
std::generator: Synchronous Coroutine Generator for

Ranges
Document #: P2168R1
Date: 2021-01-18
Project: Programming Language C++
Audience: LEWG
Reply-to: Lewis Baker <lewissbaker@gmail.com>

Corentin Jabot <corentin.jabot@gmail.com>

Abstract

We propose a standard library type std::generator which implements a coroutine generator
compatible with ranges.

Revisions

R1

• Add benchmarks results and discussion about performance

• Introduce elements_of to avoid ambiguities when a generator is convertible to the refer-
ence type of the parent generator.

• Add allocator support

• Symmetric transfer works with generators of different value / allocator types

• Remove iterator::operator->

• Put generator in a new <generator> header.

• Add an other example to motivate the Value template parameter

Example

std::generator<int> fib (int max) {
co_yield 0;
auto a = 0, b = 1;

for(auto n : std::views::iota(0, max)) {
auto next = a + b;
a = b, b = next;
co_yield next;

}

1

mailto:lewissbaker@gmail.com
mailto:corentin.jabot@gmail.com

}

int answer_to_the_universe() {
auto coro = fib(7) ;
return std::accumulate(coro | std::views::drop(5), 0);

}

Motivation

C++ 20 had very minimalist library support for coroutines. Synchronous generators are an
important use case for coroutines, one that cannot be supported without the machinery
presented in this paper. Writing an efficient and correctly behaving recursive generator is
non-trivial, the standard should provide one.

Design

While the proposed std::generator interface is fairly straight-forward, a few decisions are
worth pointing out.

input_view

std::generator is a non-copyable view which models input_range and spawn move-only itera-
tors. This is because the coroutine frame is a unique resource (even if the coroutine handle is
copyable). Unfortunately, some generators can satisfy the view constraints but fail to model
the view O(1) destruction requirement:

template <typename T>
std::generator<T> all (vector<T> vec) {

for(auto & e : vec) {
co_yield e;

}
}

Header

Multiple options are available as to where put the generator class.

• <coroutine>, but <coroutine> is a low level header, and generator depends on bits of
<type_traits> and <iterator>.

• <ranges>

• A new <generator>

2

Separately specifyable Value Type

This proposal supports specifying both the ”yielded” type, which is the iterator ””reference””
type (not required to be a reference), and its corresponding value type. This allow ranges to
handle proxy types and wrapped reference, like this implementation of zip:

template<std::ranges::input_range Rng1,
std::ranges::input_range Rng2>
generator<
std::tuple<std::ranges::range_reference_t<Rng1>,
std::ranges::range_reference_t<Rng2>,
std::tuple<std::ranges::range_value_type_t<Rng1>,
std::ranges::range_value_type_t<Rng2>>>
zip(Rng1 r1, Rng2 r2) {

auto it1 = std::ranges::begin(r1);
auto it2 = std::ranges::begin(r2);
auto end1 = std::ranges::end(r1);
auto end2 = std::ranges::end(r2);
while (it1 != end1 && it2 != end2) {

co_yield {*it1, *it2};
++it1; ++it2;

}
}

In this second example, using string as value type ensures that calling code can take the
necessay steps to make sure iterating over a generator would not invalidate any of the yielded
values

// Yielding string literals : always fine
std::generator<std::string_view> string_views() {

co_yield "foo";
co_yield "bar";

}

std::generator<std::string_view, std::string> strings() {
co_yield "start";
std::string s;
for (auto sv : string_views()) {

s = sv;
s.push_back('!');
co_yield s;

}
co_yield "end";

}

// conversion to a vector of strings
// If the value_type was string_view, it would convert to a vector of string_view,
// which would lead to undefined beavior as the string_views may get invalidated upon iteration!
auto v = std::to<vector>(strings()); // (P1206R3 [3])

3

https://wg21.link/P1206R3

Recursive generator

A ”recursive generator” is a coroutine that supports the ability to directly co_yield a generator
of the same type as a way of emitting the elements of that generator as elements of the
current generator.

Example: A generator can co_yield other generators of the same type

generator<const std::string&> delete_rows(std::string table, std::vector<int> ids) {
for (int id : ids) {

co_yield std::format("DELETE FROM {0} WHERE id = {1}", table, id);
}

}

generator<const std::string&> all_queries() {
co_yield elements_of(delete_rows("user", {4, 7, 9 10}));
co_yield elements_of(delete_rows("order", {11, 19}));

}

Example: A generator can also be used recursively

struct Tree {
Tree* left;
Tree* right;
int value;

};

generator<int> visit(Tree& tree) {
if (tree.left) co_yield elements_of(visit(*tree.left));
co_yield tree.value;
if (tree.right) co_yield elements_of(visit(*tree.right));

}

In addition to being more concise, the ability to directly yield a nested generator has some
performance benefits compared to iterating over the contents of the nested generator and
manually yielding each of its elements.

Yielding a nested generator allows the consumer of the top-level coroutine to directly resume
the current leaf generator when incrementing the iterator, whereas a solution that has each
generator manually iterating over elements of the child generator requires O(depth) coroutine
resumptions/suspensions per element of the sequence.

Example: Non-recursive form incurs O(depth) resumptions/suspensions per element and is
more cumbersome to write

generator<int> slow_visit(Tree& tree) {
if (tree.left) {

for (int x : elements_of(visit(*tree.left)))
co_yield x;

}
co_yield tree.value;
if (tree.right) {

for (int x : elements_of(visit(*tree.right)))

4

co_yield x;
}

}

Exceptions that propagate out of the body of nested generator coroutines are rethrown into
the parent coroutine from the co_yield expression rather than propagating out of the top-
level ‘iterator::operator++()‘. This follows the mental model that ‘co_yield someGenerator‘ is
semantically equivalent to manually iterating over the elements and yielding each element.

For example: nested_ints() is semantically equivalent to manual_ints()

generator<int> might_throw() {
co_yield 0;
throw some_error{};

}

generator<int> nested_ints() {
try {

co_yield elements_of(might_throw());
} catch (const some_error&) {}
co_yield 1;

}

// nested_ints() is semantically equivalent to the following:
generator<int> manual_ints() {

try {
for (int x : might_throw()) {

co_yield x;
}

} catch (const some_error&) {}
co_yield 1;

}

void consumer() {
for (int x : nested_ints()) {

std::cout << x << " "; // outputs 0 1
}

for (int x : manual_ints()) {
std::cout << x << " "; // also outputs 0 1

}
}

elements_of

elements_of is a utility function that prevents ambiguity when a nested generator type is
convertible to the value type of the present generator

generator<int> f()
{

co_yield 42;

5

}

generator<any> g()
{

co_yield f(); // should we yield 42 or generator<int> ?
}

To avoid this issue, we propose that:

• co_yield <expression> always yield the value directly.

• co_yield elements_of(<expression>) yield the values of the nested generator.

For convenience, we further propose that co_yield elements_of(x) be extended to support
yielding the values of arbitrary ranges beyond generators, ie

generator<int> f()
{

std::vector<int> v = /*... */;
co_yield elements_of(v);

}

Symmetric transfer

The recursive form can be implemented efficiently with symmetric transfer. Earlier works in
[CppCoro] implemented this feature in a distinct recursive_generator type.

However, it appears that a single type is reasonably efficient thanks to HALO optimizations
and symmetric transfer. The memory cost of that feature is 3 extra pointers per generator.
It is difficult to evaluate the runtime cost of our design given the current coroutine support
in compilers. However our tests show no noticeable difference between a generator and
a recursive_generator which is called non recursively. It is worth noting that the proposed
design makes sure that HALO [5] optimizations are possible.

While we think a single generator type is sufficient and offers a better API, there are three
options:

• A single generator type supporting recursive calls (this proposal).

• A separate type recursive_generator that can yield values fromeither recursive_generator
or a generator. That may offer very negligible performance benefits, same memory
usage.

• A separate recursive_generator type which can only yield values from other recursive_-
generator.

That third option would make the following ill-formed:

generator<int> f();
recursive_generator<int> g() {

co_yield f(); // incompatible types
}

6

Instead you would need to write:

recursive_generator<int> g() {
for (int x : f()) co_yield x;

}

Such a limitation canmake it difficult to decide at the timeofwriting a generator coroutine
whether or not you should return a generator or recursive_generator as you may not
know at the time whether or not this particular generator will be used within recursive_-
generator or not.

If you choose the generator return-type and then later someone wants to yield its ele-
ments from a recursive_generator then you either need to manually yield its elements
one-by-one or use a helper function that adapts the generator into a recursive_generator.
Both of these options can add runtime cost compared to the case where the genera-
tor was originally written to return a recursive_generator, as it requires two coroutine
resumptions per element instead of a single coroutine resumption.

Because of these limitations, we are not recommending this approach.

Symmetric transfer is possible for different generator types as long as the reference type is
the same, aka, different value type or allocator type does not preclude symmetric transfer.

How to store the yielded value in the promise type?

The yielded expression is guaranteed to be alive until the coroutine resumes, it is, there-
fore, sufficient to store its address. This makes generator with a large yielded type efficient.
However, it might pessimize yielding values smaller than a pointer because of the added
indirection. (It is unclear what the cost of this indirection is, as none of these accesses should
result in cache misses).

More annoyingly, this prevents conversions in yielding expressions:

generator<string_view> f() {
co_yield std::string(); // error: cannot convert std::string to std::string_view \&

}

Storing a copy would allow less indirection and the ability to yield any values convertible to
the yielded type, at the cost of more storage. To avoid that storage cost, a generator<const
T&> can be used.

Allocator support

In line with the design exploration done in section 2 of P1681R0 [4], std::generator can
support both stateless and stateful allocators, and strive to minimize the interface verbosity
for stateless allocators, by templating both the generator itself and the promise_type’s new
operator on the allocator type. Details for this interface are found in P1681R0 [4]. Allocators

7

https://wg21.link/P1681R0
https://wg21.link/P1681R0

passed as parameter to the coroutine function do not need to be default constructible if we
mandate their value_type is std::byte (such that they do not need to be rebound).

coroutine_parameter_preview_t such as discussed in section 3 of P1681R0 [4] has not been
explored in this paper.

std::generator<int, int, std::allocator<std::byte>> stateless_example() {
co_yield 42;

}

template <typename Allocator>
std::generator<int, int, Allocator>
allocator_example(std::allocator_arg_t, Allocator&& alloc) {

co_yield 42;
}

my_allocator<std::byte> alloc;
input_range auto rng = allocator_example<my_allocator<std::byte>>(std::allocator_arg, alloc);

Supporting allocators requires storing, in all cases, a function pointer adjacent to the coroutine
frame (to track a deallocation function), along with the allocator itself in the case of stateful
allocators.

The proposed interface requires that, if an allocator is provided, it is the second argument to
the coroutine function, immediately preceded by an instance of std::allocator_arg_t. This
approach is necessary to distinguish the allocator desired to allocate the coroutine frame from
allocators whose purpose is to be used in the body of the coroutine function. The required
argument ordermight be a limitation if any other argument is required to be the first, however,
we cannot think of any scenario where that would be the case.

We think it is important that all standard and user coroutines types can accommodate similar
interfaces for allocator support. In fact, the implementation for that allocator support can be
shared amongst generator, lazy and other standard types.

Can we postpone adding support for allocator later?

A case can be made that allocator support could be added to std::generator later. However,
because the proposed design has the allocator as a template parameter, adding allocator after
std::generator ships would represent an ABI break. We recommend that we add allocator
support as proposed in this paper now and make sure that the design remains consistent as
work on std::lazy is made in this cycle. However, it would be possible to extend support for
different mechanisms (such as presented in section 3 of P1681R0 [4] later.

Implementation and experience

generator has been provided as part of cppcoro and folly. However, cppcoro offers a separate
recursive_generator type, which is different than the proposed design.

8

https://wg21.link/P1681R0
https://wg21.link/P1681R0

Folly uses a single generator type which can be recursive but doesn’t implement symmetric
transfer. Despite that, Folly users found the use of Folly:::Generator to be a lot more efficient
than the eager algorithm they replaced with it.

ranges-v3 also implements a generator type, which is never recursive and predates the work
on move-only views and iterators [1], [2] which forces this implementation to ref-count the
coroutine handler.

Our implementation [Implementation] consists of a single type that takes advantage of sym-
metric transfer to implement recursion.

Performance & benchmarks

Because implementations are still being perfected, and because performance is extremely
dependant on whether HALO optimization (see P0981R1 [?]) occurs, it is difficult at this time
to make definitive statements about the performance of the proposed design.

At the time of the writing of this paper, Clang is able to inline non-nested coroutines whether
the implementation supports nested coroutines or not, while GCC never performs HALO
optimization.

When the coroutine is not inlined, support for recursion does not noticeably impact perfor-
mance. And, when the coroutine yields another generator, the performance of the recursive
version is noticeably faster than yielding each element of the range. This is especially notice-
able with deep recursion.

Clang Clang ST1 GCC GCC ST1 MSVC MSVC ST1

Single value (1) 0.235 (2) 2.36 12.4 13.4 61.9 63.7

Single value, noinline (3) 13.5 13.7 14.1 15.2 63.8 64.4

Deep nesting 43670266.0 (4) 427955.0 58801348 338736 224052033 4760914

1 Symmetric transfer.

The values are expressed in nanoseconds. However, please note that the comparison of
the same result across compiler is not meaningful, notably because the MSVC results were
obtained on different hardware. That being said we observe:

• Only Clang can perform constant folding of values yielded by simple coroutine (1)

• When the generator supports symmetric transfer, clang is not able to fully inline the
generator construction, but HALO is still performed (2).

• When HALO is not performed, the relative performance of both approach is similar (3).

• Supporting recursion is greatly beneficial to nested/recursive algorithms (4).

The code for these benchmarks as well as more detailled results can be found on Github.

9

https://wg21.link/P0981R1
https://github.com/cor3ntin/coro_benchmark

Wording

The following wording is meant to illustrate the proposed API.

�? Header <ranges> synopsis [ranges.syn]

template<typename T>
struct elements_of;

template<std::ranges::input_range R>
struct elements_of<R> {

R&& __range; // exposition only

explicit constexpr elements_of(R&& r) noexcept : range((R&&)r) {}
constexpr elements_of(elements_of&&) noexcept = default;

constexpr elements_of(const elements_of&) = delete;
constexpr elements_of& operator=(const elements_of&) = delete;
constexpr elements_of& operator=(elements_of&&) = delete;

constexpr R && get() && noexcept {
return std::forward<R>(__range);

}
};
template<std::ranges::input_range R>
elements_of(R&&) -> return elements_of<R>;

�? Header <generator> synopsis [generator.syn]

#include <coroutine>
#include <ranges>

namespace std {

template<typename Ref, typename Value = std::remove_cvref_t<Ref>>
class generator;

template <typename Ref, typename Value>
inline constexpr bool ranges::enable_view<generator<Ref, Value>> = true;

}

�? Generator View [coroutine.generator]

�? Overview [coroutine.generator.overview]

generator produces an input_view over a synchronous coroutine function yielding values.

[Example:

10

generator<int> iota(int start = 0) {
while(true)
co_yield start++;

}

void f() {
for(auto i : iota() | views::take(3))
cout << i << " " ; // prints 0 1 2

}

—end example]

�? Class template generator [coroutine.generator.class]

namespace std {

template <typename Ref, typename Value = std::remove_cvref_t<Y>,
typename Allocator = std::allocator<std::byte>>

class generator {
public:
class promise_type;
class iterator;
class sentinel {};

private:
std::coroutine_handle<promise_type> coroutine_ = nullptr; // exposition only

explicit generator(std::coroutine_handle<promise_type> coroutine) noexcept // exposition only
: coroutine_(coroutine) {}

public:
generator() noexcept;
generator(const generator &other) = delete;
generator(generator && other) noexcept
: coroutine_(exchange(other.coroutine_, nullptr)){}

~generator() {
if (coroutine_) {

coroutine_.destroy();
}

}

generator &operator=(generator && other) noexcept {
swap(other);
return *this;

}

iterator begin();

11

sentinel end() noexcept
{ return {}; }

void swap(generator & other) noexcept {
std::swap(coroutine_, other.coroutine_);

}

};
}

Mandates:

• Allocator meets2 the Cpp17Allocator requirements,

• same_as<Allocator::value_type>, std::byte> is true.

iterator begin();

Preconditions: !coroutine_ is true or coroutine_ refers to a coroutine suspended at its
initial suspend-point.

Effects: Equivalent to:

if(coroutine_)
coroutine_.resume();
return iterator{coroutine_};

[Note: It is undefined behavior to call beginmultiple times on the same coroutine. —end
note]

�? Class template generator::promise_type [coroutine.generator.promise]

template <typename Ref, typename Value, typename Allocator>
class generator<Ref, Value, Allocator>::promise_type {

friend generator;

union {
Ref value_; // exposition only

};

public:
using value_type = V;
using reference = Y;

generator<Y, V> get_return_object() noexcept;

std::suspend_always initial_suspend() const {
return {};

}

12

auto final_suspend() const;

std::suspend_always yield_value(reference && value) n
noexcept(std::is_nothrow_copy_constructible_v<reference, T>));

template <typename T>
requires(!std::is_reference_v<Ref>) && std::is_convertible_v<T, Ref>
std::suspend_always yield_value(T &&x) noexcept(std::is_nothrow_constructible_v<Ref, T>);

template <typename TVal, typename TAlloc>
unspecified yield_value(elements_of<generator<Ref, TVal, TAlloc>>&& g) noexcept; // see below

template<std::ranges::input_range R>
requires convertible_to<ranges::range_reference_t<R>, Y>
unspecified yield_value(elements_of<R&&>&& rng) noexcept; // see below

void await_transform() = delete;

void return_void() noexcept {}

void unhandled_exception();

static void* operator new(std::size_t size);

template<typeame Alloc, typename... Args>
static void* operator new(std::size_t size, std::allocator_arg_t, Alloc&& alloc, Args&...);
template<typename This, typeame Alloc, typename... Args>
static void* operator new(std::size_t size, This&, std::allocator_arg_t, Alloc&& alloc, Args&...);

static void operator delete(void *pointer, size_t size) noexcept;
};

generator<Ref, Value, Allocator> get_return_object() noexcept;

Effects: Equivalent to:

return generator<Ref, Value, Allocator>{
std::coroutine_handle<promise_type>::from_promise(*this)};

std::suspend_always yield_value(reference && value)
noexcept(std::is_nothrow_copy_constructible_v<reference, T>));

template <typename T>
requires(!std::is_reference_v<Ref>) && std::is_convertible_v<T, Ref>
std::suspend_always yield_value(T &&x)

noexcept(std::is_nothrow_constructible_v<Ref, T>);

Effects: Assign x to value_;

If the execution control has been transferred from this promise to another generator’s
promise_type noted other, assign x to other.value_;

13

[Note: Generators can transfer control recursively, value returns the value set on promise
associated with the child-most generator coroutine. —end note]

template <typename TVal, typename TAlloc>
auto yield_value(elements_of<generator<Ref, TVal, TAlloc>>&& g) noexcept;

Mandates:

• TAlloc meets the Cpp17Allocator requirements,

• same_as<TAlloc::value_type>, std::byte> is true.

Effects: This function returns an implementation defined awaitable type which takes
ownership of the generator g.

[Note: This ensures that local variables in-scope in g’s coroutine are destructed before
local variables in-scope in this coroutine being destructed. —end note]

Execution is transferred to the coroutine represented by g.coroutine_ until its completion.
After g.coroutine_ completes, the current coroutine is resumed.

[Note: Generators can transfer control recursively. —end note]

template<std::ranges::input_range R>
requires convertible_to<ranges::range_reference_t<R>, Ref>
std::suspend_always yield_value(yield_value(elements_of<R>&& rng) noexcept;

Effects: Calls co_yield elem for each element elem of the range rng.

�? Class template generator::iterator [coroutine.generator.iterator]

template <typename Ref, typename Value, typename Allocator>
class generator::iterator {

private:
std::coroutine_handle<promise_type> coroutine_ = nullptr;

public:
using iterator_category = std::input_iterator_tag;
using difference_type = std::ptrdiff_t;
using value_type = promise_type::value_type;
using reference = promise_type::reference;

iterator() noexcept = default;
iterator(const iterator &) = delete;

iterator(iterator && other) noexcept
: coroutine_(exchange(other.coroutine_, nullptr)) {}

iterator &operator=(iterator &&other) noexcept {
coroutine_ = exchange(other.coroutine_, nullptr);

14

}

explicit iterator(std::coroutine_handle<promise_type> coroutine) noexcept
: coroutine_(coroutine) {}

bool operator==(sentinel) const noexcept {
return !coroutine_ || coroutine_.done();

}

iterator &operator++();
void operator++(int);

reference operator*() const noexcept (noexcept(std::is_nothrow_copy_constructible_v<reference>));

};

iterator &operator++();

Preconditions: coroutine_ && !coroutine_.done() is true.

Effects: Equivalent to:

coroutine_.resume();
return *this;

void operator++(int);

Preconditions: coroutine_ && !coroutine_.done() is true.

Effects: Equivalent to:

(void)operator++();

reference operator*() const
noexcept (noexcept(std::is_nothrow_copy_constructible_v<reference>));

Preconditions: coroutine_ && !coroutine_.done() is true.

Effects: Equivalent to:

return coroutine_.promise().value();

Feature test macros

Insert into [version.syn]

#define __cpp_lib_generator <DATE OF ADOPTION>

References

[1] Casey Carter. P1456R1: Move-only views. https://wg21.link/p1456r1, 11 2019.

15

https://wg21.link/p1456r1

[2] Corentin Jabot. P1207R0: Movability of single-pass iterators. https://wg21.link/p1207r0,
8 2018.

[3] Corentin Jabot, Eric Niebler, and Casey Carter. P1206R3: ranges::to: A function to convert
any range to a container. https://wg21.link/p1206r3, 11 2020.

[4] Gor Nishanov. P1681R0: Revisiting allocator model for coroutine lazy/task/generator.
https://wg21.link/p1681r0, 6 2019.

[5] Richard Smith and Gor Nishanov. P0981R0: Halo: coroutine heap allocation elision opti-
mization: the joint response. https://wg21.link/p0981r0, 3 2018.

[CppCoro] Lewis Baker CppCoro: A library of C++ coroutine abstractions for the coroutines TS
https://github.com/lewissbaker/cppcoro

[Folly] Facebook Folly: An open-source C++ library developed and used at Facebook
https://github.com/facebook/folly

[range] Eric Niebler range-v3 Range library for C++14/17/20
https://github.com/ericniebler/range-v3

[Implementation] Lewis Baker, Corentin Jabot std::generator implementation
https://godbolt.org/z/Tb36xj

[N4861] Richard Smith Working Draft, Standard for Programming Language C++
https://wg21.link/N4861

16

https://wg21.link/p1207r0
https://wg21.link/p1206r3
https://wg21.link/p1681r0
https://wg21.link/p0981r0
https://github.com/lewissbaker/cppcoro
https://github.com/facebook/folly
https://github.com/ericniebler/range-v3
https://godbolt.org/z/Tb36xj
https://wg21.link/N4861

	1 Abstract
	2 Revisions
	2.1 R1

	3 Example
	4 Motivation
	5 Design
	5.1 input_view
	5.2 Header
	5.3 Separately specifyable Value Type
	5.4 Recursive generator
	5.5 elements_of
	5.6 Symmetric transfer
	5.7 How to store the yielded value in the promise type?

	6 Allocator support
	6.1 Can we postpone adding support for allocator later?

	7 Implementation and experience
	8 Performance & benchmarks
	9 Wording
	9.1 Header <ranges> synopsis
	9.2 Header <generator> synopsis
	9.3 Generator View
	9.3.1 Overview
	9.3.2 Class template generator
	9.3.3 Class template generator::promise_type
	9.3.4 Class template generator::iterator

	10 Feature test macros
	11 References

