(char*, char*)

void setp(char* pbeg_arg , char* pend_arg);

1 Assignspbeg_arg to pbeg , pbeg_arg to pnext , andpend_arg to pend .

[lib.streambuf::overflow]17.4.2.3.27streambuf::overflow(int)

Box 152
Library WG issue: Jerry Schwarz, January 3, 1994

I want to emphasize (D). Even if Bill doesn’t like my version of the protocol, I think it is essentially that
there be some indication of what has to be specified to specialize it. _ __

_ __

Box 153
Library WG issue: Jerry Schwarz, January 3, 1994

D) Most importantly, I have indicated exactly what information must be supplied in order to specialize the
protocol. _ __

_ __

Box 154
Library WG issue: Jerry Schwarz, January 3, 1994

C) The draft’s second case doesn’t say anything about how pbeg and pnext are modified. Since it doesn’t
say they presumably must be left unchanged, but that is obviously a mistake. _ __

_ __

Box 155
Library WG issue: Jerry Schwarz, January 3, 1994

B) In the draft’s first case, the protocol doesn’t say anything about what happens when an output position is
made available. _ __

_ __

17– 70 Library DRAFT: 25 January 1994 17.4.2.3.27
streambuf::overflow(int)

Box 156
Library WG issue: Jerry Schwarz, January 3, 1994

In any event the protocol in the draft has some defects:

A) In case c==EOF, the draft doesn’t allow the function
to fail. My protocol does. _ __

_ __

17.4.2.3.27 DRAFT: 25 January 1994 Library 17– 71
streambuf::overflow(int)

Box 157
Library WG issue: Jerry Schwarz, January 3, 1994

[was 17.4.1.7.12] overflow:
Rev 7 simply requires the return is notEOFif c==EOF.
Requiring it to be 0 is a change.

More generally I thinkLibrary over specifies the protocol in
many places. Since this is the contract with user defined virtuals
I think over specification here is wrong.

The only obligation ofoverflow(c) is to eventually append
the characters betweenpbeg andpptr andc to the output
sequence followed byc .

It is not (for example) required to return immediately ifc==EOF.

Nor is it required to putc into the array even if it makes an
output position available.

I think Library over specified all the virtuals. I consider this a
serious issue.

The new draft has modified the description of overflow, but I think it still overspecifies in some ways, and
under specifies in others. Also it doesn’t make it clear that what is being described is a ‘‘protocol’’, that
derived classes are required to implement. It hasn’t been solicited, but here is my version of the underflow
protocol (using the vocabulary of the draft).

The pending sequence of characters is defined as the
concatenation of

a) If pbeg is NULL then the empty sequence otherwise
pnext-pbeg characters beginning atpbeg .

b) if c==EOF then the empty sequence otherwise the
sequence consisting ofc .

overflow may consume some initial subsequence of the pending
sequence. Consuming a character means either appending it to
the associated output stream or discarding it.

In case some characters of the pending sequence have not been
appended to the associated output stream, letr be the number
of characters in the pending sequence not appended to the
output stream. Thenpbeg andpnext must be set so that

pnext-pbeg==r and ther characters starting atpbeg are the
same as the subsequence that has not been appended to the
associated output stream.

In case all characters of the pending sequence have been
appended to the associated output stream, then either

pbeg is set toNULL, orpbeg andpnext are both set to
(the same) non-NULLvalue.

17– 72 Library DRAFT: 25 January 1994 17.4.2.3.27
streambuf::overflow(int)

The function may fail if either appending some character
to the associated output stream fails or for some reason
[I have in mind out of memory] it is unable to establish

pbeg andpnext according to the above rules.

If the function fails it may signal that by returning
EOFor throwing an exception.

Otherwise the function returns some value (other than
EOF) to indicate success

To specialize this proposal you must specify.

a) What possible subsequences will be disposed of.
b) When are characters discarded and when are they

appended to the associated output stream.
c) The associated output stream. (This need not

be specified if
d) How failure is signaled.
e) The effect, if any ongbeg, gnext, gend

I believe this protocol is easier to work with than the one in the draft. _ __

Box 158
Library WG issue: Jerry Schwarz, September 28, 1993

[was 17.4.1.7.12]:overflow should not be required to putc into the buffer even if it makes a write posi-
tion available. _ __

_ __

virtual int overflow(int c = EOF);

1 Appends the character designated byc to the output sequence, if possible, in one of three ways:

— If c != EOF and if either the output sequence has a write position available or the function makes a
write position available, the function assignsc to * pnext ++. The function signals success by return-
ing (unsigned char) c .

— If c != EOF and if the function can append a character directly to the associated output sequence, the
function appendsc directly to the associated output sequence. Ifpbeg < pnext , the pnext -
pbeg characters beginning atpbeg shall be first appended directly to the associated output sequence,
beginning with the character atpbeg . The function signals success by returning(unsigned
char) c .

— If c == EOF , there is no character to append. The function signals success by returning a value other
thanEOF.

2 If the function can succeed in more than one of these ways, it is unspecified which way is chosen. The
function can alter the number of write positions available as a result of any call. How (or whether) the
function makes a write position available or appends a character directly to the output sequence is defined
separately for each class derived fromstreambuf in this clause.

3 The function returnsEOFto indicate failure.

17.4.2.3.27 DRAFT: 25 January 1994 Library 17– 73
streambuf::overflow(int)

4 The default behavior is to returnEOF.

[lib.streambuf::pbackfail]17.4.2.3.28streambuf::pbackfail(int)

virtual int pbackfail(int c = EOF);

1 Puts back the character designated byc to the input sequence, if possible, in one of five ways:

— If c != EOF , if either the input sequence has a putback position available or the function makes a put-
back position available, and if(unsigned char) c == (unsigned char) gnext [-1] , the
function assignsgnext - 1 to gnext . The function signals success by returning(unsigned
char) c .

— If c != EOF , if either the input sequence has a putback position available or the function makes a put-
back position available, and if the function is permitted to assign to the putback position, the function
assignsc to *-- gnext . The function signals success by returning(unsigned char) c .

— If c != EOF , if no putback position is available, and if the function can put back a character directly
to the associated input sequence, the function puts backc directly to the associate input sequence. The
function signals success by returning(unsigned char) c .

— If c == EOF and if either the input sequence has a putback position available or the function makes a
putback position available, the function assignsgnext - 1 to gnext . The function signals success
by returning(unsigned char) c .

— If c == EOF , if no putback position is available, if the function can put back a character directly to the
associated input sequence, and if the function can determine the characterx immediately before the cur-
rent position in the associated input sequence, the function puts backx directly to the associated input
sequence. The function signals success by returning a value other thanEOF.

2 If the function can succeed in more than one of these ways, it is unspecified which way is chosen. The
function can alter the number of putback positions available as a result of any call. How (or whether) the
function makes a putback position available, puts back a character directly to the input sequence, or deter-
mines the character immediately before the current position in the associated input sequence is defined sep-
arately for each class derived fromstreambuf in this clause.

3 The function returnsEOFto indicate failure.

4 The default behavior is to returnEOF.

[lib.streambuf::underflow]17.4.2.3.29streambuf::underflow()

Box 159
Library WG issue: Jerry Schwarz, January 3, 1994

And it has to be reworded becauseunderflow can now return withgnext not being set. _ ___

_ ___

Box 160
Library WG issue: Jerry Schwarz, January 3, 1994

Footnote 43: ‘‘The public streambuf member functions callunderflow only if the incrementgnext
before returning’’

Must be raised to the body of the text. _ __

_ __

17– 74 Library DRAFT: 25 January 1994 17.4.2.3.29
streambuf::underflow()

Box 161
Library WG issue: Jerry Schwarz, January 3, 1994

[was 17.4.1.7.14]underflow :
The over specification here is really bad. I’ve written
streambuf classes where underflow always guarantees some
minimum amount of characters will be put in the buffer. Thus
it may do lots of stuff even if there is a read position available.

My version ofunderflow :

The pending sequence of characters is defined as the
concatenation of

a) If gnext is non-NULL then thegend-gnext characters
starting atgnext , otherwise the empty sequence

b) Some sequence (possibly empty) of characters read from
the input stream.

If the pending sequence is null then the function fails.

Otherwise the first character of the pending sequence
is called the result character.

The backup sequence is defined as the concatenation of

a) If gbeg is non-NULL then empty, otherwise
thegnext-gbeg characters beginning atgbeg .

b) the result character.

The function sets up thegnext andgend satisfying

a) In case the pending sequence has more than one character
thegend-gnext characters starting atgnext are the
characters in the pending sequence after the result character.

b) If the pending sequence has exactly one character,
thengnext andgend may beNULLor may both be
set to the same non-NULLpointer.

If gbeg andgnext are non-NULL then the function
is not constrained as to their contents, but the
‘‘usual backup condition’’ is that either

a) If the backup sequence contains at leastgnext-gbeg
characters then thegnext-gbeg characters starting
atgbeg agree with the lastgnext-gbeg characters
of the backup sequence.

b) or then characters starting agnext-n agree with
the backup sequence (wheren is the length of the
backup sequence)

17.4.2.3.29 DRAFT: 25 January 1994 Library 17– 75
streambuf::underflow()

To specialize this protocol you must specify

a) How a character is read from the input stream.

b) How many characters are read from the input stream
under various conditions

d) Which alternative for case (b) of the rules for
setting upgnext andgend are

c) Whether the normal backup condition is satisfied.

d) The effect onpbeg,pnext,pend if any _ ___

virtual int underflow();

1 Reads a character from the input sequence, if possible, without moving the stream position past it, as fol-
lows:

— If the input sequence has a read position available the function signals success by returning
(unsigned char)* gnext .

— Otherwise, if the function can determine the characterx at the current position in the associated input
sequence, it signals success by returning(unsigned char) x . If the function makes a read position
available, it also assignsx to * gnext .

2 The function can alter the number of read positions available as a result of any call. How (or whether) the
function makes a read position available or determines the characterx at the current position in the associ-
ated input sequence is defined separately for each class derived fromstreambuf in this clause.

3 The function returnsEOFto indicate failure.

4 The default behavior is to returnEOF.

[lib.streambuf::uflow]17.4.2.3.30streambuf::uflow()

Box 162
Library WG issue: Jerry Schwarz, January 3, 1994

streambuf::uflow is supposed to be defined as

Call underflow(EOF) . If underflow returnsEOF, returnEOF. If there is a read position available
then dogbump(-1) and return(unsigned char)*gnext _ __

_ __

virtual int uflow();

1 Reads a character from the input sequence, if possible, and moves the stream position past it, as follows:

— If the input sequence has a read position available the function signals success by returning
(unsigned char)* gnext ++.

— Otherwise, if the function can read the characterx directly from the associated input sequence, it signals
success by returning(unsigned char) x . If the function makes a read position available, it also
assignsx to * gnext .

17– 76 Library DRAFT: 25 January 1994 17.4.2.3.30streambuf::uflow()

2 The function can alter the number of read positions available as a result of any call. How (or whether) the
function makes a read position available or reads a character directly from the input sequence is defined
separately for each class derived fromstreambuf in this clause.

3 The function returnsEOFto indicate failure.

4 The default behavior is to callunderflow() and, if that function returnsEOFor fails to make a read
position available, returnEOF. Otherwise, the function signals success by returning(unsigned
char)* gnext ++. 90)

[lib.streambuf::xsgetn]17.4.2.3.31streambuf::xsgetn(char*, int)

virtual int xsgetn(char* s, int n);

1 Assigns up ton characters to successive elements of the array whose first element is designated bys . The
characters assigned are read from the input sequence as if by repeated calls tosbumpc() . Assigning stops
when eithern characters have been assigned or a call tosbumpc() would returnEOF. The function
returns the number of characters assigned.91)

[lib.streambuf::xsputn]17.4.2.3.32streambuf::xsputn(const char*, int)

virtual int xsputn(const char* s, int n);

1 Writes up ton characters to the output sequence as if by repeated calls tosputc(c) . The characters writ-
ten are obtained from successive elements of the array whose first element is designated bys . Writing
stops when eithern characters have been written or a call tosputc(c) would returnEOF. The function
returns the number of characters written.

[lib.streambuf::seekoff]17.4.2.3.33streambuf::seekoff(streamoff, ios::seekdir,
ios::openmode)

virtual streampos seekoff(streamoff off , ios::seekdir way,
ios::openmode which = ios::in | ios::out);

1 Alters the stream positions within one or more of the controlled sequences in a way that is defined sepa-
rately for each class derived fromstreambuf in this clause. The default behavior is to return an object of
classstreampos that stores an invalid stream position.

[lib.streambuf::seekpos]17.4.2.3.34streambuf::seekpos(streampos,
ios::openmode)

virtual streampos seekpos(streampos sp ,
ios::openmode which = ios::in | ios::out);

1 Alters the stream positions within one or more of the controlled sequences in a way that is defined sepa-
rately for each class derived fromstreambuf in this clause. The default behavior is to return an object of
classstreampos that stores an invalid stream position.

90) A class derived fromstreambuf can override the virtual member functionunderflow() with a function that returns a value
other thanEOFwithout making a read position available. In that event,streambuf::uflow() must also be overridden since the
default behavior is inadequate.
91) Classes derived fromstreambuf can provide more efficient ways to implementxsgetn andxsputn by overriding these defi-
nitions in the base class.

17.4.2.3.35 DRAFT: 25 January 1994 Library 17– 77
streambuf::setbuf(char*, int)

[lib.streambuf::setbuf]17.4.2.3.35streambuf::setbuf(char*, int)

virtual streambuf* setbuf(char* s, int n);

1 Performs an operation that is defined separately for each class derived fromstreambuf in this clause.

2 The default behavior is to returnthis .

[lib.streambuf::sync]17.4.2.3.36streambuf::sync()

virtual int sync();

1 Synchronizes the controlled sequences with any associated external sources and sinks of characters in a way
that is defined separately for each class derived fromstreambuf in this clause. The function returnsEOF
if it fails. The default behavior is to return zero.

[lib.header.istream]17.4.3 Header<istream>

1 The header<istream> defines a type and a function signature that control input from a stream buffer.

[lib.istream]17.4.3.1 Classistream

17– 78 Library DRAFT: 25 January 1994 17.4.3.1 Classistream

class istream : virtual public ios {
public:

istream(streambuf* sb);
virtual ~istream();
int ipfx(int noskipws = 0);
void isfx();
istream& operator>>(istream& (* pf)(istream&))
istream& operator>>(ios& (* pf)(ios&))
istream& operator>>(char* s);
istream& operator>>(unsigned char* s)
istream& operator>>(signed char* s);
istream& operator>>(char& c);
istream& operator>>(unsigned char& c)
istream& operator>>(signed char& c)
istream& operator>>(short& n);
istream& operator>>(unsigned short& n);
istream& operator>>(int& n);
istream& operator>>(unsigned int& n);
istream& operator>>(long& n);
istream& operator>>(unsigned long& n);
istream& operator>>(float& f);
istream& operator>>(double& f);
istream& operator>>(long double& f);
istream& operator>>(void*& p);
istream& operator>>(streambuf& sb);
int get();
istream& get(char* s, int n, char delim = ’\n’);
istream& get(unsigned char* s, int n, char delim = ’\n’)
istream& get(signed char* s, int n, char delim = ’\n’)
istream& get(char& c);
istream& get(unsigned char& c);
istream& get(signed char& c);
istream& get(streambuf& sb , char delim = ’\n’);
istream& getline(char* s, int n, char delim = ’\n’);
istream& getline(unsigned char* s, int n, char delim = ’\n’)
istream& getline(signed char* s, int n, char delim = ’\n’)
istream& ignore(int n = 1, int delim = EOF);
istream& read(char* s, int n);
istream& read(unsigned char* s, int n)
istream& read(signed char* s, int n)
int peek();
istream& putback(char c);
istream& unget();
int gcount() const;
int sync();

private:
// int chcount ; exposition only
};

1 The classistream defines a number of member function signatures that assist in reading and interpreting
input from sequences controlled by a stream buffer.

2 Two groups of member function signatures share common properties: theformatted input functions(or
extractors) and theunformatted input functions.Both groups of input functions obtain (orextract) input
characters by calling the function signaturessb .sbumpc() , sb .sgetc() , and
sb .sputbackc(char) . If one of these called functions throws an exception, the input function calls
setstate(badbit) and rethrows the exception.

— The formatted input functions are:

17.4.3.1 Classistream DRAFT: 25 January 1994 Library 17– 79

istream& operator>>(char* s);
istream& operator>>(unsigned char* s)
istream& operator>>(signed char* s);
istream& operator>>(char& c);
istream& operator>>(unsigned char& c)
istream& operator>>(signed char& c)
istream& operator>>(short& n);
istream& operator>>(unsigned short& n);
istream& operator>>(int& n);
istream& operator>>(unsigned int& n);
istream& operator>>(long& n);
istream& operator>>(unsigned long& n);
istream& operator>>(float& f);
istream& operator>>(double& f);
istream& operator>>(long double& f);
istream& operator>>(void*& p);
istream& operator>>(streambuf& sb);

— The unformatted input functions are:

int get();
istream& get(char* s, int n, char delim = ’\n’);
istream& get(unsigned char* s, int n, char delim = ’\n’)
istream& get(signed char* s, int n, char delim = ’\n’)
istream& get(char& c);
istream& get(unsigned char& c);
istream& get(signed char& c);
istream& get(streambuf& sb , char delim = ’\n’);
istream& getline(char* s, int n, char delim = ’\n’);
istream& getline(unsigned char* s, int n, char delim = ’\n’)
istream& getline(signed char* s, int n, char delim = ’\n’)
istream& ignore(int n = 1, int delim = EOF);
istream& read(char* s, int n);
istream& read(unsigned char* s, int n)
istream& read(signed char* s, int n)
int peek();
istream& putback(char c);
istream& unget();

3 Each formatted input function begins execution by callingipfx() . If that function returns nonzero, the
function endeavors to obtain the requested input. In any case, the formatted input function ends by calling
isfx() , then returning the value specified for the formatted input function.

4 Some formatted input functions endeavor to obtain the requested input by parsing characters extracted from
the input sequence, converting the result to a value of some scalar data type, and storing the converted value
in an object of that scalar data type. The behavior of such functions is described in terms of the conversion
specification for an equivalent call to the function signaturefscanf(FILE*, const char*, ...) ,
declared in<stdio.h> , with the following alterations:

— The formatted input function extracts characters from a stream buffer, rather than reading them from an
input file.92)

— If flags() & skipws is zero, the function does not skip any leading white space. In that case, if
the next input character is white space, the scan fails.

— If the converted data value cannot be represented as a value of the specified scalar data type, a scan fail-
ure occurs.

92)The stream buffer can, of course, be associated with an input file, but it need not be.

17– 80 Library DRAFT: 25 January 1994 17.4.3.1 Classistream

5 If the scan fails for any reason, the formatted input function callssetstate(failbit) .

6 For conversion to an integral type other than a character type, the function determines the integral conver-
sion specifier as follows:

— If (flags() & basefield) == oct , the conversion specifier iso.

— If (flags() & basefield) == hex , the conversion specifier isx .

— If (flags() & basefield) == 0 , the conversion specifier isi .

7 Otherwise, the integral conversion specifier isd for conversion to a signed integral type, oru for conver-
sion to an unsigned integral type.

8 Each unformatted input function begins execution by callingipfx(1) . If that function returns nonzero,
the function endeavors to extract the requested input. It also counts the number of characters extracted. In
any case, the unformatted input function ends by storing the count in a member object and callingisfx() ,
then returning the value specified for the unformatted input function.

9 For the sake of exposition, the data maintained by an object of classistream is presented here as:

— int chcount , stores the number of characters extracted by the last unformatted input function called
for the object.

[lib.cons.istream]17.4.3.1.1istream::istream()

istream(streambuf* sb);

1 Constructs an object of classistream , assigning initial values to the base class by calling
ios::init(sb) , then assigning zero tochcount .

[lib.des.istream]17.4.3.1.2istream::~istream()

virtual ~istream();

1 Destroys an object of classistream .

[lib.istream::ipfx]17.4.3.1.3istream::ipfx(int)

int ipfx(int noskipws = 0);

1 If good() is nonzero, prepares for formatted or unformatted input. First, iftie() is not a null pointer,
the function callstie()->flush() to synchronize the output sequence with any associated external C
stream. (The calltie()->flush() does not necessarily occur if the function can determine that no syn-
chronization is necessary.) Ifnoskipws is zero andflags() & skipws is nonzero, the function
extracts and discards each character as long asisspace(c) is nonzero for the next available input char-
acterc . The function signatureisspace(int) is declared in<ctype.h> .

2 If, after any preparation is completed,good() is nonzero, the function returns a nonzero value. Other-
wise, it callssetstate(failbit) and returns zero.93)

93)The function signaturesipfx(int) andisfx() can also perform additional implementation-dependent operations.

17.4.3.1.4 istream::isfx() DRAFT: 25 January 1994 Library 17– 81

[lib.istream::isfx]17.4.3.1.4istream::isfx()

void isfx();

1 Returns.

[lib.istream::ext.imanip]17.4.3.1.5istream::operator>>(istream& (*)(istream&))

istream& operator>>(istream& (* pf)(istream&))

1 Returns(* pf)(*this) .94)

[lib.istream::ext.iomanip]17.4.3.1.6istream::operator>>(ios& (*)(ios&))

istream& operator>>(ios& (* pf)(ios&))

1 Returns(istream&)(* pf)(*this) .95)

[lib.istream::ext.str]17.4.3.1.7istream::operator>>(char*)

Box 163

Library WG issue: Jerry Schwarz, January 3, 1994

[was 17.4.1.8.13]
istream extractors

And I don’t understand why each extractor uses a different
format. In Rev 7, all the integral extractors allow the same
representations. Was this a deliberate change?

I still don’t understand this._ __

_ __

Box 164
Library WG issue: Jerry Schwarz, September 28, 1993

[was 17.4.1.8.13]:
Why does each extractor use a different format? ___

istream& operator>>(char* s);

1 A formatted input function, extracts characters and stores them into successive locations of an array whose
first element is designated bys . If width() is greater than zero, the maximum number of characters
storedn is width() ; otherwise it isINT_MAX, defined in<limits.h> .

2 Characters are extracted and stored until any of the following occurs:

— n - 1 characters are stored;

— end-of-file occurs on the input sequence;

— isspace(c) is nonzero for the next available input characterc .

94)See, for example, the function signaturews(istream&) .
95)See, for example, the function signaturedec(ios&) .

17– 82 Library DRAFT: 25 January 1994 17.4.3.1.7
istream::operator>>(char*)

3 The function signatureisspace(int) is declared in<ctype.h> .

4 If the function stores no characters, it callssetstate(failbit) . In any case, it then stores a null char-
acter into the next successive location of the array and callswidth(0) . The function returns*this .

[lib.istream::ext.ustr]17.4.3.1.8istream::operator>>(unsigned char*)

istream& operator>>(unsigned char* s)

1 Returnsoperator>>((char*) s) .

[lib.istream::ext.sstr]17.4.3.1.9istream::operator>>(signed char*)

istream& operator>>(signed char* s);

1 Returnsoperator>>((char*) s) .

[lib.istream::ext.c]17.4.3.1.10istream::operator>>(char&)

istream& operator>>(char& c);

1 A formatted input function, extracts a character, if one is available, and stores it inc . Otherwise, the func-
tion callssetstate(failbit) . The function returns*this .

[lib.istream::ext.uc]17.4.3.1.11istream::operator>>(unsigned char&)

istream& operator>>(unsigned char& c)

1 Returnsoperator>>((char&) c) .

[lib.istream::ext.sc]17.4.3.1.12istream::operator>>(signed char&)

istream& operator>>(signed char& c)

1 Returnsoperator>>((char&) c) .

[lib.istream::ext.si]17.4.3.1.13istream::operator>>(short&)

istream& operator>>(short& n);

1 A formatted input function, converts a signed short integer (with the integral conversion specifier preceded
by h, as inhd for decimal input) if one is available, and stores it inn. The function returns*this .

[lib.istream::ext.usi]17.4.3.1.14istream::operator>>(unsigned short&)

istream& operator>>(unsigned short& n);

1 A formatted input function, converts an unsigned short integer (with the integral conversion specifier pre-
ceded byh, as inhu for decimal input) if one is available, and stores it inn. The function returns*this .

[lib.istream::ext.i]17.4.3.1.15istream::operator>>(int&)

istream& operator>>(int& n);

1 A formatted input function, converts a signed integer (with the integral conversion specifier unqualified, as
in d for decimal input) if one is available, and stores it inn. The function returns*this .

17.4.3.1.16 DRAFT: 25 January 1994 Library 17– 83
istream::operator>>(unsigned int&)

[lib.istream::ext.ui]17.4.3.1.16istream::operator>>(unsigned int&)

istream& operator>>(unsigned int& n);

1 A formatted input function, converts an unsigned integer (with the integral conversion specifier unqualified,
as inu for decimal input) if one is available, and stores it inn. The function returns*this .

[lib.istream::ext.li]17.4.3.1.17istream::operator>>(long&)

istream& operator>>(long& n);

1 A formatted input function, converts a signed long integer (with the integral conversion specifier preceded
by l , as inld for decimal input) if one is available, and stores it inn. The function returns*this .

[lib.istream::ext.uli]17.4.3.1.18istream::operator>>(unsigned long&)

istream& operator>>(unsigned long& n);

1 A formatted input function, converts an unsigned long integer (with the integral conversion specifier pre-
ceded byl , as inlu for decimal input) if one is available, and stores it inn. The function returns*this .

[lib.istream::ext.f]17.4.3.1.19istream::operator>>(float&)

istream& operator>>(float& f);

1 A formatted input function, converts afloat (with the conversion specifierf) if one is available, and
stores it inf . The function returns*this .

[lib.istream::ext.d]17.4.3.1.20istream::operator>>(double&)

istream& operator>>(double& f);

1 A formatted input function, converts adouble (with the conversion specifierlf) if one is available, and
stores it inf . The function returns*this .

[lib.istream::ext.ld]17.4.3.1.21istream::operator>>(long double&)

istream& operator>>(long double& f);

1 A formatted input function, converts along double (with the conversion specifierLf) if one is avail-
able, and stores it inf . The function returns*this .

[lib.istream::ext.ptr]17.4.3.1.22istream::operator>>(void*&)

istream& operator>>(void*& p);

1 A formatted input function, converts a pointer tovoid (with the conversion specifierp) if one is available,
and stores it inp. The function returns*this .

[lib.istream::ext.sb]17.4.3.1.23istream::operator>>(streambuf&)

istream& operator>>(streambuf& sb);

1 A formatted input function, extracts characters from*this and inserts them in the output sequence con-
trolled bysb . Characters are extracted and inserted until any of the following occurs:

— end-of-file occurs on the input sequence;

— inserting in the output sequence fails (in which case the character to be inserted is not extracted);

— an exception occurs (in which case the exception is caught but not rethrown).

17– 84 Library DRAFT: 25 January 1994 17.4.3.1.23
istream::operator>>(streambuf&)

2 If the function inserts no characters, it callssetstate(failbit) . The function returns*this .

[lib.istream::get]17.4.3.1.24istream::get()

Box 165

Library WG issue: Greg Bentz, October 22, 1993

I have been consulting theC + + library draft (X3J16/93-108,WG21/NO315) and I think I have found a state-
ment which is inconsistent with most existing implementations. While that doesn’t say much, it also seems
to go against what I feel is the desired behaviour.

The functions:
istream::get(char *, int, char) (was 17.4.1.8.27)
istream::getline(char *, int, char) (was 17.4.1.8.34)

both declare the following:

‘‘If the function stores no characters, it calls ’setstate(failbit)’.’’

I believe the line should read:

‘‘If the function stores no characters and ’c != delim’, it calls
’setstate(failbit)’.’’

This change, particularly for ’istream::getline(char *, int, char)’, allows line oriented reading of input files
that have ’delim’ terminated lines, some of which may be empty.

If the call ’getline(buf, sizeof(buf), ’0);’ is made when the next character in the input stream is ’0 the cur-
rent wording causes ’failbit’ to be set. The proposed wording allows ’getline’ to return with no characters
in ’buf’, but having consumed the ’0 character.

In support of this proposal I also refer to the "C + + IOStreams Handbook" by Steve Teale (ISBN 0-201-
59641-5) pages 288-290. (example source t6.cpp) Mr. Teale indicates that the proposed wording is, in his
opinion, the correct behaviour._ __

_ __

int get();

1 ∗An unformatted input function, extracts a characterc , if one is available. The function then returns
(unsigned char) c . Otherwise, the function callssetstate(failbit) and then returnsEOF.

[lib.istream::get.str]17.4.3.1.25istream::get(char*, int, char)

istream& get(char* s, int n, char delim = ’\n’);

1 An unformatted input function, extracts characters and stores them into successive locations of an array
whose first element is designated bys . Characters are extracted and stored until any of the following
occurs:

— n - 1 characters are stored;

— end-of-file occurs on the input sequence (in which case the function callssetstate(eofbit));

— c == delim for the next available input characterc (in which casec is not extracted).

17.4.3.1.25 DRAFT: 25 January 1994 Library 17– 85
istream::get(char*, int, char)

2 If the function stores no characters, it callssetstate(failbit) . In any case, it then stores a null char-
acter into the next successive location of the array. The function returns*this .

[lib.istream::get.ustr]17.4.3.1.26istream::get(unsigned char*, int, char)

istream& get(unsigned char* s, int n, char delim = ’\n’)

1 Returnsget((char*) s, n, delim) .

[lib.istream::get.sstr]17.4.3.1.27istream::get(signed char*, int, char)

istream& get(signed char* s, int n, char delim = ’\n’)

1 Returnsget((char*) s, n, delim) .

[lib.istream::get.c]17.4.3.1.28istream::get(char&)

istream& get(char& c);

1 An unformatted input function, extracts a character, if one is available, and assigns it toc . Otherwise, the
function callssetstate(failbit) . The function returns*this .

[lib.istream::get.uc]17.4.3.1.29istream::get(unsigned char&)

istream& get(unsigned char& c);

1 Returnsget((char&) c) .

[lib.istream::get.sc]17.4.3.1.30istream::get(signed char&)

istream& get(signed char& c);

1 Returnsistream::get((char&) c) .

[lib.istream::get.sb]17.4.3.1.31istream::get(streambuf&, char)

istream& get(streambuf& sb , char delim = ’\n’);

1 An unformatted input function, extracts characters and inserts them in the output sequence controlled by
sb . Characters are extracted and inserted until any of the following occurs:

— end-of-file occurs on the input sequence;

— inserting the output sequence fails (in which case the character to be inserted is not extracted);

— c == delim for the next available input characterc (in which casec is not extracted);

— an exception occurs (in which case, the exception is caught but not rethrown).

2 If the function inserts no characters, it callssetstate(failbit) . The function returns*this .

[lib.istream::getline.str]17.4.3.1.32istream::getline(char*, int, char)

istream& getline(char* s, int n, char delim = ’\n’);

1 An unformatted input function, extracts characters and stores them into successive locations of an array
whose first element is designated bys . Characters are extracted and stored until any of the following
occurs:

— n - 1 characters are stored (in which case the function callssetstate(failbit));

17– 86 Library DRAFT: 25 January 1994 17.4.3.1.32
istream::getline(char*, int, char)

— end-of-file occurs on the input sequence (in which case the function callssetstate(eofbit));

— c == delim for the next available input characterc (in which case the input character is extracted
but not stored).

2 If the function stores no characters, it callssetstate(failbit) . In any case, it then stores a null char-
acter into the next successive location of the array. The function returns*this .

[lib.istream::getline.ustr]17.4.3.1.33istream::getline(unsigned char*, int, char)

istream& getline(unsigned char* s, int n, char delim = ’\n’)

1 Returnsgetline((char*) s, n, delim) .

[lib.istream::getline.sstr]17.4.3.1.34istream::getline(signed char*, int, char)

istream& getline(signed char* s, int n, char delim = ’\n’)

1 Returnsgetline((char*) s, n, delim) .

[lib.istream::ignore]17.4.3.1.35istream::ignore(int, int)

istream& ignore(int n = 1, int delim = EOF);

1 An unformatted input function, extracts characters and discards them. Characters are extracted until any of
the following occurs:

— if n != INT_MAX , n characters are extracted

— end-of-file occurs on the input sequence (in which case the function callssetstate(eofbit));

— c == delim for the next available input characterc (in which casec is extracted).

2 The last condition will never occur ifdelim == EOF .

3 The macroINT_MAX is defined in<limits.h> .

4 The function returns*this .

[lib.istream::read.str]17.4.3.1.36istream::read(char*, int)

istream& read(char* s, int n);

1 An unformatted input function, extracts characters and stores them into successive locations of an array
whose first element is designated bys . Characters are extracted and stored until either of the following
occurs:

— n characters are stored;

— end-of-file occurs on the input sequence (in which case the function callssetstate(failbit)).

2 The function returns*this .

[lib.istream::read.ustr]17.4.3.1.37istream::read(unsigned char*, int)

istream& read(unsigned char* s, int n)

1 Returnsread((char*) s, n) .

17.4.3.1.38 DRAFT: 25 January 1994 Library 17– 87
istream::read(signed char*, int)

[lib.istream::read.sstr]17.4.3.1.38istream::read(signed char*, int)

istream& read(signed char* s, int n)

1 Returnsread((char*) s, n) .

[lib.istream::peek]17.4.3.1.39istream::peek()

int peek();

1 An unformatted input function, returns the next available input character, if possible.

2 If good() is zero, the function returnsEOF. Otherwise, it returnsrdbuf()->sgetc() .

[lib.istream::putback]17.4.3.1.40istream::putback(char)

istream& putback(char c);

1 An unformatted input function, callsrdbuf->sputbackc(c) . If that function returnsEOF, the func-
tion callssetstate(badbit) . The function returns*this .

[lib.istream::unget]17.4.3.1.41istream::unget()

istream& unget();

1 An unformatted input function, callsrdbuf->sungetc() . If that function returnsEOF, the function
callssetstate(badbit) . The function returns*this .

[lib.istream::gcount]17.4.3.1.42istream::gcount()

int gcount() const;

1 Returnschcount .

[lib.istream::sync]17.4.3.1.43istream::sync()

int sync();

1 If rdbuf() is a null pointer, returnsEOF. Otherwise, the function callsrdbuf()->pubsync() and, if
that function returnsEOF, callssetstate(badbit) and returnsEOF. Otherwise, the function returns
zero.

[lib.ws]17.4.3.2ws(istream&)

istream& ws(istream& is);

1 Saves a copy ofis.fmtflags , then clearsis .skipws in is.fmtflags . The function then calls
is .ipfx() and is .isfx() , and restoresis.fmtflags to its saved value. The function returns
is .96)

[lib.header.ostream]17.4.4 Header<ostream>

1 The header<ostream> defines a type and several function signatures that control output to a stream
buffer.

96)The effect ofcin >> ws is to skip any white space in the input sequence controlled bycin .

17– 88 Library DRAFT: 25 January 1994 17.4.4.1 Classostream

[lib.ostream]17.4.4.1 Classostream

Box 166

Library WG issue: Jerry Schwarz, January 3, 1994

[was 17.4.1.10] ostream:
AgainLibrary omitts definitions. In particular it is silent on
what happens when exceptions are thrown by virtuals.

Not fixed._ __

_ __

class ostream : virtual public ios {
ostream(streambuf* sb);
virtual ~ostream();
int opfx();
void osfx();
ostream& operator<<(ostream& (* pf)(ostream&));
ostream& operator<<(ios& (* pf)(ios&));
ostream& operator<<(const char* s);
ostream& operator<<(char c);
ostream& operator<<(unsigned char c);
ostream& operator<<(signed char c);
ostream& operator<<(short n);
ostream& operator<<(unsigned short n);
ostream& operator<<(int n);
ostream& operator<<(unsigned int n);
ostream& operator<<(long n);
ostream& operator<<(unsigned long n);
ostream& operator<<(float f);
ostream& operator<<(double f);
ostream& operator<<(long double f);
ostream& operator<<(void* p);
ostream& operator<<(streambuf& sb);
ostream& operator<<(const wchar_t* ws);
ostream& operator<<(wchar_t wc);
ostream& put(char c);
ostream& write(const char* s, int n);
ostream& write(const unsigned char* s, int n);
ostream& write(const signed char* s, int n);
ostream& flush();

};

1 The classostream defines a number of member function signatures that assist in formatting and writing
output to output sequences controlled by a stream buffer.

2 Two groups of member function signatures share common properties: theformatted output functions(or
inserters) and theunformatted output functions.Both groups of output functions generate (orinsert) output
characters by calling the function signaturesb .sputc(int) . If the called functions throws an excep-
tion, the output function callssetstate(badbit) and rethrows the exception.

— The formatted output functions are:

17.4.4.1 Classostream DRAFT: 25 January 1994 Library 17– 89

ostream& operator<<(const char* s);
ostream& operator<<(char c);
ostream& operator<<(unsigned char c);
ostream& operator<<(signed char c);
ostream& operator<<(short n);
ostream& operator<<(unsigned short n);
ostream& operator<<(int n);
ostream& operator<<(unsigned int n);
ostream& operator<<(long n);
ostream& operator<<(unsigned long n);
ostream& operator<<(float f);
ostream& operator<<(double f);
ostream& operator<<(long double f);
ostream& operator<<(void* p);
ostream& operator<<(streambuf* sb);

— The unformatted output functions are:

ostream& put(char c);
ostream& write(const char* s, int n);
ostream& write(const unsigned char* s, int n);
ostream& write(const signed char* s, int n);

3 Each formatted output function begins execution by callingisfx() . If that function returns nonzero, the
function endeavors to generate the requested output. In any case, the formatted output function ends by
callingosfx() , then returning the value specified for the formatted output function.

4 Some formatted output functions endeavor to generate the requested output by converting a value from
some scalar orNTBS type to text form and inserting the converted text in the output sequence. The behavior
of such functions is described in terms of the conversion specification for an equivalent call to the function
signaturefprintf(FILE*, const char*, ...) , declared in<stdio.h> , with the following
alterations:

— The formatted output function inserts characters in a stream buffer, rather than writing them to an output
file.97)

— The formatted output function uses the fill character returned byfill() as the padding character
(rather than the space character for left or right padding, or0 for internal padding).

5 If the operation fails for any reason, the formatted output function callssetstate(badbit) .

6 For conversion from an integral type other than a character type, the function determines the integral con-
version specifier as follows:

— If (flags() & basefield) == oct , the integral conversion specifier iso.

— If (flags() & basefield) == hex , the integral conversion specifier isx . If flags() &
uppercase is nonzero,x is replaced withX.

7 Otherwise, the integral conversion specifier isd for conversion from a signed integral type, oru for conver-
sion from an unsigned integral type.

8 For conversion from a floating-point type, the function determines the floating-point conversion specifier as
follows:

— If (flags() & floatfield) == fixed , the floating-point conversion specifier isf .

97)The stream buffer can, of course, be associated with an output file, but it need not be.

17– 90 Library DRAFT: 25 January 1994 17.4.4.1 Classostream

— If (flags() & floatfield) == scientific , the floating-point conversion specifier ise. If
flags() & uppercase is nonzero,e is replaced withE.

9 Otherwise, the floating-point conversion specifier isg. If flags() & uppercase is nonzero,g is
replaced withG.

10 The conversion specifier has the following additional qualifiers prepended to make a conversion specifica-
tion:

— For conversion from an integral type other than a character type, ifflags() & showpos is nonzero,
the flag+ is prepended to the conversion specification; and ifflags() & showbase is nonzero, the
flag # is prepended to the conversion specification.

— For conversion from a floating-point type, ifflags() & showpos is nonzero, the flag+ is
prepended to the conversion specification; and ifflags() & showpoint is nonzero, the flag# is
prepended to the conversion specification.

— For any conversion, ifwidth() is nonzero, then a field width is specified in the conversion specifica-
tion. The value iswidth() .

— For conversion from a floating-point type, ifflags() & fixed is nonzero or ifprecision() is
greater than zero, then a precision is specified in the conversion specification. The value ispreci-
sion() .

11 Moreover, for any conversion, padding with the fill character returned byfill() behaves as follows:

— If (flags() & adjustfield) == right , no flag is prepended to the conversion specification,
indicating right justification (any padding occurs before the converted text). A fill character occurs
whereverfprintf generates a space character as padding.

— If (flags() & adjustfield) == internal , the flag0 is prepended to the conversion speci-
fication, indicating internal justification (any padding occurs within the converted text). A fill character
occurs whereverfprintf generates a0 as padding.98)

12 Otherwise, the flag- is prepended to the conversion specification, indicating left justification (any padding
occurs after the converted text). A fill character occurs whereverfprintf generates a space character as
padding.

13 Each unformatted output function begins execution by callingopfx() . If that function returns nonzero,
the function endeavors to generate the requested output. In any case, the unformatted output function ends
by callingosfx() , then returning the value specified for the unformatted output function.

[lib.cons.ostream.sb]17.4.4.1.1ostream::ostream(streambuf*)

ostream(streambuf* sb);

1 Constructs an object of classostream , assigning initial values to the base class by calling
ios::init(sb) , then assigning zero tochcount .

[lib.des.ostream]17.4.4.1.2ostream::~ostream()

virtual ~ostream();

1 Destroys an object of classostream .

98)The conversion specification#o generates a leading0 which isnota padding character.

17.4.4.1.3ostream::opfx() DRAFT: 25 January 1994 Library 17– 91

[lib.ostream::opfx]17.4.4.1.3ostream::opfx()

int opfx();

1 If good() is nonzero, prepares for formatted or unformatted output. Iftie() is not a null pointer, the
function callstie()->flush() . It returnsgood() .99)

[lib.ostream::osfx]17.4.4.1.4ostream::osfx()

void osfx();

1 If flags() & unitbuf is nonzero, callsflush() .

[lib.ostream::ins.omanip]17.4.4.1.5ostream::operator<<(ostream& (*)(ostream&))

ostream& operator<<(ostream& (* pf)(ostream&))

1 Returns(* pf)(*this) .100)

[lib.ostream::ins.iomanip]17.4.4.1.6ostream::operator<<(ios& (*)(ios&))

ostream& operator<<(ios& (* pf)(ios&))

1 Returns(ostream&)(* pf)(*this) .101)

[lib.ostream::ins.str]17.4.4.1.7ostream::operator<<(const char*)

ostream& operator<<(const char* s);

1 ∗A formatted output function, converts theNTBS s with the conversion specifiers . The function returns
*this .

[lib.ostream::ins.c]17.4.4.1.8ostream::operator<<(char)

ostream& operator<<(char c);

1 A formatted output function, converts thechar c with the conversion specifierc and a field width of zero.
The stored field width (ios:: wide) is not set to zero. The function returns*this .

[lib.ostream::ins.uc]17.4.4.1.9ostream::operator<<(unsigned char)

ostream& operator<<(unsigned char c)

1 Returnsoperator<<((char) c) .

[lib.ostream::ins.sc]17.4.4.1.10ostream::operator<<(signed char)

ostream& operator<<(signed char c)

1 Returnsoperator<<((char) c) .

99)The function signaturesopfx() andosfx() can also perform additional implementation-dependent operations.
100)See, for example, the function signatureendl(ostream&) .
101)See, for example, the function signature::dec(ios&) .

17– 92 Library DRAFT: 25 January 1994 17.4.4.1.11
ostream::operator<<(short)

[lib.ostream::ins.si]17.4.4.1.11ostream::operator<<(short)

ostream& operator<<(short n);

1 A formatted output function, converts the signed short integern with the integral conversion specifier pre-
ceded byh. The function returns*this .

[lib.ostream::ins.usi]17.4.4.1.12ostream::operator<<(unsigned short)

ostream& operator<<(unsigned short n);

1 A formatted output function, converts the unsigned short integern with the integral conversion specifier
preceded byh. The function returns*this .

[lib.ostream::ins.i]17.4.4.1.13ostream::operator<<(int)

ostream& operator<<(int n);

1 A formatted output function, converts the signed integern with the integral conversion specifier. The func-
tion returns*this .

[lib.ostream::ins.ui]17.4.4.1.14ostream::operator<<(unsigned int)

ostream& operator<<(unsigned int n);

1 A formatted output function, converts the unsigned integern with the integral conversion specifier. The
function returns*this .

[lib.ostream::ins.li]17.4.4.1.15ostream::operator<<(long)

ostream& operator<<(long n);

1 A formatted output function, converts the signed long integern with the integral conversion specifier pre-
ceded byl . The function returns*this .

[lib.ostream::ins.uli]17.4.4.1.16ostream::operator<<(unsigned long)

ostream& operator<<(unsigned long n);

1 A formatted output function, converts the unsigned long integern with the integral conversion specifier
preceded byl . The function returns*this .

[lib.ostream::ins.f]17.4.4.1.17ostream::operator<<(float)

ostream& operator<<(float f);

1 A formatted output function, converts thefloat f with the floating-point conversion specifier. The func-
tion returns*this .

[lib.ostream::ins.d]17.4.4.1.18ostream::operator<<(double)

ostream& operator<<(double f);

1 A formatted output function, converts thedouble f with the floating-point conversion specifier. The
function returns*this .

17.4.4.1.19 DRAFT: 25 January 1994 Library 17– 93
ostream::operator<<(long double)

[lib.ostream::ins.ld]17.4.4.1.19ostream::operator<<(long double)

ostream& operator<<(long double f);

1 A formatted output function, converts thelong double f with the floating-point conversion specifier
preceded byL. The function returns*this .

[lib.ostream::ins.ptr]17.4.4.1.20ostream::operator<<(void*)

ostream& operator<<(void* p);

1 A formatted output function, converts the pointer tovoid p with the conversion specifierp. The function
returns*this .

[lib.ostream::ins.sb]17.4.4.1.21ostream::operator<<(streambuf&)

ostream& operator<<(streambuf& sb);

1 A formatted output function, extracts characters from the input sequence controlled bysb and inserts them
in *this . Characters are extracted and inserted until any of the following occurs:

— end-of-file occurs on the input sequence;

— inserting in the output sequence fails (in which case the character to be inserted is not extracted);

— an exception occurs (in which case, the exception is rethrown).102)

2 If the function inserts no characters, it callssetstate(failbit) . The function returns*this .

[lib.ostream::put]17.4.4.1.22ostream::put(char)

int put(char c);

1 An unformatted output function, inserts the characterc , if possible. The function then returns
(unsigned char) c . Otherwise, the function callssetstate(badbit) . It then returnsEOF.

[lib.ostream::write.str]17.4.4.1.23ostream::write(const char*, int)

ostream& write(const char* s, int n);

1 An unformatted output function, obtains characters to insert from successive locations of an array whose
first element is designated bys . Characters are inserted until either of the following occurs:

— n characters are inserted;

— inserting in the output sequence fails (in which case the function callssetstate(badbit)).

2 The function returns*this .

[lib.ostream::write.ustr]17.4.4.1.24ostream::write(const unsigned char*, int)

ostream& write(const unsigned char* s, int n)

1 Returnswrite((const char*) s, n) .

102) This behavior differs from that foristream::istream& operator>>(streambuf&) , which doesnot rethrow the
exception.

17– 94 Library DRAFT: 25 January 1994 17.4.4.1.25
ostream::write(const signed char*, int)

[lib.ostream::write.sstr]17.4.4.1.25ostream::write(const signed char*, int)

ostream& write(const signed char* s, int n)

1 Returnswrite((const char*) s, n) .

[lib.ostream::flush]17.4.4.1.26ostream::flush()

ostream& flush();

1 If rdbuf() is not a null pointer, callsrdbuf()->pubsync() . If that function returnsEOF, the func-
tion callssetstate(badbit) .

2 The function returns*this .

[lib.endl]17.4.4.2endl(ostream&)

ostream& endl(ostream& os);

1 Callsos .put(’\n’) , thenos .flush() . The function returns*this .103)

[lib.ends]17.4.4.3ends(ostream&)

ostream& ends(ostream& os);

1 Callsos .put(’\0’) . The function returns*this .104)

[lib.flush]17.4.4.4 flush(ostream&)

ostream& flush(ostream& os);

1 Callsos .flush() . The function returns*this .

[lib.header.iomanip]17.4.5 Header<iomanip>

1 The header<iomanip> defines three template classes and several related functions that use these template
classes to provide extractors and inserters that alter information maintained by classios and its derived
classes. It also defines several instantiations of these template classes and functions.

[lib.template.smanip]17.4.5.1 Template classsmanip< T>

template<class T> class smanip {
public:

smanip(ios& (* pf_arg)(ios&, T), T);
// ios& (* pf)(ios&, T); exposition only
// T manarg ; exposition only
};

1 The template classsmanip< T> describes an object that can store a function pointer and an object of type
T. The designated function accepts an argument of this typeT. For the sake of exposition, the maintained
data is presented here as:

— ios& (* pf)(ios&, T) , the function pointer;

— T manarg , the object of typeT.

103)The effect of executingcout << endl is to insert a newline character in the output sequence controlled bycout , then syn-
chronize it with any external file with which it might be associated.
104)The effect of executingostr << ends is to insert a null character in the output sequence controlled byostr . If ostr is an
object of classstrstreambuf , the null character can terminate anNTBS constructed in an array object.

17.4.5.1 Template classsmanip< T> DRAFT: 25 January 1994 Library 17– 95

[lib.cons.smanip.ios]17.4.5.1.1smanip< T>::smanip(ios& (*)(ios&, T), T

smanip(ios& (* pf_arg)(ios&, T), T manarg_arg);

1 Constructs an object of classsmanip< T>, initializing pf to pf_arg andmanarg to manarg_arg .

[lib.ext.smanip]17.4.5.1.2operator>>(istream&, const smanip< T>&)

istream& operator>>(istream& is , const smanip< T>& a);

1 Calls (* a.pf)(is , a.manarg) and catches any exception the function call throws. If the function
catches an exception, it callsis .setstate(ios::failbit) (the exception is not rethrown). The
function returnsis .

[lib.ins.smanip]17.4.5.1.3operator<<(ostream&, const smanip< T>&)

ostream& operator<<(ostream& os , const smanip< T>& a);

1 Calls (* a.pf)(os , a.manarg) and catches any exception the function call throws. If the function
catches an exception, it callsos .setstate(ios::failbit) (the exception is not rethrown). The
function returnsos .

[lib.template.imanip]17.4.5.2 Template classimanip< T>

template<class T> class imanip {
public:

imanip(ios& (* pf_arg)(ios&, T), T);
// ios& (* pf)(ios&, T); exposition only
// T manarg ; exposition only
};

1 The template classimanip< T> describes an object that can store a function pointer and an object of type
T. The designated function accepts an argument of this typeT. For the sake of exposition, the maintained
data is presented here as:

— ios& (* pf)(ios&, T) , the function pointer;

— T manarg , the object of typeT.

[lib.cons.imanip.ios]17.4.5.2.1imanip< T>::imanip(ios& (*)(ios&, T), T

imanip< T>::imanip(ios& (* pf_arg)(ios&, T), T manarg_arg);

1 Constructs an object of classimanip< T>, initializing pf to pf_arg andmanarg to manarg_arg .

[lib.ext.imanip]17.4.5.2.2operator>>(istream&, const imanip< T>&)

istream& operator>>(istream& is , const imanip< T>& a);

1 Calls (* a.pf)(is , a.manarg) and catches any exception the function call throws. If the function
catches an exception, it callsis .setstate(ios::failbit) (the exception is not rethrown). The
function returnsis .

[lib.template.omanip]17.4.5.3 Template classomanip< T>

17– 96 Library DRAFT: 25 January 1994 17.4.5.3 Template classomanip< T>

template<class T> class omanip {
public:

omanip(ios& (* pf_arg)(ios&, T), T);
// ios& (* pf)(ios&, T); exposition only
// T manarg ; exposition only
};

1 The template classomanip< T> describes an object that can store a function pointer and an object of type
T. The designated function accepts an argument of this typeT. For the sake of exposition, the maintained
data is presented here as:

— ios& (* pf)(ios&, T) , the function pointer;

— T manarg , the object of typeT.

[lib.cons.omanip.ios]17.4.5.3.1omanip< T>::omanip(ios& (*)(ios&, T), T

omanip< T>::omanip(ios& (* pf_arg)(ios&, T), T manarg_arg);

1 Constructs an object of classomanip< T>, initializing pf to pf_arg andmanarg to manarg_arg .

[lib.ins.omanip]17.4.5.3.2operator<<(istream&, const omanip< T>&)

ostream& operator<<(ostream& os , const omanip< T>& a);

1 Calls (* a.pf)(os , a.manarg) and catches any exception the function call throws. If the function
catches an exception, it callsos .setstate(ios::failbit) (the exception is not rethrown). The
function returnsos .

[lib.instantiations.of.manipulators]17.4.5.4 Instantiations of manipulators

[lib.resetiosflags]17.4.5.4.1resetiosflags(ios::fmtflags)

smanip<ios::fmtflags> resetiosflags(ios::fmtflags mask);

1 Returnssmanip<ios::fmtflags>(& f , mask) , wheref can be defined as:105)

ios& f (ios& str , ios::fmtflags mask)
{ // reset specified flags

str .setf((ios::fmtflags)0, mask);
return (str);

}

[lib.setiosflags]17.4.5.4.2setiosflags(ios::fmtflags)

smanip<ios::fmtflags> setiosflags(ios::fmtflags mask);

1 Returnssmanip<ios::fmtflags>(& f , mask) , wheref can be defined as:

ios& f (ios& str , ios::fmtflags mask)
{ // set specified flags

str .setf(mask);
return (str);

}

105) The expressioncin >> resetiosflags(ios::skipws) clears ios::skipws in the format flags stored in the
istream objectcin (the same ascin >> noskipws), and the expressioncout << resetiosflags(ios::showbase)
clearsios::showbase in the format flags stored in theostream objectcout (the same ascout << noshowbase).

17.4.5.4.2 DRAFT: 25 January 1994 Library 17– 97
setiosflags(ios::fmtflags)

[lib.setbase]17.4.5.4.3setbase(int)

smanip<int> setbase(int base);

1 Returnssmanip<int>(& f , base) , wheref can be defined as:

ios& f (ios& str , int base)
{ // set basefield

str .setf(n == 8 ? ios::oct : n == 10 ? ios::dec
: n == 16 ? ios::hex : (ios::fmtflags)0, ios::basefield);

return (str);
}

[lib.setfill]17.4.5.4.4setfill(int)

smanip<int> setfill(int c);

1 Returnssmanip<int>(& f , c) , wheref can be defined as:

ios& f (ios& str , int c)
{ // set fill character

str .fill(c);
return (str);

}

[lib.setprecision]17.4.5.4.5setprecision(int)

smanip<int> setprecision(int n);

1 Returnssmanip<int>(& f , n) , wheref can be defined as:

ios& f (ios& str , int n)
{ // set precision

str .precision(n);
return (str);

}

[lib.setw]17.4.5.4.6setw(int)

smanip<int> setw(int n);

1 Returnssmanip<int>(& f , n) , wheref can be defined as:

ios& f (ios& str , int n)
{ // set width

str .width(n);
return (str);

}

[lib.header.strstream]17.4.6 Header<strstream>

1 The header<strstream> defines three types that associate stream buffers with (single-byte) character
array objects and assist reading and writing such objects.

[lib.strstreambuf]17.4.6.1 Classstrstreambuf

17– 98 Library DRAFT: 25 January 1994 17.4.6.1 Classstrstreambuf

class strstreambuf : public streambuf {
public:

strstreambuf(int alsize_arg = 0);
strstreambuf(void* (* palloc_arg)(size_t),

void (* pfree_arg)(void*));
strstreambuf(char* gnext_arg , int n, char* pbeg_arg = 0);
strstreambuf(unsigned char* gnext_arg , int n,

unsigned char* pbeg_arg = 0);
strstreambuf(signed char* gnext_arg , int n,

signed char* pbeg_arg = 0);
strstreambuf(const char* gnext_arg , int n);
strstreambuf(const unsigned char* gnext_arg , int n);
strstreambuf(const signed char* gnext_arg , int n);
virtual ~strstreambuf();
void freeze(int = 1);
char* str();
int pcount();

protected:
// virtual int overflow(int c = EOF); inherited
// virtual int pbackfail(int c = EOF); inherited
// virtual int underflow(); inherited
// virtual int uflow(); inherited
// virtual int xsgetn(char* s, int n); inherited
// virtual int xsputn(const char* s, int n); inherited
// virtual streampos seekoff(streamoff off , ios::seekdir way,
// ios::openmode which = ios::in | ios::out); inherited
// virtual streampos seekpos(streampos sp ,
// ios::openmode which = ios::in | ios::out); inherited
// virtual streambuf* setbuf(char* s, int n); inherited
// virtual int sync(); inherited
private:
// typedef T1 strstate ; exposition only
// static const strstate allocated ; exposition only
// static const strstate constant ; exposition only
// static const strstate dynamic ; exposition only
// static const strstate frozen ; exposition only
// strstate strmode ; exposition only
// int alsize ; exposition only
// void* (* palloc)(size_t); exposition only
// void (* pfree)(void*); exposition only
};

1 The classstrstreambuf is derived fromstreambuf to associate the input sequence and possibly the
output sequence with an object of some character array type, whose elements store arbitrary values. The
array object has several attributes. For the sake of exposition, these are represented as elements of a bit-
mask type (indicated here asT1) calledstrstate . The elements are:

— allocated , set when a dynamic array object has been allocated, and hence should be freed by the
destructor for thestrstreambuf object;

— constant , set when the array object hasconst elements, so the output sequence cannot be written;

— dynamic , set when the array object is allocated (or reallocated) as necessary to hold a character
sequence that can change in length;

— frozen , set when the program has requested that the array object not be altered, reallocated, or freed.

2 For the sake of exposition, the maintained data is presented here as:

— strstate strmode , the attributes of the array object associated with thestrstreambuf object;

— int alsize , the suggested minimum size for a dynamic array object;

17.4.6.1 Classstrstreambuf DRAFT: 25 January 1994 Library 17– 99

— void* (* palloc)(size_t) , points to the function to call to allocate a dynamic array object;

— void (* pfree)(void*) , points to the function to call to free a dynamic array object.

3 Each object of classstrstreambuf has aseekable area,delimited by the pointersseeklow and
seekhigh . If gnext is a null pointer, the seekable area is undefined. Otherwise,seeklow equals
gbeg andseekhigh is eitherpend , if pend is not a null pointer, orgend .

[lib.cons.strstreambuf.i]17.4.6.1.1strstreambuf::strstreambuf(int)

strstreambuf(int alsize_arg = 0);

1 Constructs an object of classstrstreambuf , initializing the base class withstreambuf() , and initial-
izing:

— strmode with dynamic ;

— alsize with alsize_arg ;

— palloc with a null pointer;

— pfree with a null pointer.

[lib.cons.strstreambuf.ff]17.4.6.1.2strstreambuf::strstreambuf(void*
(*)(size_t), void (*)(void*))

strstreambuf(void* (* palloc_arg)(size_t), void (* pfree_arg)(void*));

1 Constructs an object of classstrstreambuf , initializing the base class withstreambuf() , and initial-
izing:

— strmode with dynamic ;

— alsize with an unspecified value;

— palloc with palloc_arg ;

— pfree with pfree_arg .

[lib.cons.strstreambuf.str]17.4.6.1.3strstreambuf::strstreambuf(char*, int,
char*)

strstreambuf(char* gnext_arg , int n, char * pbeg_arg = 0);

1 Constructs an object of classstrstreambuf , initializing the base class withstreambuf() , and initial-
izing:

— strmode with zero;

— alsize with an unspecified value;

— palloc with a null pointer;

— pfree with a null pointer.

2 gnext_arg shall point to the first element of an array object whose number of elementsN is determined
as follows:

— If n > 0 , N is n.

— If n == 0 , N is strlen(gnext_arg) .

17– 100 Library DRAFT: 25 January 1994 17.4.6.1.3
strstreambuf::strstreambuf(char*, int, char*)

— If n < 0 , N is INT_MAX.

3 The function signaturestrlen(const char*) is declared in<string.h> . The macroINT_MAX is
defined in<limits.h> .

4 If pbeg_arg is a null pointer, the function executes:

setg(gnext_arg , gnext_arg , gnext_arg + N);

5 Otherwise, the function executes:

setg(gnext_arg , gnext_arg , pbeg_arg);
setp(pbeg_arg , pbeg_arg + N);

[lib.cons.strstreambuf.ustr]17.4.6.1.4strstreambuf::strstreambuf(unsigned char*,
int, unsigned char*)

strstreambuf(unsigned char* gnext_arg , int n,
unsigned char* pbeg_arg = 0);

1 Behaves the same asstrstreambuf((char*) gnext_arg , n, (char*) pbeg_arg) .

[lib.cons.strstreambuf.sstr]17.4.6.1.5strstreambuf::strstreambuf(signed char*,
int, signed char*)

strstreambuf(signed char* gnext_arg , int n,
signed char* pbeg_arg = 0);

1 Behaves the same asstrstreambuf((char*) gnext_arg , n, (char*) pbeg_arg) .

[lib.cons.strstreambuf.cstr]17.4.6.1.6strstreambuf::strstreambuf(const char*,
int)

Box 167
Library WG issue: Jerry Schwarz, January 3, 1994

strstreambuf::strstreambuf(const char*)

This is not the same as the non-const version. In Rev 7, this is
covered by a short sentence, that says ‘‘stores’’ are not allowed.
What this means in particular is thatputback can’t be allowed to
modify the array.

So we a flag in the ‘‘exposition only’’ section that keeps
track of this and causespbackfail to fail appropriately. ___

strstreambuf(const char* gnext_arg , int n);

1 Behaves the same asstrstreambuf((char*) gnext_arg , n) , except that the constructor also sets
constant in strmode .

17.4.6.1.7 DRAFT: 25 January 1994 Library 17– 101
strstreambuf::strstreambuf(const unsigned char*, int)

[lib.cons.strstreambuf.custr]17.4.6.1.7strstreambuf::strstreambuf(const unsigned
char*, int)

strstreambuf(const unsigned char* gnext_arg , int n);

1 Behaves the same asstrstreambuf((const char*) gnext_arg , n) .

[lib.cons.strstreambuf.csstr]17.4.6.1.8strstreambuf::strstreambuf(const signed
char*, int)

strstreambuf(const signed char* gnext_arg , int n);

1 Behaves the same asstrstreambuf((const char*) gnext_arg , n) .

[lib.des.strstreambuf]17.4.6.1.9strstreambuf::~strstreambuf()

virtual ~strstreambuf();

1 Destroys an object of classstrstreambuf . The function frees the dynamically allocated array object
only if strmode & allocated is nonzero andstrmode & frozen is zero. (Subclause
strstreambuf::overflow describes how a dynamically allocated array object is freed.)

[lib.strstreambuf::freeze]17.4.6.1.10strstreambuf::freeze(int)

void freeze(int freezefl = 1);

1 If strmode & dynamic is nonzero, alters the freeze status of the dynamic array object as follows: If
freezefl is nonzero, the function setsfrozen in strmode . Otherwise, it clearsfrozen in str-
mode.

[lib.strstreambuf::str]17.4.6.1.11strstreambuf::str()

char* str();

1 Calls freeze() , then returns the beginning pointer for the input sequence,gbeg .106)

[lib.strstreambuf::pcount]17.4.6.1.12strstreambuf::pcount()

int pcount() const;

1 If the next pointer for the output sequence,pnext , is a null pointer, returns zero. Otherwise, the function
returns the current effective length of the array object as the next pointer minus the beginning pointer for
the output sequence,pnext - pbeg .

[lib.strstreambuf::overflow]17.4.6.1.13strstreambuf::overflow(int)

106)The return value can be a null pointer.

17– 102 Library DRAFT: 25 January 1994 17.4.6.1.13
strstreambuf::overflow(int)

Box 168
Library WG issue: Jerry Schwarz, January 3, 1994

[was 17.4.3.1]
overflow :

This is essentially editorial. I think the words Library uses
here (and in general describing specializations ofstreambuf) are
wrong.Library says ‘‘Behaves the same asstreambuf::underflow(int)
with the following specific behavior.’’ Butstreambuf::underflow(int)
returnsEOFunconditionally.

WhatLibrary is trying to say is something like ‘‘it implements
the protocol defined forstreambuf::underflow with the fol-
lowing specific behavior.’’

I think the right thing to do is make these descriptions self
contained.

I was wrong here. Sorry. ComparingLibrary with the current draft convinces me that when the function
can be described as a specialization of a protocol it is better to do that. All the repetitions of the protocol in
the current draft mean you have to compare lots of identical verbiage to see how various functions differ
from each other.

But I think it is essential that the protocol itself indicate what needs to be specified in a specialization. _ __

_ __

// virtual int overflow(int c = EOF); inherited

1 Appends the character designated byc to the output sequence, if possible, in one of two ways:

— If c != EOF and if either the output sequence has a write position available or the function makes a
write position available (as described below), the function assignsc to * pnext ++. The function sig-
nals success by returning(unsigned char) c .

— If c == EOF , there is no character to append. The function signals success by returning a value other
thanEOF.

2 The function can alter the number of write positions available as a result of any call.

3 The function returnsEOFto indicate failure.

4 To make a write position available, the function reallocates (or initially allocates) an array object with a suf-
ficient number of elementsn to hold the current array object (if any), plus at least one additional write posi-
tion. How many additional write positions are made available is otherwise unspecified.107) If palloc is
not a null pointer, the function calls(* palloc)(n) to allocate the new dynamic array object. Other-
wise, it evaluates the expressionnew char[n] . In either case, if the allocation fails, the function returns
EOF. Otherwise, it setsallocated in strmode .

5 To free a previously existing dynamic array object whose first element address isp: If pfree is not a null
pointer, the function calls(* pfree)(p) . Otherwise, it evaluates the expressiondelete[] p.

6 If strmode & dynamic is zero, or ifstrmode & frozen is nonzero, the function cannot extend the
array (reallocate it with greater length) to make a write position available.

107)An implementation should consideralsize in making this decision.

17.4.6.1.14 DRAFT: 25 January 1994 Library 17– 103
strstreambuf::pbackfail(int)

[lib.strstreambuf::pbackfail]17.4.6.1.14strstreambuf::pbackfail(int)

// virtual int pbackfail(int c = EOF); inherited

1 Puts back the character designated byc to the input sequence, if possible, in one of three ways:

— If c != EOF , if the input sequence has a putback position available, and if(unsigned char) c
== unsigned char) gnext [-1] , the function assignsgnext - 1 to gnext . The function sig-
nals success by returning(unsigned char) c .

— If c != EOF , if the input sequence has a putback position available, and ifstrmode & constant
is zero, the function assignsc to *-- gnext . The function signals success by returning(unsigned
char) c .

— If c == EOF and if the input sequence has a putback position available, the function assignsgnext
- 1 to gnext . The function signals success by returning(unsigned char) c .

2 If the function can succeed in more than one of these ways, it is unspecified which way is chosen. The
function can alter the number of putback positions available as a result of any call.

3 The function returnsEOFto indicate failure.

[lib.strstreambuf::underflow]17.4.6.1.15strstreambuf::underflow()

// virtual int underflow(); inherited

1 Reads a character from the input sequence, if possible, without moving the stream position past it, as fol-
lows:

— If the input sequence has a read position available the function signals success by returning
(unsigned char)* gnext .

— Otherwise, if the current write next pointerpnext is not a null pointer and is greater than the current
read end pointergend , the function makes a read position available by assigning togend a value
greater thangnext and no greater thanpnext . The function signals success by returning
(unsigned char)* gnext .

2 The function can alter the number of read positions available as a result of any call.

3 The function returnsEOFto indicate failure.

[lib.strstreambuf::uflow]17.4.6.1.16strstreambuf::uflow()

// virtual int uflow(); inherited

1 Behaves the same asstreambuf::uflow(int) .

[lib.strstreambuf::xsgetn]17.4.6.1.17strstreambuf::xsgetn(char*, int)

// virtual int xsgetn(char* s, int n); inherited

1 Behaves the same asstreambuf::xsgetn(char*, int) .

[lib.strstreambuf::xsputn]17.4.6.1.18strstreambuf::xsputn(const char*, int)

// virtual int xsputn(const char* s, int n); inherited

1 Behaves the same asstreambuf::xsputn(char*, int) .

17– 104 Library DRAFT: 25 January 1994 17.4.6.1.19
strstreambuf::seekoff(streamoff, ios::seekdir, ios::openmode)

[lib.strstreambuf::seekoff]17.4.6.1.19strstreambuf::seekoff(streamoff,
ios::seekdir, ios::openmode)

Box 169
Library WG issue: Jerry Schwarz, January 3, 1994

[was 17.4.3.1.15]
strstreambuf::seekoff :

The discussion on the reflector shows that
there is no consensus about what this paragraph should say. I
have a proposal in x3j16/93-0128.

This has been fixed by the vote in San Jose, but in reviewing this paragraph I noticed that the current refers
to seekhigh but doesn’t define it anywhere. _ __

_ __

// virtual streampos seekoff(streamoff off , ios::seekdir way,
// ios::openmode which = ios::in | ios::out); inherited

1 Alters the stream position within one of the controlled sequences, if possible, as described below. The
function returnsstreampos(newoff) , constructed from the resultant offsetnewoff (of typestream-
off), that stores the resultant stream position, if possible. If the positioning operation fails, or if the con-
structed object cannot represent the resultant stream position, the object stores an invalid stream position.

2 If which & ios::in is nonzero, the function positions the input sequence. Otherwise, ifwhich &
ios::out is nonzero, the function positions the output sequence. Otherwise, ifwhich & (ios::in
| ios::out) equalsios::in | ios::out and if way equals eitherios::beg or ios::end ,
the function positions both the input and the output sequences. Otherwise, the positioning operation fails.

3 For a sequence to be positioned, if its next pointer is a null pointer, the positioning operation fails. Other-
wise, the function determinesnewoff in one of three ways:

— If way == ios::beg , newoff is zero.

— If way == ios::cur , newoff is the next pointer minus the beginning pointer (xnext - xbeg).

— If way == ios::end , newoff is the end pointer minus the beginning pointer (xend - xbeg).

4 If newoff + off is less thanseeklow - xbeg , or if seekhigh - xbeg is less thannewoff +
off , the positioning operation fails. Otherwise, the function assignsxbeg + newoff + off to the
next pointerxnext .

[lib.strstreambuf::seekpos]17.4.6.1.20strstreambuf::seekpos(streampos,
ios::openmode)

// virtual streampos seekpos(streampos sp ,
// ios::openmode which = ios::in | ios::out); inherited

1 Alters the stream position within one of the controlled sequences, if possible, to correspond to the stream
position stored insp (as described below). The function returnsstreampos(newoff) , constructed
from the resultant offsetnewoff (of typestreamoff), that stores the resultant stream position, if possi-
ble. If the positioning operation fails, or if the constructed object cannot represent the resultant stream posi-
tion, the object stores an invalid stream position.

2 If which & ios::in is nonzero, the function positions the input sequence. Ifwhich & ios::out
is nonzero, the function positions the output sequence. If the function positions neither sequence, the posi-
tioning operation fails.

17.4.6.1.20 DRAFT: 25 January 1994 Library 17– 105
strstreambuf::seekpos(streampos, ios::openmode)

3 For a sequence to be positioned, if its next pointer is a null pointer, the positioning operation fails. Other-
wise, the function determinesnewoff from sp .offset() . If newoff is an invalid stream position,
has a negative value, or has a value greater thanseekhigh - seeklow , the positioning operation fails.
Otherwise, the function addsnewoff to the beginning pointerxbeg and stores the result in the next
pointerxnext .

[lib.strstreambuf::setbuf]17.4.6.1.21strstreambuf::setbuf(char*, int)

// virtual streambuf* setbuf(char* s, int n); inherited

1 Performs an operation that is defined separately for each class derived fromstrstreambuf .

2 The default behavior is the same as forstreambuf::setbuf(char*, int) .

[lib.strstreambuf::sync]17.4.6.1.22strstreambuf::sync()

// virtual int sync(); inherited

1 Behaves the same asstreambuf::sync() .

[lib.istrstream]17.4.6.2 Classistrstream

class istrstream : public istream {
public:

istrstream();
istrstream(const char* s);
istrstream(const char* s, int n);
istrstream(char* s);
istrstream(char* s, int n);
virtual ~istrstream();
strstreambuf* rdbuf() const;

private:
// strstreambuf sb ; exposition only
};

1 The classistrstream is a derivative ofistream that assists in the reading of objects of class
strstreambuf . It supplies astrstreambuf object to control the associated array object. For the
sake of exposition, the maintained data is presented here as:

— sb , thestrstreambuf object.

[lib.cons.istrstream.cstr]17.4.6.2.1istrstream::istrstream(const char*)

istrstream(const char* s);

1 Constructs an object of classistrstream , initializing the base class withistream(& sb) , and initial-
izing sb with sb (s, 0) . s shall designate the first element of anNTBS.

[lib.cons.istrstream.cstrn]17.4.6.2.2istrstream::istrstream(const char*, int)

istrstream(const char* s, int n);

1 Constructs an object of classistrstream , initializing the base class withistream(& sb) , and initial-
izing sb with sb (s, n) . s shall designate the first element of an array whose length isn elements, and
n shall be greater than zero.

17– 106 Library DRAFT: 25 January 1994 17.4.6.2.3
istrstream::istrstream(char*)

[lib.cons.istrstream.str]17.4.6.2.3istrstream::istrstream(char*)

istrstream(char* s);

1 Constructs an object of classistrstream , initializing the base class withistream(& sb) , and initial-
izing sb with sb ((const char*) s, 0) . s shall designate the first element of anNTBS.

[lib.cons.istrstream.strn]17.4.6.2.4istrstream::istrstream(char*, int)

istrstream(char* s, int n);

1 Constructs an object of classistrstream , initializing the base class withistream(& sb) , and initial-
izing sb with sb ((const char*) s, n) . s shall designate the first element of an array whose length
is n elements, andn shall be greater than zero.

[lib.des.istrstream]17.4.6.2.5istrstream::~istrstream()

virtual ~istrstream();

1 Destroys an object of classistrstream .

[lib.istrstream::rdbuf]17.4.6.2.6istrstream::rdbuf()

strstreambuf* rdbuf() const;

1 Returns&sb .

[lib.ostrstream]17.4.6.3 Classostrstream

class ostrstream : public ostream {
public:

ostrstream();
ostrstream(char* s, int n, openmode mode = out);
virtual ~ostrstream();
strstreambuf* rdbuf() const;
void freeze(int freezefl);
char* str();
int pcount() const;

private:
// strstreambuf sb ; exposition only
};

1 The classostrstream is a derivative ofostream that assists in the writing of objects of class
strstreambuf . It supplies astrstreambuf object to control the associated array object. For the
sake of exposition, the maintained data is presented here as:

— sb , thestrstreambuf object.

[lib.cons.ostrstream]17.4.6.3.1ostrstream::ostrstream()

ostrstream();

1 Constructs an object of classostrstream , initializing the base class withostream(& sb) , and initial-
izing sb with sb () .

17.4.6.3.2 DRAFT: 25 January 1994 Library 17– 107
ostrstream::ostrstream(char*, int, openmode)

[lib.cons.ostrstream.str]17.4.6.3.2ostrstream::ostrstream(char*, int, openmode)

ostrstream(char* s, int n, openmode mode = out);

1 Constructs an object of classostrstream , initializing the base class withostream(& sb) , and initial-
izing sb with one of two constructors:

— If mode & app is zero, thens shall designate the first element of an array ofn elements. The con-
structor issb (s, n, s) .

— If mode & app is nonzero, thens shall designate the first element of an array ofn elements that con-
tains an NTBS whose first element is designated bys . The constructor issb (s, n, s +
::strlen(s)) .

2 The function signaturestrlen(const char*) is declared in<string.h> .

[lib.des.ostrstream]17.4.6.3.3ostrstream::~ostrstream()

virtual ~ostrstream();

1 Destroys an object of classostrstream .

[lib.ostrstream::rdbuf]17.4.6.3.4ostrstream::rdbuf()

strstreambuf* rdbuf() const;

1 Returns&sb .

[lib.ostrstream::freeze]17.4.6.3.5ostrstream::freeze(int)

void freeze(int freezefl = 1);

1 Callssb .freeze(freezefl) .

[lib.ostrstream::str]17.4.6.3.6ostrstream::str()

char* str();

1 Returnssb .str() .

[lib.ostrstream::pcount]17.4.6.3.7ostrstream::pcount()

int pcount() const;

1 Returnssb .pcount() .

[lib.header.sstream]17.4.7 Header<sstream>

1 The header<sstream> defines three types that associate stream buffers with objects of classstring , as
described in subclause_string_.

[lib.stringbuf]17.4.7.1 Classstringbuf

17– 108 Library DRAFT: 25 January 1994 17.4.7.1 Classstringbuf

Box 170
Library WG issue: Jerry Schwarz, January 3, 1994

Formulating the ‘‘as if’’ rule is an interesting exercise. If the sequence is represented bya (i.e. the
sequence is (a[0], a[max]) and the put pointer is atpx and the get pointer is atgx then the rule requires
the pointers to be such that.

a)pbeg==NULL or for all i such that
px-(pnext-pbeg) <= i < px, a[i]==pbeg[i-px]

b) gbeg==NULL or for all i s such that
gx-(gnext-gbeg) <= i < gx+(gend-gbeg), a[i]==gnext[i-px]

c) for anyi such that both

px-(pnext-pbeg) <= i < px

and

gx-(gnext-gbeg) <= i < gx+(gend-gbeg)

pnext+(i-px) == gnext + (i-gx)

If my alternative protocols are accepted, essentially the same conditions are achieved by specializing so that
the input and output streams are represented by

Stream s ;
size_t px;
size_t gx;

I’ll be happy to elaborate on any of the above. _ __

_ __

Box 171
Library WG issue: Jerry Schwarz, January 3, 1994

Why is the array not made a part of the ‘‘exposition only’’ privates? _ __

_ __

Box 172
Library WG issue: Jerry Schwarz, January 3, 1994

There are several (partially related) problems with thestringbuf section.

If I understand it properly, the class is keeping track of the ‘‘current sequence’’ as the characters between
pbeg andpend . It has to be made clear that there is an ‘‘as if’’ rule. Remember you can derive from
stringbuf and find out what its really doing with the various pointers.

The description ofunderflow doesn’t indicate howpbeg is set. Obviously it’s set to the start of the
array, but in standardeze it needs to be said. _ __

_ __

17.4.7.1 Classstringbuf DRAFT: 25 January 1994 Library 17– 109

class stringbuf : public streambuf {
public:

stringbuf(ios::openmode which = ios::in | ios::out);
stringbuf(const string& str ,

ios::openmode which = ios::in | ios::out);
string str() const;
void str(const string& str_arg);

protected:
// virtual int overflow(int c = EOF); inherited
// virtual int pbackfail(int c = EOF); inherited
// virtual int underflow(); inherited
// virtual int uflow(); inherited
// virtual int xsgetn(char* s, int n); inherited
// virtual int xsputn(const char* s, int n); inherited
// virtual streampos seekoff(streamoff off , ios::seekdir way,
// ios::openmode which = ios::in | ios::out); inherited
// virtual streampos seekpos(streampos sp ,
// ios::openmode which = ios::in | ios::out); inherited
// virtual streambuf* setbuf(char* s, int n); inherited
// virtual int sync(); inherited
private:
// ios::openmode mode; exposition only
};

1 The classstringbuf is derived fromstreambuf to associate possibly the input sequence and possibly
the output sequence with a sequence of arbitrary (single-byte) characters. The sequence can be initialized
from, or made available as, an object of classstring .

2 For the sake of exposition, the maintained data is presented here as:

— ios::openmode mode, hasios::in set if the input sequence can be read, andios::out set if
the output sequence can be written.

3 For the sake of exposition, the stored character sequence is described here as an array object.

[lib.cons.stringbuf.m]17.4.7.1.1stringbuf::stringbuf(ios::openmode)

stringbuf(ios::openmode which = ios::in | ios::out);

1 Constructs an object of classstringbuf , initializing the base class withstreambuf() , and initializing
mode with which . The function allocates no array object.

[lib.cons.stringbuf.sm]17.4.7.1.2stringbuf::stringbuf(const string&,
ios::openmode)

stringbuf(const string& str , ios::openmode which = ios::in | ios::out);

1 Constructs an object of classstringbuf , initializing the base class withstreambuf() , and initializing
mode with which .

2 If str .length() is nonzero, the function allocates an array objectx whose length n is
str .length() and whose elementsx[I] are initialized tostr [I] . If which & ios::in is
nonzero, the function executes:

setg(x, x, x + n);

3 If which & ios::out is nonzero, the function executes:

setp(x, x + n);

17– 110 Library DRAFT: 25 January 1994 17.4.7.1.3
stringbuf::~stringbuf()

[lib.des.stringbuf]17.4.7.1.3stringbuf::~stringbuf()

virtual ~stringbuf();

1 Destroys an object of classstringbuf .

[lib.stringbuf::str]17.4.7.1.4stringbuf::str()

string str() const;

1 If mode & ios::in is nonzero andgnext is not a null pointer, returnsstring(gbeg , gend -
gbeg) . Otherwise, ifmode & ios::out is nonzero andpnext is not a null pointer, the function
returnsstring(pbeg , pend - pbeg) . Otherwise, the function returnsstring() .

[lib.stringbuf::str.s]17.4.7.1.5stringbuf::str(const string&)

void str(const string& str_arg);

1 If str_arg .length() is zero, executes:

setg(0, 0, 0);
setp(0, 0);

2 and frees storage for any associated array object. Otherwise, the function allocates an array objectx whose
lengthn is str_arg .length() and whose elementsx[I] are initialized tostr_arg [I] . If which
& ios::in is nonzero, the function executes:

setg(x, x, x + n);

3 If which & ios::out is nonzero, the function executes:

setp(x, x + n);

[lib.stringbuf::overflow]17.4.7.1.6stringbuf::overflow(int)

// virtual int overflow(int c = EOF); inherited

1 Appends the character designated byc to the output sequence, if possible, in one of two ways:

— If c != EOF and if either the output sequence has a write position available or the function makes a
write position available (as described below), the function assignsc to * pnext ++. The function sig-
nals success by returning(unsigned char) c .

— If c == EOF , there is no character to append. The function signals success by returning a value other
thanEOF.

2 The function can alter the number of write positions available as a result of any call.

3 The function returnsEOFto indicate failure.

4 The function can make a write position available only ifmode & ios::out is nonzero. To make a
write position available, the function reallocates (or initially allocates) an array object with a sufficient
number of elements to hold the current array object (if any), plus one additional write position. Ifmode &
ios::in is nonzero, the function alters the read end pointergend to point just past the new write position
(as does the write end pointerpend).

17.4.7.1.7 DRAFT: 25 January 1994 Library 17– 111
stringbuf::pbackfail(int)

[lib.stringbuf::pbackfail]17.4.7.1.7stringbuf::pbackfail(int)

// virtual int pbackfail(int c = EOF); inherited

1 Puts back the character designated byc to the input sequence, if possible, in one of three ways:

— If c != EOF , if the input sequence has a putback position available, and if(unsigned char) c
== unsigned char) gnext [-1] , the function assignsgnext - 1 to gnext . The function sig-
nals success by returning(unsigned char) c .

— If c != EOF , if the input sequence has a putback position available, and ifmode & ios::out is
nonzero, the function assignsc to *-- gnext . The function signals success by returning(unsigned
char) c .

— If c == EOF and if the input sequence has a putback position available, the function assignsgnext
- 1 to gnext . The function signals success by returning(unsigned char) c .

2 If the function can succeed in more than one of these ways, it is unspecified which way is chosen.

3 The function returnsEOFto indicate failure.

[lib.stringbuf::underflow]17.4.7.1.8stringbuf::underflow()

Box 173
Library WG issue: Jerry Schwarz, January 3, 1994

Underflow needs to consider that the sequence might have been extended withoverflow s from its ini-
tial state.

###_lib.stringbuf::seekpos(streampos,.ios::Library WG issue: Jerry Schwarz, January 3, 1994

Also it should be possible to seek the input stream anywhere in the sequence, even if it has been extended.

###_lib.stringbuf::seekpos(streampos,.ios::Library WG issue: Jerry Schwarz, January 3, 1994

Seeking to position 0 should be allowed even when the sequence is empty. _ __

_ __

// virtual int underflow(); inherited

1 If the input sequence has a read position available, signals success by returning(unsigned
char)* gnext . Otherwise, the function returnsEOFto indicate failure.

[lib.stringbuf::uflow]17.4.7.1.9stringbuf::uflow()

// virtual int uflow(); inherited

1 Behaves the same asstreambuf::uflow(int) .

[lib.stringbuf::xsgetn]17.4.7.1.10stringbuf::xsgetn(char*, int)

// virtual int xsgetn(char* s, int n); inherited

1 Behaves the same asstreambuf::xsgetn(char*, int) .

17– 112 Library DRAFT: 25 January 1994 17.4.7.1.11
stringbuf::xsputn(const char*, int)

[lib.stringbuf::xsputn]17.4.7.1.11stringbuf::xsputn(const char*, int)

// virtual int xsputn(const char* s, int n); inherited

1 Behaves the same asstreambuf::xsputn(char*, int) .

[lib.stringbuf::seekoff]17.4.7.1.12stringbuf::seekoff(streamoff, ios::seekdir,
ios::openmode)

// virtual streampos seekoff(streamoff off , ios::seekdir way,
// ios::openmode which = ios::in | ios::out); inherited

1 Alters the stream position within one of the controlled sequences, if possible, as described below. The
function returnsstreampos(newoff) , constructed from the resultant offsetnewoff (of typestream-
off), that stores the resultant stream position, if possible. If the positioning operation fails, or if the con-
structed object cannot represent the resultant stream position, the object stores an invalid stream position.

2 If which & ios::in is nonzero, the function positions the input sequence. Otherwise, ifwhich &
ios::out is nonzero, the function positions the output sequence. Otherwise, ifwhich & (ios::in
| ios::out) equalsios::in | ios::out and if way equals eitherios::beg or ios::end ,
the function positions both the input and the output sequences. Otherwise, the positioning operation fails.

3 For a sequence to be positioned, if its next pointer is a null pointer, the positioning operation fails. Other-
wise, the function determinesnewoff in one of three ways:

— If way == ios::beg , newoff is zero.

— If way == ios::cur , newoff is the next pointer minus the beginning pointer (xnext - xbeg).

— If way == ios::end , newoff is the end pointer minus the beginning pointer (xend - xbeg).

4 If newoff + off is less than zero, or ifxend - xbeg is less thannewoff + off , the positioning
operation fails. Otherwise, the function assignsxbeg + newoff + off to the next pointerxnext .

[lib.stringbuf::seekpos]17.4.7.1.13stringbuf::seekpos(streampos, ios::openmode)

// virtual streampos seekpos(streampos sp ,
// ios::openmode which = ios::in | ios::out); inherited

1 Alters the stream position within one of the controlled sequences, if possible, to correspond to the stream
position stored insp (as described below). The function returnsstreampos(newoff) , constructed
from the resultant offsetnewoff (of typestreamoff), that stores the resultant stream position, if possi-
ble. If the positioning operation fails, or if the constructed object cannot represent the resultant stream posi-
tion, the object stores an invalid stream position.

2 If which & ios::in is nonzero, the function positions the input sequence. Ifwhich & ios::out
is nonzero, the function positions the output sequence. If the function positions neither sequence, the posi-
tioning operation fails.

3 For a sequence to be positioned, if its next pointer is a null pointer, the positioning operation fails. Other-
wise, the function determinesnewoff from sp .offset() . If newoff is an invalid stream position,
has a negative value, or has a value greater thanxend - xbeg , the positioning operation fails. Other-
wise, the function addsnewoff to the beginning pointerxbeg and stores the result in the next pointer
xnext .

17.4.7.1.14 DRAFT: 25 January 1994 Library 17– 113
stringbuf::setbuf(char*, int)

[lib.stringbuf::setbuf]17.4.7.1.14stringbuf::setbuf(char*, int)

// virtual streambuf* setbuf(char* s, int n); inherited

1 Performs an operation that is defined separately for each class derived fromstringbuf .

2 The default behavior is the same as forstreambuf::setbuf(char*, int) .

[lib.stringbuf::sync]17.4.7.1.15stringbuf::sync()

// virtual int sync(); inherited

1 Behaves the same asstreambuf::sync() .

[lib.istringstream]17.4.7.2 Classistringstream

class istringstream : public istream {
public:

istringstream(ios::openmode which = ios::in);
istringstream(const string& str , ios::openmode which = ios::in);
virtual ~istringstream();
stringbuf* rdbuf() const;
string str() const;
void str(const string& str);

private:
// stringbuf sb ; exposition only
};

1 The classistringstream is a derivative ofistream that assists in the reading of objects of class
stringbuf . It supplies astringbuf object to control the associated array object. For the sake of
exposition, the maintained data is presented here as:

— sb , thestringbuf object.

[lib.cons.istringstream.m]17.4.7.2.1istringstream::istringstream(ios::openmode)

istringstream(ios::openmode which = ios::in);

1 Constructs an object of classistringstream , initializing the base class withistream(& sb) , and ini-
tializing sb with sb (which) .

[lib.cons.istringstream.sm]17.4.7.2.2istringstream::istringstream(const string&,
ios::openmode

istringstream(const string& str , ios::openmode which = ios::in);

1 Constructs an object of classistringstream , initializing the base class withistream(& sb) , and ini-
tializing sb with sb (str , which) .

[lib.des.istringstream]17.4.7.2.3istringstream::~istringstream()

virtual ~istringstream();

1 Destroys an object of classistringstream .

17– 114 Library DRAFT: 25 January 1994 17.4.7.2.4
istringstream::rdbuf()

[lib.istringstream::rdbuf]17.4.7.2.4istringstream::rdbuf()

stringbuf* rdbuf() const;

1 Returns&sb .

[lib.istringstream::str]17.4.7.2.5istringstream::str()

string str() const;

1 Returnssb .str() .

[lib.istringstream::str.s]17.4.7.2.6istringstream::str(const string&)

void str(const string& str_arg);

1 Callssb .str(str_arg) .

[lib.ostringstream]17.4.7.3 Classostringstream

class ostringstream : public ostream {
public:

ostringstream(ios::openmode which = ios::out);
ostringstream(const string& str , ios::openmode which = ios::out);
virtual ~ostringstream();
stringbuf* rdbuf() const;
string str() const;
void str(const string& str);

private:
// stringbuf sb ; exposition only
};

1 The classostringstream is a derivative ofostream that assists in the writing of objects of class
stringbuf . It supplies astringbuf object to control the associated array object. For the sake of
exposition, the maintained data is presented here as:

— sb , thestringbuf object.

[lib.cons.ostringstream.m]17.4.7.3.1ostringstream::ostringstream(ios::openmode)

ostringstream(ios::openmode which = ios::out);

1 Constructs an object of classostringstream , initializing the base class withostream(& sb) , and ini-
tializing sb with sb (which) .

[lib.cons.ostringstream.sm]17.4.7.3.2
ostringstream::ostringstream(const string&,
ios::openmode

ostringstream(const string& str , ios::openmode which = ios::out);

1 Constructs an object of classostringstream , initializing the base class withostream(& sb) , and ini-
tializing sb with sb (str , which) .

17.4.7.3.3 DRAFT: 25 January 1994 Library 17– 115
ostringstream::~ostringstream()

[lib.des.ostringstream]17.4.7.3.3ostringstream::~ostringstream()

virtual ~ostringstream();

1 Destroys an object of classostringstream .

[lib.ostringstream::rdbuf]17.4.7.3.4ostringstream::rdbuf()

stringbuf* rdbuf() const;

1 Returns&sb .

[lib.ostringstream::str]17.4.7.3.5ostringstream::str()

string str() const;

1 Returnssb .str() .

[lib.ostringstream::str.s]17.4.7.3.6ostringstream::str(const string&)

void str(const string& str_arg);

1 Callssb .str(str_arg) .

[lib.header.fstream]17.4.8 Header<fstream>

1 The header<fstream> defines six types that associate stream buffers with files and assist reading and
writing files.

2 In this subclause, the type nameFILE is a synonym for the typeFILE defined in<stdio.h> .

[lib.filebuf]17.4.8.1 Classfilebuf

class filebuf : public streambuf {
public:

filebuf();
virtual ~filebuf();
int is_open() const;
filebuf* open(const char* s, ios::openmode mode);

// filebuf* open(const char* s, ios::open_mode mode); optional
filebuf* close();

protected:
// virtual int overflow(int c = EOF); inherited
// virtual int pbackfail(int c = EOF); inherited
// virtual int underflow(); inherited
// virtual int uflow(); inherited
// virtual int xsgetn(char* s, int n); inherited
// virtual int xsputn(const char* s, int n); inherited
// virtual streampos seekoff(streamoff off , ios::seekdir way,
// ios::openmode which = ios::in | ios::out); inherited
// virtual streampos seekpos(streampos sp ,
// ios::openmode which = ios::in | ios::out); inherited
// virtual streambuf* setbuf(char* s, int n); inherited
// virtual int sync(); inherited
private:
// FILE * file ; exposition only
};

1 The classfilebuf is derived fromstreambuf to associate both the input sequence and the output
sequence with an object of typeFILE . TypeFILE is defined in<stdio.h> . For the sake of exposition,
the maintained data is presented here as:

17– 116 Library DRAFT: 25 January 1994 17.4.8.1 Classfilebuf

— FILE * file , points to theFILE associated with the object of classfilebuf .

2 The restrictions on reading and writing a sequence controlled by an object of classfilebuf are the same
as for reading and writing its associated file. In particular:

— If the file is not open for reading or for update, the input sequence cannot be read.

— If the file is not open for writing or for update, the output sequence cannot be written.

— A joint file position is maintained for both the input sequence and the output sequence.

[lib.cons.filebuf]17.4.8.1.1filebuf::filebuf()

filebuf();

1 Constructs an object of classfilebuf , initializing the base class withstreambuf() , and initializing
file to a null pointer.

[lib.des.filebuf]17.4.8.1.2filebuf::~filebuf()

virtual ~filebuf();

1 Destroys an object of classfilebuf . The function callsclose() .

[lib.filebuf::is.open]17.4.8.1.3filebuf::is_open()

int is_open() const;

1 Returns a nonzero value iffile is not a null pointer.

[lib.filebuf::open]17.4.8.1.4filebuf::open(const char*, ios::openmode)

filebuf* open(const char* s, ios::openmode mode);

1 If file is not a null pointer, returns a null pointer. Otherwise, the function calls
streambuf::streambuf() . It then opens a file, if possible, whose name is theNTBS s , by calling
fopen(s, modstr) and assigning the return value tofile . The NTBS modstr is determined from
mode & ~ios::ate as follows:

— ios::in becomes"r" ;

— ios::out | ios::trunc becomes"w" ;

— ios::out | ios::app becomes"a" ;

— ios::in | ios::bin becomes"rb" ;

— ios::out | ios::trunc | ios::bin becomes"wb" ;

— ios::out | ios::app | ios::bin becomes"ab" ;

— ios::in | ios::out becomes"r+" ;

— ios::in | ios::out | ios::trunc becomes"w+" ;

— ios::in | ios::out | ios::app becomes"a+" ;

— ios::in | ios::out | ios::bin becomes"r+b" ;

— ios::in | ios::out | ios::trunc | ios::bin becomes"w+b" ;

— ios::in | ios::out | ios::app | ios::bin becomes"a+b" .

17.4.8.1.4 DRAFT: 25 January 1994 Library 17– 117
filebuf::open(const char*, ios::openmode)

2 If the resulting file is not a null pointer andmode & ios::ate is nonzero, the function calls
fseek(file , 0, SEEK_END) . If that function returns a null pointer, the function callsclose()
and returns a null pointer. Otherwise, the function returnsthis .

3 The macroSEEK_ENDis defined, and the function signaturesfopen(const char*, const
char*) andfseek(FILE*, long, int) are declared, in<stdio.h> .

[lib.filebuf::open.old]17.4.8.1.5filebuf::open(const char*, ios::open_mode)

// filebuf* open(const char* s, ios::open_mode mode); optional

1 Returnsopen(s, (ios::openmode) mode) .

[lib.filebuf::close]17.4.8.1.6filebuf::close()

Box 174
Library WG issue: Jerry Schwarz, January 3, 1994

[was 17.4.4.1.14]
I think close should assign 0 tofile .

Not fixed. _ ___

_ ___

filebuf* close();

1 If file is a null pointer, returns a null pointer. Otherwise, if the callfclose(file) returns zero, the
function stores a null pointer infile and returnsthis . Otherwise, it returns a null pointer.

2 The function signaturefclose(FILE*) is declared, in<stdio.h> .

[lib.filebuf::overflow]17.4.8.1.7filebuf::overflow(int)

// virtual int overflow(int c = EOF); inherited

1 Appends the character designated byc to the output sequence, if possible, in one of three ways:

— If c != EOF and if either the output sequence has a write position available or the function makes a
write position available (in an unspecified manner), the function assignsc to * pnext ++. The function
signals success by returning(unsigned char) c .

— If c != EOF , the function appendsc directly to the associated output sequence (as described below).
If pbeg < pnext , thepnext - pbeg characters beginning atpbeg are first appended directly to
the associated output sequence, beginning with the character atpbeg . The function signals success by
returning(unsigned char) c .

— If c == EOF , there is no character to append. The function signals success by returning a value other
thanEOF.

2 If the function can succeed in more than one of these ways, it is unspecified which way is chosen. The
function can alter the number of write positions available as a result of any call.

3 The function returnsEOFto indicate failure. Iffile is a null pointer, the function always fails.

4 To append a characterx directly to the associated output sequence, the function evaluates the expression:

fputc(x, file) == x

17– 118 Library DRAFT: 25 January 1994 17.4.8.1.7
filebuf::overflow(int)

5 which must be nonzero. The function signaturefputc(int, FILE*) is declared in<stdio.h> .

[lib.filebuf::pbackfail]17.4.8.1.8filebuf::pbackfail(int)

// virtual int pbackfail(int c = EOF); inherited

1 Puts back the character designated byc to the input sequence, if possible, in one of four ways:

— If c != EOF and if either the input sequence has a putback position available or the function makes a
putback position available (in an unspecified manner), the function assignsc to *-- gnext . The func-
tion signals success by returning(unsigned char) c .

— If c != EOF and if no putback position is available, the function puts backc directly to the associate
input sequence (as described below). The function signals success by returning(unsigned
char) c .

— If c == EOF and if either the input sequence has a putback position available or the function makes a
putback position available, the function assignsgnext - 1 to gnext . The function signals success
by returning(unsigned char) c .

— If c == EOF , if no putback position is available, and if the function can determine the characterx
immediately before the current position in the associated input sequence (in an unspecified manner), the
function puts backx directly to the associated input sequence. The function signals success by return-
ing a value other thanEOF.

2 If the function can succeed in more than one of these ways, it is unspecified which way is chosen. The
function can alter the number of putback positions available as a result of any call.

3 The function returnsEOFto indicate failure. Iffile is a null pointer, the function always fails.

4 To put back a characterx directly to the associated input sequence, the function evaluates the expression:

ungetc(x, file) == x

5 which must be nonzero. The function signatureungetc(int, FILE*) is declared in<stdio.h> .

[lib.filebuf::underflow]17.4.8.1.9filebuf::underflow()

Box 175
Library WG issue: Jerry Schwarz, January 3, 1994

[was 17.4.4.1.3]
filebuf::underflow :

This is an example of why I think the use of
stdio functions doesn’t improve the presentation.

This is partially fixed. The paragraph has been modified so that it incorporates the protocol, but this creates
other problems. In particular it says ‘‘or makes a write position available (in an unspecified manner), ...’’
This seems to sanction doing just about anything with the ‘‘pending characters’’, but we really want to
insist that they we sent to the file.

Also, the filebuf is supposed to support bidirectional files, if underflow is called when gbeg is non-NULL
special actions have to be taken. These aren’t mentioned here. _ __

_ __

// virtual int underflow(); inherited

17.4.8.1.9 filebuf::underflow() DRAFT: 25 January 1994 Library 17– 119

1 Reads a character from the input sequence, if possible, without moving the stream position past it, as fol-
lows:

— If the input sequence has a read position available the function signals success by returning
(unsigned char)* gnext .

— Otherwise, if the function can determine the characterx at the current position in the associated input
sequence (as described below), it signals success by returning(unsigned char) x . If the function
makes a read position available, it also assignsx to * gnext .

2 The function can alter the number of read positions available as a result of any call.

3 The function returnsEOFto indicate failure. Iffile is a null pointer, the function always fails.

4 To determine the characterx (of type int) at the current position in the associated input sequence, the
function evaluates the expression:

(x = ungetc(fgetc(file), file)) != EOF

5 which must be nonzero. The function signaturesfgetc(FILE*) and ungetc(int, FILE*) are
declared in<stdio.h> .

[lib.filebuf::uflow]17.4.8.1.10filebuf::uflow()

// virtual int uflow(); inherited

1 Reads a character from the input sequence, if possible, and moves the stream position past it, as follows:

— If the input sequence has a read position available the function signals success by returning
(unsigned char)* gnext ++.

— Otherwise, if the function can read the characterx directly from the associated input sequence (as
described below), it signals success by returning(unsigned char) x . If the function makes a read
position available (in an unspecified manner), it also assignsx to * gnext .

2 The function can alter the number of read positions available as a result of any call.

3 The function returnsEOFto indicate failure. Iffile is a null pointer, the function always fails.

4 To read a character into an objectx (of type int) directly from the associated input sequence, the function
evaluates the expression:

(x = fgetc(file)) != EOF

5 which must be nonzero. The function signaturefgetc(FILE*) is declared in<stdio.h> .

[lib.filebuf::xsgetn]17.4.8.1.11filebuf::xsgetn(char*, int)

// virtual int xsgetn(char* s, int n); inherited

1 Behaves the same asstreambuf::xsgetn(char*, int) .

[lib.filebuf::xsputn]17.4.8.1.12filebuf::xsputn(const char*, int)

// virtual int xsputn(const char* s, int n); inherited

1 Behaves the same asstreambuf::xsputn(char*, int) .

17– 120 Library DRAFT: 25 January 1994 17.4.8.1.13
filebuf::seekoff(streamoff, ios::seekdir, ios::openmode)

[lib.filebuf::seekoff]17.4.8.1.13filebuf::seekoff(streamoff, ios::seekdir,
ios::openmode)

// virtual streampos seekoff(streamoff off , ios::seekdir way,
// ios::openmode which = ios::in | ios::out); inherited

1 Alters the stream position within the controlled sequences, if possible, as described below. The function
returns a newly constructedstreampos object that stores the resultant stream position, if possible. If the
positioning operation fails, or if the object cannot represent the resultant stream position, the object stores
an invalid stream position.

2 If file is a null pointer, the positioning operation fails. Otherwise, the function determines one of three
values for the argumentwhence , of typeint :

— If way == ios::beg , the argument isSEEK_SET;

— If way == ios::cur , the argument isSEEK_CUR;

— If way == ios::end , the argument isSEEK_END.

3 The function then callsfseek(file , off , whence) and, if that function returns nonzero, the posi-
tioning operation fails.

4 The macros SEEK_SET, SEEK_CUR, and SEEK_END are defined, and the function signature
fseek(FILE*, long, int) is declared, in<stdio.h> .

[lib.filebuf::seekpos]17.4.8.1.14filebuf::seekpos(streampos, ios::openmode)

// virtual streampos seekpos(streampos sp ,
// ios::openmode which = ios::in | ios::out); inherited

1 Alters the stream position within the controlled sequences, if possible, to correspond to the stream position
stored insp.pos and sp.fp .108) The function returns a newly constructedstreampos object that
stores the resultant stream position, if possible. If the positioning operation fails, or if the object cannot
represent the resultant stream position, the object stores an invalid stream position.

2 If file is a null pointer, the positioning operation fails.

[lib.filebuf::setbuf]17.4.8.1.15filebuf::setbuf(char*, int)

// virtual streambuf* setbuf(char* s, int n); inherited

1 ∗Makes the array ofn (single-byte) characters, whose first element is designated bys , available for use as a
buffer area for the controlled sequences, if possible. Iffile is a null pointer, the function returns a null
pointer. Otherwise, if the callsetvbuf(file , s, _IOFBF, n) is nonzero, the function returns a
null pointer. Otherwise, the function returns*this .

2 The macro _IOFBF is defined, and the function signaturesetvbuf(FILE*, char*, int,
size_t) is declared, in<stdio.h> .

[lib.filebuf::sync]17.4.8.1.16filebuf::sync()

108)The function may, for example, callfsetpos(file , & sp.fp) and/orfseek(file , sp.pos , SEEK_SET) , declared
in <stdio.h> .

17.4.8.1.16filebuf::sync() DRAFT: 25 January 1994 Library 17– 121

Box 176
Library WG issue: Jerry Schwarz, January 3, 1994

B. filebuf::sync.

Something needs to be said about setting of pointers.pbeg, pend, pnext should all be set toNULL.

The g pointers are more delicate. The intention was that you throw away the get area and (if necessary)
seek the file. Some implementor’s haven’t done the seek, or ignore failures. This gives you a way to
throw away (some or all of) input from a terminal. We ought to

say something about this. As the draft now reads it appears that theg pointers can’t be modified. _ __

_ __

// virtual int sync(); inherited

1 Returns zero iffile is a null pointer. Otherwise, the function returnsfflush(file) .

2 The function signaturefflush(FILE*) is declared in<stdio.h> .

[lib.ifstream]17.4.8.2 Classifstream

class ifstream : public istream {
public:

ifstream();
ifstream(const char* s, openmode mode = in);
virtual ~ifstream();
filebuf* rdbuf() const;
int is_open();
void open(const char* s, openmode mode = in);

// void open(const char* s, open_mode mode = in); optional
void close();

private:
// filebuf fb ; exposition only
};

1 The classifstream is a derivative ofistream that assists in the reading of named files. It supplies a
filebuf object to control the associated sequence. For the sake of exposition, the maintained data is pre-
sented here as:

— filebuf fb , thefilebuf object.

[lib.cons.ifstream]17.4.8.2.1ifstream::ifstream()

ifstream();

1 Constructs an object of classifstream , initializing the base class withistream(& fb) .

[lib.cons.ifstream.fn]17.4.8.2.2ifstream::ifstream(const char*, openmode)

ifstream(const char* s, openmode mode = in);

1 Constructs an object of classifstream , initializing the base class withistream(& fb) , then calls
open(s, mode) .

17– 122 Library DRAFT: 25 January 1994 17.4.8.2.3ifstream::~ifstream()

[lib.des.ifstream]17.4.8.2.3ifstream::~ifstream()

virtual ~ifstream();

1 Destroys an object of classifstream .

[lib.ifstream::rdbuf]17.4.8.2.4ifstream::rdbuf()

filebuf* rdbuf() const;

1 Returns&fb .

[lib.ifstream::is.open]17.4.8.2.5ifstream::is_open()

int is_open();

1 Returnsfb.is_open() .

[lib.ifstream::open]17.4.8.2.6ifstream::open(const char*, openmode)

void open(const char* s, openmode mode = in);

1 Calls fb .open(s, mode) . If the callis_open() returns zero, callssetstate(failbit) .

[lib.ifstream::open.old]17.4.8.2.7ifstream::open(const char*, open_mode)

// void open(const char* s, open_mode mode = in); optional

1 Callsopen(s, (openmode) mode) .

[lib.ifstream::close]17.4.8.2.8ifstream::close()

void close();

1 Calls fb .close() and, if that function returns zero, callssetstate(failbit) .

[lib.ofstream]17.4.8.3 Classofstream

class ofstream : public ostream {
public:

ofstream();
ofstream(const char* s, openmode mode = out);
virtual ~ofstream();
filebuf* rdbuf() const;
int is_open();
void open(const char* s, openmode mode = out);

// void open(const char* s, open_mode mode = out); optional
void close();

private:
// filebuf fb ; exposition only
};

1 The classofstream is a derivative ofostream that assists in the writing of named files. It supplies a
filebuf object to control the associated sequence. For the sake of exposition, the maintained data is pre-
sented here as:

— filebuf fb , thefilebuf object.

17.4.8.3.1ofstream::ofstream() DRAFT: 25 January 1994 Library 17– 123

[lib.cons.ofstream]17.4.8.3.1ofstream::ofstream()

ofstream();

1 Constructs an object of classofstream , initializing the base class withostream(& fb) .

[lib.cons.ofstream.fn]17.4.8.3.2ofstream::ofstream(const char*, openmode)

ofstream(const char* s, openmode mode = out);

1 Constructs an object of classofstream , initializing the base class withostream(& fb) , then calls
open(s, mode) .

[lib.des.ofstream]17.4.8.3.3ofstream::~ofstream()

virtual ~ofstream();

1 Destroys an object of classofstream .

[lib.ofstream::rdbuf]17.4.8.3.4ofstream::rdbuf()

filebuf* rdbuf() const;

1 Returns&fb .

[lib.ofstream::is.open]17.4.8.3.5ofstream::is_open()

int is_open();

1 Returnsfb .is_open() .

[lib.ofstream::open]17.4.8.3.6ofstream::open(const char*, openmode)

void open(const char* s, openmode mode = out);

1 Calls fb .open(s, mode) . If is_open() is then false, callssetstate(failbit) .

[lib.ofstream::open.old]17.4.8.3.7ofstream::open(const char*, open_mode)

// void open(const char* s, open_mode mode = in); optional

1 Callsopen(s, (openmode) mode) .

[lib.ofstream::close]17.4.8.3.8ofstream::close()

void close();

1 Calls fb .close() and, if that function returns zero, callssetstate(failbit) .

[lib.stdiobuf]17.4.8.4 Classstdiobuf

17– 124 Library DRAFT: 25 January 1994 17.4.8.4 Classstdiobuf

class stdiobuf : public streambuf {
public:

stdiobuf(FILE* file_arg = 0);
virtual ~stdiobuf();
int buffered() const;
void buffered(int buf_fl);

protected:
// virtual int overflow(int c = EOF); inherited
// virtual int pbackfail(int c = EOF); inherited
// virtual int underflow(); inherited
// virtual int uflow(); inherited
// virtual int xsgetn(char* s, int n); inherited
// virtual int xsputn(const char* s, int n); inherited
// virtual streampos seekoff(streamoff off , ios::seekdir way,
// ios::openmode which = ios::in | ios::out); inherited
// virtual streampos seekpos(streampos sp ,
// ios::openmode which = ios::in | ios::out); inherited
// virtual streambuf* setbuf(char* s, int n); inherited
// virtual int sync(); inherited
private:
// FILE * file ; exposition only
// int is_buffered; exposition only
};

1 The classstdiobuf is derived fromstreambuf to associate both the input sequence and the output
sequence with an externally supplied object of typeFILE . TypeFILE is defined in<stdio.h> . For the
sake of exposition, the maintained data is presented here as:

— FILE * file , points to theFILE associated with the stream buffer;

— is_buffered , nonzero if thestdiobuf object isbuffered,and hence need not be kept synchro-
nized with the associated file (as described below).

2 The restrictions on reading and writing a sequence controlled by an object of classstdiobuf are the same
as for an object of classfilebuf .

3 If an stdiobuf object is not buffered andfile is not a null pointer, it is kept synchronized with the
associated file, as follows:

— the callsputc(c) is equivalent to the callfputc(c, file);

— the callsputbackc(c) is equivalent to the callungetc(c, file);

— the callsbumpc() is equivalent to the callfgetc(file).

4 The functionsfgetc(FILE*) , fputc(int, FILE*) , andungetc(int, FILE*) are declared in
<stdio.h> .

[lib.cons.stdiobuf.fi]17.4.8.4.1stdiobuf::stdiobuf(FILE *)

stdiobuf(FILE * file_arg = 0);

1 Constructs an object of classstdiobuf , initializing the base class withstreambuf() , and initializing
file to file_arg andis_buffered to zero.

17.4.8.4.2stdiobuf::~stdiobuf() DRAFT: 25 January 1994 Library 17– 125

[lib.des.stdiobuf]17.4.8.4.2stdiobuf::~stdiobuf()

virtual ~stdiobuf();

1 Destroys an object of classstdiobuf .

[lib.stdiobuf::buffered]17.4.8.4.3stdiobuf::buffered()

int buffered() const;

1 Returns a nonzero value ifis_buffered is nonzero.

[lib.stdiobuf::buffered.i]17.4.8.4.4stdiobuf::buffered(int)

void buffered(int buf_fl);

1 Assignsbuf_fl to is_buffered .

[lib.stdiobuf::overflow]17.4.8.4.5stdiobuf::overflow(int)

// virtual int overflow(int c = EOF); inherited

1 Behaves the same asfilebuf::overflow(int) , subject to the buffering requirements specified by
is_buffered .

[lib.stdiobuf::pbackfail]17.4.8.4.6stdiobuf::pbackfail(int)

// virtual int pbackfail(int c = EOF); inherited

1 Behaves the same asfilebuf::pbackfail(int) , subject to the buffering requirements specified by
is_buffered .

[lib.stdiobuf::underflow]17.4.8.4.7stdiobuf::underflow()

// virtual int underflow(); inherited

1 Behaves the same asfilebuf::underflow() , subject to the buffering requirements specified by
is_buffered .

[lib.stdiobuf::uflow]17.4.8.4.8stdiobuf::uflow()

// virtual int uflow(); inherited

1 Behaves the same asfilebuf::uflow() , subject to the buffering requirements specified by
is_buffered .

[lib.stdiobuf::xsgetn]17.4.8.4.9stdiobuf::xsgetn(char*, int)

// virtual int xsgetn(char* s, int n); inherited

1 Behaves the same asstreambuf::xsgetn(char*, int) .

[lib.stdiobuf::xsputn]17.4.8.4.10stdiobuf::xsputn(const char*, int)

// virtual int xsputn(const char* s, int n); inherited

1 Behaves the same asstreambuf::xsputn(char*, int) .

17– 126 Library DRAFT: 25 January 1994 17.4.8.4.11
stdiobuf::seekoff(streamoff, ios::seekdir, ios::openmode)

[lib.stdiobuf::seekoff]17.4.8.4.11stdiobuf::seekoff(streamoff, ios::seekdir,
ios::openmode)

// virtual streampos seekoff(streamoff off , ios::seekdir way,
// ios::openmode which = ios::in | ios::out); inherited

1 Behaves the same asfilebuf::seekoff(streamoff, ios::seekdir, ios::openmode)

[lib.stdiobuf::seekpos]17.4.8.4.12stdiobuf::seekpos(streampos, ios::openmode)

// virtual streampos seekpos(streampos sp ,
// ios::openmode which = ios::in | ios::out); inherited

1 Behaves the same asfilebuf::seekpos(streampos, ios::openmode)

[lib.stdiobuf::setbuf]17.4.8.4.13stdiobuf::setbuf(char*, int)

// virtual streambuf* setbuf(char* s, int n); inherited

1 Behaves the same asfilebuf::setbuf(char*, int)

[lib.stdiobuf::sync]17.4.8.4.14stdiobuf::sync()

// virtual int sync(); inherited

1 Behaves the same asfilebuf::sync()

[lib.istdiostream]17.4.8.5 Classistdiostream

class istdiostream : public istream {
public:

istdiostream(FILE * file_arg = 0);
virtual ~istdiostream();
stdiobuf* rdbuf() const;
int buffered() const;
void buffered(int buf_fl);

private:
// stdiobuf fb ; exposition only
};

1 The classistdiostream is a derivative ofistream that assists in the reading of files controlled by
objects of typeFILE . It supplies astdiobuf object to control the associated sequence. For the sake of
exposition, the maintained data is presented here as:

— stdiobuf fb , thestdiobuf object.

[lib.cons.istdiostream.fi]17.4.8.5.1istdiostream::istdiostream(FILE *)

istdiostream(FILE * file_arg = 0);

1 Constructs an object of classistdiostream , initializing the base class withistream(& fb) and ini-
tializing fb with stdiobuf(file_arg) .

[lib.des.istdiostream]17.4.8.5.2istdiostream::~istdiostream()

virtual ~istdiostream();

1 Destroys an object of classistdiostream .

17.4.8.5.3 istdiostream::rdbuf() DRAFT: 25 January 1994 Library 17– 127

[lib.istdiostream::rdbuf]17.4.8.5.3istdiostream::rdbuf()

stdiobuf* rdbuf() const;

1 Returns&fb .

[lib.istdiostream::buffered]17.4.8.5.4istdiostream::buffered()

int buffered() const;

1 Returns a nonzero value ifis_buffered is nonzero.

[lib.istdiostream::buffered.i]17.4.8.5.5istdiostream::buffered(int)

void buffered(int buf_fl);

1 Assignsbuf_fl to is_buffered .

[lib.ostdiostream]17.4.8.6 Classostdiostream

class ostdiostream : public ostream {
public:

ostdiostream(FILE * file_arg = 0);
virtual ~ostdiostream();
stdiobuf* rdbuf() const;
int buffered() const;
void buffered(int buf_fl);

private:
// stdiobuf fb ; exposition only
};

1 The classostdiostream is a derivative ofostream that assists in the writing of files controlled by
objects of typeFILE . It supplies astdiobuf object to control the associated sequence. For the sake of
exposition, the maintained data is presented here as:

— stdiobuf fb , thestdiobuf object.

[lib.cons.ostdiostream.fi]17.4.8.6.1ostdiostream::ostdiostream(FILE *)

ostdiostream(FILE * file_arg = 0);

1 Constructs an object of classostdiostream , initializing the base class withostream(& fb) and ini-
tializing fb with stdiobuf(file_arg) .

[lib.des.ostdiostream]17.4.8.6.2ostdiostream::~ostdiostream()

virtual ~ostdiostream();

1 Destroys an object of classostdiostream .

[lib.ostdiostream::rdbuf]17.4.8.6.3ostdiostream::rdbuf()

stdiobuf* rdbuf() const;

1 Returns&fb .

17– 128 Library DRAFT: 25 January 1994 17.4.8.6.4
ostdiostream::buffered()

[lib.ostdiostream::buffered]17.4.8.6.4ostdiostream::buffered()

int buffered() const;

1 Returns a nonzero value ifis_buffered is nonzero.

[lib.ostdiostream::buffered.i]17.4.8.6.5ostdiostream::buffered(int)

void buffered(int buf_fl);

1 Assignsbuf_fl to is_buffered .

[lib.header.iostream]17.4.9 Header<iostream>

1 The header<iostream> declares four objects that associate objects of classstdiobuf with the stan-
dard C streams provided for by the functions declared in<stdio.h> . The four objects are constructed,
and the associations are established, the first time an object of classios::Init is constructed. The four
objects arenot destroyed during program execution.109)

[lib.cin]17.4.9.1 Objectcin

Box 177
Library WG issue: Jerry Schwarz, September 28, 1993

[was 17.4.2.10-12]: why arecin , etc. attached tofilebuf s? _ __

_ __

istream cin;

1 The objectcin controls input from an unbuffered stream buffer associated with the objectstdin ,
declared in<stdio.h> .

2 After the objectcin is initialized,cin.tie() returnscout .

[lib.cout]17.4.9.2 Objectcout

ostream cout;

1 The objectcout controls output to an unbuffered stream buffer associated with the objectstdout ,
declared in<stdio.h> .

[lib.cerr]17.4.9.3 Objectcerr

ostream cerr;

1 The objectcerr controls output to an unbuffered stream buffer associated with the objectstderr ,
declared in<stdio.h> .

2 After the objectcerr is initialized,cerr.flags() & unitbuf is nonzero.

109)Constructors and destructors for static objects can access these objects to read input fromstdin or write output tostdout or
stderr .

17.4.9.4 Objectclog DRAFT: 25 January 1994 Library 17– 129

[lib.clog]17.4.9.4 Objectclog

extern ostream clog;

1 The objectclog controls output to a stream buffer associated with the objectstderr , declared in
<stdio.h> .

[lib.support.classes]17.5 Support classes

1 The Standard C + + library defines several types, and their supporting macros, constants, and function signa-
tures, that support a variety of useful data structures.

[lib.header.string]17.5.1 Header<string>

1 The header<string> defines a type and several function signatures for manipulating varying-length
sequences of (single-byte) characters.

[lib.string]17.5.1.1 Classstring

Box 178
Library WG issue: Uwe Steinm

. .
uller, January 21, 1994

Bill does not like destructors and assignment operators:
~string(); // missing
string& operator=(const string&); // missing

For all find operations (searching from the end)rfind, fins_last_of and find_last_not_of
the clause

Returns NPOS if pos > len. should be removed. The functions should (as a convenience)
calculate there starting position themselves. If you search forward it is for sure that you cannot find a string
if pos > len .

as this behaviour is consistent with forward searches
string s("1234");

s.rfind("1", 0) should deliver 0
and
s.rfind("4", 3) should be 3 If the user wants to use the result for another search he

has to decrement himself. _ __

_ __

Box 179
Library WG issue: Uwe Steinm

. .
uller, January 4, 1994

*>GENERAL *>seperate differnt sections in the header constructors,
assign,..

class string { *>C char *ptr; // has this property, might be
implemented diffent *>C size_t len; // has this property, might be
implemented diffent *>C mutable size_t res; // does not change the
string value !! _ __

_ __

17– 130 Library DRAFT: 25 January 1994 17.5.1.1 Classstring

Box 180
Library WG issue: Uwe Steinm

. .
uller, January 4, 1994

The string class is quite different in detail from what it should be. This is the result of changing the author
of the papers twice. Let us try to do the best.

I will mark as follows: *>comment *>M missing
*>W wrong *>C corrected *>Q in question
*>R remove _ __

_ __

Box 181
Library WG issue: Beman Dawes, December 19, 1993

String/wstring/dynarray/ptrdynarray/bitstring classes are all missing destructor andoperator= . Bits is
missing operator= . Maybe you should check other classes, too, since this seems to have been some
kind of systematic omission. I stopped checking at this point. _ __

_ __

Box 182
Library WG issue: Uwe Steinm

. .
uller, September 22, 1993

Thedynarray and my formerstring class proposal followed this rule, we should get a consensus on
this by the library WG. _ __

_ __

17.5.1.1 Classstring DRAFT: 25 January 1994 Library 17– 131

class string {
public:

string();
string(size_t size , capacity cap);
string(const string& str , size_t pos = 0, size_t n = NPOS);
string(const char* s, size_t n = NPOS);
string(char c, size_t rep = 1);
string(unsigned char c, size_t rep = 1);
string(signed char c, size_t rep = 1);
string& operator=(const char* s);
string& operator=(char c);
string& operator+=(const string& rhs);
string& operator+=(const char* s);
string& operator+=(char c);
string& append(const string& str , size_t pos = 0,

size_t n = NPOS);
string& append(const char* s, size_t n = NPOS);
string& append(char c, size_t rep = 1);
string& assign(const string& str , size_t pos = 0,

size_t n = NPOS);
string& assign(const char* s, size_t n = NPOS);
string& assign(char c, size_t rep = 1);
string& insert(size_t pos1 , const string& str , size_t pos2 = 0,

size_t n = NPOS);
string& insert(size_t pos , const char* s,

size_t n = NPOS);
string& insert(size_t pos , char c, size_t rep = 1);
string& remove(size_t pos = 0, size_t n = NPOS);
string& replace(size_t pos1 , size_t n1, const string& str ,

size_t pos2 = 0, size_t n2 = NPOS);
string& replace(size_t pos , size_t n1, const char* s,

size_t n2 = NPOS);
string& replace(size_t pos , size_t n, char c,

size_t rep = 1);
char get_at(size_t pos) const;
void put_at(size_t pos , char c);
char operator[](size_t pos) const;
char& operator[](size_t pos);
const char* c_str() const;
size_t length() const:
void resize(size_t n, char c = 0);
size_t reserve() const;
void reserve(size_t res_arg);
size_t copy(char* s, size_t n, size_t pos = 0);
size_t find(const string& str , size_t pos = 0) const;
size_t find(const char* s, size_t pos = 0, size_t n = NPOS) const;
size_t find(char c, size_t pos = 0) const;
size_t rfind(const string& str , size_t pos = NPOS) const;
size_t rfind(const char* s, size_t pos = NPOS,

size_t n = NPOS) const;
size_t rfind(char c, size_t pos = NPOS) const;
size_t find_first_of(const string& str , size_t pos = 0) const;
size_t find_first_of(const char* s, size_t pos = 0,

size_t n = NPOS) const;
size_t find_first_of(char c, size_t pos = 0) const;
size_t find_last_of(const string& str , size_t pos = NPOS) const;
size_t find_last_of(const char* s, size_t pos = NPOS,

size_t n = NPOS) const;
size_t find_last_of(char c, size_t pos = NPOS) const;
size_t find_first_not_of(const string& str , size_t pos = 0) const;
size_t find_first_not_of(const char* s, size_t pos = 0,

size_t n = NPOS) const;

17– 132 Library DRAFT: 25 January 1994 17.5.1.1 Classstring

size_t find_first_not_of(char c, size_t pos = 0) const;
size_t find_last_not_of(const string& str , size_t pos = NPOS)

const;
size_t find_last_not_of(const char* s, size_t pos = NPOS,

size_t n = NPOS) const;
size_t find_last_not_of(char c, size_t pos = NPOS) const;
string substr(size_t pos = 0, size_t n = NPOS) const;
int compare(const string& str , size_t pos = 0,

size_t n = NPOS) const;
int compare(char* s, size_t n = NPOS) const;
int compare(char c, size_t rep = 1) const;

private:
// char* ptr ; exposition only
// size_t len , res ; exposition only
};

1 The classstring describes objects that can store a sequence consisting of a varying number of arbitrary
(single-byte) characters. The first element of the sequence is at position zero. Such a sequence is also
called acharacter string(or simply astring if the type of the elements is clear from context). Storage for
the string is allocated and freed as necessary by the member functions of classstring . For the sake of
exposition, the maintained data is presented here as:

— char* ptr , points to the initial character of the string;

— size_t len , counts the number of characters currently in the string;

— size_t res , for an unallocated string, holds the recommended allocation size of the string, while for
an allocated string, becomes the currently allocated size.

2 In all cases,len <= res .

3 The functions described in this subclause can report two kinds of errors, each associated with a distinct
exception:

— a lengtherror is associated with exceptions of typelengtherror ;

— anout-of-rangeerror is associated with exceptions of typeoutofrange .

4 To report one of these errors, the function evaluates the expressionex .raise() , whereex is an object of
the associated exception type.

[lib.cons.string]17.5.1.1.1string::string()

string();

1 Constructs an object of classstring initializing:

— ptr to an unspecified value;

— len to zero;

— res to an unspecified value.

[lib.cons.string.cap]17.5.1.1.2string::string(size_t, capacity)

string(size_t size , capacity cap);

1 Constructs an object of classstring . If cap is default_size , the function either reports a length
error if size equalsNPOSor initializes:

— ptr to point at the first element of an allocated array ofsize elements, each of which is initialized to

17.5.1.1.2 DRAFT: 25 January 1994 Library 17– 133
string::string(size_t, capacity)

zero;

— len to size ;

— res to a value at least as large aslen .

2 Otherwise,cap shall bereserve and the function initializes:

— ptr to an unspecified value;

— len to zero;

— res to size .

[lib.cons.string.sub]17.5.1.1.3string::string(const string&, size_t, size_t)

string(const string& str , size_t pos = 0, size_t n = NPOS);

1 Reports an out-of-range error ifos > str.len . Otherwise, the function constructs an object of class
string and determines the effective lengthrlen of the initial string value as the smaller ofn and
str.len - pos . Thus, the function initializes:

— ptr to point at the first element of an allocated copy ofrlen elements of the string controlled bystr
beginning at positionpos ;

— len to rlen ;

— res to a value at least as large aslen .

[lib.cons.string.str]17.5.1.1.4string::string(const char*, size_t)

string(const char* s, size_t n = NPOS);

1 If n equalsNPOS, storesstrlen(s) in n. The function signaturestrlen(const char*) is
declared in<string.h> .

2 In any case, the function constructs an object of classstring and determines its initial string value from
the array ofchar of lengthn whose first element is designated bys . s shall not be a null pointer. Thus,
the function initializes:

— ptr to point at the first element of an allocated copy of the array whose first element is pointed at bys ;

— len to n;

— res to a value at least as large aslen .

[lib.cons.string.c]17.5.1.1.5string::string(char, size_t)

string(char c, size_t rep = 1);

1 Reports a length error ifrep equalsNPOS. Otherwise, the function constructs an object of classstring
and determines its initial string value by repeating the characterc for all rep elements. Thus, the function
initializes:

— ptr to point at the first element of an allocated array ofrep elements, each storing the initial valuec ;

— len to rep ;

— res to a value at least as large aslen .

17– 134 Library DRAFT: 25 January 1994 17.5.1.1.5
string::string(char, size_t)

[lib.cons.string.uc]17.5.1.1.6string::string(unsigned char, size_t)

Box 183
Library WG issue: Uwe Steinm

. .
uller, January 4, 1994

public: string(); string(size_t size, capacity cap);
string(const string& str, size_t pos = 0, size_t n= NPOS);
string(const char *s); string(const char *s, size_t n);
string(char c, size_t rep = 1);

*> still don’t why we nead these overloads ?? *> and if in all places
where we have chars (append,)

*>Q string(unsigned char c, size_t rep = 1); *>Q string(signed char c,
size_t rep = 1);

*> destructor *>M ~string(); _ __

_ __

string(unsigned char c, size_t rep = 1);

1 Behaves the same asstring((char) c, rep) .

[lib.cons.string.sc]17.5.1.1.7string(signed char, size_t)

string(signed char c, size_t rep = 1);

1 Behaves the same asstring((char) c, rep) .

[lib.string::op=.str]17.5.1.1.8string::operator=(const char*)

Box 184
Library WG issue: Uwe Steinm

. .
uller, January 4, 1994

*>M strint& operator=(const string& rsh); *>M strint& operator=(const
char* s); *>M strint& operator=(char c); _ __

_ __

string& operator=(const char* s);

1 Returns*this = string(s) .

[lib.string::op=.c]17.5.1.1.9string::operator=(char)

string& operator=(char c);

1 Returns*this = string(c) .

[lib.string::op+=.sub]17.5.1.1.10string::operator+=(const string&)

string& operator+=(const string& rhs);

1 Returnsappend(rhs) .

17.5.1.1.11 DRAFT: 25 January 1994 Library 17– 135
string::operator+=(const char*)

[lib.string::op+=.str]17.5.1.1.11string::operator+=(const char*)

string& operator+=(const char* s);

1 Returns*this += string(s) .

[lib.string::op+=.c]17.5.1.1.12string::operator+=(char)

string& operator+=(char c);

1 Returns*this += string(c) .

[lib.string::append.sub]17.5.1.1.13string::append(const string&, size_t,
size_t)

Box 185
Library WG issue: Uwe Steinm

. .
uller, January 4, 1994

string& append(const string& str, size_t pos = 0, size_t n = NPOS);
*>W string& append(const char *s, size_t pos = 0, size_t n = NPOS); *>
pos not needed: could write s.append(s + pos, n); _ __

_ __

string& append(const string& str , size_t pos = 0, size_t n = NPOS);

1 Reports an out-of-range error ifpos > str.len . Otherwise, the function determines the effective
lengthrlen of the string to append as the smaller ofn andstr.len - pos . The function then reports
a length error iflen >= NPOS - rlen .

2 Otherwise, the function replaces the string controlled by*this with a string of lengthlen + rlen
whose firstlen elements are a copy of the original string controlled by*this and whose remaining ele-
ments are a copy of the initial elements of the string controlled bystr beginning at positionpos .

3 The function returns*this .

[lib.string::append.str]17.5.1.1.14string::append(const char*, size_t)

Box 186
Library WG issue: Uwe Steinm

. .
uller, January 4, 1994

The function signature string::append(const char *, size_t, size_t)

*>C string& append(const char *s, size_t n = NPOS);

*> wrong because the s might contain 0 before the length n *>W Returns
append(string(s), pos, n). *>C Returns append(string(s, n));

*>C The function signature string::append(char, size_t)

*>C string& append(char c, size_t rep = 1);

*>C Returns append(string(c, rep)). _ __

_ __

string& append(const char* s, size_t n = NPOS);

17– 136 Library DRAFT: 25 January 1994 17.5.1.1.14
string::append(const char*, size_t)

1 Returnsappend(string(s, n)) .

[lib.string::append.c]17.5.1.1.15string::append(char, size_t)

Box 187
Library WG issue: Uwe Steinm

. .
uller, January 4, 1994

*>C string& append(const char *s, size_t n = NPOS); *>C string&
append(char c, size_t rep = 1); _ __

_ __

string& append(char c, size_t rep = 1);

1 ∗Returnsappend(string(c, rep)) .

[lib.string::assign.sub]17.5.1.1.16string::assign(const string&, size_t, size_t)

string& assign(const string& str , size_t pos = 0, size_t n = NPOS);

1 Reports an out-of-range error ifpos > str.len . Otherwise, the function determines the effective
lengthrlen of the string to assign as the smaller ofn andstr.len - pos .

2 The function then replaces the string controlled by*this with a string of lengthrlen whose elements are
a copy of the string controlled bystr beginning at positionpos .

3 The function returns*this .

[lib.string::assign.str]17.5.1.1.17string::assign(const char*, size_t)

Box 188
Library WG issue: Uwe Steinm

. .
uller, January 4, 1994

*>C The function signature string::assign(const char *, size_t)

*>C string& assign(const char *s, size_t n = NPOS);

Returns assign(string(s, n) or operator=(string(s,n));

*>C The function signature string::assign(char, size_t,)

*>C string& assign(char c, size_t rep = 1);

*>C Returns assign(string(c, rep)). _ __

_ __

17.5.1.1.17 DRAFT: 25 January 1994 Library 17– 137
string::assign(const char*, size_t)

Box 189
Library WG issue: Uwe Steinm

. .
uller, January 4, 1994

The function signature string::assign(const string&, size_t, size_t)

*>M operator=

string& assign(const string& str, size_t pos = 0, size_t n = NPOS);

Reports an out-of-range error if pos str.len. Otherwise, the function determines the effective length rlen of
the string to assign as the smaller of n and str.len - pos.

The function then replaces the string controlled by *this with a string of length rlen whose elements are a
copy of the string controlled by str beginning at position pos.

The function returns *this. _ __

_ __

Box 190
Library WG issue: Uwe Steinm

. .
uller, January 4, 1994

string& assign(const string& str, size_t pos = 0, size_t n = NPOS);
*> see append *>C string& assign(const char * s, size_t n = NPOS); *>C
string& assign(char c, size_t rep = 1); _ __

_ __

string& assign(const char* s, size_t n = NPOS);

1 Returnsassign(string(s, n)) .

[lib.string::assign.c]17.5.1.1.18string::assign(char, size_t)

string& assign(char c, size_t rep = 1);

1 Returnsassign(string(c, rep)) .

[lib.string::insert.sub]17.5.1.1.19string::insert(size_t, const string&, size_t,
size_t)

string& insert(size_t pos1 , const string& str , size_t pos2 = 0,
size_t n = NPOS);

1 ∗Reports an out-of-range error ifpos1 > len or pos2 > str.len . Otherwise, the function deter-
mines the effective lengthrlen of the string to insert as the smaller ofn andstr.len - pos2 . The
function then reports a length error iflen >= NPOS - rlen .

2 Otherwise, the function replaces the string controlled by*this with a string of lengthlen + rlen
whose firstpos1 elements are a copy of the initial elements of the original string controlled by*this ,
whose nextrlen elements are a copy of the elements of the string controlled bystr beginning at position
pos2 , and whose remaining elements are a copy of the remaining elements of the original string controlled
by *this .

3 The function returns*this .

17– 138 Library DRAFT: 25 January 1994 17.5.1.1.20
string::insert(size_t, const char*, size_t)

[lib.string::insert.str]17.5.1.1.20string::insert(size_t, const char*, size_t)

Box 191
Library WG issue: Uwe Steinm

. .
uller, January 4, 1994

string& insert(size_t pos1, const string& str, size_t pos2 = 0,
size_t n = NPOS); *>C

string& insert(size_t pos1, const char *s, size_t n = NPOS); *>C
string& insert(size_t pos, char c, size_t rep = 1); _ __

_ __

string& insert(size_t pos , const char* s, size_t n = NPOS);

1 Returnsinsert(pos , string(s, n)) .

[lib.string::insert.c]17.5.1.1.21string::insert(size_t, char, size_t)

string& insert(size_t pos , char c, size_t rep = 1);

1 Returnsinsert(pos , string(c, rep)) .

[lib.string::remove]17.5.1.1.22string::remove(size_t, size_t)

Box 192
Library WG issue: Uwe Steinm

. .
uller, January 4, 1994

string& remove(size_t pos = 0, size_t n = NPOS);

string& replace(size_t pos1, size_t n1, const string& str,
size_t pos2 = 0, size_t n2 = NPOS); *>C string& replace(size_t

pos1, size_t n1, const char *s, size_t n2 =
NPOS); *>C string& replace(size_t pos, size_t n, char c, size_t rep =
1); _ __

_ __

string& remove(size_t pos = 0, size_t n = NPOS);

1 Reports an out-of-range error ifpos > len . Otherwise, the function determines the effective length
xlen of the string to be removed as the smaller ofn andlen - pos .

2 The function then replaces the string controlled by*this with a string of lengthlen - xlen whose
first pos elements are a copy of the initial elements of the original string controlled by*this , and whose
remaining elements are a copy of the elements of the original string controlled by*this beginning at
positionpos + xlen .

3 The function returns*this .

[lib.string::replace.sub]17.5.1.1.23string::replace(size_t, size_t,
const string&, size_t, size_t)

string& replace(size_t pos1 , size_t n1, const string& str ,
size_t pos2 = 0, size_t n2 = NPOS);

1 Reports an out-of-range error ifpos1 > len or pos2 > str.len . Otherwise, the function deter-
mines the effective lengthxlen of the string to be removed as the smaller ofn1 and len - pos1 . It
also determines the effective lengthrlen of the string to be inserted as the smaller ofn2 andstr.len -
pos2 . The function then reports a length error iflen - xlen >= NPOS - rlen .

17.5.1.1.23 DRAFT: 25 January 1994 Library 17– 139
string::replace(size_t, size_t, const string&, size_t, size_t)

2 Otherwise, the function replaces the string controlled by*this with a string of lengthlen - xlen +
rlen whose firstpos1 elements are a copy of the initial elements of the original string controlled by
*this , whose nextrlen elements are a copy of the initial elements of the string controlled bystr
beginning at positionpos2 , and whose remaining elements are a copy of the elements of the original string
controlled by*this beginning at positionpos1 + xlen .

3 The function returns*this .

[lib.string::replace.str]17.5.1.1.24string::replace(size_t, size_t, const char*,
size_t)

string& replace(size_t pos , size_t n1, const char* s,
size_t n2 = NPOS);

1 Returnsreplace(pos , n1, string(s, n2)) .

[lib.string::replace.c]17.5.1.1.25string::replace(size_t, size_t, char, size_t)

string& replace(size_t pos , size_t n, char c, size_t rep = 1);

1 Returnsreplace(pos , n, string(c, rep)) .

[lib.string::get.at]17.5.1.1.26string::get_at(size_t)

Box 193
Library WG issue: Uwe Steinm

. .
uller, January 4, 1994

*>C const char get_at(size_t pos) const; _ ___

_ ___

char get_at(size_t pos) const;

1 Reports an out-of-range error ifpos >= len . Otherwise, the function returnsptr [pos] .

[lib.string::put.at]17.5.1.1.27string::put_at(size_t, char)

void put_at(size_t pos , char c);

1 Reports an out-of-range error ifpos > len . Otherwise, ifpos == len , the function replaces the
string controlled by*this with a string of lengthlen + 1 whose firstlen elements are a copy of the
original string and whose remaining element is initialized toc . Otherwise, the function assignsc to
ptr [pos] .

[lib.string::op.array]17.5.1.1.28string::operator[](size_t)

Box 194
Library WG issue: Uwe Steinm

. .
uller, January 4, 1994

The function signature string::operator[](size_t)

*>C const char operator[](size_t pos) const; char& operator[](size_t
pos); _ __

_ __

17– 140 Library DRAFT: 25 January 1994 17.5.1.1.28
string::operator[](size_t)

Box 195
Library WG issue: Uwe Steinm

. .
uller, January 4, 1994

*>C const char operator[](size_t pos) const; __

__

char operator[](size_t pos) const;
char& operator[](size_t pos);

1 If pos < len , returnsptr [pos] . Otherwise, ifpos == len , theconst version returns zero. Oth-
erwise, the behavior is undefined.

2 The reference returned by the non-const version is invalid after any subsequent call toc_str or any
non-const member function for the object.

[lib.string::c.str]17.5.1.1.29string::c_str()

const char* c_str() const;

1 Returns a pointer to the initial element of an array of lengthlen + 1 whose firstlen elements equal the
corresponding elements of the string controlled by*this and whose last element is a null character. The
program shall not alter any of the values stored in the array. Nor shall the program treat the returned value
as a valid pointer value after any subsequent call to a non-const member function of the classstring
that designates the same object as*this .

[lib.string::length]17.5.1.1.30string::length()

size_t length() const:

1 Returnslen .

[lib.string::resize]17.5.1.1.31string::resize(size_t, char)

void resize(size_t n, char c = 0);

1 Reports a length error ifn equalsNPOS. Otherwise, the function alters the length of the string designated
by *this as follows:

— If n <= len , the function replaces the string designated by*this with a string of lengthn whose
elements are a copy of the initial elements of the original string designated by*this .

— If n > len , the function replaces the string designated by*this with a string of lengthn whose first
len elements are a copy of the original string designated by*this , and whose remaining elements are
all initialized toc .

[lib.string::reserve]17.5.1.1.32string::reserve()

Box 196
Library WG issue: Uwe Steinm

. .
uller, January 4, 1994

size_t reserve() const; *>C void reserve(size_t res_arg)
const; //res is mutable _ __

_ __

size_t reserve() const;

17.5.1.1.32string::reserve() DRAFT: 25 January 1994 Library 17– 141

1 Returnsres .

[lib.string::reserve.cap]17.5.1.1.33string::reserve(size_t)

void reserve(size_t res_arg);

1 If no string is allocated, the function assignsres_arg to res . Otherwise, whether or how the function
altersres is unspecified.

[lib.string::copy]17.5.1.1.34string::copy(char*, size_t, size_t)

Box 197
Library WG issue: Uwe Steinm

. .
uller, January 4, 1994

*>C size_t copy(char *s, size_t n, size_t pos = 0); *> the user should
specify the size of bytes s points to *> pos is the offset in the this
string _ __

_ __

size_t copy(char* s, size_t n, size_t pos = 0);

1 Reports an out-of-range error ifpos > len . Otherwise, the function determines the effective length
rlen of the string to copy as the smaller ofn and len - pos . s shall designate an array of at least
rlen elements.

2 The function then replaces the string designated bys with a string of lengthrlen whose elements are a
copy of the string controlled by*this .110)

3 The function returnsrlen .

[lib.string::find.sub]17.5.1.1.35string::find(const string&, size_t)

size_t find(const string& str , size_t pos = 0) const;

1 Determines the lowest positionxpos , if possible, such that both of the following conditions obtain:

— pos <= xpos andxpos + str.len <= len ;

— ptr [xpos + I] == str.ptr [I] for all elementsI of the string controlled bystr .

2 If the function can determine such a value forxpos , it returnsxpos . Otherwise, it returnsNPOS.

[lib.string::find.str]17.5.1.1.36string::find(const char*, size_t, size_t)

Box 198
Library WG issue: Uwe Steinm

. .
uller, January 4, 1994

*>C size_t find(const string& str, size_t pos = 0) const; size_t
find(const char *s, size_t pos = 0, size_t n = NPOS) const; *>C size_t
find(char c, size_t pos = 0) const; _ __

_ __

size_t find(const char* s, size_t pos = 0, size_t n = NPOS) const;

110)The function does not append a null character to the string.

17– 142 Library DRAFT: 25 January 1994 17.5.1.1.36
string::find(const char*, size_t, size_t)

1 Returnsfind(string(s, n), pos) .

[lib.string::find.c]17.5.1.1.37string::find(char, size_t)

size_t find(char c, size_t pos = 0) const;

1 Returnsfind(string(c), pos) .

[lib.string::rfind.sub]17.5.1.1.38string::rfind(const string&, size_t)

size_t rfind(const string& str , size_t pos = NPOS) const;

1 Determines the highest positionxpos , if possible, such that both of the following conditions obtain:

— xpos + str.len <= pos + 1 andpos < len ;

— ptr [xpos + I] == str.ptr [I] for all elementsI of the string controlled bystr .

2 If the function can determine such a value forxpos , it returnsxpos . Otherwise, it returnsNPOS.

[lib.string::rfind.str]17.5.1.1.39string::rfind(const char*, size_t, size_t)

Box 199
Library WG issue: Uwe Steinm

. .
uller, January 4, 1994

*> search begins from end, thats why pos = NPOS for default *>C size_t
rfind(const string& str, size_t pos = NPOS) const *>C size_t
rfind(const char *s, size_t pos = NPOS, size_t n =
NPOS) const; *>C size_t rfind(char c, size_t pos = NPOS) const; _ __

_ __

size_t rfind(const char* s, size_t pos = NPOS,
size_t n = NPOS) const;

1 Returnsrfind(string(s, n), pos) .

[lib.string::rfind.c]17.5.1.1.40string::rfind(char, size_t)

size_t rfind(char c, size_t pos = NPOS) const;

1 Returnsrfind(string(c, n), pos) .

[lib.string::find.first.of.sub]17.5.1.1.41string::find_first_of(const string&,
size_t)

size_t find_first_of(const string& str , size_t pos = 0) const;

1 Determines the lowest positionxpos , if possible, such that both of the following conditions obtain:

— pos <= xpos andxpos < len ;

— ptr [xpos] == str.ptr [I] for some elementI of the string controlled bystr .

2 If the function can determine such a value forxpos , it returnsxpos . Otherwise, it returnsNPOS.

17.5.1.1.42 DRAFT: 25 January 1994 Library 17– 143
string::find_first_of(const char*, size_t,size_t)

[lib.string::find.first.of.str]17.5.1.1.42string::find_first_of(const char*,
size_t,size_t)

Box 200
Library WG issue: Uwe Steinm

. .
uller, January 4, 1994

*>C size_t find_first_of(const string& str, size_t pos = 0) const
size_t find_first_of(const char *s, size_t pos = 0, size_t

n = NPOS) const; *> does not make sense (first of c is find(c, pos) *>W
size_t find_first_of(char c, size_t pos = 0, size_t n = NPOS)
const; _ __

_ __

size_t find_first_of(const char* s, size_t pos = 0,
size_t n = NPOS) const;

1 Returnsfind_first_of(string(s, n), pos) .

[lib.string::find.first.of.c]17.5.1.1.43string::find_first_of(char, size_t)

size_t find_first_of(char c, size_t pos = 0) const;

1 Returnsfind_first_of(string(c), pos) .

[lib.string::find.last.of.sub]17.5.1.1.44string::find_last_of(const string&,
size_t)

size_t find_last_of(const string& str , size_t pos = NPOS) const;

1 Determines the highest positionxpos , if possible, such that both of the following conditions obtain:

— xpos <= pos and pos < len ;

— ptr [xpos] == str.ptr [I] for some elementI of the string controlled bystr .

2 If the function can determine such a value forxpos , it returnsxpos . Otherwise, it returnsNPOS.

[lib.string::find.last.of.str]17.5.1.1.45string::find_last_of(const char*,
size_t,size_t)

Box 201
Library WG issue: Uwe Steinm

. .
uller, January 4, 1994

*> search from the end *>C size_t find_last_of(const string& str,
size_t pos = NPOS)const; *>C size_t find_last_of(const char *s, size_t
pos = NPOS, size_t n = NPOS) const; *>W size_t
find_last_of(char c, size_t pos = 0, size_t n = NPOS) const; _ __

_ __

size_t find_last_of(const char* s, size_t pos = NPOS,
size_t n = NPOS) const;

1 Returnsfind_last_of(string(s, n), pos) .

17– 144 Library DRAFT: 25 January 1994 17.5.1.1.46
string::find_last_of(char, size_t)

[lib.string::find.last.of.c]17.5.1.1.46string::find_last_of(char, size_t)

size_t find_last_of(char c, size_t pos = NPOS) const;

1 Returnsfind_last_of(string(c, n), pos) .

[lib.string::find.first.not.of.sub]17.5.1.1.47
string::find_first_not_of(const string&,size_t)

size_t find_first_not_of(const string& str ,
size_t pos = 0) const;

1 Determines the lowest positionxpos , if possible, such that both of the following conditions obtain:

— pos <= xpos andxpos < len ;

— ptr [xpos] == str.ptr [I] for no elementI of the string controlled bystr .

2 If the function can determine such a value forxpos , it returnsxpos . Otherwise, it returnsNPOS.

[lib.string::find.first.not.of.str]17.5.1.1.48string::find_first_not_of(const char*,
size_t,size_t)

Box 202
Library WG issue: Uwe Steinm

. .
uller, January 4, 1994

*>C size_t find_first_not_of(const string& str, size_t pos = 0)const;
size_t find_first_not_of(const char *s, size_t pos = 0,

size_t n = NPOS) const; *>W size_t find_first_not_of(char c,
size_t pos = 0, size_t n = NPOS) const; _ __

_ __

size_t find_first_not_of(const char* s, size_t pos = 0,
size_t n = NPOS) const;

1 Returnsfind_first_not_of(string(s, n), pos) .

[lib.string::find.first.not.of.c]17.5.1.1.49string::find_first_not_of(char, size_t)

size_t find_first_not_of(char c, size_t pos = 0) const;

1 Returnsfind_first_not_of(string(c), pos) .

[lib.string::find.last.not.of.sub]17.5.1.1.50string::find_last_not_of(const string&,
size_t)

size_t find_last_not_of(const string& str , size_t pos = NPOS) const;

1 Determines the highest positionxpos , if possible, such that both of the following conditions obtain:

— xpos <= pos and pos < len ;

— ptr [xpos] == str.ptr [I] for no elementI of the string controlled bystr .

2 If the function can determine such a value forxpos , it returnsxpos . Otherwise, it returnsNPOS.

17.5.1.1.51 DRAFT: 25 January 1994 Library 17– 145
string::find_last_not_of(const char*, size_t, size_t)

[lib.string::find.last.not.of.str]17.5.1.1.51string::find_last_not_of(const char*,
size_t, size_t)

Box 203
Library WG issue: Uwe Steinm

. .
uller, January 4, 1994

*>C size_t find_last_not_of(const string& str, size_t pos = NPOS)const;
*>C size_t find_last_not_of(const char *s, size_t pos = NPOS,

size_t n = NPOS) const; *>W size_t find_last_not_of(char c,
size_t pos = 0, size_t n = NPOS) const; _ __

_ __

size_t find_last_not_of(const char* s, size_t pos = NPOS,
size_t n = NPOS) const;

1 Returnsfind_last_not_of(string(s, n), pos) .

[lib.string::find.last.not.of.c]17.5.1.1.52string::find_last_not_of(char, size_t)

size_t find_last_not_of(char c, size_t pos = NPOS) const;

1 Returnsfind_last_not_of(string(c, n), pos) .

[lib.string::substr]17.5.1.1.53string::substr(size_t, size_t)

Box 204
Library WG issue: Uwe Steinm

. .
uller, January 4, 1994

string substr(size_t pos = 0, size_t n = NPOS) const;

int compare(const string& str, size_t pos = 0,
size_t n = NPOS) const; *>C int

compare(char *s, size_t n) const; _ __

_ __

string substr(size_t pos = 0, size_t n = NPOS) const;

1 Reports an out-of-range error ifpos > len . Otherwise, the function determines the effective length
rlen of the string to copy as the smaller ofn andlen - pos .

2 The function then returnsstring(ptr + pos , rlen) .

[lib.string::compare.sub]17.5.1.1.54string::compare(const string&, size_t,
size_t)

int compare(const string& str , size_t pos , size_t n = NPOS) const;

1 Reports an out-of-range error ifpos > len . Otherwise, the function determines the effective length
rlen of the strings to compare as the smallest ofn, len - pos , andstr.len . The function then com-
pares the two strings by callingmemcmp(ptr + pos , str.ptr , rlen) . The function signature
memcmp(const void*, const void*, size_t) is declared in<string.h> .111) ∗

2 If the result of that comparison is nonzero, the function returns the nonzero result. Otherwise, the function
returns:

111)The elements are compared as if they had typeunsigned char .

17– 146 Library DRAFT: 25 January 1994 17.5.1.1.54
string::compare(const string&, size_t, size_t)

— if len < rlen , a value less than zero;

— if len == rlen , the value zero;

— if len > rlen , a value greater than zero.

[lib.string::compare.str]17.5.1.1.55string::compare(const char*, size_t)

size_t compare(const char* s, size_t n = NPOS) const;

1 Returnscompare(string(s, n), pos) .

[lib.string::compare.c]17.5.1.1.56string::compare(char, size_t)

Box 205
Library WG issue: Uwe Steinm

. .
uller, January 4, 1994

*> not very useful *>R int compare(char c, size_t pos = 0, size_t n
= NPOS) const; _ __

_ __

size_t compare(char c, size_t rep = 1) const;

1 Returnscompare(string(c, rep), pos) .

[lib.op+.sub.sub]17.5.1.2operator+(const string&, const string&)

string operator+(const string& lhs , const string& rhs);

1 Returnsstring(lhs).append(rhs) .

[lib.op+.str.sub]17.5.1.3operator+(const char*, const string&)

string operator+(const char* lhs , const string& rhs);

1 Returnsstring(lhs) + rhs .

[lib.op+.c.sub]17.5.1.4operator+(char, const string&)

string operator+(char lhs , const string& rhs);

1 Returnsstring(lhs) + rhs .

[lib.op+.sub.str]17.5.1.5operator+(const string&, const char*)

string operator+(const string& lhs , const char* rhs);

1 Returnslhs + string(rhs) .

[lib.op+.str.c]17.5.1.6operator+(const string&, char)

string operator+(const string& lhs , char rhs);

1 Returnslhs + string(rhs) .

17.5.1.7 DRAFT: 25 January 1994 Library 17– 147
operator==(const string&, const string&)

[lib.op==.sub.sub]17.5.1.7operator==(const string&, const string&)

int operator==(const string& lhs , const string& rhs);

1 Returns a nonzero value if!(lhs == rhs) is nonzero.

[lib.op==.str.sub]17.5.1.8operator==(const char*, const string&)

string operator==(const char* lhs , const string& rhs);

1 Returnsstring(lhs) == rhs .

[lib.op==.c.sub]17.5.1.9operator==(char, const string&)

string operator==(char lhs , const string& rhs);

1 Returnsstring(lhs) == rhs .

[lib.op==.sub.str]17.5.1.10operator==(const string&, const char*)

string operator==(const string& lhs , const char* rhs);

1 Returnslhs == string(rhs) .

[lib.op==.sub.c]17.5.1.11operator==(const string&, char)

string operator==(const string& lhs , char rhs);

1 Returnslhs == string(rhs) .

[lib.op!=.sub.sub]17.5.1.12operator!=(const string&, const string&)

int operator!=(const string& lhs , const string& rhs);

1 Returns a nonzero value iflhs .compare(rhs) is nonzero.

[lib.op!=.str.sub]17.5.1.13operator!=(const char*, const string&)

string operator!=(const char* lhs , const string& rhs);

1 Returnsstring(lhs) != rhs .

[lib.op!=.c.sub]17.5.1.14operator!=(char, const string&)

string operator!=(char lhs , const string& rhs);

1 Returnsstring(lhs) != rhs .

[lib.op!=.sub.str]17.5.1.15operator!=(const string&, const char*)

string operator!=(const string& lhs , const char* rhs);

1 Returnslhs != string(rhs) .

[lib.op!=.sub.c]17.5.1.16operator!=(const string&, char)

string operator!=(const string& lhs , char rhs);

1 Returnslhs != string(rhs) .

17– 148 Library DRAFT: 25 January 1994 17.5.1.17
operator>>(istream&, string&)

[lib.ext.sub]17.5.1.17operator>>(istream&, string&)

istream& operator>>(istream& is , string& str);

1 A formatted input function, extracts characters and appends them to the string controlled bystr . The
string is initially made empty by callingstr .remove(0) . Each extracted characterc is appended as if
by callingstr .append(c) . If width() is greater than zero, the maximum number of characters stored
n is width() ; otherwise it isINT_MAX, defined in<limits.h> .

2 Characters are extracted and appended until any of the following occurs:

— n characters are appended;

— NPOS - 1 characters are appended;

— end-of-file occurs on the input sequence;

— isspace(c) is nonzero for the next available input characterc (in which case the input character is
not extracted).

3 The function signatureisspace(int) is declared in<ctype.h> .

4 If the function appends no characters, it callssetstate(failbit) . The function returnsis .

[lib.getline.sub]17.5.1.18getline(istream&, string&, char)

istream& getline(istream& is , string& str , char delim = ’\n’);

1 An unformatted input function, extracts characters and appends them to the string controlled bystr . The
string is initially made empty by callingstr .remove(0) . Each extracted characterc is appended as if
by callingstr .append(c) . Characters are extracted and appended until any of the following occurs:

— NPOS - 1 characters are appended (in which case the function callssetstate(failbit));

— end-of-file occurs on the input sequence (in which case the function callssetstate(eofbit));

— c == delim for the next available input characterc (in which case the input character is extracted
but not appended).

2 If the function appends no characters, it callssetstate(failbit) . The function returnsis .

[lib.ins.sub]17.5.1.19operator<<(ostream&, const string&)

ostream& operator<<(ostream& os , const string& str);

1 A formatted output function, behaves the same asos .write(str .c_str(), str .length()) .

2 The function returnsos .

[lib.header.wstring]17.5.2 Header<wstring>

1 The header<wstring> defines a type and several function signatures for manipulating varying-length
sequences of wide characters.

[lib.wstring]17.5.2.1 Classwstring

17.5.2.1 Classwstring DRAFT: 25 January 1994 Library 17– 149

Box 206
Library WG issue: Ichiro Koshida, January 10, 1994

In reviewing C + + library draft, I found two differences betweenstring class andwstring class.

1. Member functionsstring::c_str() andwstring::c_wcs()
These member functions have same functionality (i.e., to get C representation of thestring or wstring
object). They should have a same name.

2. Wstring class lacks I/O fucntions
In string class defintion, these functions are defined:

function signature operator>>(istream&, string&)
function signature getline(istream&, string&, char)
function signature operator<<(ostream&, string&)

None of them, however, exist for thewstring class. Corresponding functions listed below should be
defined for thewstring class.

function signature operator>>(istream&, wstring&)
function signature getline(istream&, wstring&, wchar_t)
function signature operator<<(ostream&, wstring&) _ __

_ __

17– 150 Library DRAFT: 25 January 1994 17.5.2.1 Classwstring

class wstring {
public:

wstring();
wstring(size_t size , capacity cap);
wstring(const wstring& str , size_t pos = 0, size_t n = NPOS);
wstring(const wchar_t* s, size_t n = NPOS);
wstring(wchar_t c, size_t rep = 1);
wstring& operator=(const wchar_t* s);
wstring& operator=(wchar_t c);
wstring& operator+=(const wstring& rhs);
wstring& operator+=(const wchar_t* s);
wstring& operator+=(wchar_t c);
wstring& append(const wstring& str , size_t pos = 0,

size_t n = NPOS);
wstring& append(const wchar_t* s, size_t n = NPOS);
wstring& append(wchar_t c, size_t rep = 1);
wstring& assign(const wstring& str , size_t pos = 0,

size_t n = NPOS);
wstring& assign(const wchar_t* s, size_t n = NPOS);
wstring& assign(wchar_t c, size_t rep = 1);
wstring& insert(size_t pos1 , const wstring& str , size_t pos2 = 0,

size_t n = NPOS);
wstring& insert(size_t pos , const wchar_t* s,

size_t n = NPOS);
wstring& insert(size_t pos , wchar_t c, size_t rep = 1);
wstring& remove(size_t pos = 0, size_t n = NPOS);
wstring& replace(size_t pos1 , size_t n1, const wstring& str ,

size_t pos2 = 0, size_t n2 = NPOS);
wstring& replace(size_t pos , size_t n1, const wchar_t* s,

size_t n2 = NPOS);
wstring& replace(size_t pos , size_t n, wchar_t c,

size_t rep = 1);
wchar_t get_at(size_t pos) const;
void put_at(size_t pos , wchar_t c);
wchar_t operator[](size_t pos) const;
wchar_t& operator[](size_t pos);
const wchar_t* c_wcs() const;
size_t length() const:
void resize(size_t n, wchar_t c = 0);
size_t reserve() const;
void reserve(size_t res_arg);
size_t copy(wchar_t* s, size_t n, size_t pos = 0);
size_t find(const wstring& str , size_t pos = 0) const;
size_t find(const wchar_t* s, size_t pos = 0, size_t n = NPOS)

const;
size_t find(wchar_t c, size_t pos = 0) const;
size_t rfind(const wstring& str , size_t pos = NPOS) const;
size_t rfind(const wchar_t* s, size_t pos = NPOS,

size_t n = NPOS) const;
size_t rfind(wchar_t c, size_t pos = NPOS) const;
size_t find_first_of(const wstring& str , size_t pos = 0) const;
size_t find_first_of(const wchar_t* s, size_t pos = 0,

size_t n = NPOS) const;
size_t find_first_of(wchar_t c, size_t pos = 0) const;
size_t find_last_of(const wstring& str , size_t pos = NPOS) const;
size_t find_last_of(const wchar_t* s, size_t pos = NPOS,

size_t n = NPOS) const;
size_t find_last_of(wchar_t c, size_t pos = NPOS) const;
size_t find_first_not_of(const wstring& str , size_t pos = 0)

const;
size_t find_first_not_of(const wchar_t* s, size_t pos = 0,

size_t n = NPOS) const;

17.5.2.1 Classwstring DRAFT: 25 January 1994 Library 17– 151

size_t find_first_not_of(wchar_t c, size_t pos = 0) const;
size_t find_last_not_of(const wstring& str , size_t pos = NPOS)

const;
size_t find_last_not_of(const wchar_t* s, size_t pos = NPOS,

size_t n = NPOS) const;
size_t find_last_not_of(wchar_t c, size_t pos = NPOS) const;
wstring substr(size_t pos = 0, size_t n = NPOS) const;
int compare(const wstring& str , size_t pos = 0,

size_t n = NPOS) const;
int compare(wchar_t* s, size_t n = NPOS) const;
int compare(wchar_t c, size_t rep = 1) const;

private:
// wchar_t* ptr ; exposition only
// size_t len , res ; exposition only
};

1 The classwstring describes objects that can store a sequence consisting of a varying number of arbitrary
wide characters. The first element of the sequence is at position zero. Such a sequence is also called a
wide-character string(or simply astring if the type of the elements is clear from context). Storage for the
string is allocated and freed as necessary by the member functions of classwstring . For the sake of
exposition, the maintained data is presented here as:

— wchar_t* ptr , points to the initial character of the string;

— size_t len , counts the number of characters currently in the string;

— size_t res , for an unallocated string, holds the recommended allocation size of the string, while for
an allocated string, becomes the currently allocated size.

2 In all cases,len <= res .

3 The functions described in this subclause can report two kinds of errors, each associated with a distinct
exception:

— a lengtherror is associated with exceptions of typelengtherror ;

— anout-of-rangeerror is associated with exceptions of typeoutofrange .

4 To report one of these errors, the function evaluates the expressionex .raise() , whereex is an object of
the associated exception type.

[lib.cons.wstring]17.5.2.1.1wstring::wstring()

wstring();

1 Constructs an object of classwstring initializing:

— ptr to an unspecified value;

— len to zero;

— res to an unspecified value.

[lib.cons.wstring.cap]17.5.2.1.2wstring::wstring(size_t, capacity)

wstring(size_t size , capacity cap);

1 Constructs an object of classwstring . If cap is default_size , the function either reports a length
error if size equalsNPOSor initializes:

— ptr to point at the first element of an allocated array ofsize elements, each of which is initialized to

17– 152 Library DRAFT: 25 January 1994 17.5.2.1.2
wstring::wstring(size_t, capacity)

zero;

— len to size ;

— res to a value at least as large aslen .

2 Otherwise,cap shall bereserve and the function initializes:

— ptr to an unspecified value;

— len to zero;

— res to size .

[lib.cons.wstring.wsub]17.5.2.1.3wstring::wstring(const wstring&, size_t,
size_t)

wstring(const wstring& str , size_t pos = 0, size_t n = NPOS);

1 Reports an out-of-range error ifpos > str.len . Otherwise, the function constructs an object of class
wstring and determines the effective lengthrlen of the initial wstring value as the smaller ofn and
str.len - pos . Thus, the function initializes:

— ptr to point at the first element of an allocated copy ofrlen elements of the wstring controlled by
str beginning at positionpos ;

— len to rlen ;

— res to a value at least as large aslen .

[lib..cons.wstring.wstr]17.5.2.1.4wstring::wstring(const wchar_t*, size_t)

wstring(const wchar_t* s, size_t n);

1 If n equalsNPOS, storeswcslen(s) in n. The function signaturewcslen(const wchar_T*) is
declared in<wchar.h> .

2 In any case, the function constructs an object of classwstring and determines its initial string value from
the array ofwchar_t of lengthn whose first element is designated bys . s shall not be a null pointer.
Thus, the function initializes:

— ptr to point at the first element of an allocated copy of the array whose first element is pointed at bys ;

— len to n;

— res to a value at least as large aslen .

[lib..cons.wstring.wc]17.5.2.1.5wstring::wstring(wchar_t, size_t)

wstring(wchar_t c, size_t rep = 1);

1 Reports a length error ifrep equalsNPOS. Otherwise, the function constructs an object of classwstring
and determines its initial string value by repeating the characterc for all rep elements. Thus, the function
initializes:

— ptr to point at the first element of an allocated array ofrep elements, each storing the initial valuec ;

— len to rep ;

— res to a value at least as large aslen .

17.5.2.1.5 DRAFT: 25 January 1994 Library 17– 153
wstring::wstring(wchar_t, size_t)

[lib.wstring::op=.wstr]17.5.2.1.6wstring::operator=(const wchar_t*)

wstring& operator=(const wchar_t* s);

1 Returns*this = string(s) .

[lib.wstring::op=.wc]17.5.2.1.7wstring::operator=(wchar_t)

wstring& operator=(wchar_t c);

1 Returns*this = string(c) .

[lib.wstring::op+=.wsub]17.5.2.1.8wstring::operator+=(const wstring&)

wstring& operator+=(const wstring& rhs);

1 Returnsappend(rhs) .

[lib.wstring::op+=.wstr]17.5.2.1.9wstring::operator+=(const wchar_t*)

wstring& operator+=(const wchar_t* s);

1 Returns*this += string(s) .

[lib.wstring::op+=.wc]17.5.2.1.10wstring::operator+=(wchar_t)

wstring& operator+=(wchar_t c);

1 Returns*this += string(c) .

[lib.wstring::append.wsub]17.5.2.1.11wstring::append(const wstring&, size_t,
size_t)

wstring& append(const wstring& str , size_t pos = 0, size_t n = NPOS);

1 Reports an out-of-range error ifpos > str.len . Otherwise, the function determines the effective
lengthrlen of the string to append as the smaller ofn andstr.len - pos . The function then reports
a length error iflen >= NPOS - rlen .

2 Otherwise, the function replaces the string controlled by*this with a string of lengthlen + rlen
whose firstlen elements are a copy of the original string controlled by*this and whose remaining ele-
ments are a copy of the initial elements of the string controlled bystr beginning at positionpos .

3 The function returns*this .

[lib.wstring::append.wstr]17.5.2.1.12wstring::append(const wchar_t*, size_t)

wstring& append(const wchar_t* s, size_t n = NPOS);

1 Returnsappend(wstring(s, n)) .

[lib.wstring::append.wc]17.5.2.1.13wstring::append(wchar_t, size_t)

wstring& append(wchar_t c, size_t rep = 1);

1 Returnsappend(wstring(c, rep)) .

17– 154 Library DRAFT: 25 January 1994 17.5.2.1.14
wstring::assign(const wstring&, size_t, size_t)

[lib.wstring::assign.wsub]17.5.2.1.14wstring::assign(const wstring&, size_t,
size_t)

wstring& assign(const wstring& str , size_t pos = 0, size_t n = NPOS);

1 Reports an out-of-range error ifpos > str.len . Otherwise, the function determines the effective
lengthrlen of the string to assign as the smaller ofn andstr.len - pos .

2 The function then replaces the string controlled by*this with a string of lengthrlen whose elements are
a copy of the string controlled bystr beginning at positionpos .

3 The function returns*this .

[lib.wstring::assign.wstr]17.5.2.1.15wstring::assign(const wchar_t*, size_t)

wstring& assign(const wchar_t* s, size_t n = NPOS);

1 Returnsassign(wstring(s, n)) .

[lib.wstring::assign.wc]17.5.2.1.16wstring::assign(wchar_t, size_t)

wstring& assign(wchar_t c, size_t rep = 1);

1 Returnsassign(wstring(c, rep)) .

[lib.wstring::insert.wsub]17.5.2.1.17wstring::insert(size_t, const wstring&,
size_t, size_t)

wstring& insert(size_t pos1 , const wstring& str , size_t pos2 = 0,
size_t n = NPOS);

1 Reports an out-of-range error ifpos1 > len or pos2 > str.len . Otherwise, the function deter-
mines the effective lengthrlen of the string to insert as the smaller ofn andstr.len - pos2 . The
function then reports a length error iflen >= NPOS - rlen .

2 Otherwise, the function replaces the string controlled by*this with a string of lengthlen + rlen
whose firstpos1 elements are a copy of the initial elements of the original string controlled by*this ,
whose nextrlen elements are a copy of the elements of the string controlled bystr beginning at position
pos2 , and whose remaining elements are a copy of the remaining elements of the original string controlled
by *this .

3 The function returns*this .

[lib.wstring::insert.wstr]17.5.2.1.18wstring::insert(size_t, const wchar_t*,
size_t)

wstring& insert(size_t pos , const wchar_t* s, size_t n = NPOS);

1 Returnsinsert(pos , wstring(s, n)) .

[lib.wstring::insert.wc]17.5.2.1.19wstring::insert(size_t, wchar_t, size_t)

wstring& insert(size_t pos , wchar_t c, size_t rep = 1);

1 Returnsinsert(pos , wstring(c, rep)) .

17.5.2.1.20 DRAFT: 25 January 1994 Library 17– 155
wstring::remove(size_t, size_t)

[lib.wstring::remove]17.5.2.1.20wstring::remove(size_t, size_t)

wstring& remove(size_t pos = 0, size_t n = NPOS);

1 Reports an out-of-range error ifpos > len . Otherwise, the function determines the effective length
xlen of the string to be removed as the smaller ofn andlen - pos .

2 The function then replaces the string controlled by*this with a string of lengthlen - xlen whose
first pos elements are a copy of the initial elements of the original string controlled by*this , and whose
remaining elements are a copy of the elements of the original string controlled by*this beginning at
positionpos + xlen .

3 The function returns*this .

[lib.wstring::replace.wsub]17.5.2.1.21wstring::replace(size_t, size_t,
const wstring&, size_t, size_t)

wstring& replace(size_t pos1 , size_t n1, const wstring& str ,
size_t pos2 = 0, size_t n2 = NPOS);

1 Reports an out-of-range error ifpos1 > len or pos2 > str.len . Otherwise, the function deter-
mines the effective lengthxlen of the string to be removed as the smaller ofn1 and len - pos1 . It
also determines the effective lengthrlen of the string to be inserted as the smaller ofn2 andstr.len -
pos2 . The function then reports a length error iflen - xlen >= NPOS - rlen .

2 Otherwise, the function replaces the string controlled by*this with a string of lengthlen - xlen +
rlen whose firstpos1 elements are a copy of the initial elements of the original string controlled by
*this , whose nextrlen elements are a copy of the initial elements of the string controlled bystr
beginning at positionpos2 , and whose remaining elements are a copy of the elements of the original string
controlled by*this beginning at positionpos1 + xlen .

3 The function returns*this .

[lib.wstring::replace.wstr]17.5.2.1.22wstring::replace(size_t, size_t,
const wchar_t*, size_t)

wstring& replace(size_t pos , size_t n1, const wchar_t* s,
size_t n2 = NPOS);

1 Returnsreplace(pos , n1, wstring(s, n2)) .

[lib.wstring::replace.wc]17.5.2.1.23wstring::replace(size_t, size_t, wchar_t,
size_t)

wstring& replace(size_t pos , size_t n, wchar_t c, size_t rep = 1);

1 Returnsreplace(pos , n, wstring(c, rep)) .

[lib.wstring::get.at]17.5.2.1.24wstring::get_at(size_t)

wchar_t get_at(size_t pos) const;

1 Reports an out-of-range error ifpos >= len . Otherwise, the function returnsptr [pos] .

[lib.wstring::put.at]17.5.2.1.25wstring::put_at(size_t, wchar_t)

void put_at(size_t pos , wchar_t c);

1 Reports an out-of-range error ifpos > len . Otherwise, ifpos == len , the function replaces the
string controlled by*this with a string of lengthlen + 1 whose firstlen elements are a copy of the

17– 156 Library DRAFT: 25 January 1994 17.5.2.1.25
wstring::put_at(size_t, wchar_t)

original string and whose remaining element is initialized toc . Otherwise, the function assignsc to
ptr [pos] .

[lib.wstring::op.array]17.5.2.1.26wstring::operator[](size_t)

wchar_t operator[](size_t pos) const;
wchar_t& operator[](size_t pos);

1 If pos < len , returnsptr [pos] . Otherwise, ifpos == len , theconst version returns zero. Oth-
erwise, the behavior is undefined.

2 The reference returned by the non-const version is invalid after any subsequent call toc_wcs or any
non-const member function for the object.

[lib.wstring::c.wcs]17.5.2.1.27wstring::c_wcs()

const wchar_t* c_wcs() const;

1 Returns a pointer to the initial element of an array of lengthlen + 1 whose firstlen elements equal the
corresponding elements of the string controlled by*this and whose last element is a null character. The
program shall not alter any of the values stored in the array. Nor shall the program treat the returned value
as a valid pointer value after any subsequent call to a non-const member function of the classwstring
that designates the same object as*this .

[lib.wstring::length]17.5.2.1.28wstring::length()

size_t length() const:

1 Returnslen .

[lib.wstring::resize]17.5.2.1.29wstring::resize(size_t, wchar_t)

void resize(size_t n, wchar_t c = 0);

1 Reports a length error ifn equalsNPOS. Otherwise, the function alters the length of the string designated
by *this as follows:

— If n <= len , the function replaces the string designated by*this with a string of lengthn whose
elements are a copy of the initial elements of the original string designated by*this .

— If n > len , the function replaces the string designated by*this with a string of lengthn whose first
len elements are a copy of the original string designated by*this , and whose remaining elements are
all initialized toc .

[lib.wstring::reserve]17.5.2.1.30wstring::reserve()

size_t reserve() const;

1 Returnsres .

[lib.wstring::reserve.cap]17.5.2.1.31wstring::reserve(size_t)

void reserve(size_t res_arg);

1 If no string is allocated, the function assignsres_arg to res . Otherwise, whether or how the function
altersres is unspecified.

17.5.2.1.32 DRAFT: 25 January 1994 Library 17– 157
wstring::copy(wchar_t*, size_t, size_t)

[lib.wstring::copy.wstr]17.5.2.1.32wstring::copy(wchar_t*, size_t, size_t)

size_t copy(wchar_t* s, size_t n, size_t pos = 0);

1 Reports an out-of-range error ifpos > len . Otherwise, the function determines the effective length
rlen of the string to copy as the smaller ofn and len - pos . s shall designate an array of at least
rlen elements.

2 The function then replaces the string designated bys with a string of lengthrlen whose elements are a
copy of the string controlled by*this .112) ∗

3 The function returnsrlen .

[lib.wstring::find.wsub]17.5.2.1.33wstring::find(const wstring&, size_t)

size_t find(const wstring& str , size_t pos = 0) const;

1 Determines the lowest positionxpos , if possible, such that both of the following conditions obtain:

— pos <= xpos andxpos + str.len <= len ;

— ptr [xpos + I] == str.ptr [I] for all elementsI of the string controlled bystr .

2 If the function can determine such a value forxpos , it returnsxpos . Otherwise, it returnsNPOS.

[lib.wstring::find.wstr]17.5.2.1.34wstring::find(const wchar_t*, size_t,
size_t)

size_t find(const wchar_t* s, size_t pos = 0, size_t n = NPOS) const;

1 Returnsfind(wstring(s, n), pos) .

[lib.wstring::find.wc]17.5.2.1.35wstring::find(wchar_t, size_t)

size_t find(wchar_t c, size_t pos = 0) const;

1 Returnsfind(wstring(c), pos) .

[lib.wstring::rfind.wsub]17.5.2.1.36wstring::rfind(const wstring&, size_t)

size_t rfind(const wstring& str , size_t pos = NPOS) const;

1 Determines the highest positionxpos , if possible, such that both of the following conditions obtain:

— xpos + str.len <= pos + 1 andpos < len ;

— ptr [xpos + I] == str.ptr [I] for all elementsI of the string controlled bystr .

2 If the function can determine such a value forxpos , it returnsxpos . Otherwise, it returnsNPOS.

[lib.wstring::rfind.wstr]17.5.2.1.37wstring::rfind(const wchar_t*, size_t,
size_t)

size_t rfind(const wchar_t* s, size_t pos = NPOS, size_t n = NPOS)
const;

112)The function does not append a null wide character to the string.

17– 158 Library DRAFT: 25 January 1994 17.5.2.1.37
wstring::rfind(const wchar_t*, size_t, size_t)

1 Returnsrfind(wstring(s, n), pos) .

[lib.wstring::rfind.wc]17.5.2.1.38wstring::rfind(wchar_t, size_t)

size_t rfind(wchar_t c, size_t pos = NPOS) const;

1 Returnsrfind(wstring(c, n), pos) .

[lib.wstring::find.first.of.wsub]17.5.2.1.39wstring::find_first_of(const wstring&,
size_t)

size_t find_first_of(const wstring& str , size_t pos = 0) const;

1 Determines the lowest positionxpos , if possible, such that both of the following conditions obtain:

— pos <= xpos andxpos < len ;

— ptr [xpos] == str.ptr [I] for some elementI of the string controlled bystr .

2 If the function can determine such a value forxpos , it returnsxpos . Otherwise, it returnsNPOS.

[lib.wstring::find.first.of.wstr]17.5.2.1.40wstring::find_first_of(const wchar_t*,
size_t, size_t)

size_t find_first_of(const wchar_t* s, size_t pos = 0,
size_t n = NPOS) const;

1 Returnsfind_first_of(wstring(s, n), pos) .

[lib.wstring::find.first.of.wc]17.5.2.1.41wstring::find_first_of(wchar_t, size_t)

size_t find_first_of(wchar_t c, size_t pos = 0) const;

1 Returnsfind_first_of(wstring(c), pos) .

[lib.wstring::find.last.of.wsub]17.5.2.1.42wstring::find_last_of(const wstring&,
size_t)

size_t find_last_of(const wstring& str , size_t pos = NPOS) const;

1 Determines the highest positionxpos , if possible, such that both of the following conditions obtain:

— xpos <= pos and pos < len ;

— ptr [xpos] == str.ptr [I] for some elementI of the string controlled bystr .

2 If the function can determine such a value forxpos , it returnsxpos . Otherwise, it returnsNPOS.

[lib.wstring::find.last.of.wstr]17.5.2.1.43wstring::find_last_of(const wchar_t*,
size_t, size_t)

size_t find_last_of(const wchar_t* s, size_t pos = NPOS,
size_t n = NPOS) const;

1 Returnsfind_last_of(wstring(s, n), pos) .

17.5.2.1.44 DRAFT: 25 January 1994 Library 17– 159
wstring::find_last_of(wchar_t, size_t)

[lib.wstring::find.last.of.wc]17.5.2.1.44wstring::find_last_of(wchar_t, size_t)

size_t find_last_of(wchar_t c, size_t pos = NPOS) const;

1 Returnsfind_last_of(wstring(c, n), pos) .

[lib.wstring::find.first.not.of.wsub]17.5.2.1.45
wstring::find_first_not_of(const wstring&,
size_t)

size_t find_first_not_of(const wstring& str , size_t pos = 0) const;

1 Determines the lowest positionxpos , if possible, such that both of the following conditions obtain:

— pos <= xpos andxpos < len ;

— ptr [xpos] == str.ptr [I] for no elementI of the string controlled bystr .

2 If the function can determine such a value forxpos , it returnsxpos . Otherwise, it returnsNPOS.

[lib.wstring::find.first.not.of.wstr]17.5.2.1.46
wstring::find_first_not_of(const wchar_t*,
size_t, size_t)

size_t find_first_not_of(const wchar_t* s, size_t pos = 0,
size_t n = NPOS) const;

1 Returnsfind_first_not_of(wstring(s, n), pos) .

[lib.wstring::find.first.not.of.wc]17.5.2.1.47wstring::find_first_not_of(wchar_t,
size_t)

size_t find_first_not_of(wchar_t c, size_t pos = 0) const;

1 Returnsfind_first_not_of(wstring(c), pos) .

[lib.wstring::find.last.not.of.wsub]17.5.2.1.48
wstring::find_last_not_of(const wstring&,
size_t)

size_t find_last_not_of(const wstring& str , size_t pos = NPOS) const;

1 Determines the highest positionxpos , if possible, such that both of the following conditions obtain:

— xpos <= pos and pos < len ;

— ptr [xpos] == str.ptr [I] for no elementI of the string controlled bystr .

2 If the function can determine such a value forxpos , it returnsxpos . Otherwise, it returnsNPOS.

[lib.wstring::find.last.not.of.wstr]17.5.2.1.49
wstring::find_last_not_of(const wchar_t*,
size_t, size_t)

size_t find_last_not_of(const wchar_t* s, size_t pos = NPOS,
size_t n = NPOS) const;

1 Returnsfind_last_not_of(wstring(s, n), pos) .

17– 160 Library DRAFT: 25 January 1994 17.5.2.1.50
wstring::find_last_not_of(wchar_t, size_t)

[lib.wstring::find.last.not.of.wc]17.5.2.1.50wstring::find_last_not_of(wchar_t,
size_t)

size_t find_last_not_of(wchar_t c, size_t pos = NPOS) const;

1 Returnsfind_last_not_of(wstring(c, n), pos) .

[lib.wstring::substr]17.5.2.1.51wstring::substr(size_t, size_t)

wstring substr(size_t pos = 0, size_t n = NPOS) const;

1 Reports an out-of-range error ifpos > len . Otherwise, the function determines the effective length
rlen of the string to copy as the smaller ofn andlen - pos .

2 The function then returnswstring(ptr + pos , rlen) .

[lib.wstring::compare.wsub]17.5.2.1.52wstring::compare(const wstring&, size_t,
size_t)

int compare(const wstring& str , size_t pos , size_t n = NPOS) const;

1 Reports an out-of-range error ifpos > len . Otherwise, the function determines the effective length
rlen of the strings to compare as the smallest ofn, len - pos , andstr.len . The function then com-
pares the two strings by callingwcscmp(ptr + pos , str.ptr , rlen) . The function signature
wmemcmp(const wchar_t*, const wchar_t*, size_t) is declared in<wchar.h> .

2 If the result of that comparison is nonzero, the function returns the nonzero result. Otherwise, the function
returns:

— if len < rlen , a value less than zero;

— if len == rlen , the value zero;

— if len > rlen , a value greater than zero.

[lib.wstring::compare.wstr]17.5.2.1.53wstring::compare(const wchar_t*, size_t)

size_t compare(const wchar_t* s, size_t n = NPOS) const;

1 Returnscompare(wstring(s, n), pos) .

[lib.wstring::compare.wc]17.5.2.1.54wstring::compare(wchar_t, size_t)

size_t compare(wchar_t c, size_t rep = 1) const;

1 Returnscompare(wstring(c, rep), pos) .

[lib.op+.wsub.wsub]17.5.2.2operator+(const wstring&, const wstring&)

wstring operator+(const wstring& lhs , const wstring& rhs);

1 Returnswstring(lhs).append(rhs) .

[lib.op+.wstr.wsub]17.5.2.3operator+(const wchar_t*, const wstring&)

wstring operator+(const wchar_t* lhs , const wstring& rhs);

1 Returnswstring(lhs) + rhs .

17.5.2.4 DRAFT: 25 January 1994 Library 17– 161
operator+(wchar_t, const wstring&)

[lib.op+.wc.wsub]17.5.2.4operator+(wchar_t, const wstring&)

wstring operator+(wchar_t lhs , const wstring& rhs);

1 Returnswstring(lhs) + rhs .

[lib.op+.wsub.wstr]17.5.2.5operator+(const wstring&, const wchar_t*)

wstring operator+(const wstring& lhs , const wchar_t* rhs);

1 Returnslhs + wstring(rhs) .

[lib.op+.wsub.wc]17.5.2.6operator+(const wstring&, wchar_t)

wstring operator+(const wstring& lhs , wchar_t rhs);

1 Returnslhs + wstring(rhs) .

[lib.op==.wsub.wsub]17.5.2.7operator==(const wstring&, const wstring&)

int operator==(const wstring& lhs , const wstring& rhs);

1 Returns a nonzero value iflhs .compare(rhs) is zero.

[lib.op==.wstr.wsub]17.5.2.8operator==(const wchar_t*, const wstring&)

wstring operator==(const wchar_t* lhs , const wstring& rhs);

1 Returnswstring(lhs) == rhs .

[lib.op==.wc.wsub]17.5.2.9operator==(wchar_t, const wstring&)

wstring operator==(wchar_t lhs , const wstring& rhs);

1 Returnswstring(lhs) == rhs .

[lib.op==.wsub.wstr]17.5.2.10operator==(const wstring&, const wchar_t*)

wstring operator==(const wstring& lhs , const wchar_t* rhs);

1 Returnslhs == wstring(rhs) .

[lib.op==.wsub.wc]17.5.2.11operator==(const wstring&, wchar_t)

wstring operator==(const wstring& lhs , wchar_t rhs);

1 Returnslhs == wstring(rhs) .

[lib.op!=.wsub.wsub]17.5.2.12operator!=(const wstring&, const wstring&)

int operator!=(const wstring& lhs , const wstring& rhs);

1 Returns a nonzero value if!(lhs == rhs) is nonzero.

[lib.op!=.wstr.wsub]17.5.2.13operator!=(const wchar_t*, const wstring&)

wstring operator!=(const wchar_t* lhs , const wstring& rhs);

1 Returnswstring(lhs) != rhs .

17– 162 Library DRAFT: 25 January 1994 17.5.2.14
operator!=(wchar_t, const wstring&)

[lib.op!=.wc.wsub]17.5.2.14operator!=(wchar_t, const wstring&)

wstring operator!=(wchar_t lhs , const wstring& rhs);

1 Returnswstring(lhs) != rhs .

[lib.op!=.wsub.wstr]17.5.2.15operator!=(const wstring&, const wchar_t*)

wstring operator!=(const wstring& lhs , const wchar_t* rhs);

1 Returnslhs != wstring(rhs) .

[lib.op!=.wsub.wc]17.5.2.16operator!=(const wstring&, wchar_t)

wstring operator!=(const wstring& lhs , wchar_t rhs);

1 Returnslhs != wstring(rhs) .

[lib.header.bits]17.5.3 Header<bits>

1 The header<bits> defines a template class and several related functions for representing and manipulat-
ing fixed-size sequences of bits.

[lib.template.bits]17.5.3.1 Template classbits< N>

Box 207
Library WG issue: Charles Allison, August 26, 1993

[was 17.5.3]: Exceptions are global because otherwise there would be a different exception class set for
each value ofN, because of the template. If everything is put in a namespace, then the global namespace is
not polluted. _ __

_ __

17.5.3.1 Template classbits< N> DRAFT: 25 January 1994 Library 17– 163

template<size_t N> class bits {
public:

bits();
bits(unsigned long val);
bits(const string& str , size_t pos = 0, size_t n = NPOS);
bits< N>& operator&=(const bits< N>& rhs);
bits< N>& operator|=(const bits< N>& rhs);
bits< N>& operator^=(const bits< N>& rhs);
bits< N>& operator<<=(size_t pos);
bits< N>& operator>>=(size_t pos);
bits< N>& set();
bits< N>& set(size_t pos , int val = 1);
bits< N>& reset();
bits< N>& reset(size_t pos);
bits< N> operator~();
bits< N>& toggle();
bits< N>& toggle(size_t pos);
unsigned short to_ushort() const;
unsigned long to_ulong() const;
string to_string() const;
size_t count() const;
size_t length() const;
int operator==(const bits< N>& rhs) const;
int operator!=(const bits< N>& rhs) const;
int test(size_t pos) const;
int any() const;
int none() const;
bits< N> operator<<(size_t pos) const;
bits< N> operator>>(size_t pos) const;

private:
// char array [N]; exposition only
};

1 The template classbits< N> describes an object that can store a sequence consisting of a fixed number of
bits,N.

2 Each bit represents either the value zero (reset) or one (set). Totogglea bit is to change the value zero to
one, or the value one to zero. Each bit has a non-negative positionpos . When converting between an
object of classbits< N> and a value of some integral type, bit positionpos corresponds to thebit value1
<< pos . The integral value corresponding to two or more bits is the sum of their bit values.

3 For the sake of exposition, the maintained data is presented here as:

— char array [N] , the sequence of bits, stored one bit per element.113)

4 The functions described in this subclause can report three kinds of errors, each associated with a distinct
exception:

— an invalid-argumenterror is associated with exceptions of typeinvalidargument ;

— anout-of-rangeerror is associated with exceptions of typeoutofrange ;

— anoverflowerror is associated with exceptions of typeoverflow .

5 To report one of these errors, the function evaluates the expressionex .raise() , whereex is an object of
the associated exception type.

113)An implementation is free to store the bit sequence more efficiently.

17– 164 Library DRAFT: 25 January 1994 17.5.3.1.1bits< N>::bits()

[lib.cons.bits]17.5.3.1.1bits< N>::bits()

bits();

1 Constructs an object of classbits< N>, initializing all bits to zero.

[lib.cons.bits.ul]17.5.3.1.2bits< N>::bits(unsigned long)

Box 208
Library WG issue: Charles Allison, August 26, 1993

[was 17.5.3.4.2]: I did indeed fail to specify what the constructorbits(unsigned long n) does if
the significant bits ofn don’t fit in N bits. My implementation throws an exception, which I believe is con-
sistent with classbitstring (which expands to accommodaten). To be honest, I don’t really care if it
silently truncates, like this proposal does. Comments? _ __

_ __

bits(unsigned long val);

1 Constructs an object of classbits< N>, initializing the firstMbit positions to the corresponding bit values
in val . M is the smaller ofN and the valueCHAR_BIT * sizeof (unsigned long) . The macro
CHAR_BIT is defined in<limits.h> .

2 If M < N, remaining bit positions are initialized to zero.

[lib.cons.bits.subt]17.5.3.1.3bits< N>::bits(const string&, size_t, size_t)

bits(const string& str , size_t pos = 0, size_t n = NPOS);

1 Reports an out-of-range error ifpos > str.len . Otherwise, the function determines the effective
lengthrlen of the initializing string as the smaller ofn andstr.len - pos . The function then reports
an invalid-argument error if any of therlen characters instr beginning at positionpos is other than0
or 1.

2 Otherwise, the function constructs an object of classbits< N>, initializing the firstMbit positions to val-
ues determined from the corresponding characters in the stringstr . M is the smaller ofN andrlen . An
element of the constructed string has value zero if the corresponding character instr , beginning at posi-
tion pos , is 0. Otherwise, the element has the value one. Character positionpos + M - 1 corresponds
to bit position zero. Subsequent decreasing character positions correspond to increasing bit positions.

3 If M < N, remaining bit positions are initialized to zero.

[lib.bits::op&=.bt]17.5.3.1.4bits< N>::operator&=(const bits< N>&)

bits< N>& operator&=(const bits< N>& rhs);

1 Clears each bit in*this for which the corresponding bit inrhs is clear, and leaves all other bits
unchanged. The function returns*this .

[lib.bits::op =.bt]17.5.3.1.5bits< N>::operator|=(const bits< N>&)

bits< N>& operator|=(const bits< N>& rhs);

1 Sets each bit in*this for which the corresponding bit inrhs is set, and leaves all other bits unchanged.
The function returns*this .

17.5.3.1.6 DRAFT: 25 January 1994 Library 17– 165
bits< N>::operator^=(const bits< N>&)

[lib.bits::opˆ=.bt]17.5.3.1.6bits< N>::operator^=(const bits< N>&)

bits< N>& operator^=(const bits< N>& rhs);

1 Toggles each bit in*this for which the corresponding bit inrhs is set, and leaves all other bits
unchanged. The function returns*this .

[lib.bits::op.lsh=]17.5.3.1.7bits< N>::operator<<=(size_t)

bits< N>& operator<<=(size_t pos);

1 Replaces each bit at positionI in *this with a value determined as follows:

— If I < pos , the new value is zero;

— If I >= pos , the new value is the previous value of the bit at positionI - pos .

2 The function returns*this .

[lib.bits::op.rsh=]17.5.3.1.8bits< N>::operator>>=(size_t)

bits< N>& operator>>=(size_t pos);

1 Replaces each bit at positionI in *this with a value determined as follows:

— If pos >= N - I , the new value is zero;

— If pos < N - I , the new value is the previous value of the bit at positionI + pos .

2 The function returns*this .

[lib.bits::set]17.5.3.1.9bits< N>::set()

bits< N>& set();

1 Sets all bits in*this . The function returns*this .

[lib.bits::set.n]17.5.3.1.10bits< N>::set(size_t, int)

bits< N>& set(size_t pos , int val = 1);

1 Reports an out-of-range error ifpos does not correspond to a valid bit position. Otherwise, the function
stores a new value in the bit at positionpos in *this . If val is nonzero, the stored value is one, other-
wise it is zero. The function returns*this .

[lib.bits::reset]17.5.3.1.11bits< N>::reset()

bits< N>& reset();

1 Resets all bits in*this . The function returns*this .

[lib.bits::reset.n]17.5.3.1.12bits< N>::reset(size_t)

bits< N>& reset(size_t pos);

1 Reports an out-of-range error ifpos does not correspond to a valid bit position. Otherwise, the function
resets the bit at positionpos in *this . The function returns*this .

17– 166 Library DRAFT: 25 January 1994 17.5.3.1.13bits< N>::operator~()

[lib.bits::op˜]17.5.3.1.13bits< N>::operator~()

bits< N> operator~();

1 Constructs an objectx of classbits< N> and initializes it with*this . The function then returns
x.toggle() .

[lib.bits::toggle]17.5.3.1.14bits< N>::toggle()

bits< N>& toggle();

1 Toggles all bits in*this . The function returns*this .

[lib.bits::toggle.n]17.5.3.1.15bits< N>::toggle(size_t)

bits< N>& toggle(size_t pos);

1 Reports an out-of-range error ifpos does not correspond to a valid bit position. Otherwise, the function
toggles the bit at positionpos in *this . The function returns*this .

[lib.bits::to.ushort]17.5.3.1.16bits< N>::to_ushort()

unsigned short to_ushort() const;

1 If the integral valuex corresponding to the bits in*this cannot be represented as typeunsigned
short , reports an overflow error. Otherwise, the function returnsx .

[lib.bits::to.ulong]17.5.3.1.17bits< N>::to_ulong()

unsigned long to_ulong() const;

1 If the integral valuex corresponding to the bits in*this cannot be represented as typeunsigned
long , reports an overflow error. Otherwise, the function returnsx .

[lib.bits::to.string]17.5.3.1.18bits< N>::to_string()

string to_string() const;

1 Constructs an object of typestring and initializes it to a string of lengthN characters. Each character is
determined by the value of its corresponding bit position in*this . Character positionN - 1 corre-
sponds to bit position zero. Subsequent decreasing character positions correspond to increasing bit posi-
tions. Bit value zero becomes the character0, bit value one becomes the character1.

2 The function returns the created object.

[lib.bits::count]17.5.3.1.19bits< N>::count()

size_t count() const;

1 Returns a count of the number of bits set in*this .

[lib.bits::length]17.5.3.1.20bits< N>::length()

size_t length() const;

1 ReturnsN.

17.5.3.1.21 DRAFT: 25 January 1994 Library 17– 167
bits< N>::operator==(const bits< N>&)

[lib.bits::op==.bt]17.5.3.1.21bits< N>::operator==(const bits< N>&)

int operator==(const bits< N>& rhs) const;

1 Returns a nonzero value if the value of each bit in*this equals the value of the corresponding bit inrhs .

[lib.bits::op!=.bt]17.5.3.1.22bits< N>::operator!=(const bits< N>&)

int operator!=(const bits< N>& rhs) const;

1 Returns a nonzero value if!(*this == rhs) .

[lib.bits::test]17.5.3.1.23bits< N>::test(size_t)

int test(size_t pos) const;

1 Reports an out-of-range error ifpos does not correspond to a valid bit position. Otherwise, the function
returns a nonzero value if the bit at positionpos in *this has the value one.

[lib.bits::any]17.5.3.1.24bits< N>::any()

int any() const;

1 Returns a nonzero value if any bit in*this is one.

[lib.bits::none]17.5.3.1.25bits< N>::none()

int none() const;

1 Returns a nonzero value if no bit in*this is one.

[lib.bits::op.lsh]17.5.3.1.26bits< N>::operator<<(size_t)

bits< N> operator<<(size_t pos) const;

1 Returnsbits< N>(*this) <<= pos .

[lib.bits::op.rsh]17.5.3.1.27bits< N>::operator>>(size_t)

bits< N> operator>>(size_t pos) const;

1 Returnsbits< N>(*this) >>= pos .

[lib.op&.bt.bt]17.5.3.2operator&(const bits< N>&, const bits< N>&)

bits< N> operator&(const bits< N>& lhs , const bits< N>& rhs);

1 Returnsbits< N>(lhs) &= pos .

[lib.op.bt.bt]17.5.3.3operator|(const bits< N>&, const bits< N>&)

bits< N> operator|(const bits< N>& lhs , const bits< N>& rhs);

1 Returnsbits< N>(lhs) |= pos .

17– 168 Library DRAFT: 25 January 1994 17.5.3.4
operator^(const bits< N>&, const bits< N>&)

[lib.opˆ.bt.bt]17.5.3.4operator^(const bits< N>&, const bits< N>&)

bits< N> operator^(const bits< N>& lhs , const bits< N>& rhs);

1 Returnsbits< N>(lhs) ^= pos .

[lib.ext.bt]17.5.3.5operator>>(istream&, bits< N>&)

istream& operator>>(istream& is , bits< N>& x);

1 A formatted input function, extracts up toN (single-byte) characters fromis . The function stores these
characters in a temporary objectstr of type string , then evaluates the expressionx =
bits< N>(str) . Characters are extracted and stored until any of the following occurs:

— Ncharacters have been extracted and stored;

— end-of-file occurs on the input sequence;

— the next input character is neither0 or 1 (in which case the input character is not extracted).

2 If no characters are stored instr , the function callsis .setstate(ios::failbit) .

3 The function returnsis .

[lib.ins.bt]17.5.3.6operator<<(ostream&, const bits< N>&)

ostream& operator<<(ostream& os , const bits< N>& x);

1 Returnsos << x.to_string() .

[lib.header.bitstring]17.5.4 Header<bitstring>

1 The header<bitstring> defines a class and several function signatures for representing and manipulat-
ing varying-length sequences of bits.

[lib.bitstring]17.5.4.1 Classbitstring

Box 209
Library WG issue: Charles Allison, August 26, 1993

[was 17.5.4]: I don’t appreciate the need for areserve() function. I need someone to convince me. _ __

_ __

17.5.4.1 Classbitstring DRAFT: 25 January 1994 Library 17– 169

class bitstring {
public:

bitstring();
bitstring(unsigned long val , size_t n);
bitstring(const bitstring& str , size_t pos = 0, size_t n = NPOS);
bitstring(const string& str , size_t pos = 0, size_t n = NPOS);
bitstring& operator+=(const bitstring& rhs);
bitstring& operator&=(const bitstring& rhs);
bitstring& operator|=(const bitstring& rhs);
bitstring& operator^=(const bitstring& rhs);
bitstring& operator<<=(size_t pos);
bitstring& operator>>=(size_t pos);
bitstring& append(str , pos = 0, n = NPOS);
bitstring& assign(str , pos = 0, n = NPOS);
bitstring& insert(size_t pos1 , const bitstring& str ,

size_t pos2 = 0, size_t n = NPOS);
bitstring& remove(size_t pos , size_t n = NPOS);
bitstring& replace(size_t pos1 , size_t n1, const bitstring& str ,

size_t pos2 = 0, size_t n2 = NPOS);
bitstring& set();
bitstring& set(size_t pos , int val = 1);
bitstring& reset();
bitstring& reset(size_t pos);
bitstring& operator~();
bitstring& toggle();
bitstring& toggle(size_t pos);
string to_string() const;
size_t count() const;
size_t length() const;
size_t resize(size_t n, int val = 0);
size_t trim();
size_t find(int val , size_t pos = 0, size_t n = NPOS) const;
size_t rfind(int val , size_t pos = 0, size_t n = NPOS) const;
bitstring substr(size_t pos , size_t n = NPOS) const;
int operator==(const bitstring& rhs);
int operator!=(const bitstring& rhs);
int test(size_t pos) const;
int any() const;
int none() const;
bitstring operator<<(size_t pos) const;
bitstring operator>>(size_t pos) const;

private:
// char* ptr ; exposition only
// size_t len ; exposition only
};

1 The classbitstring describes an object that can store a sequence consisting of a varying number of bits.
Such a sequence is also called abit string (or simply astring if the type of the elements is clear from con-
text). Storage for the string is allocated and freed as necessary by the member functions of classbit-
string .

2 Each bit represents either the value zero (reset) or one (set). Totogglea bit is to change the value zero to
one, or the value one to zero. Each bit has a non-negative positionpos . When converting between an
object of classbitstring of lengthlen and a value of some integral type, bit positionpos corresponds
to thebit value1 << (len - pos - 1) .114) The integral value corresponding to two or more bits is
the sum of their bit values.

114)Note that bit position zero is themost-significantbit for an object of classbitstring , while it is theleast-significantbit for an
object of classbits< N>.

17– 170 Library DRAFT: 25 January 1994 17.5.4.1 Classbitstring

3 For the sake of exposition, the maintained data is presented here as:

— char* ptr , points to the sequence of bits, stored one bit per element;115)

— size_t len , the length of the bit sequence.

4 The functions described in this subclause can report three kinds of errors, each associated with a distinct
exception:

— an invalid-argumenterror is associated with exceptions of typeinvalidargument ;

— a lengtherror is associated with exceptions of typelengtherror ;

— anout-of-rangeerror is associated with exceptions of typeoutofrange .

5 To report one of these errors, the function evaluates the expressionex .raise() , whereex is an object of
the associated exception type.

[lib.cons.bitstring]17.5.4.1.1bitstring::bitstring()

bitstring();

1 Constructs an object of classbitstring , initializing:

— ptr to an unspecified value;

— len to zero.

[lib.cons.bitstring.ul]17.5.4.1.2bitstring::bitstring(unsigned long, size_t)

bitstring(unsigned long val , size_t n);

1 Reports a length error ifn equalsNPOS. Otherwise, the function constructs an object of classbitstring
and determines its initial string value fromval . If val is zero, the corresponding string is the empty
string. Otherwise, the corresponding string is the shortest sequence of bits with the same bit value asval .
If the corresponding string is shorter thann, the string is extended with elements whose values are all zero.
Thus, the function initializes:

— ptr to point at the first element of the string;

— len to the length of the string.

[lib.cons.bitstring.bs]17.5.4.1.3bitstring::bitstring(const bitstring&, size_t,
size_t)

bitstring(const bitstring& str , size_t pos = 0, size_t n = NPOS);

1 Reports an out-of-range error ifpos > str.len . Otherwise, the function constructs an object of class
bitstring and determines the effective lengthrlen of the initial string value as the smaller ofn and
str.len - pos . Thus, the function initializes:

— ptr to point at the first element of an allocated copy ofrlen elements of the string controlled bystr
beginning at positionpos ;

— len to rlen .

115)An implementation is, of course, free to store the bit sequence more efficiently.

17.5.4.1.3 DRAFT: 25 January 1994 Library 17– 171
bitstring::bitstring(const bitstring&, size_t, size_t)

[lib.cons.bitstring.sub]17.5.4.1.4bitstring::bitstring(const string&, size_t,
size_t)

bitstring(const string& str , size_t pos = 0, size_t n = NPOS);

1 Reports an out-of-range error ifpos > str.len . Otherwise, the function determines the effective
lengthrlen of the initializing string as the smaller ofn andstr.len - pos . The function then reports
an invalid-argument error if any of therlen characters instr beginning at positionpos is other than0
or 1.

2 Otherwise, the function constructs an object of classbitstring and determines its initial string value
from str . The length of the constructed string isrlen . An element of the constructed string has value
zero if the corresponding character instr , beginning at positionpos , is 0. Otherwise, the element has the
value one.

3 Thus, the function initializes:

— ptr to point at the first element of the string;

— len to rlen .

[lib.bitstring::op+=.bs]17.5.4.1.5bitstring::operator+=(const bitstring&)

bitstring& operator+=(const bitstring& rhs);

1 Reports a length error iflen >= NPOS - rhs.len .

2 Otherwise, the function replaces the string controlled by*this with a string of lengthlen + rhs.len
whose firstlen elements are a copy of the original string controlled by*this and whose remaining ele-
ments are a copy of the elements of the string controlled byrhs .

3 The function returns*this .

[lib.bitstring::op&=.bs]17.5.4.1.6bitstring::operator&=(const bitstring&)

bitstring& operator&=(const bitstring& rhs);

1 Determines a lengthrlen which is the larger oflen andrhs.len , then behaves as if the shorter of the
two strings controlled by*this andrhs were temporarily extended to lengthrlen by adding elements
all with value zero. The function then replaces the string controlled by*this with a string of length
rlen whose elements have the value one only if both of the corresponding elements of*this andrhs
are one.

2 The function returns*this .

[lib.bitstring::op =.bs]17.5.4.1.7bitstring::operator|=(const bitstring&)

bitstring& operator|=(const bitstring& rhs);

1 Determines a lengthrlen which is the larger oflen andrhs.len , then behaves as if the shorter of the
two strings controlled by*this andrhs were temporarily extended to lengthrlen by adding elements
all with value zero. The function then replaces the string controlled by*this with a string of length
rlen whose elements have the value one only if either of the corresponding elements of*this andrhs
are one.

2 The function returns*this .

17– 172 Library DRAFT: 25 January 1994 17.5.4.1.8
bitstring::operator^=(const bitstring&)

[lib.bitstring::opˆ=.bs]17.5.4.1.8bitstring::operator^=(const bitstring&)

bitstring& operator^=(const bitstring& rhs);

1 Determines a lengthrlen which is the larger oflen andrhs.len , then behaves as if the shorter of the
two strings controlled by*this andrhs were temporarily extended to lengthrlen by adding elements
all with value zero. The function then replaces the string controlled by*this with a string of length
rlen whose elements have the value one only if the corresponding elements of*this andrhs have dif-
ferent values.

2 The function returns*this .

[lib.bitstring::op.lsh=]17.5.4.1.9bitstring::operator<<=(size_t)

bitstring& operator<<=(size_t pos);

1 Replaces each element at positionI in the string controlled by*this with a value determined as follows:

— If pos >= len - I , the new value is zero;

— If pos < len - I , the new value is the previous value of the element at positionI + pos .

2 The function returns*this .

[lib.bitstring::op.rsh=]17.5.4.1.10bitstring::operator>>=(size_t)

bitstring& operator>>=(size_t pos);

1 Replaces each element at positionI in the string controlled by*this with a value determined as follows:

— If I < pos , the new value is zero;

— If I >= pos , the new value is the previous value of the element at positionI - pos .

[lib.bitstring::append]17.5.4.1.11bitstring::append(const bitstring&, size_t,
size_t)

bitstring& append(const bitstring& str , size_t pos = 0,
size_t n = NPOS);

1 Reports an out-of-range error ifpos > str.len . Otherwise, the function determines the effective
lengthrlen of the string to append as the smaller ofn andstr.len - pos . The function then reports
a length error iflen >= NPOS - rlen .

2 Otherwise, the function replaces the string controlled by*this with a string of lengthlen + rlen
whose firstlen elements are a copy of the original string controlled by*this and whose remaining ele-
ments are a copy of the initial elements of the string controlled bystr beginning at positionpos .

3 The function returns*this .

[lib.bitstring::assign]17.5.4.1.12bitstring::assign(const bitstring&, size_t,
size_t)

bitstring& assign(const bitstring& str , size_t pos = 0,
size_t n = NPOS);

1 Reports an out-of-range error ifpos > str.len . Otherwise, the function determines the effective
lengthrlen of the string to assign as the smaller ofn andstr.len - pos .

17.5.4.1.12 DRAFT: 25 January 1994 Library 17– 173
bitstring::assign(const bitstring&, size_t, size_t)

2 The function then replaces the string controlled by*this with a string of lengthrlen whose elements are
a copy of the string controlled bystr beginning at positionpos .

3 The function returns*this .

[lib.bitstring::insert]17.5.4.1.13bitstring::insert(size_t, const bitstring&,
size_t, size_t)

bitstring& insert(size_t pos1 , const bitstring& str , size_t pos2 = 0,
size_t n = NPOS);

1 Reports an out-of-range error ifpos1 > len or pos2 > str.len . Otherwise, the function deter-
mines the effective lengthrlen of the string to insert as the smaller ofn andstr.len - pos2 . The
function then reports a length error iflen >= NPOS - rlen .

2 Otherwise, the function replaces the string controlled by*this with a string of lengthlen + rlen
whose firstpos1 elements are a copy of the initial elements of the original string controlled by*this ,
whose nextrlen elements are a copy of the elements of the string controlled bystr beginning at position
pos2 , and whose remaining elements are a copy of the remaining elements of the original string controlled
by *this .

3 The function returns*this .

[lib.bitstring::remove]17.5.4.1.14bitstring::remove(size_t, size_t)

bitstring& remove(size_t pos , size_t n = NPOS);

1 Reports an out-of-range error ifpos > len . Otherwise, the function determines the effective length
xlen of the string to be removed as the smaller ofn andlen - pos .

2 The function then replaces the string controlled by*this with a string of lengthlen - xlen whose
first pos elements are a copy of the initial elements of the original string controlled by*this , and whose
remaining elements are a copy of the elements of the original string controlled by*this beginning at
positionpos + xlen .

3 The function returns*this .

[lib.bitstring::replace]17.5.4.1.15bitstring::replace(size_t, size_t,
const bitstring&, size_t, size_t)

bitstring& replace(size_t pos1 , size_t n1, const bitstring& str ,
size_t pos2 = 0, size_t n2 = NPOS);

1 Reports an out-of-range error ifpos1 > len or pos2 > str.len . Otherwise, the function deter-
mines the effective lengthxlen of the string to be removed as the smaller ofn1 and len - pos1 . It
also determines the effective lengthrlen of the string to be inserted as the smaller ofn2 andstr.len -
pos2 . The function then reports a length error iflen - xlen >= NPOS - rlen .

2 Otherwise, the function replaces the string controlled by*this with a string of lengthlen - xlen +
rlen whose firstpos1 elements are a copy of the initial elements of the original string controlled by
*this , whose nextrlen elements are a copy of the initial elements of the string controlled bystr
beginning at positionpos2 , and whose remaining elements are a copy of the elements of the original string
controlled by*this beginning at positionpos1 + xlen .

3 The function returns*this .

17– 174 Library DRAFT: 25 January 1994 17.5.4.1.16bitstring::set()

[lib.bitstring::set]17.5.4.1.16bitstring::set()

bitstring& set();

1 Sets all elements of the string controlled by*this . The function returns*this .

[lib.bitstring::set.n]17.5.4.1.17bitstring::set(size_t, int)

bitstring& set(size_t pos , int val = 1);

1 Reports an out-of-range error ifpos > len . Otherwise, ifpos == len , the function replaces the
string controlled by*this with a string of lengthlen + 1 whose firstlen elements are a copy of the
original string and whose remaining element is set according toval . Otherwise, the function sets the ele-
ment at positionpos in the string controlled by*this . If val is nonzero, the stored value is one, other-
wise it is zero. The function returns*this .

[lib.bitstring::reset]17.5.4.1.18bitstring::reset()

bitstring& reset();

1 Resets all elements of the string controlled by*this . The function returns*this .

[lib.bitstring::reset.n]17.5.4.1.19bitstring::reset(size_t)

bitstring& reset(size_t pos);

1 Reports an out-of-range error ifpos > len . Otherwise, ifpos == len , the function replaces the
string controlled by*this with a string of lengthlen + 1 whose firstlen elements are a copy of the
original string and whose remaining element is zero. Otherwise, the function resets the element at position
pos in the string controlled by*this .

[lib.bitstring::op˜]17.5.4.1.20bitstring::operator~()

bitstring& operator~();

1 Constructs an objectx of classbitstring and initializes it with*this . The function then returns
x.toggle() .

[lib.bitstring::toggle]17.5.4.1.21bitstring::toggle()

bitstring& toggle();

1 Toggles all elements of the string controlled by*this . The function returns*this .

[lib.bitstring::toggle.n]17.5.4.1.22bitstring::toggle(size_t)

bitstring& toggle(size_t pos);

1 Reports an out-of-range error ifpos >= len . Otherwise, the function toggles the element at position
pos in *this .

[lib.bitstring::to.string]17.5.4.1.23bitstring::to_string()

string to_string() const;

1 Creates an object of typestring and initializes it to a string of lengthlen characters. Each character is
determined by the value of its corresponding element in the string controlled by*this . Bit value zero
becomes the character0, bit value one becomes the character1.

17.5.4.1.23 DRAFT: 25 January 1994 Library 17– 175
bitstring::to_string()

2 The function returns the created object.

[lib.bitstring::count]17.5.4.1.24bitstring::count()

size_t count() const;

1 Returns a count of the number of elements set in the string controlled by*this .

[lib.bitstring::length]17.5.4.1.25bitstring::length()

size_t length() const;

1 Returnslen .

[lib.bitstring::resize]17.5.4.1.26bitstring::resize(size_t, int)

size_t resize(size_t n, int val = 0);

1 Reports a length error ifn equalsNPOS. Otherwise, the function alters the length of the string controlled
by *this as follows:

— If n <= len , the function replaces the string controlled by*this with a string of lengthn whose
elements are a copy of the initial elements of the original string controlled by*this .

— If n > len , the function replaces the string controlled by*this with a string of lengthn whose first
len elements are a copy of the original string controlled by*this , and whose remaining elements all
have the value one ifval is nonzero, or zero otherwise.

2 The function returns the previous value oflen .

[lib.bitstring::trim]17.5.4.1.27bitstring::trim()

size_t trim();

1 Determines the highest positionpos of an element with value one in the string controlled by*this , if
possible. If no such position exists, the function replaces the string with an empty string (len is zero).
Otherwise, the function replaces the string with a string of lengthpos + 1 whose elements are a copy of
the initial elements of the original string controlled by*this .

2 The function returns the new value oflen .

[lib.bitstring::find]17.5.4.1.28bitstring::find(int, size_t, size_t)

size_t find(int val , size_t pos = 0, size_t n = NPOS) const;

1 ReturnsNPOSif pos > len . Otherwise, the function determines the effective lengthrlen of the string
to be scanned as the smaller ofn and len - pos . The function then determines the lowest position
xpos , if possible, such that both of the following conditions obtain:

— pos <= xpos ;

— The element at positionxpos in the string controlled by*this is one ifval is nonzero, or zero other-
wise.

2 If the function can determine such a value forxpos , it returnsxpos . Otherwise, it returnsNPOS.

17– 176 Library DRAFT: 25 January 1994 17.5.4.1.29
bitstring::rfind(int, size_t, size_t)

[lib.bitstring::rfind]17.5.4.1.29bitstring::rfind(int, size_t, size_t)

size_t rfind(int val , size_t pos = 0, size_t n = NPOS) const;

1 ReturnsNPOSif pos > len . Otherwise, the function determines the effective lengthrlen of the string
to be scanned as the smaller ofn and len - pos . The function then determines the highest position
xpos , if possible, such that both of the following conditions obtain:

— pos <= xpos ;

— The element at positionxpos in the string controlled by*this is one ifval is nonzero, or zero other-
wise.

2 If the function can determine such a value forxpos , it returnsxpos . Otherwise, it returnsNPOS.

[lib.bitstring::substr]17.5.4.1.30bitstring::substr(size_t, size_t)

bitstring substr(size_t pos , size_t n = NPOS) const;

1 Reports an out-of-range error ifpos > len . Otherwise, the function determines the effective length
rlen of the string controlled by*this as the smaller ofn andstr.len - pos .

2 The function then returns a newly constructed object of classbitstring . It determines its initial string
value from the string controlled by*this . The length of the constructed string isrlen . Its elements are
a copy of the elements of the string controlled by*this beginning at positionpos .

[lib.bitstring::op==.bs]17.5.4.1.31bitstring::operator==(const bitstring&)

int operator==(const bitstring& rhs);

1 Returns zero iflen != rhs.len or if the value of any element of the string controlled by*this dif-
fers from the value of the corresponding element of the string controlled byrhs .

[lib.bitstring::op!=.bs]17.5.4.1.32bitstring::operator!=(const bitstring&)

int operator!=(const bitstring& rhs);

1 Returns a nonzero value if!(*this == rhs) .

[lib.bitstring::test]17.5.4.1.33bitstring::test(size_t)

int test(size_t pos) const;

1 Reports an out-of-range error ifpos >= len . Otherwise, the function returns a nonzero value if the ele-
ment at positionpos in the string controlled by*this is one.

[lib.bitstring::any]17.5.4.1.34bitstring::any()

int any() const;

1 Returns a nonzero value if any bit is set in the string controlled by*this .

[lib.bitstring::none]17.5.4.1.35bitstring::none()

int none() const;

1 Returns a nonzero value if no bit is set in the string controlled by*this .

17.5.4.1.36 DRAFT: 25 January 1994 Library 17– 177
bitstring::operator<<(size_t)

[lib.bitstring::op.lsh]17.5.4.1.36bitstring::operator<<(size_t)

bitstrIng operator<<(size_t pos) const;

1 Constructs an objectx of classbitstring and initializes it with*this . The function then returnsx
<<= pos .

[lib.bitstring::op.rsh]17.5.4.1.37bitstring::operator>>(size_t)

bitstrIng operator>>(size_t pos) const;

1 Constructs an objectx of classbitstring and initializes it with*this . The function then returnsx
>>= pos .

[lib.op+.bs.bs]17.5.4.2operator+(const bitstring&, const bitstring&)

bitstring operator+(const bitstring& lhs , const bitstring& rhs);

1 Constructs an objectx of classbitstring and initializes it withlhs . The function then returnsx +=
rhs .

[lib.op&.bs.bs]17.5.4.3operator&(const bitstring&, const bitstring&)

bitstring operator&(const bitstring& lhs , const bitstring& rhs);

1 Constructs an objectx of classbitstring and initializes it withlhs . The function then returnsx &=
rhs .

[lib.op.bs.bs]17.5.4.4operator|(const bitstring&, const bitstring&)

bitstring operator|(const bitstring& lhs , const bitstring& rhs);

1 Constructs an objectx of classbitstring and initializes it withlhs . The function then returnsx |=
rhs .

[lib.opˆ.bs.bs]17.5.4.5operator^(const bitstring&, const bitstring&)

bitstring operator^(const bitstring& lhs , const bitstring& rhs);

1 Constructs an objectx of classbitstring and initializes it withlhs . The function then returnsx ^=
rhs .

[lib.ext.bs]17.5.4.6operator>>(istream&, bitstring&)

istream& operator>>(istream& is , bitstring& x);

1 A formatted input function, extracts up toNPOS - 1 (single-byte) characters fromis . The function
behaves as if it stores these characters in a temporary objectstr of type string , then evaluates the
expressionx = bitstring(str) . Characters are extracted and stored until any of the following
occurs:

— NPOS - 1 characters have been extracted and stored;

— end-of-file occurs on the input sequence;

— the next character to read is neither0 or 1 (in which case the input character is not extracted).

2 If no characters are stored instr , the function callsis .setstate(ios::failbit) .

17– 178 Library DRAFT: 25 January 1994 17.5.4.6
operator>>(istream&, bitstring&)

3 The function returnsis .

[lib.ins.bs]17.5.4.7operator<<(ostream&, const bitstring&)

ostream& operator<<(ostream& os , const bitstring& x);

1 Returnsos << x.to_string() .

[lib.header.dynarray]17.5.5 Header<dynarray>

1 The header<dynarray> defines a template class and several related functions for representing and
manipulating varying-size sequences of some object typeT.

[lib.template.dynarray]17.5.5.1 Template classdynarray< T>

Box 210
Library WG issue: Uwe Steinm

. .
uller, January 21, 1994

missing
~dynarray()
dynarray<T>& operator=(const dynarray<T>&);

get_at should return aconst T& (as does theconst version of
operator[] .

This has the reason that copying the object T might be expensive an is
not needed if the user only wants to query it. _ __

_ __

Box 211
Library WG issue: Dag Br

. .
uck, December 12, 1993

If there are examples where theres_arg is essential, fine. If it is just a convenience (compared to the
explicit call toreserve), I strongly suggest that we compare the convenience against the added complex-
ity of the interface.

Finally, let me add that I’m very pleased thatdynarray::operator[] checks its index argument. _ __

_ __

Box 212
Library WG issue: Dag Br

. .
uck, December 12, 1993

The introduction (17.5.5.1) should have a summary of all operations that resize the array and possibly move
its elements. _ __

_ __

17.5.5.1 Template classdynarray< T> DRAFT: 25 January 1994 Library 17– 179

template<class T> class dynarray {
public:

dynarray();
dynarray(size_t size , capacity cap);
dynarray(const dynarray< T>& arr);
dynarray(const T& obj , size_t rep = 1);
dynarray(const T* parr , size_t n);
dynarray< T>& operator+=(const dynarray< T>& rhs);
dynarray< T>& operator+=(const T& obj);
dynarray< T>& append(const T& obj , size_t rep = 1);
dynarray< T>& append(const T* parr , size_t n = 1);
dynarray< T>& assign(const T& obj , size_t rep = 1);
dynarray< T>& assign(const T* parr , size_t n = 1);
dynarray< T>& insert(size_t pos , const dynarray< T>& arr);
dynarray< T>& insert(size_t pos , const T& obj , size_t rep = 1);
dynarray< T>& insert(size_t pos , const T* parr , size_t n = 1);
dynarray< T>& remove(size_t pos = 0, size_t n = NPOS);
dynarray< T>& sub_array(dynarray< T>& arr , size_t pos ,

size_t n = NPOS);
void swap(dynarray< T>& arr);
const T& get_at(size_t pos) const;
void put_at(size_t pos , const T& obj);
T& operator[](size_t pos);
const T& operator[](size_t pos) const;
T* base();
const T* base() const;
size_t length() const;
void resize(size_t n);
void resize(size_t n, const T& obj);
size_t reserve() const;
void reserve(size_t res_arg);

private:
// T* ptr ; exposition only
// size_t len , res ; exposition only
};

1 The template classdynarray< T> describes an object that can store a sequence consisting of a varying
number of objects of typeT. The first element of the sequence is at position zero. Such a sequence is also
called adynamic array.An object of typeT shall have:

— a default constructorT() ;

— a copy constructorT(const T&) ;

— an assignment operatorT& operator=(const T&) ;

— a destructor~T() .

2 For the function signatures described in this subclause:

— it is unspecified whether an operation described in this subclause as initializing an object of typeT with
a copy calls its copy constructor, calls its default constructor followed by its assignment operator, or
does nothing to an object that is already properly initialized;

— it is unspecified how many times objects of typeT are copied, or constructed and destroyed.116)

116)Objects that cannot tolerate this uncertainty, or that fail to meet the stated requirements, can sometimes be organized into dynamic
arrays through the intermediary of an object of classptrdynarray< T>.

17– 180 Library DRAFT: 25 January 1994 17.5.5.1 Template classdynarray< T>

3 For the sake of exposition, the maintained data is presented here as:

— T * ptr , points to the sequence of objects;

— size_t len , counts the number of objects currently in the sequence;

— size_t res , for an unallocated sequence, holds the recommended allocation size of the sequence,
while for an allocated sequence, becomes the currently allocated size.

4 In all cases,len <= res .

5 The functions described in this subclause can report three kinds of errors, each associated with a distinct
exception:

— an invalid-argumenterror is associated with exceptions of typeinvalidargument ;

— a lengtherror is associated with exceptions of typelengtherror .

— anout-of-rangeerror is associated with exceptions of typeoutofrange ;

6 To report one of these errors, the function evaluates the expressionex .raise() , whereex is an object of
the associated exception type.

[lib.cons.dynarray]17.5.5.1.1dynarray< T>::dynarray()

dynarray();

1 Constructs an object of classdynarray< T>, initializing:

— ptr to an unspecified value;

— len to zero;

— res to an unspecified value.

[lib.cons.dynarray.cap]17.5.5.1.2dynarray< T>::dynarray(size_t, capacity)

Box 213
Library WG issue: Dag Br

. .
uck, December 12, 1993

Is the constructor in 17.5.5.1.2 guaranteed to work ifres_arg < NPOS ? I think it says so. _ __

_ __

dynarray(size_t size , capacity cap);

1 Reports a length error ifsize equalsNPOSandcap is default_size . Otherwise, the function con-
structs an object of classdynarray< T>. If cap is default_size , the function initializes:

— ptr to point at the first element of an allocated array ofsize elements of typeT, each initialized with
the default constructor for typeT;

— len to size ;

— res to a value at least as large aslen .

2 Otherwise,cap shall bereserve and the function initializes:

— ptr to an unspecified value;

— len to zero;

17.5.5.1.2 DRAFT: 25 January 1994 Library 17– 181
dynarray< T>::dynarray(size_t, capacity)

— res to size .

[lib.cons.dynarray.da]17.5.5.1.3dynarray< T>::dynarray(const dynarray< T>&)

dynarray(const dynarray< T>& arr);

1 Constructs an object of classdynarray< T> and determines its initial dynamic array value by copying the
elements from the dynamic array designated byarr . Thus, the function initializes:

— ptr to point at the first element of an allocated array ofarr.len elements of typeT, each initialized
with a copy of the corresponding element from the dynamic array designated byarr ;

— len to arr.len ;

— res to a value at least as large aslen .

[lib.cons.dynarray.t]17.5.5.1.4dynarray< T>::dynarray(const T&, size_t)

dynarray(const T& obj , size_t rep = 1);

1 Reports a length error ifrep equals NPOS. Otherwise, the function constructs an object of class
dynarray< T> and determines its initial dynamic array value by copyingobj into all rep values. Thus,
the function initializes:

— ptr to point at the first element of an allocated array ofrep elements of typeT, each initialized by
copyingobj ;

— len to rep ;

— res to a value at least as large aslen .

[lib.cons.dynarray.pt]17.5.5.1.5dynarray< T>::dynarray(const T*, size_t)

dynarray(const T* parr , size_t n);

1 Reports a length error ifn equalsNPOS. Otherwise, the function reports an invalid-argument error ifparr
is a null pointer. Otherwise,parr shall designate the first element of an array of at leastn elements of
typeT.

2 The function then constructs an object of classdynarray< T> and determines its initial dynamic array
value by copying the elements from the array designated byparr . Thus, the function initializes:

— ptr to point at the first element of an allocated array ofn elements of typeT, each initialized with a
copy of the corresponding element from the array designated byparr ;

— len to n;

— res to a value at least as large aslen .

[lib.dynarray::op+=.da]17.5.5.1.6dynarray< T>::operator+=(const dynarray< T>&)

17– 182 Library DRAFT: 25 January 1994 17.5.5.1.6
dynarray< T>::operator+=(const dynarray< T>&)

Box 214
Library WG issue: Dag Br

. .
uck, December 12, 1993

I find it very questionable that dynarray is allowed to do initialization as a sequence of default constructor +
assignment. We know how to get around that problem (new with placement syntax). However, I under-
stand that the library WG has been through all this before, but I really don’t like it. _ __

_ __

dynarray< T>& operator+=(const dynarray< T>& rhs);

1 Reports a length error iflen >= NPOS - rhs.len . Otherwise, the function replaces the dynamic
array designated by*this with a dynamic array of lengthlen + rhs.len whose firstlen elements
are a copy of the original dynamic array designated by*this and whose remaining elements are a copy of
the elements of the dynamic array designated byrhs .

2 The function returns*this .

[lib.dynarray::op+=.t]17.5.5.1.7dynarray< T>::operator+=(const T&)

dynarray< T>& operator+=(const T& obj);

1 Returnsappend(obj) .

[lib.dynarray::append.t]17.5.5.1.8dynarray< T>::append(const T&, size_t)

dynarray< T>& append(const T& obj , size_t rep = 1);

1 Reports a length error iflen >= NPOS - rep . Otherwise, the function replaces the dynamic array des-
ignated by*this with a dynamic array of lengthlen + rep whose firstlen elements are a copy of the
original dynamic array designated by*this and whose remaining elements are each a copy ofobj .

2 The function returns*this .

[lib.dynarray::append.pt]17.5.5.1.9dynarray< T>::append(const T*, size_t)

dynarray< T>& append(const T* parr , size_t n = 1);

1 Reports a length error iflen >= NPOS - n. Otherwise, the function reports an invalid-argument error
if parr is a null pointer. Otherwise,parr shall designate the first element of an array of at leastn ele-
ments of typeT.

2 The function then replaces the dynamic array designated by*this with a dynamic array of lengthlen +
n whose firstlen elements are a copy of the original dynamic array designated by*this and whose
remaining elements are a copy of the initial elements of the array designated byparr .

3 The function returns*this .

[lib.dynarray::assign.t]17.5.5.1.10dynarray< T>::assign(const T&, size_t)

dynarray< T>& assign(const T& obj , size_t rep = 1);

1 Reports a length error ifrep == NPOS. Otherwise, the function replaces the dynamic array designated
by *this with a dynamic array of lengthrep each of whose elements is a copy ofobj .

2 The function returns*this .

17.5.5.1.11 DRAFT: 25 January 1994 Library 17– 183
dynarray< T>::assign(const T*, size_t)

[lib.dynarray::assign.pt]17.5.5.1.11dynarray< T>::assign(const T*, size_t)

dynarray< T>& assign(const T* parr , size_t n = 1);

1 Reports a length error ifn == NPOS. Otherwise, the function reports an invalid-argument error ifparr
is a null pointer. Otherwise,parr shall designate the first element of an array of at leastn elements of
typeT.

2 The function then replaces the dynamic array designated by*this with a dynamic array of lengthn
whose elements are a copy of the initial elements of the array designated byparr .

3 The function returns*this .

[lib.dynarray::insert.da]17.5.5.1.12dynarray< T>::insert(size_t,
const dynarray< T>&)

dynarray< T>& insert(size_t pos , const dynarray< T>& arr);

1 Reports an out-of-range error ifpos > len . Otherwise, the function reports a length error iflen >=
NPOS - arr.len .

2 Otherwise, the function replaces the dynamic array designated by*this with a dynamic array of length
len + arr.len whose firstpos elements are a copy of the initial elements of the original dynamic
array designated by*this , whose nextarr.len elements are a copy of the initial elements of the
dynamic array designated byarr , and whose remaining elements are a copy of the remaining elements of
the original dynamic array designated by*this .

3 The function returns*this .

[lib.dynarray::insert.t]17.5.5.1.13dynarray< T>::insert(size_t, const T&,
size_t)

dynarray< T>& insert(size_t pos , const T& obj , size_t rep = 1);

1 Reports an out-of-range error ifpos > len . Otherwise, the function reports a length error iflen >=
NPOS - rep .

2 Otherwise, the function replaces the dynamic array designated by*this with a dynamic array of length
len + rep whose firstpos elements are a copy of the initial elements of the original dynamic array des-
ignated by*this , whose nextrep elements are each a copy ofobj , and whose remaining elements are a
copy of the remaining elements of the original dynamic array designated by*this .

3 The function returns*this .

[lib.dynarray::insert.pt]17.5.5.1.14dynarray< T>::insert(size_t, const T*,
size_t)

dynarray< T>& insert(size_t pos , const T* parr , size_t n = 1);

1 Reports an out-of-range error ifpos > len . Otherwise, the function reports a length error iflen >=
NPOS - n. Otherwise, the function reports an invalid-argument error ifparr is a null pointer. Other-
wise,parr shall designate the first element of an array of at leastn elements of typeT.

2 The function then replaces the dynamic array designated by*this with a dynamic array of lengthlen +
n whose firstpos elements are a copy of the initial elements of the original dynamic array designated by
*this , whose nextn elements are a copy of the initial elements of the array designated byparr , and
whose remaining elements are a copy of the remaining elements of the original dynamic array designated
by *this .

17– 184 Library DRAFT: 25 January 1994 17.5.5.1.14
dynarray< T>::insert(size_t, const T*, size_t)

3 The function returns*this .

[lib.dynarray::remove]17.5.5.1.15dynarray< T>::remove(size_t, size_t)

Box 215
Library WG issue: Dag Br

. .
uck, December 12, 1993

I find it unintuitive that da.remove(4); removes all the elements starting at postion 4. I.e., I
think the default value forn should be 1 instead ofNPOS. _ __

_ __

dynarray< T>& remove(size_t pos = 0, size_t n = NPOS);

1 Reports an out-of-range error ifpos > len . Otherwise, the function determines the effective length
xlen of the sequence to be removed as the smaller ofn andlen - pos .

2 The function then replaces the dynamic array designated by*this with a dynamic array of lengthlen -
xlen whose firstpos elements are a copy of the initial elements of the original dynamic array designated
by *this , and whose remaining elements are a copy of the elements of the original dynamic array desig-
nated by*this beginning at positionpos + xlen . The originalxlen elements beginning at position
pos are destroyed.

3 The function returns*this .

[lib.dynarray::swap]17.5.5.1.16dynarray< T>::swap(dynarray< T>&)

void swap(dynarray< T>& arr);

1 Replaces the dynamic array designated by*this with the dynamic array designated byarr , and replaces
the dynamic array designated byarr with the dynamic array originally designated by*this .117)

[lib.dynarray::sub.array]17.5.5.1.17dynarray< T>::sub_array(dynarray< T>&,
size_t, size_t)

dynarray< T>& sub_array(dynarray< T>& arr , size_t pos , size_t n = NPOS);

1 Reports an out-of-range error ifpos > len . Otherwise, the function determines the effective length
rlen of the dynamic array designated by*this as the smaller ofn andarr.len - pos .

2 The function then replaces the dynamic array designated byarr with a dynamic array of lengthrlen
whose elements are a copy of the elements of the dynamic array designated by*this beginning at posi-
tion pos .

3 The function returnsarr .

[lib.dynarray::get.at]17.5.5.1.18dynarray< T>::get_at(size_t)

const T& get_at(size_t pos) const;

1 Reports an out-of-range error ifpos >= len . Otherwise, the function returns a newly created object of
typeT initialized with a copy of the element at positionpos in the dynamic array designated by*this .

117)Presumably, this operation occurs with no actual copying of array elements.

17.5.5.1.19 DRAFT: 25 January 1994 Library 17– 185
dynarray< T>::put_at(size_t, const T&)

[lib.dynarray::put.at]17.5.5.1.19dynarray< T>::put_at(size_t, const T&)

void put_at(size_t pos , const T& obj);

1 Reports an out-of-range error ifpos >= len . Otherwise, the function assignsobj to the element at
positionpos in the dynamic array designated by*this .

[lib.dynarray::op.array]17.5.5.1.20dynarray< T>::operator[](size_t)

T& operator[](size_t pos);
const T& operator[](size_t pos) const;

1 If pos < len , returns the element at positionpos in the dynamic array designated by*this . Other-
wise, the behavior is undefined.

2 The reference returned by the non-const version is invalid after any subsequent call any non-const
member function for the object.

[lib.dynarray::base]17.5.5.1.21dynarray< T>::base()

T* base();
const T* base() const;

1 Returnsptr if len is nonzero, otherwise a null pointer. The program shall not alter any of the values
stored in the dynamic array. Nor shall the program treat the returned value as a valid pointer value after any
subsequent call to a non-const member function of the classdynarray< T> that designates the same
object asthis .

[lib.dynarray::length]17.5.5.1.22dynarray< T>::length()

size_t length() const;

1 Returnslen .

[lib.dynarray::resize]17.5.5.1.23dynarray< T>::resize(size_t)

void resize(size_t n);

1 Reports a length error ifn equalsNPOS. Otherwise, ifn != len the function alters the length of the
dynamic array designated by*this as follows:

— If n < len , the function replaces the dynamic array designated by*this with a dynamic array of
lengthn whose elements are a copy of the initial elements of the original dynamic array designated by
*this . Any remaining elements are destroyed.

— If n > len , the function replaces the dynamic array designated by*this with a dynamic array of
lengthn whose firstlen elements are a copy of the original dynamic array designated by*this , and
whose remaining elements are all initialized with the default constructor for classT.

[lib.dynarray::resize.t]17.5.5.1.24dynarray< T>::resize(size_t, const T&)

void resize(size_t n, const T& obj);

1 Reports a length error ifn equalsNPOS. Otherwise, ifn != len the function alters the length of the
dynamic array designated by*this as follows:

— If n < len , the function replaces the dynamic array designated by*this with a dynamic array of
lengthn whose elements are a copy of the initial elements of the original dynamic array designated by
*this . Any remaining elements are destroyed.

17– 186 Library DRAFT: 25 January 1994 17.5.5.1.24
dynarray< T>::resize(size_t, const T&)

— If n > len , the function replaces the dynamic array designated by*this with a dynamic array of
lengthn whose firstlen elements are a copy of the original dynamic array designated by*this , and
whose remaining elements are all initialized by copyingobj .

[lib.dynarray::reserve]17.5.5.1.25dynarray< T>::reserve()

size_t reserve() const;

1 Returnsres .

[lib.dynarray::reserve.cap]17.5.5.1.26dynarray< T>::reserve(size_t)

void reserve(size_t res_arg);

1 If no dynamic array is allocated, assignsres_arg to res . Otherwise, whether or how the function alters
res is unspecified.

[lib.op+.da.da]17.5.5.2operator+(const dynarray< T>&, const dynarray< T>&)

dynarray< T> operator+(const dynarray< T>& lhs ,
const dynarray< T>& rhs);

1 Returnsdynarray< T>(lhs) += rhs .

[lib.op+.da.t]17.5.5.3operator+(const dynarray< T>&, const T&)

dynarray< T> operator+(const dynarray< T>& lhs , const T& obj);

1 Returnsdynarray< T>(lhs) += rhs .

[lib.op+.t.da]17.5.5.4operator+(const T&, const dynarray< T>&)

dynarray< T> operator+(const T& obj , const dynarray< T>& rhs);

1 Returnsdynarray< T>(lhs) += rhs .

[lib.header.ptrdynarray]17.5.6 Header<ptrdynarray>

1 The header<ptrdynarray> defines a template and several related functions for representing and manip-
ulating varying-size sequences of pointers to some object typeT.

[lib.template.ptrdynarray]17.5.6.1 Template classptrdynarray< T>

17.5.6.1 DRAFT: 25 January 1994 Library 17– 187
Template classptrdynarray< T>

template<class T> class ptrdynarray : public dynarray<void*> {
public:

ptrdynarray();
ptrdynarray(size_t size , capacity cap);
ptrdynarray(const ptrdynarray< T>& arr);
ptrdynarray(T* obj , size_t rep = 1);
ptrdynarray(T** parr , size_t n = 1);
ptrdynarray< T>& operator+=(T* obj);
ptrdynarray< T>& operator+=(const ptrdynarray< T>& rhs);
ptrdynarray< T>& append(T* obj , size_t rep = 1);
ptrdynarray< T>& append(T** parr , size_t n = 1);
ptrdynarray< T>& assign(T* obj , size_t rep = 1);
ptrdynarray< T>& assign(T** parr , size_t n = 1);
ptrdynarray< T>& insert(size_t pos , const ptrdynarray< T>& arr);
ptrdynarray< T>& insert(size_t pos, T * obj , size_t rep = 1);
ptrdynarray< T>& insert(size_t pos, T ** parr , size_t n = 1);
ptrdynarray< T>& remove(size_t pos , size_t n = NPOS);
ptrdynarray< T>& sub_array(ptrdynarray< T>& arr , size_t pos ,

size_t n = NPOS);
void swap(ptrdynarray< T>& arr);
T* get_at(size_t pos);
void put_at(size_t pos , T* obj);
T* & operator[](size_t pos);
T* const& operator[](size_t pos) const;
T** base();
const T** base() const;
size_t length() const;
void resize(size_t n);
void resize(size_t n, T* obj);
size_t reserve() const;
void reserve(size_t res_arg);

};

1 The template classptrdynarray< T> describes an object that can store a sequence consisting of a vary-
ing number of objects of type pointer toT. Such a sequence is also called adynamic pointer array.Objects
of typeT are never created, destroyed, copied, assigned, or otherwise accessed by the function signatures
described in this subclause.

[lib.cons.ptrdynarray]17.5.6.1.1ptrdynarray< T>::ptrdynarray()

ptrdynarray();

1 Constructs an object of classptrdynarray< T>, initializing the base class with
dynarray<void*>() .

[lib.cons.ptrdynarray.cap]17.5.6.1.2ptrdynarray< T>::ptrdynarray(size_t,
capacity)

ptrdynarray(size_t size , capacity cap);

1 Constructs an object of classptrdynarray< T>, initializing the base class with
dynarray<void*>(size , cap) .

[lib.cons.ptrdynarray.pda]17.5.6.1.3
ptrdynarray< T>::ptrdynarray(const ptrdynarray< T>&)

ptrdynarray(const ptrdynarray< T>& arr);

17– 188 Library DRAFT: 25 January 1994 17.5.6.1.3
ptrdynarray< T>::ptrdynarray(const ptrdynarray< T>&)

1 Constructs an object of classptrdynarray< T>, initializing the base class with
dynarray<void*>(arr) .

[lib.cons.ptrdynarray.pt]17.5.6.1.4ptrdynarray< T>::ptrdynarray(T*)

ptrdynarray(T* obj , size_t rep = 1);

1 Constructs an object of classptrdynarray< T>, initializing the base class with
dynarray<void*>((void*) obj , rep) .

[lib.cons.ptrdynarray.ppt]17.5.6.1.5ptrdynarray< T>::ptrdynarray(const T**,
size_t)

ptrdynarray(const T** parr , size_t n);

1 Constructs an object of classptrdynarray< T>, initializing the base class with
dynarray<void*>((void**) parr , n) .

[lib.ptrdynarray::op+=.pda]17.5.6.1.6
ptrdynarray< T>::operator+=(const ptrdynarray< T>&)

ptrdynarray< T>& operator+=(const ptrdynarray< T>& rhs);

1 Returns (ptrdynarray< T>&)dynarray<void*>::operator+=((const
dynarray<void*>&) rhs) .

[lib.ptrdynarray::op+=.pt]17.5.6.1.7ptrdynarray< T>::operator+=(T*)

ptrdynarray< T>& operator+=(T* obj);

1 Returns(ptrdynarray< T>&)dynarray<void*>:: operator+=((void*) obj) .

[lib.ptrdynarray::append.pt]17.5.6.1.8ptrdynarray< T>::append(T*, size_t)

ptrdynarray< T>& append(T* obj , size_t rep = 1);

1 Returns(ptrdynarray< T>&)dynarray<void*>::append((void*) obj , rep) .

[lib.ptrdynarray::append.ppt]17.5.6.1.9ptrdynarray< T>::append(T**, size_t)

ptrdynarray< T>& append(T** parr , size_t n = 1);

1 Returns(ptrdynarray< T>&)dynarray<void*>::append((void**) parr , n) .

[lib.ptrdynarray::assign.pt]17.5.6.1.10ptrdynarray< T>::assign(T*, size_t)

ptrdynarray< T>& assign(T* obj , size_t rep = 1);

1 Returns(ptrdynarray< T>&)dynarray<void*>::assign((void*) obj , rep) .

[lib.ptrdynarray::assign.ppt]17.5.6.1.11ptrdynarray< T>::assign(T**, size_t)

ptrdynarray< T>& assign(T** parr , size_t n = 1);

1 Returns(ptrdynarray< T>&)dynarray<void*>::assign((void**) parr , n) .

17.5.6.1.12 DRAFT: 25 January 1994 Library 17– 189
ptrdynarray< T>::insert(size_t, const ptrdynarray< T>&, size_t)

[lib.ptrdynarray::insert.pda]17.5.6.1.12ptrdynarray< T>::insert(size_t,
const ptrdynarray< T>&, size_t)

ptrdynarray< T>& insert(size_t pos , const ptrdynarray< T>& arr);

1 Returns (ptrdynarray< T>&)dynarray<void*>::insert(pos ,
(dynarray<void*>&) arr) .

[lib.ptrdynarray::insert.pt]17.5.6.1.13ptrdynarray< T>::insert(size_t, T*,
size_t)

ptrdynarray< T>& insert(size_t pos , T* obj , size_t rep = 1);

1 Returns(ptrdynarray< T>&)dynarray<void*>::insert(pos , (void*) obj , rep) .

[lib.ptrdynarray::insert.ppt]17.5.6.1.14ptrdynarray< T>::insert(size_t, T**,
size_t)

ptrdynarray< T>& insert(size_t pos , T** parr , size_t n = 1);

1 Returns(ptrdynarray< T>&)dynarray<void*>::insert(pos , (void**) parr , n) .

[lib.ptrdynarray::remove]17.5.6.1.15ptrdynarray< T>::remove(size_t, size_t)

ptrdynarray< T>& remove(size_t pos , size_t n = NPOS);

1 Returns(ptrdynarray< T>&)dynarray<void*>::remove(pos , n) .

[lib.ptrdynarray::swap]17.5.6.1.16ptrdynarray< T>::swap(ptrdynarray< T>&)

void swap(ptrdynarray< T>& arr);

1 Callsdynarray<void*>::swap(arr) .

[lib.ptrdynarray::sub.array]17.5.6.1.17
ptrdynarray< T>::sub_array(ptrdynarray< T>&,
size_t, size_t)

ptrdynarray< T>& sub_array(ptrdynarray< T>& arr , size_t pos ,
size_t n = NPOS);

1 Returns(ptrdynarray< T>&)dynarray<void*>::sub_array(arr , pos , n) .

[lib.ptrdynarray::get.at]17.5.6.1.18ptrdynarray< T>::get_at(size_t)

T* get_at(size_t pos) const;

1 Returns(T*)dynarray<void*>::get_at(pos) .

[lib.ptrdynarray::put.at]17.5.6.1.19ptrdynarray< T>::put_at(size_t, const T&)

void put_at(size_t pos , T* obj);

1 Callsdynarray<void*>::put_at(pos , (void*) obj) .

17– 190 Library DRAFT: 25 January 1994 17.5.6.1.20
ptrdynarray< T>::operator[](size_t)

[lib.ptrdynarray::op.array]17.5.6.1.20ptrdynarray< T>::operator[](size_t)

T& operator[](size_t pos);
const T& operator[](size_t pos) const;

1 Returns(T* &)dynarray<void*>::operator[](pos) .

[lib.ptrdynarray::base]17.5.6.1.21ptrdynarray< T>::base()

T* base();
const T* base() const;

1 Returns(T*)dynarray<void*>::base() .

[lib.ptrdynarray::length]17.5.6.1.22ptrdynarray< T>::length()

size_t length() const;

1 Returnsdynarray<void*>::length() .

[lib.ptrdynarray::resize]17.5.6.1.23ptrdynarray< T>::resize(size_t)

void resize(size_t n);

1 Callsdynarray<void*>::resize(n) .

[lib.ptrdynarray::resize.pt]17.5.6.1.24ptrdynarray< T>::resize(size_t, T*)

void resize(size_t n, T* obj);

1 Callsdynarray<void*>::resize(n, (void*) obj) .

[lib.ptrdynarray::reserve]17.5.6.1.25ptrdynarray< T>::reserve()

size_t reserve() const;

1 Returnsdynarray<void*>::reserve() .

[lib.ptrdynarray::reserve.cap]17.5.6.1.26ptrdynarray< T>::reserve(size_t)

void reserve(size_t res_arg);

1 Returnsdynarray<void*>::reserve(res_arg) .

[lib.op+.pda.pda]17.5.6.2operator+(const ptrdynarray< T>&,
const ptrdynarray< T>&)

ptrdynarray< T> operator+(const ptrdynarray< T>& lhs ,
const ptrdynarray< T>& rhs);

1 Returns(ptrdynarray< T>)dynarray<void*>::operator+(lhs , rhs) .

[lib.op+.pda.pt]17.5.6.3operator+(const ptrdynarray< T>&, T*)

ptrdynarray< T> operator+(const ptrdynarray< T>& lhs , T* obj);

1 Returns(ptrdynarray< T>)dynarray<void*>::operator+(lhs , (void*) obj) .

17.5.6.4 DRAFT: 25 January 1994 Library 17– 191
operator+(T*, const ptrdynarray< T>&)

[lib.op+.pt.pda]17.5.6.4operator+(T*, const ptrdynarray< T>&)

ptrdynarray< T> operator+(T* obj , const ptrdynarray< T>& rhs);

1 Returns(ptrdynarray< T>)dynarray<void*>::operator+((void*) obj , rhs) .

[lib.header.complex]17.5.7 Header<complex>

1 The header<complex> defines a macro, three types, and numerous functions for representing and manip-
ulating complex numbers.

2 The macro is:

__STD_COMPLEX

3 whose definition is unspecified.

[lib.complex.with.float]17.5.7.1 Complex numbers withfloat precision

[lib.float.complex]17.5.7.1.1 Classfloat_complex

class float_complex {
public:

float_complex(float re_arg = 0, im_arg = 0);
float_complex& operator+=(float_complex rhs);
float_complex& operator-=(float_complex rhs);
float_complex& operator*=(float_complex rhs);
float_complex& operator/=(float_complex rhs);

private:
// float re , im ; exposition only
};

1 The classfloat_complex describes an object that can store the Cartesian components, of typefloat ,
of a complex number.

2 For the sake of exposition, the maintained data is presented here as:

— float re , the real component;

— float im , the imaginary component.

[lib.cons.float.complex.f.f]17.5.7.1.1.1float_complex::float_complex(float, float)

float_complex(float re_arg = 0, im_arg = 0);

1 Constructs an object of classfloat_complex , initializing re to re_arg andim to im_arg .

[lib.op+=.fc]17.5.7.1.1.2operator+=(float_complex)

float_complex& operator+=(float_complex rhs);

1 Adds the complex valuerhs to the complex value*this and stores the sum in*this . The function
returns*this .

[lib.op-=.fc]17.5.7.1.1.3operator-=(float_complex)

float_complex& operator-=(float_complex rhs);

1 Subtracts the complex valuerhs from the complex value*this and stores the difference in*this . The
function returns*this .

17– 192 Library DRAFT: 25 January 1994 17.5.7.1.1.4
operator*=(float_complex)

[lib.op*=.fc]17.5.7.1.1.4operator*=(float_complex)

float_complex& operator*=(float_complex rhs);

1 Multiplies the complex valuerhs by the complex value*this and stores the product in*this . The
function returns*this .

[lib.op/=.fc]17.5.7.1.1.5operator/=(float_complex)

float_complex& operator/=(float_complex rhs);

1 Divides the complex valuerhs into the complex value*this and stores the quotient in*this . The
function returns*this .

[lib..float.complex.dc]17.5.7.1.2_float_complex(const double_complex&)

float_complex _float_complex(const double_complex& rhs);

1 Returnsfloat_complex((float)real(rhs), (float)imag(rhs)).

[lib..float.complex.ldc]17.5.7.1.3_float_complex(const long_double_complex&)

float_complex _float_complex(const long_double_complex& rhs);

1 Returnsfloat_complex((float)real(rhs), (float)imag(rhs)).

[lib.op+.fc.fc]17.5.7.1.4operator+(float_complex, float_complex)

float_complex operator+(float_complex lhs , float_complex rhs);

1 Returnsfloat_complex(lhs) += rhs .

[lib.op+.fc.f]17.5.7.1.5operator+(float_complex, float)

float_complex operator+(float_complex lhs , float rhs);

1 Returnsfloat_complex(lhs) += float_complex(rhs) .

[lib.op+.f.fc]17.5.7.1.6operator+(float, float_complex)

float_complex operator+(float lhs , float_complex rhs);

1 Returnsfloat_complex(lhs) += rhs .

[lib.op-.fc.fc]17.5.7.1.7operator-(float_complex, float_complex)

float_complex operator-(float_complex lhs , float_complex rhs);

1 Returnsfloat_complex(lhs) -= rhs .

[lib.op-.fc.f]17.5.7.1.8operator-(float_complex, float)

float_complex operator-(float_complex lhs , float rhs);

1 Returnsfloat_complex(lhs) -= float_complex(rhs) .

17.5.7.1.9 DRAFT: 25 January 1994 Library 17– 193
operator-(float, float_complex)

[lib.op-.f.fc]17.5.7.1.9operator-(float, float_complex)

float_complex operator-(float lhs , float_complex rhs);

1 Returnsfloat_complex(lhs) -= rhs .

[lib.op*.fc.fc]17.5.7.1.10operator*(float_complex, float_complex)

float_complex operator*(float_complex lhs , float_complex rhs);

1 Returnsfloat_complex(lhs) *= rhs .

[lib.op*.fc.f]17.5.7.1.11operator*(float_complex, float)

float_complex operator*(float_complex lhs , float rhs);

1 Returnsfloat_complex(lhs) *= float_complex(rhs) .

[lib.op*.f.fc]17.5.7.1.12operator*(float, float_complex)

float_complex operator*(float lhs , float_complex rhs);

1 Returnsfloat_complex(lhs) *= rhs .

[lib.op/.fc.fc]17.5.7.1.13operator/(float_complex, float_complex)

float_complex operator/(float_complex lhs , float_complex rhs);

1 Returnsfloat_complex(lhs) /= rhs .

[lib.op/.fc.f]17.5.7.1.14operator/(float_complex, float)

float_complex operator/(float_complex lhs , float rhs);

1 Returnsfloat_complex(lhs) /= float_complex(rhs) .

[lib.op/.f.fc]17.5.7.1.15operator/(float, float_complex)

float_complex operator/(float lhs , float_complex rhs);

1 Returnsfloat_complex(lhs) /= rhs .

[lib.op+.fc]17.5.7.1.16operator+(float_complex)

float_complex operator+(float_complex lhs);

1 Returnsfloat_complex(lhs) .

[lib.op-.fc]17.5.7.1.17operator-(float_complex)

float_complex operator-(float_complex lhs);

1 Returnsfloat_complex(-real(lhs), -imag(lhs)) .

[lib.op==.fc.fc]17.5.7.1.18operator==(float_complex, float_complex)

int operator==(float_complex lhs , float_complex rhs);

1 Returnsreal(lhs) == real(rhs) && imag(lhs) == imag(rhs) .

17– 194 Library DRAFT: 25 January 1994 17.5.7.1.19
operator==(float_complex, float)

[lib.op==.fc.f]17.5.7.1.19operator==(float_complex, float)

int operator==(float_complex lhs , float rhs);

1 Returnsreal(lhs) == rhs && imag(lhs) == 0 .

[lib.op==.f.fc]17.5.7.1.20operator==(float, float_complex)

int operator==(float lhs , float_complex rhs);

1 Returnslhs == real(rhs) && imag(rhs) == 0 .

[lib.op!=.fc.fc]17.5.7.1.21operator!=(float_complex, float_complex)

int operator!=(float_complex lhs , float_complex rhs);

1 Returnsreal(lhs) != real(rhs) || imag(lhs) != imag(rhs) .

[lib.op!=.fc.f]17.5.7.1.22operator!=(float_complex, float)

int operator!=(float_complex lhs , float rhs);

1 Returnsreal(lhs) != rhs || imag(lhs) != 0 .

[lib.op!=.f.fc]17.5.7.1.23operator!=(float, float_complex)

int operator!=(float lhs , float_complex rhs);

1 Returnslhs != real(rhs) || imag(rhs) != 0 .

[lib.ext.fc]17.5.7.1.24operator>>(istream&, float_complex&)

istream& operator>>(istream& is , float_complex& x);

1 Executes:

is >> ’(’ >> re >> ’,’ >> im) >> ’)’;

2 where re and im are objects of typefloat . If is .good() is then nonzero, the function assigns
float_complex(re , im) to x .

3 The function returnsis .

[lib.ins.fc]17.5.7.1.25operator<<(ostream&, float_complex)

ostream& operator<<(ostream& os , float_complex x);

1 Returnsos << ’(’ << real(x) << ’,’ << imag(x) << ’)’ .

[lib.abs.fc]17.5.7.1.26abs(float_complex)

float abs(float_complex x);

1 Returns the magnitude ofx .

[lib.arg.fc]17.5.7.1.27arg(float_complex)

float arg(float_complex x);

17.5.7.1.27arg(float_complex) DRAFT: 25 January 1994 Library 17– 195

1 Returns the phase angle ofx .

[lib.conj.fc]17.5.7.1.28conj(float_complex)

float_complex conj(float_complex x);

1 Returns the conjugate ofx .

[lib.cos.fc]17.5.7.1.29cos(float_complex)

float_complex cos(float_complex x);

1 Returns the cosine ofx .

[lib.cosh.fc]17.5.7.1.30cosh(float_complex)

float_complex cosh(float_complex x);

1 Returns the hyperbolic cosine ofx .

[lib.exp.fc]17.5.7.1.31exp(float_complex)

float_complex exp(float_complex x);

1 Returns the exponential ofx .

[lib.imag.fc]17.5.7.1.32imag(float_complex)

float imag(float_complex x);

1 Returns the imaginary part ofx .

[lib.log.fc]17.5.7.1.33log(float_complex)

float_complex log(float_complex x);

1 Returns the logarithm ofx .

[lib.norm.fc]17.5.7.1.34norm(float_complex)

float norm(float_complex x);

1 Returns the magnitude ofx .

[lib.polar.f.f]17.5.7.1.35polar(float, float)

float_complex polar(float rho , float theta);

1 Returns thefloat_complex value corresponding to a complex number whose magnitude isrho and
whose phase angle istheta .

[lib.pow.fc.fc]17.5.7.1.36pow(float_complex, float_complex)

float_complex pow(float_complex x, float_complex y);

1 Returnsx raised to the powery .

17– 196 Library DRAFT: 25 January 1994 17.5.7.1.37
pow(float_complex, float)

[lib.pow.fc.f]17.5.7.1.37pow(float_complex, float)

float_complex pow(float_complex x, float y);

1 Returnsx raised to the powery .

[lib.pow.fc.i]17.5.7.1.38pow(float_complex, int)

float_complex pow(float_complex x, int y);

1 Returnsx raised to the powery .

[lib.pow.f.fc]17.5.7.1.39pow(float, float_complex)

float_complex pow(float x, float_complex y);

1 Returnsx raised to the powery .

[lib.real.fc]17.5.7.1.40real(float_complex)

float real(float_complex x);

1 Returns the real part ofx .

[lib.sin.fc]17.5.7.1.41sin(float_complex)

float_complex sin(float_complex x);

1 Returns the sine ofx .

[lib.sinh.fc]17.5.7.1.42sinh(float_complex)

float_complex sinh(float_complex x);

1 Returns the hyperbolic sine ofx .

[lib.sqrt.fc]17.5.7.1.43sqrt(float_complex)

float_complex sqrt(float_complex x);

1 Returns the square root ofx .

[lib.complex.with.d]17.5.7.2 Complex numbers withdouble precision

[lib.double.complex]17.5.7.2.1 Classdouble_complex

class double_complex {
public:

double_complex(re_arg = 0, im_arg = 0);
double_complex(const float_complex& rhs);
double_complex& operator+=(double_complex rhs);
double_complex& operator-=(double_complex rhs);
double_complex& operator*=(double_complex rhs);
double_complex& operator/=(double_complex rhs);

private:
// double re , im ; exposition only
};

1 The classdouble_complex describes an object that can store the Cartesian components, of typedou-
ble , of a complex number.

17.5.7.2.1 Classdouble_complex DRAFT: 25 January 1994 Library 17– 197

2 For the sake of exposition, the maintained data is presented here as:

— double re , the real component;

— double im , the imaginary component.

[lib.cons.double.complex.d.d]17.5.7.2.1.1double_complex::double_complex(double,
double)

double_complex(double re_arg = 0, im_arg = 0);

1 Constructs an object of classdouble_complex , initializing re to re_arg andim to im_arg .

[lib.cons.double.complex.fc]17.5.7.2.1.2
double_complex::double_complex(float_complex&)

double_complex(float_complex& rhs);

1 Constructs an object of classdouble_complex , initializing re to (double)real(rhs) and im to
(double)imag(rhs) .

[lib.op+=.dc]17.5.7.2.1.3operator+=(double_complex)

double_complex& operator+=(double_complex rhs);

1 Adds the complex valuerhs to the complex value*this and stores the sum in*this . The function
returns*this .

[lib.op-=.dc]17.5.7.2.1.4operator-=(double_complex)

double_complex& operator-=(double_complex rhs);

1 Subtracts the complex valuerhs from the complex value*this and stores the difference in*this . The
function returns*this .

[lib.op*=.dc]17.5.7.2.1.5operator*=(double_complex)

double_complex& operator*=(double_complex rhs);

1 Multiplies the complex valuerhs by the complex value*this and stores the product in*this . The
function returns*this .

[lib.op/=.dc]17.5.7.2.1.6operator/=(double_complex)

double_complex& operator/=(double_complex rhs);

1 Divides the complex valuerhs into the complex value*this and stores the quotient in*this . The
function returns*this .

[lib..double.complex.ldc]17.5.7.2.2_double_complex(const long_double_complex&)

double_complex _double_complex(const long_double_complex& rhs);

1 Returnsdouble_complex((double)real(rhs), (double)imag(rhs)).

17– 198 Library DRAFT: 25 January 1994 17.5.7.2.3
operator+(double_complex, double_complex)

[lib.op+.dc.dc]17.5.7.2.3operator+(double_complex, double_complex)

double_complex operator+(double_complex lhs , double_complex rhs);

1 Returnsdouble_complex(lhs) += rhs .

[lib.op+.dc.d]17.5.7.2.4operator+(double_complex, double)

double_complex operator+(double_complex lhs , double rhs);

1 Returnsdouble_complex(lhs) += double_complex(rhs) .

[lib.op+.d.dc]17.5.7.2.5operator+(double, double_complex)

double_complex operator+(double lhs , double_complex rhs);

1 Returnsdouble_complex(lhs) += rhs .

[lib.op-.dc.dc]17.5.7.2.6operator-(double_complex, double_complex)

double_complex operator-(double_complex lhs , double_complex rhs);

1 Returnsdouble_complex(lhs) -= rhs .

[lib.op-.dc.d]17.5.7.2.7operator-(double_complex, double)

double_complex operator-(double_complex lhs , double rhs);

1 Returnsdouble_complex(lhs) -= double_complex(rhs) .

[lib.op-.d.dc]17.5.7.2.8operator-(double, double_complex)

double_complex operator-(double lhs , double_complex rhs);

1 Returnsdouble_complex(lhs) -= rhs .

[lib.op*.dc.dc]17.5.7.2.9operator*(double_complex, double_complex)

double_complex operator*(double_complex lhs , double_complex rhs);

1 Returnsdouble_complex(lhs) *= rhs .

[lib.op*.dc.d]17.5.7.2.10operator*(double_complex, double)

double_complex operator*(double_complex lhs , double rhs);

1 Returnsdouble_complex(lhs) *= double_complex(rhs) .

[lib.op*.d.dc]17.5.7.2.11operator*(double, double_complex)

double_complex operator*(double lhs , double_complex rhs);

1 Returnsdouble_complex(lhs) *= rhs .

[lib.op/.dc.dc]17.5.7.2.12operator/(double_complex, double_complex)

double_complex operator/(double_complex lhs , double_complex rhs);

1 Returnsdouble_complex(lhs) /= rhs .

17.5.7.2.13 DRAFT: 25 January 1994 Library 17– 199
operator/(double_complex, double)

[lib.op/.dc.d]17.5.7.2.13operator/(double_complex, double)

double_complex operator/(double_complex lhs , double rhs);

1 Returnsdouble_complex(lhs) /= double_complex(rhs) .

[lib.op/.d.dc]17.5.7.2.14operator/(double, double_complex)

double_complex operator/(double lhs , double_complex rhs);

1 Returnsdouble_complex(lhs) /= rhs .

[lib.op+.dc]17.5.7.2.15operator+(double_complex)

double_complex operator+(double_complex lhs);

1 Returnsdouble_complex(lhs) .

[lib.op-.dc]17.5.7.2.16operator-(double_complex)

double_complex operator-(double_complex lhs);

1 Returnsdouble_complex(-real(lhs), -imag(lhs)) .

[lib.op==.dc.dc]17.5.7.2.17operator==(double_complex, double_complex)

int operator==(double_complex lhs , double_complex rhs);

1 Returnsreal(lhs) == real(rhs) && imag(lhs) == imag(rhs) .

[lib.op==.dc.d]17.5.7.2.18operator==(double_complex, double)

int operator==(double_complex lhs , double rhs);

1 Returnsreal(lhs) == rhs && imag(lhs) == 0 .

[lib.op==.d.dc]17.5.7.2.19operator==(double, double_complex)

int operator==(double lhs , double_complex rhs);

1 Returnslhs == real(rhs) && imag(rhs) == 0 .

[lib.op!=.dc.dc]17.5.7.2.20operator!=(double_complex, double_complex)

int operator!=(double_complex lhs , double_complex rhs);

1 Returnsreal(lhs) != real(rhs) || imag(lhs) != imag(rhs) .

[lib.op!=.dc.d]17.5.7.2.21operator!=(double_complex, double)

int operator!=(double_complex lhs , double rhs);

1 Returnsreal(lhs) != rhs || imag(lhs) != 0 .

[lib.op!=.d.dc]17.5.7.2.22operator!=(double, double_complex)

int operator!=(double lhs , double_complex rhs);

1 Returnslhs != real(rhs) || imag(rhs) != 0 .

17– 200 Library DRAFT: 25 January 1994 17.5.7.2.23
operator>>(istream&, double_complex&)

[lib.ext.dc]17.5.7.2.23operator>>(istream&, double_complex&)

istream& operator>>(istream& is , double_complex& x);

1 Executes:

is >> ’(’ >> re >> ’,’ >> im) >> ’)’;

2 where re and im are objects of typedouble . If is .good() is then nonzero, the function assigns
double_complex(re , im) to x .

3 The function returnsis .

[lib.ins.dc]17.5.7.2.24operator<<(ostream&, double_complex)

ostream& operator<<(ostream& os , double_complex x);

1 Returnsos << ’(’ << real(x) << ’,’ << imag(x) << ’)’ .

[lib.abs.dc]17.5.7.2.25abs(double_complex)

double abs(double_complex x);

1 Returns the magnitude ofx .

[lib.arg.dc]17.5.7.2.26arg(double_complex)

double arg(double_complex x);

1 Returns the phase angle ofx .

[lib.conj.dc]17.5.7.2.27conj(double_complex)

double_complex conj(double_complex x);

1 Returns the conjugate ofx .

[lib.cos.dc]17.5.7.2.28cos(double_complex)

double_complex cos(double_complex x);

1 Returns the cosine ofx .

[lib.cosh.dc]17.5.7.2.29cosh(double_complex)

double_complex cosh(double_complex x);

1 Returns the hyperbolic cosine ofx .

[lib.exp.dc]17.5.7.2.30exp(double_complex)

double_complex exp(double_complex x);

1 Returns the exponential ofx .

[lib.imag.dc]17.5.7.2.31imag(double_complex)

double imag(double_complex x);

17.5.7.2.31imag(double_complex) DRAFT: 25 January 1994 Library 17– 201

1 Returns the imaginary part ofx .

[lib.log.dc]17.5.7.2.32log(double_complex)

double_complex log(double_complex x);

1 Returns the logarithm ofx .

[lib.norm.dc]17.5.7.2.33norm(double_complex)

double norm(double_complex x);

1 Returns the magnitude ofx .

[lib.polar.d.d]17.5.7.2.34polar(double, double)

double_complex polar(double rho , double theta);

1 Returns thedouble_complex value corresponding to a complex number whose magnitude isrho and
whose phase angle istheta .

[lib.pow.dc.dc]17.5.7.2.35pow(double_complex, double_complex)

double_complex pow(double_complex x, double_complex y);

1 Returnsx raised to the powery .

[lib.pow.dc.d]17.5.7.2.36pow(double_complex, double)

double_complex pow(double_complex x, double y);

1 Returnsx raised to the powery .

[lib.pow.dc.i]17.5.7.2.37pow(double_complex, int)

double_complex pow(double_complex x, int y);

1 Returnsx raised to the powery .

[lib.pow.d.dc]17.5.7.2.38pow(double, double_complex)

double_complex pow(double x, double_complex y);

1 Returnsx raised to the powery .

[lib.real.dc]17.5.7.2.39real(double_complex)

double real(double_complex x);

1 Returns the real part ofx .

[lib.sin.dc]17.5.7.2.40sin(double_complex)

double_complex sin(double_complex x);

1 Returns the sine ofx .

17– 202 Library DRAFT: 25 January 1994 17.5.7.2.41sinh(double_complex)

[lib.sinh.dc]17.5.7.2.41sinh(double_complex)

double_complex sinh(double_complex x);

1 Returns the hyperbolic sine ofx .

[lib.sqrt.dc]17.5.7.2.42sqrt(double_complex)

double_complex sqrt(double_complex x);

1 Returns the square root ofx .

[lib.complex.with.ld]17.5.7.3 Complex numbers withlong double precision

[lib.long.double.complex]17.5.7.3.1 Classlong_double_complex

class long_double_complex {
public:

long_double_complex(re_arg = 0, im_arg = 0);
long_double_complex(const float_complex& rhs);
long_double_complex(const double_complex& rhs);
long_double_complex& operator+=(long_double_complex rhs);
long_double_complex& operator-=(long_double_complex rhs);
long_double_complex& operator*=(long_double_complex rhs);
long_double_complex& operator/=(long_double_complex rhs);

private:
// long double re , im ; exposition only
};

1 The classlong_double_complex describes an object that can store the Cartesian components, of type
long double , of a complex number.

2 For the sake of exposition, the maintained data is presented here as:

— long double re , the real component;

— long double im , the imaginary component.

[lib.cons.long.double.complex.ld.ld]17.5.7.3.1.1
long_double_complex::long_double_complex(long
double, long double)

long_double_complex(long double re_arg = 0, im_arg = 0);

1 Constructs an object of classlong_double_complex , initializing re to re_arg andim to im_arg .

[lib.cons.long.double.complex.fc]17.5.7.3.1.2
long_double_complex::long_double_complex(float_complex&)

long_double_complex(float_complex& rhs);

1 Constructs an object of classlong_double_complex , initializing re to (long
double)real(rhs) andim to (long double)imag(rhs) .

[lib.cons.long.double.complex.dc]17.5.7.3.1.3
long_double_complex::long_double_complex(double_complex&)

long_double_complex(double_complex& rhs);

17.5.7.3.1.3 DRAFT: 25 January 1994 Library 17– 203
long_double_complex::long_double_complex(double_complex&)

1 Constructs an object of classlong_double_complex , initializing re to (long
double)real(rhs) andim to (long double)imag(rhs) .

[lib.op+=.ldc]17.5.7.3.1.4operator+=(long_double_complex)

long_double_complex& operator+=(long_double_complex rhs);

1 Adds the complex valuerhs to the complex value*this and stores the sum in*this . The function
returns*this .

[lib.op-=.ldc]17.5.7.3.1.5operator-=(long_double_complex)

long_double_complex& operator-=(long_double_complex rhs);

1 Subtracts the complex valuerhs from the complex value*this and stores the difference in*this . The
function returns*this .

[lib.op*=.ldc]17.5.7.3.1.6operator*=(long_double_complex)

long_double_complex& operator*=(long_double_complex rhs);

1 Multiplies the complex valuerhs by the complex value*this and stores the product in*this . The
function returns*this .

[lib.op/=.ldc]17.5.7.3.1.7operator/=(long_double_complex)

long_double_complex& operator/=(long_double_complex rhs);

1 Divides the complex valuerhs into the complex value*this and stores the quotient in*this . The
function returns*this .

[lib.op+.ldc.ldc]17.5.7.3.2operator+(long_double_complex,
long_double_complex)

long_double_complex operator+(long_double_complex lhs ,
long_double_complex rhs);

1 Returnslong_double_complex(lhs) += rhs .

[lib.op+.ldc.ld]17.5.7.3.3operator+(long_double_complex, long double)

long_double_complex operator+(long_double_complex lhs ,
long double rhs);

1 Returnslong_double_complex(lhs) += long_double_complex(rhs) .

[lib.op+.ld.ldc]17.5.7.3.4operator+(long double, long_double_complex)

long_double_complex operator+(long double lhs ,
long_double_complex rhs);

1 Returnslong_double_complex(lhs) += rhs .

[lib.op-.ldc.ldc]17.5.7.3.5operator-(long_double_complex, long_double_complex)

long_double_complex operator-(long_double_complex lhs ,
long_double_complex rhs);

17– 204 Library DRAFT: 25 January 1994 17.5.7.3.5
operator-(long_double_complex, long_double_complex)

1 Returnslong_double_complex(lhs) -= rhs .

[lib.op-.ldc.ld]17.5.7.3.6operator-(long_double_complex, long double)

long_double_complex operator-(long_double_complex lhs ,
long double rhs);

1 Returnslong_double_complex(lhs) -= long_double_complex(rhs) .

[lib.op-.ld.ldc]17.5.7.3.7operator-(long double, long_double_complex)

long_double_complex operator-(long double lhs ,
long_double_complex rhs);

1 Returnslong_double_complex(lhs) -= rhs .

[lib.op*.ldc.ldc]17.5.7.3.8operator*(long_double_complex,
long_double_complex)

long_double_complex operator*(long_double_complex lhs ,
long_double_complex rhs);

1 Returnslong_double_complex(lhs) *= rhs .

[lib.op*.ldc.ld]17.5.7.3.9operator*(long_double_complex, long double)

long_double_complex operator*(long_double_complex lhs ,
long double rhs);

1 Returnslong_double_complex(lhs) *= long_double_complex(rhs) .

[lib.op*.ld.ldc]17.5.7.3.10operator*(long double, long_double_complex)

long_double_complex operator*(long double lhs ,
long_double_complex rhs);

1 Returnslong_double_complex(lhs) *= rhs .

[lib.op/.ldc.ldc]17.5.7.3.11operator/(long_double_complex,
long_double_complex)

long_double_complex operator/(long_double_complex lhs ,
long_double_complex rhs);

1 Returnslong_double_complex(lhs) /= rhs .

[lib.op/.ldc.ld]17.5.7.3.12operator/(long_double_complex, long double)

long_double_complex operator/(long_double_complex lhs ,
long double rhs);

1 Returnslong_double_complex(lhs) /= long_double_complex(rhs) .

[lib.op/.ld.ldc]17.5.7.3.13operator/(long double, long_double_complex)

long_double_complex operator/(long double lhs ,
long_double_complex rhs);

1 Returnslong_double_complex(lhs) /= rhs .

17.5.7.3.14 DRAFT: 25 January 1994 Library 17– 205
operator+(long_double_complex)

[lib.op+.ldc]17.5.7.3.14operator+(long_double_complex)

long_double_complex operator+(long_double_complex lhs);

1 Returnslong_double_complex(lhs) .

[lib.op-.ldc]17.5.7.3.15operator-(long_double_complex)

long_double_complex operator-(long_double_complex lhs);

1 Returnslong_double_complex(-real(lhs), -imag(lhs)) .

[lib.op==.ldc.ldc]17.5.7.3.16operator==(long_double_complex,
long_double_complex)

int operator==(long_double_complex lhs , long_double_complex rhs);

1 Returnsreal(lhs) == real(rhs) && imag(lhs) == imag(rhs) .

[lib.op==.ldc.ld]17.5.7.3.17operator==(long_double_complex, long double)

int operator==(long_double_complex lhs , long double rhs);

1 Returnsreal(lhs) == rhs && imag(lhs) == 0 .

[lib.op==.ld.ldc]17.5.7.3.18operator==(long double, long_double_complex)

int operator==(long double lhs , long_double_complex rhs);

1 Returnslhs == real(rhs) && imag(rhs) == 0 .

[lib.op!=.ldc.ldc]17.5.7.3.19operator!=(long_double_complex,
long_double_complex)

int operator!=(long_double_complex lhs , long_double_complex rhs);

1 Returnsreal(lhs) != real(rhs) || imag(lhs) != imag(rhs) .

[lib.op!=.ldc.ld]17.5.7.3.20operator!=(long_double_complex, long double)

int operator!=(long_double_complex lhs , long double rhs);

1 Returnsreal(lhs) != rhs || imag(lhs) != 0 .

[lib.op!=.ld.ldc]17.5.7.3.21operator!=(long double, long_double_complex)

int operator!=(long double lhs , long_double_complex rhs);

1 Returnslhs != real(rhs) || imag(rhs) != 0 .

[lib.ext.ldc]17.5.7.3.22operator>>(istream&, long_double_complex&)

istream& operator>>(istream& is , long_double_complex& x);

1 Executes:

is >> ’(’ >> re >> ’,’ >> im) >> ’)’;

2 where re and im are objects of typelong double . If is .good() is then nonzero, the function
assignslong_double_complex(re , im) to x .

17– 206 Library DRAFT: 25 January 1994 17.5.7.3.22
operator>>(istream&, long_double_complex&)

3 The function returnsis .

[lib.ins.ldc]17.5.7.3.23operator<<(ostream&, long_double_complex)

ostream& operator<<(ostream& os , long_double_complex x);

1 Returnsos << ’(’ << real(x) << ’,’ << imag(x) << ’)’ .

[lib.abs.ldc]17.5.7.3.24abs(long_double_complex)

long double abs(long_double_complex x);

1 Returns the magnitude ofx .

[lib.arg.ldc]17.5.7.3.25arg(long_double_complex)

long double arg(long_double_complex x);

1 Returns the phase angle ofx .

[lib.conj.ldc]17.5.7.3.26conj(long_double_complex)

long_double_complex conj(long_double_complex x);

1 Returns the conjugate ofx .

[lib.cos.ldc]17.5.7.3.27cos(long_double_complex)

long_double_complex cos(long_double_complex x);

1 Returns the cosine ofx .

[lib.cosh.ldc]17.5.7.3.28cosh(long_double_complex)

long_double_complex cosh(long_double_complex x);

1 Returns the hyperbolic cosine ofx .

[lib.exp.ldc]17.5.7.3.29exp(long_double_complex)

long_double_complex exp(long_double_complex x);

1 Returns the exponential ofx .

[lib.imag.ldc]17.5.7.3.30imag(long_double_complex)

long double imag(long_double_complex x);

1 Returns the imaginary part ofx .

[lib.log.ldc]17.5.7.3.31log(long_double_complex)

long_double_complex log(long_double_complex x);

1 Returns the logarithm ofx .

17.5.7.3.32 DRAFT: 25 January 1994 Library 17– 207
norm(long_double_complex)

[lib.norm.ldc]17.5.7.3.32norm(long_double_complex)

long double norm(long_double_complex x);

1 Returns the magnitude ofx .

[lib.polar.ld.ld]17.5.7.3.33polar(long double, long double)

long_double_complex polar(long double rho , long double theta);

1 Returns thelong_double_complex value corresponding to a complex number whose magnitude is
rho and whose phase angle istheta .

[lib.pow.ldc.ldc]17.5.7.3.34pow(long_double_complex, long_double_complex)

long_double_complex pow(long_double_complex x, long_double_complex y);

1 Returnsx raised to the powery .

[lib.pow.ldc.ld]17.5.7.3.35pow(long_double_complex, long double)

long_double_complex pow(long_double_complex x, long double y);

1 Returnsx raised to the powery .

[lib.pow.ldc.i]17.5.7.3.36pow(long_double_complex, int)

long_double_complex pow(long_double_complex x, int y);

1 Returnsx raised to the powery .

[lib.pow.ld.ldc]17.5.7.3.37pow(long double, long_double_complex)

long_double_complex pow(long double x, long_double_complex y);

1 Returnsx raised to the powery .

[lib.real.ldc]17.5.7.3.38real(long_double_complex)

long double real(long_double_complex x);

1 Returns the real part ofx .

[lib.sin.ldc]17.5.7.3.39sin(long_double_complex)

long_double_complex sin(long_double_complex x);

1 Returns the sine ofx .

[lib.sinh.ldc]17.5.7.3.40sinh(long_double_complex)

long_double_complex sinh(long_double_complex x);

1 Returns the hyperbolic sine ofx .

17– 208 Library DRAFT: 25 January 1994 17.5.7.3.41
sqrt(long_double_complex)

[lib.sqrt.ldc]17.5.7.3.41sqrt(long_double_complex)

long_double_complex sqrt(long_double_complex x);

1 Returns the square root ofx .

_ ___ ___

Annex A (informative)
Grammar summary [gram]
_ ___ ___

1 This summary of C + + syntax is intended to be an aid to comprehension. It is not an exact statement of the∗
language. In particular, the grammar described here accepts a superset of valid C + + constructs. Disam-
biguation rules (6.8, 7.1, 10.2) must be applied to distinguish expressions from declarations. Further,
access control, ambiguity, and type rules must be used to weed out syntactically valid but meaningless con-
structs.

[gram.key] A.1 Keywords

1 New context-dependent keywords are introduced into a program bytypedef (7.1.3), namespace (7.3.1),
class (9), enumeration (7.2), andtemplate (14) declarations.

typedef-name:
identifier

namespace-name:
original-namespace-name
namespace-alias

original-namespace-name:
identifier

namespace-alias:
identifier

class-name:
identifier
template-class-id

enum-name:
identifier

template-name:
identifier

Note that atypedef-namenaming a class is also aclass-name(9.1).

[gram.lex]A.2 Lexical conventions

A– 2 Grammar summary DRAFT: 25 January 1994 A.2 Lexical conventions

preprocessing-token:
header-name
identifier
pp-number
character-constant
string-literal
operator
digraph
punctuator
each non-white-space character that cannot be one of the above

digraph:
<%
%>
<:
:>
%%

token:
identifier
keyword
literal
operator
punctuator

identifier:
nondigit
identifier nondigit
identifier digit

nondigit: one of
_ a b c d e f g h i j k l m

n o p q r s t u v w x y z
A B C D E F G H I J K L M
N O P Q R S T U V W X Y Z

digit: one of
0 1 2 3 4 5 6 7 8 9

literal: ∗
integer-literal
character-literal
floating-literal
string-literal
boolean-literal

integer-literal:
decimal-literal integer-suffixopt

octal-literal integer-suffixopt

hexadecimal-literal integer-suffixopt

decimal-literal:
nonzero-digit
decimal-literal digit

octal-literal:
0
octal-literal octal-digit

A.2 Lexical conventions DRAFT: 25 January 1994 Grammar summary A– 3

hexadecimal-literal:
0x hexadecimal-digit
0X hexadecimal-digit
hexadecimal-literal hexadecimal-digit

nonzero-digit: one of
1 2 3 4 5 6 7 8 9

octal-digit: one of
0 1 2 3 4 5 6 7

hexadecimal-digit:one of
0 1 2 3 4 5 6 7 8 9
a b c d e f
A B C D E F

integer-suffix:
unsigned-suffix long-suffixopt

long-suffix unsigned-suffixopt

unsigned-suffix:one of
u U

long-suffix: one of
l L

character-literal:
’ c-char-sequence’
L’ c-char-sequence’

c-char-sequence:
c-char
c-char-sequence c-char

c-char:
any member of the source character set except

the single-quote’ , backslash\ , or new-line character
escape-sequence

escape-sequence:
simple-escape-sequence
octal-escape-sequence
hexadecimal-escape-sequence

simple-escape-sequence:one of
\’ \" \? \\
\a \b \f \n \r \t \v

octal-escape-sequence:
\ octal-digit
\ octal-digit octal-digit
\ octal-digit octal-digit octal-digit

hexadecimal-escape-sequence:
\x hexadecimal-digit
hexadecimal-escape-sequence hexadecimal-digit

A– 4 Grammar summary DRAFT: 25 January 1994 A.2 Lexical conventions

floating-constant:
fractional-constant exponent-partopt floating-suffixopt

digit-sequence exponent-part floating-suffixopt

fractional-constant:
digit-sequenceopt . digit-sequence
digit-sequence.

exponent-part:
e signopt digit-sequence
E signopt digit-sequence

sign: one of
+ -

digit-sequence:
digit
digit-sequence digit

floating-suffix: one of
f l F L

string-literal:
" s-char-sequenceopt"
L" s-char-sequenceopt"

s-char-sequence:
s-char
s-char-sequence s-char

s-char:
any member of the source character set except

the double-quote" , backslash\ , or new-line character
escape-sequence

boolean-literal:
false
true

[gram.basic]A.3 Basic concepts

translation unit:
declaration-seqopt

[gram.expr]A.4 Expressions

primary-expression:
literal
this
:: identifier
:: operator-function-id
:: qualified-id
(expression)
id-expression

A.4 Expressions DRAFT: 25 January 1994 Grammar summary A– 5

id-expression:
unqualified-id
qualified-id

unqualified-id:
identifier
operator-function-id
conversion-function-id
˜ class-name

qualified-id:
nested-name-specifier unqualified-id

postfix-expression:
primary-expression
postfix-expression[expression]
postfix-expression(expression-listopt)
simple-type-specifier(expression-listopt)
postfix-expression. id-expression
postfix-expression-> id-expression
postfix-expression++
postfix-expression--
dynamic_cast < type-id > (expression)
static_cast < type-id > (expression)
reinterpret_cast < type-id > (expression)
const_cast < type-id > (expression)
typeid (expression)
typeid (type-id)

expression-list:
assignment-expression
expression-list, assignment-expression

unary-expression:
postfix-expression
++ unary-expression
-- unary-expression
unary-operator cast-expression
sizeof unary-expression
sizeof (type-id)
new-expression
delete-expression

unary-operator: one of
* & + - ! ~

new-expression:
:: opt new new-placementopt new-type-id new-initializeropt
:: opt new new-placementopt (type-id) new-initializeropt

new-placement:
(expression-list)

new-type-id:
type-specifier-seq new-declaratoropt

A– 6 Grammar summary DRAFT: 25 January 1994 A.4 Expressions

new-declarator:
* cv-qualifier-seqopt new-declaratoropt

:: opt nested-name-specifier* cv-qualifier-seqopt new-declaratoropt
direct-new-declarator

direct-new-declarator:
[expression]
direct-new-declarator[constant-expression]

new-initializer:
(expression-listopt)

delete-expression:
:: opt delete cast-expression
:: opt delete [] cast-expression

cast-expression:
unary-expression
(type-id) cast-expression

pm-expression:
cast-expression
pm-expression.* cast-expression
pm-expression->* cast-expression

multiplicative-expression:
pm-expression
multiplicative-expression* pm-expression
multiplicative-expression/ pm-expression
multiplicative-expression% pm-expression

additive-expression:
multiplicative-expression
additive-expression+ multiplicative-expression
additive-expression- multiplicative-expression

shift-expression:
additive-expression
shift-expression<< additive-expression
shift-expression>> additive-expression

relational-expression:
shift-expression
relational-expression< shift-expression
relational-expression> shift-expression
relational-expression<= shift-expression
relational-expression>= shift-expression

equality-expression:
relational-expression
equality-expression== relational-expression
equality-expression!= relational-expression

and-expression:
equality-expression
and-expression& equality-expression

A.4 Expressions DRAFT: 25 January 1994 Grammar summary A– 7

exclusive-or-expression:
and-expression
exclusive-or-expression̂ and-expression

inclusive-or-expression:
exclusive-or-expression
inclusive-or-expression| exclusive-or-expression

logical-and-expression:
inclusive-or-expression
logical-and-expression&& inclusive-or-expression

logical-or-expression:
logical-and-expression
logical-or-expression|| logical-and-expression

conditional-expression:
logical-or-expression
logical-or-expression? expression: assignment-expression

assignment-expression:
conditional-expression
unary-expression assignment-operator assignment-expression
throw-expression

assignment-operator:one of
= *= /= %= += -= >>= <<= &= ^= |=

expression:
assignment-expression
expression, assignment-expression

constant-expression:
conditional-expression

[gram.stmt.stmt]A.5 Statements

statement:
labeled-statement
expression-statement
compound-statement
selection-statement
iteration-statement
jump-statement
declaration-statement
try-block

labeled-statement:
identifier : statement
case constant-expression: statement
default : statement

expression-statement:
expressionopt ;

compound-statement:
{ statement-seqopt }

A– 8 Grammar summary DRAFT: 25 January 1994 A.5 Statements

statement-seq:
statement
statement-seq statement

selection-statement:
if (condition) statement
if (condition) statementelse statement
switch (condition) statement

condition:
expression
type-specifier-seq declarator= assignment-expression

iteration-statement:
while (condition) statement
do statement while (expression) ;
for (for-init-statement conditionopt ; expressionopt) statement

for-init-statement:
expression-statement
declaration-statement

jump-statement:
break ;
continue ;
return expressionopt ;
goto identifier ;

declaration-statement:
declaration

[gram.dcl.dcl]A.6 Declarations

declaration:
decl-specifier-seqopt init-declarator-listopt ;
function-definition ∗
template-declaration
asm-definition
linkage-specification
namespace-definition
namespace-alias-definition
using-declaration
using-directive

decl-specifier-seqopt init-declarator-listopt ;

decl-specifier:
storage-class-specifier
type-specifier
function-specifier
friend ∗
typedef

decl-specifier-seq:
decl-specifier-seqopt decl-specifier

A.6 Declarations DRAFT: 25 January 1994 Grammar summary A– 9

storage-class-specifier:
auto
register
static
extern
mutable

function-specifier:
inline
virtual

typedef-name:
identifier

type-specifier:
simple-type-specifier
class-specifier
enum-specifier
elaborated-type-specifier
cv-qualifier

simple-type-specifier:
:: opt nested-name-specifieropt type-name
char
wchar_t
bool
short
int
long
signed
unsigned
float
double
void

type-name:
class-name
enum-name
typedef-name

elaborated-type-specifier:
class-key :: opt nested-name-specifieropt identifier
enum :: opt nested-name-specifieropt identifier

class-key:
class
struct
union

enum-name:
identifier

enum-specifier: ∗
enum identifieropt { enumerator-listopt }

enumerator-list:
enumerator-definition
enumerator-list , enumerator-definition

A– 10 Grammar summary DRAFT: 25 January 1994 A.6 Declarations

enumerator-definition:
enumerator
enumerator = constant-expression

enumerator: ∗
identifier

original-namespace-name:
identifier

namespace-definition:
original-namespace-definition
extension-namespace-definition
unnamed-namespace-definition

original-namespace-definition:
namespace identifier { namespace-body}

extension-namespace-definition:
namespace original-namespace-name{ namespace-body}

unnamed-namespace-definition:
namespace { namespace-body}

namespace-body:
declaration-seqopt

namespace-alias:
identifier

namespace-alias-definition:
namespace identifier = qualified-namespace-specifier ;

qualified-namespace-specifier:
:: opt nested-name-specifieropt class-or-namespace-name

using-declaration:
using :: opt nested-name-specifier unqualified-id;
using :: unqualified-id;

using-directive:
using namespace :: opt nested-name-specifieropt namespace-name ;

id-expression
unqualified-id
qualified-id

nested-name-specifier:
class-or-namespace-name:: nested-name-specifieropt

class-or-namespace-name:
class-name
namespace-name

namespace-name:
original-namespace-name
namespace-alias

asm-definition:
asm (string-literal) ;

A.6 Declarations DRAFT: 25 January 1994 Grammar summary A– 11

linkage-specification:
extern string-literal { declaration-seqopt }
extern string-literal declaration

declaration-seq:
declaration
declaration-seq declaration

[gram.dcl.decl]A.7 Declarators

init-declarator-list: ∗
init-declarator
init-declarator-list , init-declarator

init-declarator:
declarator initializeropt

declarator:
direct-declarator
ptr-operator declarator

direct-declarator:
declarator-id
direct-declarator (parameter-declaration-clause) cv-qualifier-seqopt exception-specificationopt

direct-declarator [constant-expressionopt]
(declarator)

ptr-operator:
* cv-qualifier-seqopt

& cv-qualifier-seqopt

:: opt nested-name-specifier* cv-qualifier-seqopt

cv-qualifier-seq:
cv-qualifier cv-qualifier-seqopt

cv-qualifier:
const
volatile

declarator-id:
id-expression
nested-name-specifieropt type-name

type-id:
type-specifier-seq abstract-declaratoropt

type-specifier-seq:
type-specifier type-specifier-seqopt

abstract-declarator:
ptr-operator abstract-declaratoropt

direct-abstract-declarator

direct-abstract-declarator:
direct-abstract-declaratoropt (parameter-declaration-clause) cv-qualifier-seqopt exception-specificationopt

direct-abstract-declaratoropt [constant-expressionopt]
(abstract-declarator)

A– 12 Grammar summary DRAFT: 25 January 1994 A.7 Declarators

parameter-declaration-clause:
parameter-declaration-listopt ... opt

parameter-declaration-list, ...

parameter-declaration-list:
parameter-declaration
parameter-declaration-list, parameter-declaration

parameter-declaration:
decl-specifier-seq declarator
decl-specifier-seq declarator= assignment-expression
decl-specifier-seq abstract-declaratoropt

decl-specifier-seq abstract-declaratoropt = assignment-expression

function-definition:
decl-specifier-seqopt declarator ctor-initializeropt function-body

function-body:
compound-statement

initializer:
= initializer-clause
(expression-list)

initializer-clause:
assignment-expression
{ initializer-list , opt }
{ }

initializer-list:
initializer-clause
initializer-list , initializer-clause

[gram.class]A.8 Classes

class-name:
identifier
template-id

class-specifier:
class-head{ member-specificationopt }

class-head:
class-key identifieropt base-clauseopt

class-key nested-name-specifier identifier base-clauseopt

class-key:
class
struct
union

member-specification:
member-declaration member-specificationopt

access-specifier: member-specificationopt

A.8 Classes DRAFT: 25 January 1994 Grammar summary A– 13

member-declaration:
decl-specifier-seqopt member-declarator-listopt ;
function-definition ; opt

qualified-id ;
using-declaration

member-declarator-list:
member-declarator
member-declarator-list, member-declarator

member-declarator:
declarator pure-specifieropt

identifieropt : constant-expression

pure-specifier:
= 0

[gram.class.derived]A.9 Derived classes

base-clause:
: base-specifier-list

base-specifier-list:
base-specifier
base-specifier-list, base-specifier

base-specifier:
:: opt nested-name-specifieropt class-name
virtual access-specifieropt :: opt nested-name-specifieropt class-name
access-specifier virtualopt :: opt nested-name-specifieropt class-name

access-specifier:
private
protected
public

[gram.special]A.10 Special member functions

class-name(expression-listopt)

conversion-function-id:
operator conversion-type-id

conversion-type-id:
type-specifier-seq conversion-declaratoropt

conversion-declarator:
ptr-operator conversion-declaratoropt

ctor-initializer:
: mem-initializer-list

mem-initializer-list:
mem-initializer
mem-initializer , mem-initializer-list

A– 14 Grammar summary DRAFT: 25 January 1994 A.10 Special member functions

mem-initializer:
:: opt nested-name-specifieropt class-name(expression-listopt)
identifier (expression-listopt)

[gram.over]A.11 Overloading

postfix-expression:
primary-expression
postfix-expression. id-expression
postfix-expression-> id-expression

operator-function-id:
operator operator

operator: one of
new delete new[] delete[]
+ - * / % ^ & | ~
! = < > += -= *= /= %=
^= &= |= << >> >>= <<= == !=
<= >= && || ++ -- , ->* ->
() []

[gram.temp]A.12 Templates

template-declaration: ∗
template < template-parameter-list> declaration

template-parameter-list:
template-parameter
template-parameter-list, template-parameter

template-id:
template-name< template-argument-list>

template-name:
identifier

template-argument-list:
template-argument
template-argument-list, template-argument

template-argument:
assignment-expression
type-id

instantiation:
template specialization

template-id < template-argument-list>

template-parameter:
type-parameter
parameter-declaration

A.12 Templates DRAFT: 25 January 1994 Grammar summary A– 15

type-parameter:
class identifieropt
class identifieropt = type-name
typedef identifieropt
typedef identifieropt = type-name

[gram.except] A.13 Exception handling

try-block: ∗
try compound-statement handler-seq

handler-seq:
handler handler-seqopt

handler:
catch (exception-declaration) compound-statement

exception-declaration:
type-specifier-seq declarator
type-specifier-seq abstract-declarator
type-specifier-seq
...

throw-expression:
throw assignment-expressionopt

exception-specification:
throw (type-id-listopt)

type-id-list:
type-id
type-id-list , type-id

_ ___ ___

Annex C (informative)
Compatibility [diff]
_ ___ ___

1 This Annex summarizes the evolution of C + + since the first edition ofThe C + + Programming Language
and explains in detail the differences between C + + and C. Because the C language as described by this
International Standard differs from the dialects of Classic C used up till now, we discuss the differences
between C + + and ISO C as well as the differences between C + + and Classic C. ∗

2 C + + is based on C (K&R78) and adopts most of the changes specified by the ISO C standard. Converting
programs among C + +, K&R C, and ISO C may be subject to vicissitudes of expression evaluation. All dif-
ferences between C + + and ISO C can be diagnosed by a compiler. With the exceptions listed in this Annex,
programs that are both C + + and ISO C have the same meaning in both languages.

[diff.c] C.1 Extensions

1 This subclause summarizes the major extensions to C provided by C + +.

[diff.early] C.1.1 C + + features available in 1985

1 This subclause summarizes the extensions to C provided by C + + in the 1985 version of its manual:

2 The types of function parameters can be specified (8.3.5) and will be checked (5.2.2). Type conversions
will be performed (5.2.2). This is also in ISO C.

3 Single-precision floating point arithmetic may be used forfloat expressions; 3.8.1 and 4.3. This is also
in ISO C.

4 Function names can be overloaded; 13.

5 Operators can be overloaded; 13.4.

6 Functions can be inline substituted; 7.1.2.

7 Data objects can beconst ; 7.1.5. This is also in ISO C.

8 Objects of reference type can be declared; 8.3.2 and 8.5.3.

9 A free store is provided by thenew anddelete operators; 5.3.4, 5.3.5.

10 Classes can provide data hiding (11), guaranteed initialization (12.1), user-defined conversions (12.3), and
dynamic typing through use of virtual functions (10.3).

11 The name of a class or enumeration is a type name; 9.

12 A pointer to any non-const and non-volatile object type can be assigned to avoid* ; 4.6. This is
also in ISO C.

13 A pointer to function can be assigned to avoid* ; 4.6.

14 A declaration within a block is a statement; 6.7.

15 Anonymous unions can be declared; 9.6.

C– 2 Compatibility DRAFT: 25 January 1994 C.1.2 C + + features added since 1985

[diff.c++] C.1.2 C + + features added since 1985

1 This subclause summarizes the major extensions of C + + since the 1985 version of this manual:

2 A class can have more than one direct base class (multiple inheritance); 10.1.

3 Class members can beprotected ; 11 .

4 Pointers to class members can be declared and used; 8.3.3, 5.5.

5 Operatorsnew anddelete can be overloaded and declared for a class; 5.3.4, 5.3.5, 12.5. This allows the
“assignment tothis ” technique for class specific storage management to be removed to the anachronism
subclause; C.3.3.

6 Objects can be explicitly destroyed; 12.4.

7 Assignment and initialization are defined as memberwise assignment and initialization; 12.8.

8 Theoverload keyword was made redundant and moved to the anachronism subclause; C.3.

9 General expressions are allowed as initializers for static objects; 8.5.

10 Data objects can bevolatile ; 7.1.5. Also in ISO C.

11 Initializers are allowed forstatic class members; 9.5.

12 Member functions can bestatic ; 9.5.

13 Member functions can beconst andvolatile ; 9.4.1.

14 Linkage to non-C + + program fragments can be explicitly declared; 7.5.

15 Operators-> , ->* , and, can be overloaded; 13.4.

16 Classes can be abstract; 10.4.

17 Prefix and postfix application of++ and-- on a user-defined type can be distinguished.

18 Templates; 14.

19 Exception handling; 15. ∗

20 Thebool type (3.8.1).

[diff.iso]C.2 C + + and ISO C

1 The subclauses of this subclause list the differences between C + + and ISO C, by the chapters of this docu-
ment.

[diff.lex]C.2.1 Clause 2: lexical conventions

Subclause 2.2

1 Change:C + + style comments (//) are added
A pair of slashes now introduce a one-line comment.
Rationale: This style of comments is a useful addition to the language.
Effect on original feature: Change to semantics of well-defined feature. A valid ISO C expression con-
taining a division operator followed immediately by a C-style comment will now be treated as a C + + style
comment. For example:

{
int a = 4;
int b = 8 //* divide by a*/ a;
+a;

}

C.2.1 Clause 2: lexical conventions DRAFT: 25 January 1994 Compatibility C– 3

Difficulty of converting: Syntactic transformation. Just add white space after the division operator.
How widely used:The token sequence//* probably occurs very seldom.

Subclause 2.8

2 Change:New Keywords
New keywords are added to C + +; see 2.8.
Rationale: These keywords were added in order to implement the new semantics of C + +.
Effect on original feature: Change to semantics of well-defined feature. Any ISO C programs that used
any of these keywords as identifiers are not valid C + + programs.
Difficulty of converting: Syntactic transformation. Converting one specific program is easy. Converting a
large collection of related programs takes more work.
How widely used:Common.

Subclause 2.9.2

3 Change:Type of character literal is changed fromint to char
Rationale: This is needed for improved overloaded function argument type matching. For example:

int function(int i);
int function(char c);

function(’x’);

It is preferable that this call match the second version of function rather than the first.
Effect on original feature: Change to semantics of well-defined feature. ISO C programs which depend
on

sizeof(’x’) == sizeof(int)

will not work the same as C + + programs.
Difficulty of converting: Simple.
How widely used:Programs which depend uponsizeof(’x’) are probably rare.

[diff.basic]C.2.2 Clause 3: basic concepts

Subclause 3.1

1 Change:C + + does not have“tentative definitions” as in C
E.g., at file scope,

int i;
int i;

is valid in C, invalid in C + +. This makes it impossible to define mutually referential file-local static objects,
if initializers are restricted to the syntactic forms of C. For example,

struct X { int i; struct X *next; };

static struct X a;
static struct X b = { 0, &a };
static struct X a = { 1, &b };

Rationale: This avoids having different initialization rules for built-in types and user-defined types.
Effect on original feature: Deletion of semantically well-defined feature.
Difficulty of converting: Semantic transformation. In C + +, the initializer for one of a set of mutually-
referential file-local static objects must invoke a function call to achieve the initialization.
How widely used:Seldom.

C– 4 Compatibility DRAFT: 25 January 1994 C.2.2 Clause 3: basic concepts

Subclause 3.3

2 Change:A struct is a scope in C + +, not in C
Rationale: Class scope is crucial to C + +, and a struct is a class.
Effect on original feature: Change to semantics of well-defined feature.
Difficulty of converting: Semantic transformation.
How widely used:C programs usestruct extremely frequently, but the change is only noticeable when
struct , enumeration, or enumerator names are referred to outside thestruct . The latter is probably
rare.

Subclause 3.4 [also 7.1.5]

3 Change:A name of file scope that is explicitly declaredconst , and not explicitly declaredextern , has
internal linkage, while in C it would have external linkage
Rationale: Becauseconst objects can be used as compile-time values in C + +, this feature urges program-
mers to provide explicit initializer values for eachconst . This feature allows the user to putconst
objects in header files that are included in many compilation units.
Effect on original feature: Change to semantics of well-defined feature.
Difficulty of converting: Semantic transformation
How widely used:Seldom

Subclause 3.5

4 Change:Main cannot be called recursively and cannot have its address taken
Rationale: The main function may require special actions.
Effect on original feature: Deletion of semantically well-defined feature
Difficulty of converting: Trivial: create an intermediary function such asmymain(argc, argv) .
How widely used:Seldom

Subclause 3.8

5 Change:C allows“compatible types” in several places, C + + does not
For example, otherwise-identicalstruct types with different tag names are“compatible” in C but are dis-
tinctly different types in C + +.
Rationale: Stricter type checking is essential for C + +. ∗
Effect on original feature: Deletion of semantically well-defined feature.
Difficulty of converting: Semantic transformation The“typesafe linkage” mechanism will find many, but
not all, of such problems. Those problems not found by typesafe linkage will continue to function properly,
according to the“layout compatibility rules” of this International Standard.
How widely used:Common.

Subclause 4.6

6 Change:Convertingvoid* to a pointer-to-object type requires casting

char a[10];
void *b=a;
void foo() {
char *c=b;
}

ISO C will accept this usage of pointer to void being assigned to a pointer to object type. C + + will not.
Rationale: C + + tries harder than C to enforce compile-time type safety.
Effect on original feature: Deletion of semantically well-defined feature.

C.2.2 Clause 3: basic concepts DRAFT: 25 January 1994 Compatibility C– 5

Difficulty of converting: Could be automated. Violations will be diagnosed by the C + + translator. The fix
is to add a cast. For example:

char *c = (char *) b;

How widely used: This is fairly widely used but it is good programming practice to add the cast when
assigning pointer-to-void to pointer-to-object. Some ISO C translators will give a warning if the cast is not
used.

Subclause 4.6

7 Change:Only pointers to non-const and non-volatile objects may be implicitly converted tovoid*
Rationale: This improves type safety.
Effect on original feature: Deletion of semantically well-defined feature.
Difficulty of converting: Could be automated. A C program containing such an implicit conversion from
(e.g.) pointer-to-const-object to void* will receive a diagnostic message. The correction is to add an
explicit cast.
How widely used:Seldom.

[diff.expr]C.2.3 Clause 5: expressions

Subclause 5.2.2

1 Change:Implicit declaration of functions is not allowed
Rationale: The type-safe nature of C + +.
Effect on original feature: Deletion of semantically well-defined feature. Note: the original feature was
labeled as“obsolescent” in ISO C.
Difficulty of converting: Syntactic transformation. Facilities for producing explicit function declarations
are fairly widespread commercially.
How widely used:Common.

Subclause 5.3.3, 5.4

2 Change:Types must be declared in declarations, not in expressions
In C, a sizeof expression or cast expression may create a new type. For example,

p = (void*)(struct x {int i;} *)0;

declares a new type, struct x .
Rationale: This prohibition helps to clarify the location of declarations in the source code.
Effect on original feature: Deletion of a semantically well-defined feature.
Difficulty of converting: Syntactic transformation.
How widely used:Seldom.

[diff.stat]C.2.4 Clause 6: statements

Subclause 6.4.2, 6.6.4 (switch and goto statements)

1 Change: It is now invalid to jump past a declaration with explicit or implicit initializer (except across
entire block not entered)
Rationale: Constructors used in initializers may allocate resources which need to be de-allocated upon
leaving the block. Allowing jump past initializers would require complicated run-time determination of
allocation. Furthermore, any use of the uninitialized object could be a disaster. With this simple compile-
time rule, C + + assures that if an initialized variable is in scope, then it has assuredly been initialized.
Effect on original feature: Deletion of semantically well-defined feature.

C– 6 Compatibility DRAFT: 25 January 1994 C.2.4 Clause 6: statements

Difficulty of converting: Semantic transformation.
How widely used:Seldom.

Subclause 6.6.3

2 Change: It is now invalid to return (explicitly or implicitly) from a function which is declared to return a
value without actually returning a value
Rationale: The caller and callee may assume fairly elaborate return-value mechanisms for the return of
class objects. If some flow paths execute a return without specifying any value, the compiler must embody
many more complications. Besides, promising to return a value of a given type, and then not returning such
a value, has always been recognized to be a questionable practice, tolerated only because very-old C had no
distinction between void functions and int functions.
Effect on original feature: Deletion of semantically well-defined feature.
Difficulty of converting: Semantic transformation. Add an appropriate return value to the source code,
e.g. zero.
How widely used:Seldom. For several years, many existing C compilers have produced warnings in this
case.

[diff.dcl]C.2.5 Clause 7: declarations

Subclause 7.1.1

1 Change:In C + +, thestatic or extern specifiers can only be applied to names of objects or functions
Using these specifiers with type declarations is illegal in C + +. In C, these specifiers are ignored when used
on type declarations. Example:

static struct S { // valid C, invalid in C + +
int i;
// ...
};

Rationale: Storage class specifiers don’t have any meaning when associated with a type. In C + +, class
members can be defined with thestatic storage class specifier. Allowing storage class specifiers on
type declarations could render the code confusing for users.
Effect on original feature: Deletion of semantically well-defined feature.
Difficulty of converting: Syntactic transformation.
How widely used:Seldom.

Subclause 7.1.3

2 Change: A C + + typedef name must be different from any class type name declared in the same scope
(except if the typedef is a synonym of the class name with the same name). In C, a typedef name and a
struct tag name declared in the same scope can have the same name (because they have different name
spaces)
Example:

typedef struct name1 { /*...*/ } name1; // valid C and C + +
struct name { /*...*/ };
typedef int name; // valid C, invalid C + +

Rationale: For ease of use, C + + doesn’t require that a type name be prefixed with the keywordsclass ,
struct or union when used in object declarations or type casts. Example:

class name { /*...*/ };
name i; // i has type ’class name’

Effect on original feature: Deletion of semantically well-defined feature.

C.2.5 Clause 7: declarations DRAFT: 25 January 1994 Compatibility C– 7

Difficulty of converting: Semantic transformation. One of the 2 types has to be renamed.
How widely used:Seldom.

Subclause 7.1.5 [see also 3.4]

3 Change:const objects must be initialized in C + + but can be left uninitialized in C
Rationale: A const object cannot be assigned to so it must be initialized to hold a useful value.
Effect on original feature: Deletion of semantically well-defined feature.
Difficulty of converting: Semantic transformation.
How widely used:Seldom.

Subclause 7.2

4 Change:C + + objects of enumeration type can only be assigned values of the same enumeration type. In C,
objects of enumeration type can be assigned values of any integral type
Example:

enum color { red, blue, green };
color c = 1; // valid C, invalid C + +

Rationale: The type-safe nature of C + +.
Effect on original feature: Deletion of semantically well-defined feature.
Difficulty of converting: Syntactic transformation. (The type error produced by the assignment can be
automatically corrected by applying an explicit cast.)
How widely used:Common.

Subclause 7.2

5 Change:In C + +, the type of an enumerator is its enumeration. In C, the type of an enumerator isint .
Example:

enum e { A };
sizeof(A) == sizeof(int) // in C
sizeof(A) == sizeof(e) // in C + +
/* and sizeof(int) is not necessary equal to sizeof(e) */

Rationale: In C + +, an enumeration is a distinct type.
Effect on original feature: Change to semantics of well-defined feature.
Difficulty of converting: Semantic transformation.
How widely used:Seldom. The only time this affects existing C code is when the size of an enumerator is
taken. Taking the size of an enumerator is not a common C coding practice.

[diff.decl]C.2.6 Clause 8: declarators

Subclause 8.3.5

1 Change:In C + +, a function declared with an empty parameter list takes no arguments.
In C, an empty parameter list means that the number and type of the function arguments are unknown"
Example:

int f(); // means int f(void) in C + +
// int f(unknown) in C

Rationale: This is to avoid erroneous function calls (i.e. function calls with the wrong number or type of
arguments).
Effect on original feature: Change to semantics of well-defined feature. This feature was marked as

C– 8 Compatibility DRAFT: 25 January 1994 C.2.6 Clause 8: declarators

“obsolescent” in C.
Difficulty of converting: Syntactic transformation. The function declarations using C incomplete declara-
tion style must be completed to become full prototype declarations. A program may need to be updated
further if different calls to the same (non-prototype) function have different numbers of arguments or if the
type of corresponding arguments differed.
How widely used:Common.

Subclause 8.3.5 [see 5.3.3]

2 Change: In C + +, types may not be defined in return or parameter types. In C, these type definitions are
allowed
Example:

void f(struct S { int a; } arg) {} // valid C, invalid C + +
enum E { A, B, C } f() {} // valid C, invalid C + +

Rationale: When comparing types in different compilation units, C + + relies on name equivalence when C
relies on structural equivalence. Regarding parameter types: since the type defined in an parameter list
would be in the scope of the function, the only legal calls in C + + would be from within the function itself.
Effect on original feature: Deletion of semantically well-defined feature.
Difficulty of converting: Semantic transformation. The type definitions must be moved to file scope, or in
header files.
How widely used:Seldom. This style of type definitions is seen as poor coding style.

Subclause 8.4

3 Change: In C + +, the syntax for function definition excludes the“old-style” C function. In C,“old-style”
syntax is allowed, but deprecated as“obsolescent.”
Rationale: Prototypes are essential to type safety.
Effect on original feature: Deletion of semantically well-defined feature.
Difficulty of converting: Syntactic transformation.
How widely used:Common in old programs, but already known to be obsolescent.

Subclause 8.5.2

4 Change: In C + +, when initializing an array of character with a string, the number of characters in the string
(including the terminating’\0’) must not exceed the number of elements in the array. In C, an array can
be initialized with a string even if the array is not large enough to contain the string terminating’\0’
Example:

char array[4] = "abcd"; // valid C, invalid C + +

Rationale: When these non-terminated arrays are manipulated by standard string routines, there is potential
for major catastrophe.
Effect on original feature: Deletion of semantically well-defined feature.
Difficulty of converting: Semantic transformation. The arrays must be declared one element bigger to
contain the string terminating’\0’ .
How widely used:Seldom. This style of array initialization is seen as poor coding style.

[diff.class]C.2.7 Clause 9: classes

Subclause 9.1 [see also 7.1.3]

C.2.7 Clause 9: classes DRAFT: 25 January 1994 Compatibility C– 9

1 Change: In C + +, a class declaration introduces the class name into the scope where it is declared and hides
any object, function or other declaration of that name in an enclosing scope. In C, an inner scope declara-
tion of a struct tag name never hides the name of an object or function in an outer scope
Example:

int x[99];
void f()
{

struct x { int a; };
sizeof(x); /* size of the array in C */
/* size of the struct in C + + */

}

Rationale: This is one of the few incompatibilities between C and C + + that can be attributed to the new C + +
name space definition where a name can be declared as a type and as a nontype in a single scope causing
the nontype name to hide the type name and requiring that the keywordsclass , struct , union or
enum be used to refer to the type name. This new name space definition provides important notational
conveniences to C + + programmers and helps making the use of the user-defined types as similar as possible
to the use of built-in types. The advantages of the new name space definition were judged to outweigh by
far the incompatibility with C described above.
Effect on original feature: Change to semantics of well-defined feature.
Difficulty of converting: Semantic transformation. If the hidden name that needs to be accessed is at glo-
bal scope, the:: C + + operator can be used. If the hidden name is at block scope, either the type or the
struct tag has to be renamed.
How widely used:Seldom.

Subclause 9.8

2 Change: In C + +, the name of a nested class is local to its enclosing class. In C the name of the nested class
belongs to the same scope as the name of the outermost enclosing class
Example:

struct X {
struct Y { /* ... */ } y;

};
struct Y yy; // valid C, invalid C + +

Rationale: C + + classes have member functions which require that classes establish scopes. The C rule
would leave classes as an incomplete scope mechanism which would prevent C + + programmers from main-
taining locality within a class. A coherent set of scope rules for C + + based on the C rule would be very
complicated and C + + programmers would be unable to predict reliably the meanings of nontrivial examples
involving nested or local functions.
Effect on original feature: Change of semantics of well-defined feature.
Difficulty of converting: Semantic transformation. To make the struct type name visible in the scope of
the enclosing struct, the struct tag could be declared in the scope of the enclosing struct, before the enclos-
ing struct is defined. Example:

struct Y; // struct Y and struct X are at the same scope
struct X {

struct Y { /* ... */ } y;
};

All the definitions of C struct types enclosed in other struct definitions and accessed outside the scope of
the enclosing struct could be exported to the scope of the enclosing struct. Note: this is a consequence of
the difference in scope rules, which is documented at subclause 3.3 above.
How widely used:Seldom.

Subclause 9.10

C– 10 Compatibility DRAFT: 25 January 1994 C.2.7 Clause 9: classes

3 Change: In C + +, a typedef name may not be redefined in a class declaration after being used in the declara-
tion
Example:

typedef int I;
struct S {

I i;
int I; // valid C, invalid C + +

};

Rationale: When classes become complicated, allowing such a redefinition after the type has been used can
create confusion for C + + programmers as to what the meaning of ’I’ really is.
Effect on original feature: Deletion of semantically well-defined feature.
Difficulty of converting: Semantic transformation. Either the type or the struct member has to be
renamed.
How widely used:Seldom.

[diff.cpp]C.2.8 Clause 16: preprocessing directives

Subclause 16.8 (predefined names)

1 Change:Whether_ _STDC_ _ is defined and if so, what its value is, are implementation-defined
Rationale: C + + is not identical to ISO C. Mandating that_ _STDC_ _ be defined would require that transla-
tors make an incorrect claim. Each implementation must choose the behavior that will be most useful to its
marketplace.
Effect on original feature: Change to semantics of well-defined feature.
Difficulty of converting: Semantic transformation.
How widely used:Programs and headers that reference_ _STDC_ _ are quite common.

[diff.anac] C.3 Anachronisms

1 The extensions presented here may be provided by an implementation to ease the use of C programs as C + +
programs or to provide continuity from earlier C + + implementations. Note that each of these features has
undesirable aspects. An implementation providing them should also provide a way for the user to ensure
that they do not occur in a source file. A C + + implementation is not obliged to provide these features.

2 The wordoverload may be used as adecl-specifier(7) in a function declaration or a function definition.
When used as adecl-specifier, overload is a reserved word and cannot also be used as an identifier.

3 The definition of a static data member of a class for which initialization by default to all zeros applies (8.5,
9.5) may be omitted.

4 An old style (that is, pre-ISO C) C preprocessor may be used.

5 An int may be assigned to an object of enumeration type.

6 The number of elements in an array may be specified when deleting an array of a type for which there is no
destructor; 5.3.5.

7 A single functionoperator++() may be used to overload both prefix and postfix++ and a single func-
tion operator--() may be used to overload both prefix and postfix-- ; 13.4.6.

8
[diff.fct.def] C.3.1 Old style function definitions

1 The C function definition syntax

old-function-definition:
decl-specifiersopt old-function-declarator declaration-seqopt function-body

C.3.1 Old style function definitions DRAFT: 25 January 1994 Compatibility C– 11

old-function-declarator:
declarator (parameter-listopt)

parameter-list:
identifier
parameter-list , identifier

For example,

max(a,b) int b; { return (a<b) ? b : a; }

may be used. If a function defined like this has not been previously declared its parameter type will be
taken to be(...) , that is, unchecked. If it has been declared its type must agree with that of the declara-
tion.

2 Class member functions may not be defined with this syntax.

[diff.base.init] C.3.2 Old style base class initializer

1 In a mem-initializer(12.6.2), theclass-namenaming a base class may be left out provided there is exactly
one immediate base class. For example,

class B {
// ...

public:
B (int);

};

class D : public B {
// ...
D(int i) : (i) { /* ... */ }

};

causes theB constructor to be called with the argumenti .

[diff.this] C.3.3 Assignment tothis

1 Memory management for objects of a specific class can be controlled by the user by suitable assignments to
the this pointer. By assigning to thethis pointer before any use of a member, a constructor can imple-
ment its own storage allocation. By assigning the null pointer tothis , a destructor can avoid the standard
deallocation operation for objects of its class. Assigning the null pointer tothis in a destructor also sup-
pressed the implicit calls of destructors for bases and members. For example,

class Z {
int z[10];
Z() { this = my_allocator(sizeof(Z)); }
~Z() { my_deallocator(this); this = 0; }

};

2 On entry into a constructor,this is nonnull if allocation has already taken place (as it will have forauto ,
static , and member objects) and null otherwise.

3 Calls to constructors for a base class and for member objects will take place (only) after an assignment to
this . If a base class’s constructor assigns tothis , the new value will also be used by the derived class’s
constructor (if any).

4 Note that if this anachronism exists either the type of thethis pointer cannot be a*const or the enforce-
ment of the rules for assignment to a constant pointer must be subverted for thethis pointer.

C– 12 Compatibility DRAFT: 25 January 1994 C.3.4 Cast of bound pointer

[diff.bound] C.3.4 Cast of bound pointer

1 A pointer to member function for a particular object may be cast into a pointer to function, for example,
(int(*)())p->f . The result is a pointer to the function that would have been called using that member
function for that particular object. Any use of the resulting pointer is– as ever– undefined.

[diff.class.nonnested]C.3.5 Nonnested classes

1 Where a class is declared within another class and no other class of that name is declared in the program
that class can be used as if it was declared outside its enclosing class (exactly as a Cstruct). For exam-
ple,

struct S {
struct T {

int a;
};
int b;

};

struct T x; // meaning ‘S::T x;’

