Library closed issues list

Doc. no. J16/00-0047
WG21 N1270
Dae 26 Oct 2000
Project: Programming Language C++
Reply to: Matt Austern <austern@research.att.com>

C++ Standard Library Closed IssuesList (Revision 16)

Reference ISO/IEC | S 14882:1998(E)

Also see

Table of Contentsincluding both active and closed issues.
Index by Section including both active and closed issues.
Index by Status including both active and closed issues.

Library Active lssuesList
Library Defect Report List

This document contains only library issues which have been closed by the Library Working Group as duplicates or not
defects. That is, issues which have agtatus of Dup or NAD. See"C++ Standard Library Active IssuesLig” for active
issues and more information. See"C++ Standard Library Defect Report List” for issues considered defects. The
introductory materia in that document also appliesto this document.

Revision History

R16: post-Toronto mailing. Reflects committee actions taken in Toronto.

R15: pre-Toronto mailing. Formatting changes only; no subgtantive changes.

R14: post-Tokyo Il mailing; reflects committee actions taken in Tokyo. (00-0020R1/N1243)
R13: Unchanged from R12.

R12: Add further rationaleto issue 178.

Closed I'ssues

2. Auto_ptr conversions effectsincorrect
Section: 20.4.5.3 lib.auto.ptr.conv Status: NAD Submitter: Nathan Myers Date: 4 Dec 97

Paragraph 1 in "Effects’, says"Cals p->rdeasx()" whereit clearly must be "Calsp.rdease()". (Asitis, it seemsto require
using auto_ptr<>::operator-> to refer to X::release, assuming that exists))

Original proposed resolution:
Changelib.auto.ptr.conv paragraph 1 Effects from "Calls p->release()” to "Cals p.releas()".
Proposed resolution:

Not adefect: the proposed changeis dready found in the standard. [Originally classified as a defect, later reclassified)]

Library closed issues list

4. Badic_dgtring size type and difference_type should beimplementation defined
Section: 21.3 lib.basc.gring Status: NAD Submitter: Beman Dawes Date: 16 Nov 97

In Morristown we changed the size_type and difference_type typedefsfor al the other containersto implementation
defined with areference to lib.container.requirements. This should probably also have been done for strings.

Proposed Resolution:
Not adefect. [Origindly classified asadefect, later reclassfied. Seetherationde]
Rationale:

basic_gring, unlike the other standard library template containers, is severdly congtrained by itsuse of char_traits. Those
types are dictated by the traits class, and are far from implementation defined.

6. Filepogtion not an offset unimplementable
Section: 27.4.3lib.fpos Status: NAD Submitter: Matt Austern Date: 15 Dec 97

Table 88, in /O, istoo drict; it's unimplementable on sysems where afile position isn't just an offset. It dso never says

just what fpos<> isredly supposed to be. [Heré's my summary, which Jerry agreesis more or less accurate. "l think | now
know what the classredlly is, at this point: it'samagic cookie that encapsulates an mbstate t and afile position (possibly
represented as an fpos t), it has syntactic support for pointer-like arithmetic, and implementors are required to have red,

not just syntactic, support for arithmetic.” Thisisn't stlandardese, of course]

Rationale:

Not adefect. The LWG bdievesthat the Standard is dready clear, and that the above summary iswhat the Standard in
effect says.

10. Codecvt<>::do unclear

Section: 22.2.1.5.2 lib.locae.codecvt.virtuds Status: Dup Submitter: Matt Austern Date: 14 Jan 98

Section 22.2.1.5.2 saysthat codecvt<>::do_in and do_out should return the value noconv if "no conversion was needed”.
However, | don't see anything anywhere that defines what it means for a conversion to be needed or not needed. | can think
of saverd circumstances where one might plausibly think that a conversion is not "needed", but | don't know which oneis
intended here.

Rationale:

Duplicate Seeissue 19.

12. Way objectshold allocator s unclear

Library closed issues list

Section: 20.1.5 |ib.dlocator.requirements Status: NAD Submitter: AngdikaLanger Date: 23 Feb 98

| couldn't find astatement in the standard saying whether the alocator object held by acontainer isheld as a copy of the
congtructor argument or whether apointer of referenceis maintained internd. Thereis an according statement for compare
objects and how they are maintained by the associative containers, but | couldn't find anything regarding dlocators.

Did | overlook it?Isit an open issue or known defect? Or isit deliberately left unspecified?
Rationale:

Not adefect. The LWG bdievesthat the Standard isdready clear. See 23.1 paragraph 8 [lib.container.requirements)].

43. Localetable correction

Section: 22.2.1.5.2 lib.locae.codecvt.virtuds Status: Dup Submitter: Brendan Kehoe Date: 1 Jun 98

Rationale:

Duplicate. Seeissue33.

45. Stringstreamsread/write pointersinitial position unclear
Section: 27.7.3 lib.ogtringdream Status: NAD Submitter: Matthias Mueller Date: 27 May 98
Inaacomp.lang.c++moderated Matthias Mueller wrote:

"We are not sure how to interpret the CD2 (see [lib.iostream.forward], [lib.ostringstream.cong], [lib.stringbuf.cons]) with
respect to the question asto what the correct initid positions of thewriteand read pointers of a stringstream should be."

"Isit the sameto output two strings or to initiaize the stringstream with the first and to output the second ?*

PJ Plauger, Bjarne Stroustrup, Randy Smithey, Sean Corfield, and Jerry Schwarz have all offered opinions; see reflector
messages lib-6518, 6519, 6520, 6521, 6523, 6524.

Rationale:

The LWG bdievesthe Standard is correct aswritten. The behavior of stringstreamsis consistent with fstreams, and thereis
acongtructor which can be used to obtain the desired effect. This behavior is known to be different from strstreams.

58. Extracting a char from awide-oriented stream

Section: 27.6.1.2.3 lib.istream::extractors Status: NAD Submitter: Matt Austern Date:1 Jul 98

27.6.1.2.3 has member functionsfor extraction of signed char and unsigned char, both singly and as trings. However, it
doesn't say what it meansto extractachar fromabasi c_streanbuf <charT, Traits>.

Library closed issues list

basic_greambuf, after al, has no membersto extract achar, so basic_istream must somehow convert from charT to signed
char or unsgned char. The standard doesn't say how it isto perform that conversion.

Rationale:

The Standard is correct aswritten. Thereis no such extractor and thisistheintent of the LWG..

65. Under specification of strstreambuf:: seek off

Section: D.7.1.3 depr.grstreambuf.virtuals Status: NAD Submitter: Matt Austern Date:18 Aug 98

The standard says how this member function affects the current stream position. (gpt r or ppt r) However, it does not say
how this member function affects the beginning and end of the get/put area.

Thisis an issue when seekoff is used to position the get pointer beyond the end of the current read area. (Whichislegd.
Thisisimplicit in the definition of seekhigh in D.7.1, paragraph 4.)

Rationale:

The LWG agressthat seekoff() is underspecified, but does not wish to invest effort in this deprecated fegture.

67. Setw uselessfor strings
Section: 21.3.7.9lib.dring.io Status: Dup Submitter: Seve Clamage Date: 9 Jul 98
In acomp.gd.c++ posting Michel Michaud wrote: What should be output by :

string text("Hello");
cout << '[' << setw(10) << right << text << ']";

Shouldnt it be:

[Hel | o]
Another person replied: Actualy, according to the FDIS, the width of the field should be the minimum of width and the
length of the string, so the output shouldn't have any padding. | think that thisis atypo, however, and that what iswanted is

the maximum of the two. (Aswritten, setw is usdlessfor strings. If that had been the intent, one wouldn't expect them to
have mentioned using itsvaue.)

It'sworth pointing out that thisis arecent correction anyway; 11RC, earlier versons of the draft forgot to mention
formeatting parameters what soever.

Rationale:

Duplicate. Seeissue 25.

Library closed issues list

72. Do_convert phantom member function
Section: 22.2.1.5iblocdecodecvt Status: Dup Submitter: Nathan Myers Date: 24 Aug 98

In22.2.1.5 par 3 liblocde.codecvt, and in 22.2.1.5.2 par 8 lib.locale.codecvt.virtuas, anonexistent member function
"do_convert" ismentioned. This member was replaced with "do_in" and "do_out", the proper referentsin the contexts
above

Proposed Resolution:

Duplicate: see issue 24.

73. i s_open should be const
Section: 27.8.1libfilestreams Status: NAD Submitter: Matt Austern Date: 27 Aug 98

Clessesbasi c_i f streambasi c_of st reamandbasi c_f st r eamal haveamember functioni s_open. It
shouldbeaconst member function, Snceit does nothing but cal oneof basi ¢_f i | ebuf 'scongt member functions.

Rationale:

Not adefect. Thisis addiberate feature; const streams would be meaningless,

77. Valarray operator[] const returning value
Section: 26.3.2.3 [lib.vaaray.access] Status: NAD Future Submitter: Levente Farkas Date: 9 Sep 98

valarray:
T operator[] (size_t) const;
why not
const T& operator[] (size_t) const;
asin vector 77?
One can't copy even from aconst vaarray eg:
mencpy(ptr, &[0], v.size() * sizeof(double));
[1] find thisbug in valarray is very difficult.
Rationale;

The LWG bdlievesthat the interface was ddliberately designed that way. That iswhat valarray was designed to do; that's
wherethe"vaue array" name comes from. LWG members further comment that "we don't want vaarray to beafull STL

container." 26.3.2.3 lib.valarray.access specifies properties that indicate "an absence of diasing” for non-constant arrays;
this alows optimizations, including specid hardware optimizations, that are not otherwise possible.

Library closed issues list

81. Wrong declaration of dice operations

Section: 26.3.5 lib.templatedicearay, 26.3.7 lib.templategdice.aray, 26.3.8, 26.3.9 Status: NAD Submitter: Nico
Josuttis Date: 29 Segp 98

Isn't the definition of copy congtructor and assgnment operatorswrong? Instead of

slice_array(const slice_array@&);
slice_array& operator=(const slice_arrayg&);

IMHO they haveto be

slice_array(const slice_array<T>&);
slice_array& operator=(const slice_array<T>&);

Samefor gdice aray.
Rationale:

Not adefect. The Standard is correct aswritten.

82. Missing constant for set elements

Section: 23.1.2 |ib.associativeregmts Status: NAD Submitter: Nico Josuttis Date: 29 Sep 98

Paragraph 5 specifies.
For set and multiset the value type is the same as the key type. For map and multimap it isequa to pair<const Key, T>.
Strictly speaking, thisis not correct because for set and multiset the vaue type isthe same asthe constant key type.

Rationale:

Not adefect. The Standard is correct aswritten; it uses adifferent mechanism (const &) forset andrmul ti set . See
issue 103 for ardated issue.

84. Ambiguity with string::insert()
Section: 21.35lib.gring.modifiers Status: NAD Future Submitter: Nico Josuttis Date: 29 Sep 98

If1try
s.insert(0,1,' ');

| get an nasty ambiguity. It might be

Library closed issues list

s.insert((size_type)O, (size_type)l,(charT)' ');
which inserts 1 space character at position O, or
s.insert((char*)0, (size_type)l,(charT)' ")
which inserts 1 space character at iterator/address O (bingot!), or
s.insert((char*)0, (Inputlterator)l, (lnputlterator)' ')

which normally inserts characters from iterator 1 to iterator ' '. But according to 23.1.1.9 (the "do theright thing" fix) itis
equivaent to the second. However, it is till ambiguous, because of course | mean thefirgt!

Rationale:

Not adefect. The LWG bdievesthisisa"genetic misfortune” inherent in the design of string and thus not adefect in the
Standard assuch .

85. String char types
Section: 21 lib.drings Status: NAD Submitter: Nico Josuttis Date: 29 Sep 98

The sandard seems not to require that charT is equivaent to traits::char_type. So, what happensif charT is not equivaent
to traits::char_type ?

Rationale:

Thereisdready wording in 21.1 paragraph 3 (lib.char.traits) that requires them to be the same.

87. Error in description of string::compar &)
Section: 21.3.6.8 lib.gring::compare Status: Dup Submitter: Nico Josuttis Date: 29 Sep 98
The following compare() description is obvioudy abug:

i nt conpare(size_type pos, size_type nl,
charT *s, size_type n2 = npos) const;

because without passing n2 it should compare up to the end of the string instead of comparing npos characters (which
throws an exception)

Rationale:

Duplicate; seeissueb.

88. Inconsistency between string::insert() and string::append()

Library closed issues list

Section: 21.35.4 lib.gring:insert, 21.3.5.2 lib.gring::append Status: NAD Future Submitter: Nico Josuttis Date: 29
Sep 98
Why does

tenpl at e<cl ass I nputlterator>
basi c_string& append(lnputlterator first, Inputlterator |ast);

return agring, while

tenpl at e<cl ass | nputlterator>
void insert(iterator p, Inputlterator first, Inputlterator |ast);

returns nothing ?
Rationale:

The LWG believesthisinconsistency is not sufficiently seriousto congtitute a defect.

89. Missing throw specification for string::insert() and string::replace()
Section: 21.3.5.4 lib.gring:insert, 21.3.5.6 lib.gtring::replace Status: Dup Submitter: Nico Josuttis Date: 29 Sep 1998

All insert() and replace() membersfor strings with an iterator asfirst argument lack athrow specification. The throw
specification should probably be: length_error if Sze excesds maximum.

Rationale:

Congdered aduplicate because it will be solved by the resolution of issue 83.

93. Incomplete Valarray Subset Definitions
Section: 26.3 lib.numarray Status: NAD Future Submitter: Nico Josuttis Date; 29 Sep 1998

Y ou can essily create subsets, but you can't easily combine them with other subsets. Unfortunately, you amost always
needs an explicit type conversion to vaarray. Thisis because the standard does not specify that vaarray subsets provide the
same operations asvalarrays.

For example, to multiply two subsets and assign the result to a third subset, you can't write the following:
va[slice(0,4,3)] = va[slice(1,4,3)] * va[slice(2,4,3)];

Instead, you have to code as follows:

*

va[slice(0,4,3)] = static_cast<val array<doubl e> >(va[slice(1,4,3)])
static_cast<val array<doubl e> >(va[slice(2,4,3)]);

Thisistedious and error-prone. Even worsg, it costs performance becauise each cast crestes atemporary objects, which
could be avoided without the cast.

Library closed issues list

Proposed resolution:
Extend al valarray subset types so that they offer al vaarray operations.
Ratinale:

Thisisnot adefect in the Standard; it is arequest for an extension.

95. Membersadded by the implementation

Section: 17.4.4.4 lib.member.functions Status: NAD. Submitter: AFNOR Date: 7 Oct 98

INn17.3.4.4/2 vs 17.3.4.7/0 there isahole; an implementation could add virtua members a base class and bresk user derived
classes.

Example

/1 inplenentation code:
struct Base { // _Base is in the inplenenter namespace
virtual void foo ();

}
class vector : _Base // deriving froma class is allowed
{ ... b

/'l user code:
cl ass vector_checking : public vector

void foo (); // don't want to override _Base::foo () as the
/1l user doesn't know about _Base::foo ()
b
Proposed Resolution:
Clarify the wording to meke the exampleillegd.

Rationale:

Thisisnot adefect in the Standard. The exampleisdready illegd. See 17.4.4.4 lib.member.functions paragraph 2.

97. Insert inconsistent definition
Section: 23 lib.containers Status: NAD Future Submitter: AFNOR Date: 7 Oct 98

insert(iterator, const val ue_type&) isdefined both on sequencesand on s, with unrelated semantics:

insert here (in sequences), and insert with hint (in associative containers). They should have different names (B.S. says. do
not abuse overloading).

Rationale:

Library closed issues list 10

Thisisnot adefect in the Standard. 1t isagenetic misfortune of the design, for better or for worse.

99. Reverse iterator comparisons completely wrong
Section: 24.4.1.3.13 lib.reverseiter.op<, etc. Status: NAD Submitter: AFNOR Date: 7 Oct 98
The<, >, <=, >= comparison operator are wrong: they return the opposite of what they should.

Note: same problem in CD2, these were not even defined in CD1
SGI STL codeis correct; this problem is known since the Morristown meeting but there it wastoo late

Rationale:

Thisisnot adefect in the Standard. A careful reading showsthe Standard is correct as written. A review of severd
implementations show that they implement exactly what the Standard says.

100. Insert iterators/ostream _iterators over constrained

Section: 24.4.2 lib.insert.iterators, 24.5.4 lib.ostreambuf.iterator Status: NAD Submitter: AFNOR Date: 7 Oct 98

Overspecified For aninsert iterator it, the expression *it isrequired to return areferenceto it. Thisisasimple possible
implementation, but asthe SGI STL documentation says, not the only one, and the user should not assumethat thisisthe
cae

Rationale:

The LWG bdlievesthis causes no harm and is not a defect in the standard. The only example anyone could come up with
caused some incorrect code to work, rather than the other way around.

101. Noway tofree storagefor vector and deque

Section: 23.24 lib.vector, 23.2.1 lib.deque Status: NAD Submitter: AFNOR Date: 7 Oct 98

Reserve can not free storage, unlike string::reserve
Rationale:

Thisisnot adefect in the Standard. The LWG has considered this issue in the past and sees no need to change the Standard.
Deque has no reserve() member function. For vector, shrink-to-fit can be expressed inasingleline of code (where v is
vect or <T>):

vector<T>(v).swap(v); [/ shrink-to-fit v

104. Description of basic_string::operator[] isunclear

Library closed issues list

Section: 21.34 lib.gtring.access Status: NAD Submitter: AFNOR Date: 7 Oct 98

Itisnot clear that undefined behavior applies when pos == size () for the non const version.

Proposed Resolution:

Rewrite as: Otherwise, if pos> size () or pos == size () and the non-const version is used, then the behavior is undefined.
Rationale:

The Standard is correct. The proposed resolution aready appearsin the Standard.

11

105. fstream ctorsargument typesdesired
Section: 27.8libfilesreams Status: NAD Future Submitter: AFNOR Date: 7 Oct 98

fsiream ctors take a.const char* instead of string.
fstream ctors can't take wchar_t

An extenson to add a const wehar_t* to fstream would make the implementation non conforming.
Rationale:

Thisisnot adefect in the Standard. 1t might be an interesting extension for the next Standard.

107. Valarray congructor isstrange

Section: 26.3.2 lib.templatevdaray Status: NAD Submitter: AFNOR Date: 7 Oct 98

Theorder of the argumentsis (elem, size) instead of the norma (Size, dem) in therest of thelibrary. Since elem often has
anintegra or floating point type, both types are convertible to each other and reversing them leads to awell formed
program.

The suggested resolution was.

Inverting the arguments could silently bresk programs. Introduce the two signatures (const T&, Size t)
and (size_t, const T&), but make the one we do not want private so errors result in adiagnosed access
violaion. This technique can adso be applied to STL containers.

Rationale:

The LWG bdlievesthat while the order of arguments is unfortunate, it does not congtitute a defect in the standard. The
LWG bdlievesthat the proposed solution will not work for valarray<size t> and perhaps other cases.

113. Missing/extraiostream sync semantics

Library closed issues list

Section: 27.6.1.1]ib.istream, 27.6.1.3 lib.istream.unformatted, para36 Status: NAD Submitter: Seve Clanage Date:
130ct 98

In 27.6.1.1, class basic_istream has amember function sync, described in 27.6.1.3, paragraph 36.

Following the chain of definitions, | find that the various sync functions have defined semantics for output streams, but no
semantics for input streams. On the other hand, basic_ostream has no sync function.

The sync function should a minimum be added to basic_ostream, for interna consistency.
A larger question iswhether sync should have assigned semantics for input streams.

Classic iogtreams said streambuf::sync flushes pending output and attempts to return unread input charactersto the source.
It isa protected member function. Thefilebuf version (whichis public) hasthat behavior (it backs up the read pointer).
Class dratreambuf does not override streambuf::sync, and o sync can't be called on a strstream.

If we can add corresponding semantics to the various sync functions, we should. If not, we should remove sync from
basic_igream.

Rationale:
A sync function is not needed in basic_ostream because the flush function provides the desired functionality.

Asfor the other points, the LWG finds the standard correct as written.

12

116. bitset cannot be constructed with a const char*
Section: 23.35|ib.templatebitset Status: NAD Future Submitter: Judy Ward Date: 6 Nov 1998
Thefollowing code does not compilewith the EDG compiler:

#i ncl ude <bitset>
usi ng nanespace std,;
bitset<32> b("111111111");

If you cast the ctor argument to astring, i.e.:

bitset<32> b(string("111111111"));
then it will compile. The reason isthat bitset has the following templatized constructor:

tenpl ate <class charT, class traits, class Allocator>

explicit bitset (const basic_string<charT, traits, Allocator>& str,

)5

According to the compiler vendor, Steve Adamcyk at EDG, the user cannot passthistemplate constructor aconst char *
and expect aconversontobasi ¢_st ri ng. Thereason is"When you have atemplate congtructor, it can get used in

contexts where type deduction can be done. Type deduction basicaly comes up with exact matches, not onesinvolving
conversons.”

Library closed issues list

| don't think the intention when this constructor became templatized wasfor constructionfromaconst char * tono
longer work.

Proposed Resolution:

Add to 23.3.5 Jib.template.bitset a bitset constructor declaration
explicit bitset(const char*);

and in Section 23.3.5.1 lib.bitset.cons add:
explicit bitset(const char* str);

Effects
Cdlshitset ((string) str, 0, string::npos);

Rationale:

Although the problem isred, the Sandard is designed that way so it isnot adefect. Education istheimmediate
workaround. A future standard may wish to consider the Proposed Resolution as an extension.

13

121. Detailed definition for ctype<wchar _t> specialization missing
Section: 22.1.1.1.1 liblocdecaegory Status: NAD Submitter: Judy Ward Date: 15 Dec 1998
Section 22.1.1.1.1 hasthefallowing listed in Table 51: ctype<char> , ctype<wchar_t>.

Al Section 22.2.1.1 lib.locde.ctypesays:

Theingantiations required in Table 51 (22.1.1.1.1) namely ctype<char> and ctype<wchar_t>, implement
character classing appropriate to the implementation's native character set.

However, Section 22.2.1.3 lib.facet.ctype.special only has adetailed description of the ctype<char> specidization, not the
ctype<wchar_t> specidization.

Proposed Resolution:

Add the ctype<wchar_t> detailed class description to Section 22.2.1.3 lib.facet.ctype.specid.

Rationale:

Specidization for wehar_t is not needed since the default is acceptable.

128. Need open_mode() function for file stream, string streams, file buffers, and string buffers

Section: 27.7 lib.gring.gtreams and 27.8 libfiledreams Status: NAD Future Submitter: AngdikalLanger Date: 22 Feb
1999

Library closed issues list

Thefollowing question came from Thorsten Herlemann:

Y ou can s&t amode when congtructing or opening afile-stream or filebuf, eg. ios:in, ios:out,
ios:binary, ... But how can | get that mode later on, e.g. in my own operator << or operator >> or when |

want to check whether afile-stream or file-buffer object passed as parameter is opened for input or output
or binary? Isthere no possibility? Isthisadesgn-error in the standard C++ library?

It isindeed impossible to find out what a stream's or stream buffer's open modeis, and without that knowledge you don't
know how certain operations behave. Just think of the append mode.

Both streams and stream buffers should haveanode () function that returns the current open mode setting.
Proposed Resolution:
For stream buffers, add afunction to the base class as anon-virtud function quaified as const to 27.5.2 lib.streambuf
openmode node() const;
Retur ns the current open mode.

With streams, I'm not sure what to suggest. In principle, the mode could aready be returned byi os_base, but the mode
isonly initidized for file and string stream objects, unless I'm overlooking anything. For this reason it should be added to
the mogt derived stream classes. Alternatively, it could beadded to basi ¢_i os and would be default initiaized in
basic_ios<>::init().

Rationale:

Thismight be an interesting extension for some future, but it is not a defect in the current standard. The Proposed
Resolution is retained for future reference.

14

130. Return type of container::erase(iterator) differsfor associative containers

Section: 23.1.2 lib.asodiativeregmts, 23.1.1 lib.sequenceregmts Status: NAD Future Submitter: Andrew Koenig Date:
2Mar 1999

Table 67 (23.1.1) saysthat container::erase(iterator) returns an iterator. Table 69 (23.1.2) saysthat in addition to this
requirement, associative containers aso say that container::erase(iterator) returns void.

That's not an addition; it's a change to the requirements, which has the effect of making associetive containersfail to meet
the requirements for containers.

Rationale:

The LWG bdievesthiswas an explicit design decision by Alex Stepanov driven by complexity considerations. It hasbeen
previoudy discussed and reaffirmed, so thisis not adefect in the current sandard. A future standard may wish to
recongder thisissue.

131. list::splice throwsnothing

Library closed issues list

Section: 23.224]ib.list.ops Status: NAD Submitter: Howard Hinnant Date: 6 Mar 99
What happensif asplice operation causesthe size() of alist to grow beyond max_size()?
Rationale:

Sz&() cannot grow beyond max_size().

15

135. basic_iostream doubly initialized
Section: 27.6.1.5.1 lib.iostream.cons Status: NAD Submitter: Howard Hinnant Date: 6 Mar 99

-1- Effects Constructs an object of classbasic_iostream, assigning initia vauesto the base dasses by cdling
basic_igream<charT traits>(sh) (lib.istream) and basic_ostream<charT traits>(sh) (lib.ostream)

Thecdled for basic_istream and basic_ostream congtructors cal init(sb). Thismeansthat the basic_iostream's virtual base
dassisinitiaized twice.

Proposed Resolution:
Change 27.6.1.5.1, paragraph 1 to:

-1- Effects Congtructs an object of classbasic_iostream, assigning initia vauesto the base classes by calling
basic_igtream<charT traits>(sh) (lib.istream).

Rationale:

TheLWG agreed that thei ni t () functioniscaled twice, but said that thisis harmless and so not adefect in the standard.

138. Classctype byname<char> redundant and mideading

Section: 22.2.14]iblocdectypebynamespecid Status: NAD Future Submitter : AngdikalLanger Date: March 18,
1999

Section 22.2.1.4 lib.locde.ctype.byname.specid specifiesthat ctype byname<char> must be a specidization of the
ctype_bynametemplate.

It iscommon practice in the standard that specidizations of class templates are only mentioned where the interface of the
specidization deviates from the interface of the template that it is a specialization of. Otherwise, the fact whether or not a
reguired ingtantiation is an actua ingtantiation or a specidization is|eft open as an implementation detail.

Clause 22.2.1.4 deviates from that practice and for that reason is mideading. The fact, that ctype byname<char>is
specified as a specidization suggests that there must be something "specia” about it, but it has the exact same interface as
the ctype_byname template. Clause 22.2.1.4 does not have any explanatory value, is a best redundant, at worst mideading
- unless| am missing anything.

Naturaly, an implementation will most likely implement ctype_byname<char> as a specidization, because the base class
ctype<char> is a specidization with an interface different from the ctype template, but that's an implementation detail and
need not be mentioned in the standard.

Library closed issues list 16

Rationale:

The standard as written is mildly mideading, but the correct fix isto ded with the underlying problem in the ctype_byname
base class, not in the specidization. Seeissue 228.

140. map<Key, T>::value type doesnot satisfy the assignable requirement

Section: 23.3.1libmap Status: NAD Future Submitter: Mark Mitchell Date: 14 Apr 99

[lib.container.requirements]

expression returntype pre/post-condition

X:vaue type T T isassgneble

[lib.map
A map satisfies dl the requirements of a container.

For amap<Key, T> ... the value_typeispair<const Key, T>.

Therésacontradiction here. In particular, “pair<const Key, T>' is not assignable; the “const Key' cannot be assigned to. So,
map<Key, T>::vaue_type does not satisfy the assignable requirement imposed by a container.

[See 103 for the slightly related issue of modification of set keys]
Rationale:

The LWG bdlievesthat the standard isinconsstent, but thet thisis a design problem rather than a gtrict defect. May wish to
reconsider for the next standard.

143. C .h header wording unclear

Section: D.5 depr.cheaders Status: NAD Submitter: Christophe de Dinechin Date: 4 May 99

[depr.c.headers] paragraph 2 reads:

Each C header, whose name has the form nameh, behaves as if each name placed in the Standard library

namespace by the corresponding cname header is also placed within the namespace scope of the
namespace gd and is followed by an explicit using-declaration (_namespace.udec)

| think it should mention the globd name space somewhere... Currently, it indicates that name placed in std is also placed
ingd...

| don't know what isthe correct wording. For instance, if struct tm is defined in time.h, ctime declares std::tm. However, the
current wording seems ambiguous regarding which of the following would occur for use of both ctime and timeh:

/1l version 1:
nanespace std {
struct tm{ ... };

Library closed issues list

}

using std::tm

/] version 2:
struct tm{

nanespace std {

using ::tm
}

/'l version 3:
struct tm {

namespace std {

struct tm{

}

| think verson 1 isintended.

17

[Kona: The LWG agreed that the wording isnot clear. It also agreed that version 1 isintended, version 2 is not equivalent
toversion 1, and version 3is clearly not intended. The example below was constructed by Nathan Myersto illustrate why

version 2 is not equivalent to version 1.

Although not equivalent, the LWG is unsureif (2) is enough of a problemto be prohibited. Points discussed in favor of

allowing (2):

It may be a convenience to implementors.
The only cases that fail are structs, of which the C library contains only a few.

]

Example:

#include <tine. h>
#i nclude <utility>

int main() {
std::tm* t;
make_pair(t,

return O;

}

The suggested resol ution was:

Replace D.5 depr.c.headers paragraph 2 with:

Each C header, whose name has the form nameh, behaves asif each name placed in the
Standard library namespace by the corresponding cname header is dso placed within
the namespace scope of the namespace std by name.h and is followed by an explicit
using-dedaration (_namespace.uded_) in globa scope.

Rationale:

The current wording in the standard is the result of a difficult compromise which averted delay of the standard. Based on
discussonsin Tokyo, it isclear that thereis no il no consensus on dricter wording, so theissue hasbeen closed. Itis
suggested that users not write code that depends on Koenig lookup of C library functions.

/'l okay with version 1 due to Koenig |ookup

/[l fails with version 2; make_pair not found

Library closed issues list 18

145. adjustfield lacks default value
Section: 27.4.4.1]ib.basic.ios.cons Status: NAD Submitter: AngdikaLanger Date: 12 May 99

Thereisnoinitid vauefor the adjustfield defined, athough many people believe that the default adjustment were right.
Thisisacommon misunderstanding. The standard only definesthat, if no adjustment is specified, dl the predefined

inserters mugt add fill characters before the actud vadue, which is"asif" the right flag were set. The flag itself need not be
Set.

When you implement a user-defined inserter you cannot rely on right being the default setting for the adjudtfidd. Insteed,
you must be prepared to find none of the flags set and must keep in mind that in this case you should make your inserter
behave "asif" theright flag were set. Thisis surprising to many people and complicates matters more than necessary.

Unlessthere is agood reason why the adjustfield should not beinitidized | would suggest to give it the default value that
everybody expects anyway.

Rationale:

Thisisnot adefect. It isdeliberate that the default is no bits set. Consider Arabic or Hebrew, for example. See22.2.2.2.2
[lib.facet.num.put.virtuals] paragraph 19, Table 61 - Fll padding.

149. Insert should return iterator tofirst element inserted
Section: 23.1.1 lib.sequenceregmts Status: NAD Future Submitter: Andrew Koenig Date: 28 Jun 99

Supposethat ¢ and ¢l are sequential containersand i isan iterator that refersto an dement of ¢. Then | can insert acopy of
cl'sdementsinto ¢ ahead of element i by executing

c.insert(i, cl.begin(), cl.end());
If cisavector, it isfairly easy for meto find out where the newly inserted dements are, even thoughi is now invaid:

size_t i_loc =i - c.begin();
c.insert(i, cl.begin(), cl.end());

and now thefirgt inserted element is at c.begin()+i_loc and one past thelast is at c.begn()+i_loc+cl.sze().

But what if cisalig?1 can ill find the location of one past the last inserted dement, becausei isill vaid. To find the
location of thefirgt inserted dement, though, | must execute something like

for (sizet n =cl.size(): n; --n)

- :
becausei isnow no longer arandom-access iterator.
Alternatively, | might write something like

bool first =i == c.begin();
list<T>::iterator j = i;
if (!first) --j;

Library closed issues list

c.insert(i, cl.begin(), cl.end());

if (first)

j = c.begin();
el se

++]

which, athough wretched, requires less overheed.

But | think the right solution is to change the definition of insert so that instead of returning void, it returns an iterator that
refersto thefirst dement insarted, if any, and otherwiseis a copy of itsfirst argument.

Rationale:

The LWG beievesthiswas an intentiona design decision and soisnot adefect. It may be worth revisiting for the next
standard.

19

157. Meaninglesserror handling for pwor d() and i wor d()

Section:: 27.4.25lib.iosbasedorage Status: Dup Submitter: Dietmar Kihl Date: 20 Jul 1999

According to paragraphs 2 and 4 of 27.4.2.5 (lib.iosbasegtorage), thefunctionsi wor d() andpwor d() "setthe badbi t
(which might throw an exception)” on failure. ... but what doesit meanfori os_base to set the badbi t ? Thestate

facilities of the IOStream library aredefinedinbasi ¢_i os, aderived class! It would be possible to attempt adown cast
but then it would be necessary to know the character type used...

Rationale:

Duplicate. Seeissue 41.

162. Really " formatted input functions' ?

Section:: 27.6.1.2.3 lib.igtream::extractors Status: Dup Submitter: Dietmar Kihl Date: 20 Jul 1999

It appears to be somewhat nonsensica to consider the functions defined in the paragraphs 1 to 5 to be "Formatted input
function" but since these functions are defined in a section labeled " Formatted input functions' it is unclear to me whether
these operators are considered formatted input functions which have to conform to the "common requirements' from
27.6.1.2.1 (lib.igream.formatted.reqmts): If thisisthe case, al manipulators, not justws , would skip whitepace unless
noski pws isset (... but setting noski pws using the manipulator syntax would aso skip whitespace :-)

See ds0 below for the same problem is formatted output
Rationale:

Duplicate. Seeissue 60.

163. Return of gcount () after acall togcount

Library closed issues list 20

Section:: 27.6.1.3 lib.isream.unformatted Status: Dup Submitter: Dietmar Kihl Date: 20 Jul 99

Itisnot clear which functions are to be considered unformatted input functions. Aswritten, it seemsthat al functionsin
27.6.1.3 (lib.istream.unformatted) are unformatted input functions. However, it does not redly make much senseto

congtruct asentry object for gcount () ,sync() , ... Alsoitisunclear what happenstothe gcount () ifeg. gcount (),
put back() ,unget (),orsync() iscdled: Thesefunctionsdont extract characters, some of them even "unextract” a
character. Should this il bereflectedingcount () ?Of course, it could bereed asif after acdl togcount ()

gcount () return O (the last unformatted input function, gcount () , didn't extract any character) and after acdl to

put back() gcount () returns- 1 (thelast unformatted input functon put back () did"extract" back into the stream).
Correspondingly for unget () . Isthiswhat isintended? If so, this should be clarified. Otherwise, a corresponding

clarification should be used.

Rationale:

Duplicate. Seeissue 60.

166. Really " formatted output functions' ?

Section:: 27.6.2.5.3 lib.ogream.inserters Status: Dup Submitter: Dietmar Kihl Date: 20 Jul 1999

From 27.6.2.5.1 (lib.ostream.formatted.reqmts) it appearsthat al the functions defined in 27.6.2.5.3 (lib.ostream.insarters)
haveto construct asent r y object. Isthisredly intended?

Thisisbascdly the same problem as the corresponding defect report for formatted input but for output instead of input.
Rationale:

Duplicate. Seeissue 60.

177. Complex operators cannot be explicitly instantiated

Section: 26.2.6 lib.complex.opsStatus: NAD Submitter: Judy Ward Date: 2 Jul 99

A user who triesto explicitly instantiate a complex non-member operator will get compilation errors. Below isasmplified
example of the reason why. The problem isthat iterator_traits cannot be instantiated on a non-pointer type like float, yet
when the compiler istrying to decide which operator+ needs to be instantiated it must instantiate the declaration to figure
out the first argument type of areverse iterator operator.

nanespace std {
tenpl ate <class Iterator>
struct iterator _traits

{
H

typedef typenane Iterator::value_type val ue_type;

tenpl ate <class T> class reverse_iterator;

/1l reverse_iterator operator+
tenpl ate <class T>
reverse_iterator<T> operator+

Library closed issues list

(typenane iterator_traits<T>: :difference_type, const reverse_iterator<T>&);
tenpl ate <class T> struct conmplex {};

/1l conplex operator +

tenpl ate <class T>

conmpl ex<T> operator+ (const T& | hs, const conpl ex<T>& rhs)
{ return conpl ex<T>();}

}

/1 request for explicit instantiation
tenpl ate std::conpl ex<fl oat> std::operator+<float>(const floatg&,
const std::compl ex<fl oat >&);

Seeds0 cH+-gdlib reflector messages: lib-6814, 6815, 6816.
Rationale:
Implementors can make minor changes and the example will work. Users are not affected in any case.

According to John Spicer, It is possible to explicitly instantiste these operators using different syntax: change
"std::operator+<floa>" to "std::operator+".

The proposed resolution of issue 120 isthat userswill not be able to explicitly instantiate standard library templates. If that
resolution is accepted then library implementors will be the only ones that will be affected by this problem, and they must
usetheindicated syntax.

21

178. Should clog and cerr initially be tied to cout?

Section: 27.3.1 lib.narrow.dream.objects Status: NAD Submitter: Judy Ward Date: 2 Jul 99

Section 27.3.1 says "After the object carr isinitidized, cerr.flags() & unitbuf isnonzero. Its Sate is otherwise the same as
required for ios_base::init (lib.basic.ios.cons). It doesn't say anything about the the sate of clog. So this meansthat calling
cartig() and dog.tig() should return O (see Table 89 for ios_base::init effects).

Neither of the popular standard library implementationsthat | tried does this, they both tie cerr and clog to & cout. | would
think that would be what users expect.

Rationale:
The standard is clear aswritten.

27.3.1/5 saysthat "After the object cerr isinitidized, cerr.flags() & unitbuf isnonzero. Its state is otherwise the same as
required for ios_base:init (27.4.4.1)." Table 89in 27.4.4.1, which gives the postconditions of basic_ios:init(), says that
ti() is 0. (Other issues correct ios_base::init to basic_ios:init().)

180. Container member iterator arguments constness has unintended consequences

Section: 23 lib.containers Status: NAD Future Submitter: Dave Abrahams Date: 1 Jul 99

Library closed issues list

It isthe constness of the container which should control whether it can be modified through amember function such as
eras(), not the constness of theiterators. Theiterators only serveto give positioning information.

Hereésasimple and typical example problem which is currently very difficult or impossible to solve without the change
proposed below.

Wrap astandard container C in adass W which dlows dientsto find and read (but not modify) a subrange of (C.begin(),
C.end()]. The only modification clients are alowed to make to e ementsin this subrange is to erase them from C through
the use of amember function of W.

The proposed resolution was:

Change dl non-congt iterator parameters of standard library container member functions to accept
congt_iterator parameters. Note that this change appliesto dl library clauses, including strings.

For example, in 21.35.5 change:
iterator erase(iterator p);

to:
iterator erase(const_iterator p);

Rationale:

Theissuewas discussed at length. 1t was generally agreed that 1) Thereisno magjor technica argument against the change
(athough thereis aminor argument that Some obscure programs may breek), and 2) Such a change would not bresk const
correctness. The concerns about making the change were 1) it is user detectable (dthough only in boundary cases), 2) it
changes alarge number of Sgnatures, and 3) it ssems more of adesign issue that an out-and-out defect..

The LWG believesthat thisissue should be considered as part of agenerd review of congt issuesfor the next revision of
the standard. Also seeissue 200.

22

188. valarray helpers missng augmented assgnment operators

Section: 26.3.2.6 lib.vdaray.cassign Status: NAD Future Submitter: Gabridd DosReis Date: 15 Aug 1999

26.3.2.6 defines augmented assignment operators vaarray<T>::0p=(const T&), but failsto provide corresponding versions
for the helper classes. Thus making thefollowing illegd:

#i ncl ude <val array>

int main()

gtd::valarray<doub|e> v(3.14, 1999);
v[99] *= 2.0; //

std::slice s(0, 50, 2);

v[s] *= 2.0; // ERROR
}

| can't understand the intent of that omission. It makes the valarray library lessintuitive and less useful.

Library closed issues list 23

Rationale:

Although perhaps an unfortunate design decision, the omission is not adefect in the current standard. A future standard
may wish to add the missing operators.

190. min() and max() functions should be std::binary_functions
Section: 25.3.7 libadgminmax Status: NAD Future Submitter: Mark Rintoul Date: 26 Aug 99

Both std::min and std::max are defined astemplate functions. Thisis very different than the definition of std::plus (and
similar sructs) which are defined as function objects which inherit std::binary_function.

Thislack of inheritance leaves std::min and std::max somewhat usdessin standard library agorithms which requirea
function object that inherits std::binary_function.

Rationale:

Although perhaps an unfortunate design decision, the omission is not adefect in the current standard. A future standard
may wish to consder additiona function objects.

191. Unclear complexity for algorithmssuch asbinary search

Section: 25.3.3lib.dg.binary.search Status: NAD Submitter: Nico Josuttis Date: 10 Oct 99

The complexity of binary_search() is stated as" At most log(last-first) + 2 comparisons’, which seemsto say that the
dgorithm haslogarithmic complexity. However, this dgorithmsis defined for forward iterators. And for forward iterators,
the need to step dement-by-element resultsinto linear complexity. But such astatement ismissng in the standard. The
same gplliesto lower_bound(), upper_bound(), and equd_range().

However, grictly spesking the standard contains no bug here. So this might considered to be a clarification or
improvemen.

Rationale:

The complexity is expressed in terms of comparisons, and that complexity can be met even if the number of iterators
accesed islinear. Paragraph 1 dreedy says exactly what happensto iterators.

192. ainsert(p,t) isinefficient and overconstrained

Section: 23.1.2 lib.asodiativeregmts Status: NAD Future Submitter: EdBrey Date: 6 Jun99

Asdefined in 23.1.2, paragraph 7 (table 69), ainsert(p,t) suffersfrom severa problems:

return

type pre/post-condition complexity

‘ expression

Library closed issues list

24

a.insert(p,t) |iterator

insartst if and only if thereis no element with key equivaent
to the key of t in containers with unique keys; alwaysinsertst
in containers with equivaent keys. dways returns the iterator
pointing to the element with key equivaent to thekey of t .
iterator p isahint pointing to where the insert should start to

search.

logarithmicin
generd, but
amortized constant if
tisinserted right after
p.

1. For acontainer with unique keys, only logarithmic complexity is guaranteed if no dement isinserted, even though
congtant complexity isaways possibleif p pointsto an element equivalent tot.

2. For acontainer with equivaent keys, the amortized constant complexity guaranteeis only useful if no key equivaent to t
exigsin the container. Otherwise, the insertion could occur in one of multiple locations, a least one of which would not be

right after p.

3. By guaranteeing amortized constant complexity only when tisinserted after p, it isimpossible to guarantee constant
complexity if tisinserted at the beginning of the container. Such a problem would not exist if amortized constant
complexity was guaranteed if t isinserted before p, Snce there is dways some p immediately before which an insert can

take place.

4. For acontainer with equivaent keys, p does not alow specification of where to insert the element, but rather only actsas
ahint for improving performance. This negates the added functiondity that p would provideif it specified where withina
sequence of equivaent keys the insertion should occur. Specifying the insert location provides more control to the user,
while providing no disadvantage to the container implementation.

The resolution proposed was.

In 23.1.2 lib.asocitiveregmts paragraph 7, replace the row in table 69 for ainsert(p,t) with the

following two rows:

expression :;t)grn pr e/post-condition complexity
insartstif and only if thereisno logarithmic in generd, but
element with key equivaent to the amortized congtant if tis
a_uniqg.insert(p,t) |iterator | Kkeyoft. returnstheiterator panting inserted right before p or p
to the element with key equivaent points to an element with key
tothekey of t. equivdent tot.
insertst and returnsthe iterator
pointing to the newly inserted logarithmic in generd, but
a_eq.insert(p,t) i terator || dement. tisinserted right before p amortized congtant if tis
if doing SO preserves the container inserted right before p.
ordering.

Rationale:

Toohigachange. Furthermore, implementors report checking both before p and after p, and don't want to changethis

behavior.

194. rdbuf() functions poor ly specified

Library closed issues list

Section: 27.4.4libios Status: NAD Submitter: SeveClanege Date: 7 Sep 99

In classiciostreams, base classios had an rdbuf function that returned a pointer to the associated streambuf. Each derived
class had its own rdbuf function that returned a pointer of atype reflecting the actua type derived from streambuf. Because
in ARM C++, virtua function overrides had to have the same return type, rdbuf could not be virtud.

In standard iostreams, we retain the non-virtua rdbuf function design, and in addition have an overloaded rdbuf function
that sets the buffer pointer. Thereis no need for the second function to be virtua nor to be implemented in derived classes.

Minor question: Was there a specific reason not to make the origina rdbuf function virtua?

Major problem: Friendly compilers warn about functionsin derived classes that hide base-class overloads. Any standard
implementation of iostreams will result in such awarning on each of the iostream classes, because of theill-consdered
decison to overload rdbuf only in abase class.

In addition, users of the second rdbuf function must use explicit qudification or acast to call it from derived classes. An
explicit qudification or cast to basic_ioswould prevent accessto any later overriding version if there was one.

What I'd liketo do in an implementation is add ausing: declaration for the second rdbuf function in each derived dass. It
would diminate warnings about hiding functions, and would enable access without using explicit qudification. Sucha
change| don't think would change the behavior of any vaid program, but would dlow invaid programsto compile:

filebuf nybuf;
fstreamf;
f.rdbuf (nybuf); // should be an error, no visible rdbuf

I'd like to suggest this problem as a defect, with the proposed resolution to require the equivaent of a using-declaration for

the rdbuf function that is not replaced in alater derived class. We could discuss whether replacing the function should be
dlowed.

Rationale:
For historical reasons, the standard is correct as written. Thereis a subtle difference between the base dlassr dbuf () and

derived dassr dbuf () . Thederived dassr dbuf () awaysreturnsthe origina streambuf, whereas the base class
r dbuf () will return the "current streambuf™ if that has been changed by the variant you mention.

Permission is not required to add such an extension. See 17.4.4.4 [lib.member.functions].

25

196. Placement new example has alignment problems

Section: 18.4.1.3 lib.new.ddeteplacement Status: NAD Submitter: Herb Sutter Date; 15 Dec 98

Theexamplein 18.4.1.3 [lib.new.delete placement] paragraph 4 reeds:

[Example: This can be useful for condructing an object a aknown address:

char pl ace[si zeof (Sonet hi ng)];
Sonet hing* p = new (place) Sonething();

end example]

This example has potential dignment problems.

Library closed issues list 26

Rationale:

Duplicate seeissue 114

203. basic_istream::sentry::sentry() isuninstantiable with ctype<user-defined type>
Section: 27.6.1.1.2 lib.igream::sentry Status: NAD Submitter: Matt McClure and Dietmar Kuehl Date: 1 Jan 2000
27.6.1.1.2 Paragraph 4 states.

To decideif the character ¢ isawhitespace character, the congtructor performs "asif" it executesthe
following code fragment:

const ctype<charT>& ctype = use_facet<ctype<charT> >(is.getloc());
if (ctype.is(ctype.space,c)!=0)
/1l ¢ is a whitespace character.

But Table51in22.1.1.1.1 only requires an implementation to provide specidizations for ctype<char> and ctype<wchar_t>.
If sentry's congtructor isimplemented using ctype, it will be uninstantiable for a user-defined character type charT, unless
the implementation has provided non-working (snce it would be impossible to define a correct ctype<char T> specidizaion
for an arbitrary charT) definitions of ctype's virtual member functions.

It seemstheintent the standard is that sentry should behave, in every respect, not just during execution, asif it were
implemented using ctype, with the burden of providing a ctype specidization faling on the user. But asit iswritten,
nothing requires the trandation of sentry's congtructor to behave asiif it used the above code, and it would seem therefore,
that sentry's constructor should be instantiable for al character types.

Note: If | have misinterpreted the intent of the standard with respect to sentry's constructor's instantiability, then anote
should be added to the following effect:

An implementation is forbidden from using the above code if it renders the congtructor uninstantiable for
an otherwise vaid character type.

In any event, some dlaification is needed.
Rationale:

It is possible but not easy to ingtantiate on types other than char or wehar_t; many things have to be donefirst. That is by
intention and is not a defect.

204. distance(fir<t, last) when " last" isbefore " first"

Section: 24.34 lib.iterator.operations Status: NAD Submitter: RintalaMatti Date: 28 Jan 00

Section 24.3.4 describes the function distance(fird, last) (wherefirst and last areiterators) which calculates "the number of
increments or decrements needed to get from fird' to 'last™.

The function should work for forward, bidirectional and random accessiterators, and there is arequirement 24.3.4.5 which
datesthat "'last' must be reachable from 'first™.

Library closed issues list 27

With random access iterators the function is easy to implement as "last - first".

With forward iteratorsit's clear that 'first’ must point to aplace before 'last’, because otherwise 'last’ would not be reachable
from firdt'.

But what about bidirectiond iterators? There 'lat’ is reachable from first’ with the -- operator even if ‘last’ pointsto an
earlier pogition than 'first’. However, | cannot see how the distance() function could be implemented if the implementation

does not know which of the iterators pointsto an earlier position (you cannot use ++ or -- on either iterator if you don't
know which direction is the "safe way to travel").

The paragraph 24.3.4.1 statesthat "for ... bidirectiona iterators they use ++ to provide linear time implementations'.
However, the ++ operator is not mentioned in the reachability requirement. Furthermore 24.3.4.4 explicitly mentions that

distance() returns the number of increments _or decrements , suggesting that it could return anegative number aso for
bidirectiona iterators when 'lagt’ pointsto a position before first'.

Isafurther requirement is needed to state that for forward and bidirectiond iterators "'last’ must be reachable from first'

using the ++ operator". Maybe this requirement might also apply to random accessiterators so that distance() would work
the same way for every iterator category?

Rationale:

"Reachable" is defined in the standard in 24.1 paragraph 6 [lib.iterator.requirements]. The definitionisonly in terms of
operator++(). The LWG sees no defect in the sandard.

205. numeric_limitsunclear on how to deter mine floating point types

Section: 18.2.1.2 lib.numericlimitsmembers Status: NAD Submitter: Steve Cleary Date: 28 Jan 00

In severd placesin 18.2.1.2 [lib.numeric.limitsmembers], amember is described as "Meaningful for dl floating point
types." However, no clear method of determining afloating point typeis provided.

In 18.2.1.5 [lib.numeric.pecid], paragraph 1 states ™. . . (for example, epsilon() isonly meaningful if is_integer isfase). .
" which suggests that atypeis afloating point typeif is_specidized istrue and is_integer isfase; however, thisis unclear.

When darifying this, please kegp in mind this need of users. what exactly isthe definition of floating point? Would afixed
point or rationa representation be considered one? | guess my statement hereisthat there could dso be typesthat are
neither integer or (gtrictly) floating point.

Rationale;

It isup to theimplementor of auser define type to decideif it isafloating point type.

206. operator new(size t, nothrow) may become unlinked to ordinary operator new if ordinary
version replaced

Section: 184.1.1]ib.new.deetesingle Status: NAD Submitter: Howard Hinnant Date: 29 Aug 9

Library closed issues list 28

As specified, theimplementation of the nothrow version of operator new does not necessarily call the ordinary operator
new, but may instead smply cal the same underlying alocator and return anull pointer instead of throwing an exceptionin
caxe of failure

Such an implementation breeks code that replaces the ordinary version of new, but not the nothrow version. If the ordinary
version of new/ddeteis replaced, and if the replaced delete is not compatible with pointers returned from the library
versons of new, then when the replaced delete receives a pointer alocated by the library new(nothrow), crash follows.

Thefix appearsto be that the lib verson of new(nothrow) must cal the ordinary new. Thus when the ordinary new gets
replaced, the lib verson will cal the replaced ordinary new and things will continue to work.

An dternative would be to have the ordinary new cal new(nothrow). This seems sub-optimal to me asthe ordinary version
of new isthe version most commonly replaced in practice. So onewould till need to replace both ordinary and nothrow
versonsif one wanted to replace the ordinary version.

Ancther dternativeisto put in clear text that if one version isreplaced, then the other must aso be replaced to maintain
compatibility. Then the proposed resolution below would just be aquality of implementation issue. Thereisaready such
text in paragraph 7 (under the new(nothrow) version). But this nuanceis easily missed if one reads only the paragraphs
relating to the ordinary new.

Rationale:

Y es, they may become unlinked, and that isby design. If auser replaces one, the user should dso replace the other.

213. Math function overloads ambiguous

Section: 26.5lib.cmath Status: NAD Submitter: Nico Josuttis Date: 26 Feb 00

Due to the additiona overloaded versions of numeric functionsfor float and long double according to Section 26.5, cals
such asint x; std::pow (X, 4) are ambiguous now in astandard conforming implementation. Current implementations solve
this problem very different (overload for al types, don't overload for float and long double, use preprocessor, follow the
standard and get ambiguities).

This behavior should be standardized or at least identified asimplementation defined.
Rationale:

These math issues are an understood and accepted consequence of the design. They have been discussed severd timesin
the past. Users must write casts or write floating point expressions as arguments.

215. Can amap'skey typebeconst?

Section: 23.1.2 lib.asodiativeregmts Status: NAD Submitter: Judy Ward Date: 29 Feb 00

A user noticed that this doesn't compile with the Rogue Wave library because the rb_tree dlass dedlaresakey_dlocator, and
alocator<cong int> isnot legd, | think:

map < const int, ... >// legal?

Library closed issues list 29

which made me wonder whether it islegd for amap'skey_typeto be congt. In email from Matt Austern he sad:

I'm not sure whether it'slegd to declare amap with aconst key type. | hadn't thought about that question
until a couple weeks ago. My intuitive feding isthat it ought not to be alowed, and that the standard

ought to say 0. It doesturn out to work in SGl's library, though, and someone in the compiler group even
used it. Perhaps this deserves to be written up as an issue too.

Rationale:

The"key isassignable’ requirement from table 69 in 23.1.2 [lib.associative.regmts] dready impliesthe key cannot be
const.

216. setbase manipulator description flawed
Section: 27.6.3lib.sd.manip Status: Dup Submitter: Hyman Rosen Date: 29 Feb 00
27.6.3lib.gd.manip paragraph 5 says:

smani p setbase(int base);

Returns: An object s of unspecified type such that if out isan (instance of) basic_ostream thenthe
expresson out<<s behaves asif f(s) were cdled, inisan (instance of) basic_istream then the expression
in>>s behaves asif f(s) were cdled. Where f can be defined as:

i 0s_base& f(ios_base& str, int base)

{
/1 set basefield
str.setf(n == 8 ? ios_base:: oct
n == 10 ? ios_base:: dec :
n == 16 ? ios_base:: hex :

i os_base::fmflags(0), ios_base::basefield);
return str;

}

There are two problems here. Fird, f takes two parameters, so the description needs to say that out<<s and in>>s behave as
if f(sbase) had been called. Second, f is has a parameter named base, but iswritten asif the parameter was named n.

Actudly, therésathird problem. The paragraph has grammatica errors. There needsto be an "and" &fter the first comma,
and the "Where f* sentence fragment needs to be merged into its preceding sentence. Y ou may aso want to format the
function alittle better. The formatting above is more-or-less what the Standard contains.

Proposed Resolution:
The resolution of this defect is subsumed by the proposed resolution for issue 183.

[Tokyo: The LWG agreesthat thisis a defect and notes that it occurs additional placesin the section, all requiring fixes.

218. Algorithmsdo not use binary predicate objectsfor default comparisons

Section: 25.3 lib.ag.sorting 25 lib.adgorithms Status: NAD Submitter: Pablo Halpern Date: 6 Mar 00

Library closed issues list 30

Many of the dgorithms take an argument, pred, of template parameter type BinaryPredicate or an argument comp of
template parameter type Compare. These dgorithms usudly have an overloaded version that does not take the predicate
argument. In these cases pred is usudly replaced by the use of operator== and comp is replaced by the use of operator<.

Thisuse of hard-coded operatorsisinconsistent with other parts of thelibrary, particularly the containerslibrary, where
equdity is established using equa_to<> and ordering is established using less<>. Worse, the use of operator<, would cause
the following innocent-looking code to have undefined behavior:

vector<string*> vec;
sort(vec. begin(), vec.end());

The use of operator< is not defined for pointersto unrelated objects. If std::sort used less<> to compare e ements, then the
above code would be wel-defined, since less<> isexplicitly specidized to produce a total ordering of pointers.

Rationale:

This use of operator== and operator< was avery ddiberate, conscious, and explicitly made design decision; these operators
are often more efficient. The predicate forms are available for users who don't want to rely on operator== and operator<.

219. find algorithm missing version that takes a binary predicate argument

Section: 25.1.2 libdafind Status: NAD Future Submitter: Pablo Hapern Date: 6 Mar 00

Thefind function aways searches for avaue using operator==to compare the vaue argument to each element in the input
iterator range. Thisisinconsistent with other find-reated functions such asfind_end and find_first_of, which dlow the
caler to specify abinary predicate object to be used for determining equdity. The fact that this can be accomplished using
acombination of find_if and bind_1<t or bind_2nd does not negate the desirahility of aconsstent, Smple, dternative
interface to find.

The resolution proposed by the submitter:

In section 25.1.2 lib.da.find, add a second prototype for find (between the existing prototype and the
prototype for find _if), asfollows:

tenpl ate<class Inputlterator, class T, class BinaryPredicate>
Inputlterator find(Inputlterator first, Inputlterator |ast,
const T& val ue, BinaryPredicate bin_pred);

Change the description of the return from:

Returns: Thefirgt iterator i in the range[first, last) for which the following
corresponding conditions hold: *i == value, pred(*i) !=fase. Returnslagt if no such
iterator isfound.

to:
Returns: Thefirgt iterator i in the range [fird, last) for which the following
corresponding condition holds: *i == value, bin_pred(*i,vaue) |=fdse, pred(*) !=
fase. Return last if no such iterator isfound.

Rationale:

Library closed issues list 31

Thisisrequest for a pure extension, S0 it is not adefect in the current gandard. Asthe submitter pointed out, “this can be
accomplished using acombinetion of find_if and bind_1<t or bind_2nd".

236. ctype<char>::is() member modifies facet

Section: 24.2.1.3.2 lib.facet.ctype.char.members Status: Dup Submitter: Dietmar Kihl Date: 24 Apr 2000

Thedescriptionof thei s() member in paragrgph 4 of lib.facet.ctype.char.membersis broken: According to this
description, the second formof the i s() method modifiesthe masksinthe ct y pe object. The correct semanticsif, of
course, to obtain an aray of masks. The corresponding method in the generd case, ie.thedo_i s() method as described
in lib-locdeshtmi#ib.locde.ctypevirtuas paragraph 1 doesthe right thing.

Proposed resolution:
Change paragraph 4 from

The second form, for dl *p in the range [low, high), assigns vecp-low] to table()[(unsigned char)*p].
to become

The second form, for dl *p in the range [low, high), assigns table()[(unsgned char)*p] to vecp-low].
Rationale;

Duplicate. Seeissue 28.

244. Must fi nd'sthird argument be CopyConstructible?

Section: 25.1.2 libagafind Status: NAD Submitter: Andrew Koenig Date: 02 May 2000

Isthefollowing implementation of f i nd acceptable?

tenpl ate<class Iter, class X>
Iter find(lter begin, Iter end, const X& Xx)

{
X x1 = x; // this is the crucial statenent
while (begin = end & *begin != x1)
++begi n;
return begin;
}

If the answer isyes, then it isimplementation-dependent as to whether the following fragment iswell formed:
vector<string> v;
find(v.begin(), v.end(), "foo");
At issueiswhether thereis arequirement that the third argument of find be CopyCongtructible. There may be no problem
here, but analysisis necessary.

Rationale:

Library closed issues list

Thereisno indication in the standard that find's third argument is required to be Copy Congtructible. The LWG believes
that no such requirement was intended. As noted above, there are times when a user might reasonably pass an argument that
isnot Copy Congtructible.

32

245. Which operationson i stream it er at or trigger input operations?
Section: 24.5.1 |ib.igtream.iterator Status: NAD Submitter: Andrew Koenig Date: 02 May 2000

| do not think the standard specifies what operation(s) on istream iterators trigger input operations. So, for example:

istreamiterator<int> i(cin);

int n = *i++
| do not think it is specified how many integers have been read from cin. The number must be a least 1, of course, but can
itbe2?More?

Rationale:

The standard is clear aswritten: the stream is read every time operator++ iscaled, and it is aso read either when the
iterator is constructed or when operator* is caled for thefirst time. In the example above, exactly two integers are read
fromdin.

There may be aproblem with the interaction between istream _iterator and some STL agorithms, such asfind. Thereareno
guarantess about how many timesfind may invoke operator++.

246. a.insert(p,t) isincorrectly specified

Section: 23.1.2 lib.associativeregmts Status: Dup Submitter: Mark Rodgers Date: 19 May 2000

Closed issue 192 raised severd problems with the pecification of this function, but was rgjected as Not A Defect because it
was too big a change with unacoeptable impacts on existing implementations. However, issues remain that could be
addressed with asmaler change and with little or no consequent impact.

1. Thespecification isinconsistent with the original proposa and with severa implementations.

Theinitid implementation by Hewlett Packard only ever looked immediately before p, and | do not bdievethere
was any intention to standardise anything other than this behaviour. Consequently, current implementations by
severd leadingimplementers dso look immediately before p, and will only insert after p inlogarithmic time. | am
only aware of oneimplementation that does actualy look after p, and it looks before p aswell. It istherefore
doubtful that existing code would be relying on the behaviour defined in the standard, and it would seem that
fixing this defect as proposed bel ow would standardise existing practice.

2. The specification isinconsistent with insertion for sequence containers.

Thisisdifficult and confusing to teach to newcomers. All insart operations that specify aniterator asan insartion
location should have a consistent meaning for the location represented by thet iterator.

3. Asspecified, thereis no way to hint that the insertion should occur &t the beginning of the container, and the way
to hint that it should occur a the end islong winded and unnatural.

Library closed issues list

For acontainer containing n elements, there are n+1 possible insertion locations and n+1 vaid iterators. For there
to be aone-to-one mapping between iterators and insertion locations, the iterator must represent an insertion
location immediately before the iterator.

4. When gppending sorted ranges using insert_iterators, insertions are guaranteed to be sub-optimdl.

In such asituation, the optimum location for insertion is aways immediately after the e ement previoudy inserted.

The mechanics of theinsert iterator guarantee that it will try and insart after the eement after that, which will
never be correct. However, if the container firgt tried to insat before the hint, al insertions would be performed in
amortised congtant time.

Proposed Resolution:
In 23.1.2 [lib.associative.regmts] paragraph 7, table 69, make the following changesin the row for ainsert(pt):

assertion/note pre/post condition:
Changethe lagt sentence from

"iterator p isahint pointing to where the insert should start to search.”

to
"iterator p isahint indicating that immediately before p may be a correct location where the insertion
could occur.”

complexity:

Change the words "right after” to "immediately before'.
Rationale:

Duplicate; see openissue 233.

33

249. Return Typeof aut o_ptr: : operat or=

Section: 20.4.5 |ib.auto.ptr Status: NAD Submitter: Joseph Gottman <joegottman@worldnet.att.net> Date: 30 Jun
2000

According to section 20.4.5, thefunctionaut o_pt r: : oper at or =() returnsareferenceto an auto_ptr. The reason that

oper at or =() usudly returnsareferenceisto facilitate code like

int X, ;
X =y

z
z = 1;

<

However, given andogous codeforaut o_ptrs,

auto_ptr<int> x, vy, z;
z.reset(new int(1));
X =y = z;

Library closed issues list

the result would bethat z and y would both be set to NULL, instead of dl the aut o__pt r sbeing st to the same vaue.
This makes such cascading assgnments usdless and counterintuitivefor aut o_pt rs.

Proposed Resolution:

Changeaut o_ptr:: operat or=() toreurnvoi dingead of anaut o_pt r reference.

Rationale:

The return value has uses other than cascaded assgnments: auser can call an auto_ptr member function, passthe auto_ptr
to afunction, etc. Removing the return vaue could bresk working user code.

255. Why dobasi c_st reanbuf <>: : pbunp() and gbunp() takean int?
Section: 27.5.2 lib.greambuf Status: NAD Future Submitter: Martin Sebor Date: 12 Aug 2000

Thebasic_streambuf members gbump() and pbump() are specified to take an int argument. This requirement preventsthe
functions from effectively manipulating bufferslarger than std::numeric_limits<int>::max() characters. It dso makesthe
common use case for these functions somewhat difficult as many compilerswill issue awarning when an argument of type
larger thanint (such as ptrdiff_t on LLP64 architectures) is passed to either of the function. Sinceit's often the result of the
subtraction of two pointersthat is passed to the functions, acast is necessary to silence such warnings. Finaly, the usage of
anative typein the functions sgnaturesisinconsistent with other member functions (such as sgetn() and sputn()) that
manipul ate the underlying character buffer. Those functions take a streamsize argument.

Proposed Resolution:

Change the signatures of these functionsin the synopsis of template classbasic_streambuf (27.5.2) and in their descriptions
(275.2.3.1, p4 and 27.5.2.3.2, p4) to take a streamsize argument.

Although this change has the potentia of changing the ABI of thelibrary, the change will affect only platformswhereint is
different than the definition of streamsize. However, since both functions are typicdly inline (they are on dl known
implementations), even on such platforms the change will not affect any user code unlessit explicitly relies on the existing
type of thefunctions (e.g., by taking their address). Such apossibility isIMO quite remote.

Alternate Suggestion from Howard Hinnant, c++stcHib-7780:

Thisis something of anit, but I'm wondering if streamoff wouldn't be a better choice than streamsize. The argument to
pbump and gbump MUST be signed. But the standard has thisto say about streamsize (27.4.1/2/Footnote):

[Footnote: streamsizeis used in most places where ISO C would use size t. Mot of the uses of
sreamsize could use Size t, except for the strstreambuf constructors, which require negative values. It
should probably be the signed type corresponding to size t (whichiswhat Posix.2 cdlsssize t). --- end
foonote]

Thisseemsalittle wesk for the argument to pbump and gbump. Should we ever redlly get rid of strstream, this footnote
might go with it, long with the reason to make streamsize signed.

Rationale:

Library closed issues list

The LWG bdievesthis changeistoo big for now. We may wish to reconsider thisfor afuture revision of the sandard. One
possibility is overloading pbump, rather than changing the signature.

35

