
P2072R1: Differentiable programming 
for C++ 

Introduction 
Mathematical derivatives are vital components of many computing algorithms including: neural 
networks, numerical optimization, Bayesian inference, nonlinear equation solvers, physics 
simulations, sensitivity analysis, and nonlinear inverse problems. Derivatives track the rate of 
change of an output parameter with respect to an input parameter, such as how much reducing 
an individuals’ carbon footprint will impact the Earth’s temperature. Derivatives (and 
generalizations such as gradients, jacobians, hessians, etc) allows us to explore the properties 
of a function and better describe the underlying process as a whole. In recent years, the use of 
gradient-based optimizations such as training neural networks have become widespread, 
leading to many languages making differentiation a first-class citizen. 
 
Derivatives can be computed numerically, but unfortunately the accumulation of floating-point 
errors and high-computational complexity presents several challenges. These problems become 
worse with higher order derivatives and more parameters to differentiate. 
 
Many derivative-based algorithms require gradients, or the computation of the derivative of an 
output parameter with respect to many input parameters. As such, developing techniques for 
computing gradients that are scalable in the number of input parameters is crucial for the 
performance of such algorithms. This paper describes a broad set of domains where scalable 
derivative computations are essential. We make an overview of the major techniques in 
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computing derivatives, and finally, we introduce the flagman of computational differential 
calculus -- algorithmic (also known as automatic) differentiation (AD). AD makes clever use of 
the ‘nice’ mathematical properties of the chained rule and generative programming to solve the 
scalability issues by inverting the dependence on the number of input variables to the number of 
output variables. AD provides mechanisms to augment the regular function computation with 
instructions calculating its derivatives.  
 
Differentiable programming is a programming paradigm in which the programs can be 
differentiated throughout, usually via automatic differentiation. The main scope of this document 
is to open a discussion on the possible scenarios enabling differential programming in C++. It 
briefly introduces possible approaches to implement AD such as a library solution, a language 
solution, and a library solution using future language features. 
 

Background 
Derivatives and gradients can be computed in several different ways [2]: 

● Derivation by hand is a tedious and error-prone process. In case the initial function 
changes we need to remember to invalidate the derivative and manually derive it again. 
The manual derivation usually assumes derivation of a math expression in the math 
domain and translating it to code. It is virtually impossible to manually derive an 
algorithm because of its multi-level dependencies.  

● Symbolic Differentiation (SD) is a method for automatically applying the chain rule to 
mathematical functions. This is the approach implemented in languages like 
Mathematica [15] or Maple [14]. It is limited to closed form expressions, that is, it cannot 
handle control flow [17]. 

● Divided (or Finite) Differentiation (DD/FD), a numerical method to approximate a 
derivative. Its implementation quickly reaches the limitations of the machine epsilon and 
the floating point representation issues. Usually, the algorithm can compute the 
derivative with a user-defined precision. This includes iteration and poses problems in 
convergence. Another problem for this method is that it's hard to find a good perturbation 
with the right tradeoff between maintaining numerical stability and accuracy. 

● Automatic Differentiation (AD), is a set of methods  that allows to efficiently differentiate 
Algorithms (as opposed to just mathematical functions in symbolic differentiation). Two 
main modes are used, Forward Automatic Differentiation (FAD) and Reverse Automatic 
Differentiation (RAD). 

 
Automatic Differentiation and Symbolic differentiation are often confused. They are similar when 
dealing with single expressions (e.g. f(x) = x*x, in both cases give the same result, f'(x) = 
2*x), but the automatic differentiation method(s) include rules for efficiently differentiating 
sequences of instructions, exploiting the existent code structure to optimize the use of 
intermediate variables and (to some degree) control flow. 



 
Historically, Computer Algebra Systems (CAS) such as Macsyma (now Maxima [13]), Maple 
[14], and Mathematica [15] natively supported derivation as built-in (typically in the form of 
Symbolic Differentiation). 
 
In the last decades, several other libraries [2], implemented in many different languages, have 
been developed to solve the problem of differentiation, in the form of Automatic Differentiation 
(implementing forward mode or, more recently reverse mode).  
 
In the last few years, graph-based packages used in Deep Learning, such as Tensorflow, 
(py)Torch and mxNet, supported automatic differentiation too, and this gave them a competitive 
advantage to packages that didn't. These packages are used to implement the 
"backpropagation" step in training, which can be considered a special case of Automatic 
Differentiation in reverse mode ([9], [6]). 
 
More recently, some languages (e.g. Swift [7], Julia [4], Halide [8], DiffTaichi [16]) introduced 
differentiation as a first class citizen in the language, allowing differentiation of code under 
specific conditions (in a form more similar to AD than to SD). 
 

Numerical Differentiation 
 By definition the first derivative is 

(x)f ′ = lim
h→0 h

f (x+h)−f (x)  

The simplest finite differences method consists in applying the definition, but with a finite value 
for h. A naïve implementation follows directly from the definition, by replacing the limit with a 
small number taken as a parameter: 

 
 
 
Other methods use more sample points and different sampling schemes to achieve more 
precise results. 
Unfortunately, due to the nature of floating point representations used in modern computers, we 
cannot choose an arbitrarily small number for h, as on one side we need to have a value of h 
small enough to consider the finite difference a good enough approximation, but on the other 

template<typename F> 

double asymmetric_diff(F f, double h, double x) { 
    return (f(x+h) - f(x))/h; 

} 



side h need not to be too small to avoid introducing roundings and cancelations in our 
computation. 
The following figure shows the error of computing the derivative of the function sin(x) in x=1 as 
a function of the displacement h and type double.

 
And this is the same experiment with float.  

Empirically, the "sweet spot" is at h=5E-9 for double and h=2.5E-4 for float, but in other tests 
cases the optimal value can move by some orders of magnitude. Given T,  is the value ofεT  
std::numeric_limits<T>::epsilon(), some text report that the optimal value would be 

, but that's impossible to calculate in general, as it depends both on the value h = 2√εT f (x)/f (x)| ′′ |  
of x and the specific value of the function and its second derivative. In most cases, a good 
approximation is choosing .h = √εT  
 
 
 
 
 



Automatic Differentiation 

Algorithm and Transformation 
The AD transformation uses the properties of the Chain Rule of differential calculus: 
 

(g(h(x))) (g(h(w ))) (g(w )) (w )y = f = f 0 = f 1 = f 2 = w3  
w0 = x  

(w )w1 = h 0  
(w )w2 = g 1  
(w )w3 = f 2 = y  

 
=dx

dy dy
dw2 dw1

dw2
dx
dw1  

 
A straightforward interpretation of the mathematical properties is that each function can be split 
into smaller, atomic operations where the differentiation rules can be applied. We can 
automatically visit every expression and transform it. The canonical form of the chained rule 
expresses the derivative with respect to function’s input parameters, that is, the independent 
variable (seed) is the function parameter. This is useful when we compute a derivative in wrt a 
single parameter (a single direction). The complexity of the derivative computation depends on 
the number of the input parameters. This approach is called forward/tangent mode AD. Let's 
consider:  
 

 

 

(x , )f 1 x2 =  (x )1 − x2
2 + x2  when x1 > x2  

 x2  when x1 ≤ x2  

(x , )f 1 x2  f /dx1d  f /dx2d  

f(x1, x2) { 
  x1 = x1 
  x2 = x2 
  if (x1 > x2) 
    a = (x1 - x2)  
    b = a*a 
    return a + x2 
  return x2 
} 

f_dx1(x1, x2) { 
  dx1 = 1 
  dx2 = 0 
  if (x1 > x2) 
    da = dx1 - dx2 
    db = a*da + da*a 
    return da + dx2 
  return dx2 
} 

f_dx2(x1, x2) { 
  dx1 = 0 
  dx2 = 1 
  if (x1 > x2) 
    da = dx1 - dx2 
    db = a*da + da*a 
    return da + dx2 
  return dx2 
} 



 
 
When we start differentiating in multiple directions we will notice that a lot of the intermediary 
results can be shared between different directions of the derivatives with a little tuning. The 
chained rule is symmetrical. This means that we can express the canonical form of the chained 
rule with respect to the function’s output parameters instead. This means that the complexity of 
the algorithm will depend on the number of output parameters which in many cases is 
significantly smaller than the number of input parameters. This approach is called 
reverse/adjoint mode. It's harder to implement but it reuses many intermediary computations 
and reduces the algorithm complexity in most of the interesting cases, i.e. when the number of 
input parameters is much larger than the number of outputs. Let's consider again:  

 
 

 
 

Implementation Approaches 

Forward mode (aka Tangent Linear) 
In forward mode we compute derivatives of the output(s) with respect to each input 
independently, using the traditional chaining rules from analytical differentiation at each step. 

(x , )f 1 x2 =  (x )1 − x2
2 + x2  when x1 > x2  

 x2  when x1 ≤ x2  

(x , )f 1 x2   f (x , )∇ 1 x2  

f(x1, x2) { 
  x1 = x1 
  x2 = x2 
  if (x1 > x2) 
    a = (x1 - x2)  
    b = a*a 
    return a + x2 
  return x2 
} 

f_grad(x1, x2) 
  gz = 1 
  if (x1 > x2) { 
    a = x1 - x2 
    gx2 = gz 
    ga = a*gz + gz*a 
    gx2 += -ga 
    gx1 = ga 
    return {gx1, gx2} 
  gx2 = dz 
  gx1 = 0 
  return {gx1, gx2}; 
} 



The complexity of this method depends thus on the number of inputs, and so it should be 
applied when the number of inputs is relatively small, or when the number of outputs is very 
large. 
 
There are two ways to implement the Forward mode. 

Forward mode with Dual Numbers  
One method is using dual numbers (see appendix A). When an input variable x is replaced with 
a dual number of the form x + eps (i.e. having the epsilon part set to 1), the function will produce 
a result of type dual containing the function value at x together with its partial derivative with 
respect to x. 
 
For example, let's consider this function: 

 
But when we substitute the first type with a dual number, the result is: 

 
so f({x1, 1}, x2).real() is the same as f(x1, x2), while f({x1, 1}, x2).eps() is 
2*(x1-x2) for x1>x2 and 0 for x1<=x2, which is exactly the partial derivative of f with respect 
to x1. 
We can use a different kind of dual numbers (with one real component and multiple epsilon 
parts, one for each variable) for handling multiple parameters, and calculate all the partial 

double f(double x1, double x2) { 
    if (x1 > x2) { 
        double a = x1 - x2; 
        return a*a + x2; 
    } 

    return x2; 
} 

dual f(dual x1, double x2) { 
    if (x1.real() > x2) { 
        dual a = x1 - x2; // the dual number a has the  
                          // form {x1.real() - x2, x1.eps()}; 
        return a*a + x2; // the result is dual, and has the form 
                         // {(x1.real() - x2)*(x1.real() - x2) + x2, 
                         //       (x1.real() - x2)*x1.eps() + 
                         //              x1.eps()*(x1.real() - x2)} 

} 

return x2; // the result is a real, which can be  
                 // converted to a dual of the form {x2, 0} 
} 



derivatives in a single pass. The complexity of this method, in any of these cases, depends 
linearly on the number of input variables. 

Forward mode (AST Transformation) 
Another method is to produce one single piece of code that can then be customized in different 
ways, is also the method implemented in CLAD which performs an AST to AST transformation 
to produce a differentiated form. 
Let's use the same example as above: 

The function df produced by clang looks like: 

In df the two components dx1 and dx2 (and any other differential) form a versor (i.e. a vector 
having norm 1) along which the derivative is computed. The easiest way, which incidentally 
produces a lot of obvious optimization, is choosing dx and dy (and any other differential) to form 
a trivial orthonormal base, i.e. in this case (dx1 = 1, dx2 = 0) and (dx1 = 0, dx2 = 1). The 
two sets produce the two partial derivatives with respect to x and y respectively. Appendix C 
shows the AST of both f and df.  

Reverse mode (Adjoint) 
In reverse (adjoint) mode, the computation of derivatives proceeds from the outputs to the 
inputs, following the usual derivation chain rules. In this way the complexity of the final result is 
independent from the number of inputs. 
 

double f(double x1, double x2) { 
    if (x1 > x2) { 
        double a = x1 - x2; 
        return a*a + x2; 
    } 

    return x2; 
} 

double df(double x1, double x2) { 
  double dx1 = ?; 
  double dx2 = ?; 
  if (x1 > x2) { 
    double a = x1 - x2; 
    double da = dx1 - dx2; 
    return a*da + da*a + dx2; 
  } 

  return dx2; 
} 

double f(double x1, double x2) { 
    if (x1 > x2) { 



 

Library vs Language solution 
In the section about Automatic Differentiation we've shown some possible transformations of the 
source code in order to produce partial derivatives and gradients. Some of those solutions could 
be implemented as a Library in current C++ (e.g. forward differentiation with dual numbers, see 
[12]), and in general AD has been implemented in several libraries in modern C++ [2]. 
We found three main reasons to prefer a language solution to a library solution: 

● Type safety 
Most of these solutions make extensive use of the type system (TMP and Expression 
Templates) to achieve differentiation. As a result, little is left to enforce types in base and 
differentiated expressions. 
A language solution would also allow to differentiate with respect to complex types (e.g. 
structs, vectors) easily, without the need to re-specify the type. 

● Efficiency 
A library solution will have to make use of techniques like TMP and expression 
templates, which can end up being expensive for the compiler, as it will have to maintain 
all these intermediate types. It can also get less efficient when automatic inlining limits 
are reached. The compiler, on the other hand, is already aware of the AST 
representation of the original function, and can perform the differentiation tasks without 
burden to the (already abused) type system. 

● Completeness 

        double a = x1 - x2; 
        return a*a + x2; 
    } 

    return x2; 
} 

std::tuple<double, double> gradf(double x1, double x2) { 
    double gz = 1;      // return statement(s) 
    if (x1 > x2) { 
        double a = x1 - x2;      // From forward pass 
        double gx2 = gz;         // +x2 part of "return a*a+x2;" 
        double ga = a*gz + gz*a; // a*a part of "return a*a+x2;" 
        gx2 += -ga;              // -x2 part of "a = x1 - x2;" 
        double gx1 = ga;         // x part of "a = x1 - x2;" 
        return {gx1, gx2}; 
    } 

    double gx2 = gz;     // x2 part of "return x2" 
    return {0, gx2};     // x1 isn't involved in the computation 
} 



Differentiating control flow code could be impossible for a library solution (or requires 
changing the code significantly, affecting readability), while it's feasible in the language 
[4] 

 
Here are some examples of the problems mentioned above: 

Example 1: Forward differentiation with Boost.Math 
First of all, let's consider the impact of using a library solution by evaluating the impact of 
including the Boost.Math autodiff header (boost/math/differentiation/autodiff.hpp) in 
an otherwise empty file. 
 

 
So in every compiler tested, just including the autodiff header adds several seconds to the 
compilation and multiple hundreds of kilobytes to the final executable. We didn't measure impact 
on memory allocated by the compiler, but we expect a significant difference there too. 
 
Let's now consider the same example we used in the previous section, and show how to 
implement it in boost.math: 

 
First of all, this function needs to be rewritten as generic, at least in the parameter we want to 
differentiate, as it cannot be consumed from boost.math otherwise. 
We could be tempted to write the function like this: 

  int main() {} +#include 

  Time (ms) Size (KB) Time (ms) Size (KB) 

GCC 9.2 No option 48 ~1 2218 220 

-O3 49 ~1 2281 48 

Clang 9.0.0 No option 89 ~1 2404 158 

-O3 91 ~1 2488 23 

double f(double x1, double x2) { 
    if (x1 > x2) { 
        double a = x1 - x2; 
        return a*a + x2; 
    } 

    return x2; 
} 

template<typename X1, typename X2> 



But that wouldn't work, as the two return statements are returning two different types. In case 
of multiple input parameters, we also have to use a special return type, promote<...>: 

Thus making the language in which we're writing the function more and more distant than plain 
C++. If we want to get the partial derivative w.r.t. x1, we have to write this code: 

Example 2: Reverse differentiation with Enoki 
Since Boost.Math doesn't support reverse-mode automatic differentiation, we'll show this 
example in Enoki [19]. 
 
We also have a similar table for compilation times, this time size increase is less relevant, as 
Enoki also links against a dynamic library of more than 500KB. 
 

 

auto f(X x1, X2 x2) { 
    if (x1 > x2) { 
        auto a = x1 - x2; 
        return a*a + x2; 
    } 

    return x2; 
} 

template<typename X1, typename X2> 
promote<X1, X2> f(X1 x1, X2 x2) { 

    if (x1 > x2) { 
        auto a = x1 - x2; 
        return a*a + x2; 
    } 

    return x2; 
} 

auto x1 = make_fvar<double, 1>(2.0); 
auto z = f(x1, 1.0); 

  int main() {} +#include 

  Time (ms) Size (KB) Time (ms) Size (KB) 

GCC 9.2 No option 48 ~1 1049 18 

-O3 49 ~1 1180 7 

Clang 9.0.0 No option 89 ~1 1190 8 

-O3 91 ~1 1017 7 



 
Reverse differentiation needs to know the computational graph in order to reverse the order of 
the operations when computing the gradient, and thus cannot traverse all the control flows. For 
this reason, reverse-mode enabled frameworks usually provide a custom alternative to the 
condition if. In Enoki this function is called select. For this reason, our function becomes less 
and less readable: 

For completeness, we report the code used to produce the full gradient: 

Goals 
In this section we want to define which property a good solution should have, and share our 
study about the use cases of AD in C++. 
First and foremost, what our experience with various libraries and tools told us in the last 
months, is that we want to avoid a shadow language. A shadow language, or a shadow world, is 
a part of language that is isolated from the rest of the language, where special rules apply to do 
normal things. One clear example of such a language, as seen in the previous section, is the 
use of "select" in place of "if" in Enoki. 
In this section we will first list the features an AD system embedded in C++ should have. Some 
of these features might be difficult to implement in C++, and some might require some extra 
study. For this reason, this section can be used to draw the direction, but not all features need 
to be introduced in the first incarnation of AD support in C++. 
We're trying to remain independent from a specific solution (language or library), but in most 
cases our ideal solution requires some new language features seem to be necessary even for a 
library solution (to avoid creating a shadow language, or simply to improve for compile-time and 
run-time performance). We tried to explore the space of the language features, but we couldn't 
find a minimal set that was small and simple enough to be easily implemented and tested as a 
PoC. 

template<typename Value> 
Value f(Value x1, Value x2) { 
    return select(x1>x2, (x1-x2)*(x1-x2) + x2, x2); 
} 

FloatD x1 = 2.0; 
FloatD x2 = 1.0; 
set_requires_gradient(x1); 

set_requires_gradient(x2); 

FloatD z = f(x1, x2); 

backward(z); 

return {gradient(x1), gradient(x2)}; 



Constructs 
Support for all control flow constructs: if, while, for and recursion. 
Ideally, we would like to differentiate existing code, so we would like to drop the requirement of 
the function to be templated in the first place (i.e., we would like to apply AD to existing 
non-generic code, potentially written in plain C). 

Data Types 
AD can be applied to all floating point data types. 
We want to apply it to functions with argument types float, double, long double and any other 
floating point type the language will support in future, and to compiler-specific floating point 
types.. 
Also, arrays and structs containing those types could be used in AD, as well as some 
dynamically-sized structures (e.g. std::vector<float>, matrices, etc...). 

Examples 
AD can be applied in a number of ways: 

● solving differential equations 
● optimization/model fitting 

○ bundle adjustment 
○ GMM 
○ deep learning training (to implement the "backpropagation step", used to 

compute gradients for first-order optimization method) 
 

Many of these use cases can be found in various examples, for example in Microsoft ADBench 
[28] and Enzyme's benchmark suite [29]. 
 
Another notable use of automatic differentiation in the last few years is the shift, when possible, 
away from "black box" methods (e.g. reinforcement learning methods) and towards the 
corresponding "differentiable box" methods. This allows to reduce the number of training 
episodes to training a model, for example in [27] training a cartpole controller with RL required 
hundreds of episodes, while it only needed 5 episodes when using a differentiable physics 
simulator. Differentiable programming can be used to create those "differentiable boxes", a 
differentiable physics simulator in this example (see also [16]). 
 
One important aspect for all these methods is to interact with existing libraries (provided in 
source), custom data types, and even old C-style code. In the following case, the following 
example shows how Enzyme can interact with existing matrix libraries such as Eigen: 



Implementation 
In the compiler, the differentiation can be implemented in different ways, we know of two 
different ways that can be applied to a C++ compiler (specifically, to clang). 

● Transforming the AST (Appendix C) 
This is implemented in CLAD [10][20] 

● Transforming the SSA IR (Appendix B) 
This is implemented by LLVM’s Enzyme [21] and Julia's Zygote [4] 
 

This leaves some freedom to compiler implementers to decide the strategy that best suits their 
product. 

Appendix A: Dual Numbers 
Dual numbers (Clifford, 1873) are defined in a way similar to complex numbers, with a real 
component and another component multiplied by a base ε. ε is not a real number, but has the 
property ε2 = 0 (as opposed as i2 = -1 for the imaginary base of complex numbers). 

Properties 
a, b ∈ ℛ, ε ∉ ℛ, ε2 = 0 ⇒ a + εb  is a dual number 

__attribute__((noinline)) 

static double matvec(const MatrixXd* __restrict W, const MatrixXd* 
__restrict M) { 
  MatrixXd diff = *W-*M; 

  return (diff*diff).sum(); 
} 

 

int main(int argc, char** argv) { 
    MatrixXd W = Eigen::MatrixXd::Constant(IN, OUT, 1.0); 
    MatrixXd M = Eigen::MatrixXd::Constant(IN, OUT, 2.0); 
  

    MatrixXd Wp = Eigen::MatrixXd::Constant(IN, OUT, 0.0); 
    MatrixXd Mp = Eigen::MatrixXd::Constant(IN, OUT, 0.0); 
  

    __enzyme_autodiff((void*)matvec, &W, &Wp, &M, &Mp); 
    ... 

} 



Interactions with ℛ 
Given a, b, c ∈ ℛ 
(a+εb) + c = (a+c) + εb 
(a+εb) * c = (ac) + ε(bc) 
 

Interactions between dual numbers 
 

1. Sum of two dual numbers 
Given a, b, c, d ∈ ℛ 
(a+εb) + (c+εd) = (a+c) + ε(b+d) 
The sum of two dual number is the sum of their components 
 

2. Product of two dual numbers 
Given a, b, c, d ∈ ℛ 
(a+εb) * (c+εd) = (ac) + ε(ad+bc) + ε2bd 
The real part of the product of two dual numbers is the product of the real parts. The 
epsilon part, on the other hand, is the sum of the products of the real part of the first 
number by the epsilon component of the second number, and the real part of the second 
number and the epsilon component of the first. The ε2 part is ignored as, by definition ε2 
is zero. 
 

3. Square of a dual number 
Given a, b ∈ ℛ 
(a+εb)2 = a2 + ε(ab + ba) + ε2b2 = a2 + 2ε(ab) 
The square of a dual number is equivalent to multiplying the dual number by itself, so 
from the previous case we have that the real part is squared and the epsilon part is two 
times the product of the real and epsilon part. 
Note that if you consider the case b=1, the real part is the real part squared, and the 
coefficient of epsilon is 2a. 
 

4. n-th power of a dual number 
Given a, b ∈ ℛ 
(a+εb)n = an + ε(a…ab + aba…a + a…ab) + … = an + ε(nan-1b) 
The n-th power of a dual number follows similar rules, but in this case the real part is an 
and the epsilon part is nan-1b. 
Note again that when b=1, the epsilon part is nan-1. 
 

5. For a given function f(x), switching the parameter x with z=x+ε, the function obtained f(z) 
has an interesting property: the real part of f(z) (denoted as Re[f(z)]) is the same as f(x), 
while the epsilon part (denoted as Eps[f(z)]) is its derivative. Given a ∈ ℛ 



 
6. We will now show that given any function that can be expressed as a MacLaurin series, 

the property at 5 is maintained. Given ak ∈ ℛ 
 

 
 

 
Reference implementation can be found in [12] path pan/include/pan/bases, in particular files 
dual.hpp, epsilon.hpp, base.hpp. 

Appendix B: Result of Enzyme’s LLVM-based AD  
Unlike existing AD tools, Enzyme performs automatic differentiation inside the compiler’s 
internal representation [21]. Enzyme replaces all calls to a special builtin function 
“__enzyme_autodiff” with a corresponding gradient that is synthesized at compile time. 
 
Operating at the compiler level provides several benefits including the ability to differentiate 
multiple languages and differentiate after optimization. Differentiating after optimization provides 
a 4.2x speedup over equivalent tools that differentiate before optimization. 

f(x) f(z) = f(x+ε) Re[f(z)] Eps[f(z)] 

a a a 0 

x x + ε x 1 

x+a (x + a) + ε x+a 1 

ax ax + εa ax a 

xn xn + ε(nxn-1) xn nxn-1 

(x) x xf = ∑
∞

k=0
ak k = a0 + ∑

∞

k=1
ak k  MacLaurin expansion of function (x)f  

(z) zf = a0 + ∑
∞

k=1
ak k  is dualz  

(x ) (x )f + ε = a0 + ∑
∞

k=1
ak + ε k  z = x + ε  

(x ) x kxf + ε = a0 + ∑
∞

k=1
ak k + ε ∑

∞

k=1
ak

k−1  Splitting the sum in two sums. 

(x ) (x) f (x)f + ε = f + ε ′   

https://github.com/mfoco/pan/tree/master/pan/include/pan/bases
https://github.com/mfoco/pan/blob/master/pan/include/pan/bases/dual.hpp
https://github.com/mfoco/pan/blob/master/pan/include/pan/bases/epsilon.hpp
https://github.com/mfoco/pan/blob/master/pan/include/pan/bases/base.hpp
https://enzyme.mit.edu/


 
For example, consider the following program that normalizes a vector in O(N^2) time. Running 
loop-invariant code-motion (LICM) reduces the runtime to O(N) by moving the call to mag 
outside the loop. 
 

 
Differentiating the O(N) optimized program results in the O(N) gradient on the left, which has the 
corresponding grad_mag call outside the loop. If AD is run first, then the call to grad_mag 
remains inside the loop as shown on the right. A subsequent run of the LICM optimization, 
however, cannot move the call to grad_mag outside the loop as it uses the variable d_res, 
defined in the loop. 
 

// Compute magnitude in O(N) 

float mag(const float* x); 
 

void norm(float* out, float* in) { 
    // code motion optimization can move outside the loop 
    // float res = mag(in); 
    for(int i=0; i<N; i++) { 
      out[i] = in[i]/mag(in); 

    } 

} 

 

void __enzyme_autodiff(void*, ...); 
 

void grad_norm(float* out, float* d_out, float* in, float* d_in) { 
  __enzyme_autodiff((void*)norm, out, d_out, in, d_in); 
} 

Loop-Invariant Code Motion, then AD, O(N) AD, then LICM, O(N^2) 

void grad_norm(float* out, float* d_out, 
               float*  in, float* d_in) 
{ 

  float res = mag(in); 
  for (int i=0; i<N; i++) { 
    out[i] = in[i]/res; 

  } 

  float d_res = 0; 
  for (int i=0; i<N; i++) { 
    d_res += -in[i]*in[i]/res \  

                    * d_out[i]; 

    d_in[i] += d_out[i]/res; 

  } 

void grad_norm(float* out, float* d_out, 
               float*  in, float* d_in) 
{ 

  float res = mag(in); 
  for (int i=0; i<N; i++) { 
    out[i] = in[i]/res; 

  } 

  for (int i=0; i<N; i++) { 
    float d_res = -in[i]*in[i]/res \ 
                        * d_out[i]; 

    d_in[i] += d_out[i]/res; 

    grad_mag(in, d_in, d_res); 

  } 



 
 
When evaluated on a machine-learning focused benchmark suit, Enzyme outperforms existing 
state-of-the art source-transformation tools (Tapenade [23]), operator overloading tools (Adept 
[24]), and a modified version of Enzyme (Ref) that runs optimizations before AD, like other tools. 

  grad_mag(in, d_in, d_res); 

} 
} 

 

Figure: Relative speedup (higher is better) comparing Enzyme-style AD to state-of-the-art 
tools on Microsoft’s ADBench suite [22]. Enzyme performs AD in the compiler after 
optimization. Ref performs Enzyme AD before optimization. Tapenade is a state-of-the-art 
source-rewriter AD tool and Adept is a state-of-the-art operator-overloading AD tool. 
 
Operating at the compiler IR level makes it easier to integrate and interoperate with existing 
AD tools.  
 
Zygote.jl [4] is a popular AD framework for the Julia language. However, it suffers from ill 
performance on scalar codes. As Julia also lowers to LLVM, Enzyme.jl can be used to provide 
high-performing scalar AD within Julia. 
 

A function computing a 
Taylor expansion in Julia.  

The runtime of the gradient, 
as computed by Enzyme.jl 
and two common Julia AD 
frameworks. 

An example embedding of 
Enzyme into Zygote to use 
Enzyme’s efficient 
implementation of scalars. 

function f(x) 
  sum = zero(x) 

    for i = 1:10 ̂7 

Tool        Runtime (s)  
Enzyme.jl     0.810 

using Zygote, Enzyme  
 

Zygote.@adjoint f(x),  



Appendix C: CLAD forward differentiation 
Original function f: 

 
AST form of f: 
 

 
Enzyme also provides plugins for PyTorch [25] and TensorFlow [26], allowing users of those 
machine-learning frameworks to import existing C/C++ programs without rewriting. 

 

      sum += x^i / i 

    end 
  return sum 
end 

Zygote.jl    24.638 
AutoGrad.jl 609.256 

  Enzyme.pullback(f, x)  

Zygote.gradient(f, 0.5) 

PyTorch Integration TensorFlow Integration 

import torch 
from torch_enzyme import enzyme 
 

# Create some initial tensor 

inp = ... 

 

# Apply foreign function to tensor 

out = enzyme("test.cpp",  

             "f").apply(inp) 
 

 

# Derive gradient 

out.backward() 

print(inp.grad) 

import tensorflow as tf 
from tf_enzyme import enzyme 
 

# Create some initial tensor 

inp = tf.Variable(...) 

 

# Use external code as a TF op 

out = enzyme(inp, 

             filename="test.cpp", 
             function="f") 
 

# Results is a TF tensor 

out = tf.sigmoid(out) 

double f(double x1, double x2) { 
    if (x1 > x2) { 
        double a = x1 - x2; 
        return a*a + x2; 
    } 

    return x2; 
} 

FunctionDecl f 'double (double, double)' 



 
AST form of df: 
 

|-ParmVarDecl x1 'double' 
|-ParmVarDecl x2 'double' 
`-CompoundStmt 

  |-IfStmt  

  | |-BinaryOperator 'bool' '>' 
  | | |-ImplicitCastExpr 'double' <LValueToRValue> 
  | | | `-DeclRefExpr 'double' lvalue ParmVar 'x1' 'double' 
  | | `-ImplicitCastExpr 'double' <LValueToRValue> 
  | |   `-DeclRefExpr 'double' lvalue ParmVar 'x2' 'double' 
  | `-CompoundStmt 

  |   |-DeclStmt  

  |   | `-VarDecl a 'double' cinit 
  |   |   `-BinaryOperator 'double' '-' 
  |   |     |-ImplicitCastExpr 'double' <LValueToRValue> 
  |   |     | `-DeclRefExpr 'double' lvalue ParmVar 'x1' 'double' 
  |   |     `-ImplicitCastExpr 'double' <LValueToRValue> 
  |   |       `-DeclRefExpr 'double' lvalue ParmVar 'x2' 'double' 
  |   `-ReturnStmt 

  |     `-BinaryOperator 'double' '+' 
  |       |-BinaryOperator 'double' '*' 
  |       | |-ImplicitCastExpr 'double' <LValueToRValue> 
  |       | | `-DeclRefExpr 'double' lvalue Var 'a' 'double' 
  |       | `-ImplicitCastExpr 'double' <LValueToRValue> 
  |       |   `-DeclRefExpr 'double' lvalue Var 'a' 'double' 
  |       `-ImplicitCastExpr 'double' <LValueToRValue> 
  |         `-DeclRefExpr 'double' lvalue ParmVar 'x2' 'double' 
  `-ReturnStmt 

    `-ImplicitCastExpr 'double' <LValueToRValue> 
      `-DeclRefExpr 'double' lvalue ParmVar 'x2' 'double' 

FunctionDecl df 'double (double, double)' 
|-ParmVarDecl x1 'double' 
|-ParmVarDecl x2 'double' 
`-CompoundStmt 

  |-DeclStmt 

  | `-VarDecl dx1 'double' cinit 
  |   `-FloatingLiteral 'double' ? 
  |-DeclStmt 

  | `-VarDecl dx2 'double' cinit 



 
 

  |   `-FloatingLiteral 'double' ? 
  |-IfStmt 

  | |-BinaryOperator 'bool' '>' 
  | | |-ImplicitCastExpr 'double' <LValueToRValue> 
  | | | `-DeclRefExpr 'double' lvalue ParmVar 'x1' 'double' 
  | | `-ImplicitCastExpr 'double' <LValueToRValue> 
  | |   `-DeclRefExpr 'double' lvalue ParmVar 'x2' 'double' 
  | `-CompoundStmt 

  |   |-DeclStmt 

  |   | `-VarDecl a 'double' cinit 
  |   |   `-BinaryOperator 'double' '-' 
  |   |     |-ImplicitCastExpr 'double' <LValueToRValue> 
  |   |     | `-DeclRefExpr 'double' lvalue ParmVar 'x1' 'double' 
  |   |     `-ImplicitCastExpr 'double' <LValueToRValue> 
  |   |       `-DeclRefExpr 'double' lvalue ParmVar 'x2' 'double' 
  |   |-DeclStmt 

  |   | `-VarDecl da 'double' cinit 
  |   |   `-BinaryOperator 'double' '-' 
  |   |     |-ImplicitCastExpr 'double' <LValueToRValue> 
  |   |     | `-DeclRefExpr 'double' lvalue Var 'dx1' 'double' 
  |   |     `-ImplicitCastExpr 'double' <LValueToRValue> 
  |   |       `-DeclRefExpr 'double' lvalue Var 'dx2' 'double' 
  |   `-ReturnStmt 

  |     `-BinaryOperator 'double' '+' 
  |       |-BinaryOperator 'double' '+' 
  |       | |-BinaryOperator 'double' '*' 
  |       | | |-ImplicitCastExpr 'double' <LValueToRValue> 
  |       | | | `-DeclRefExpr 'double' lvalue Var 'a' 'double' 
  |       | | `-ImplicitCastExpr 'double' <LValueToRValue> 
  |       | |   `-DeclRefExpr 'double' lvalue Var 'da' 'double' 
  |       | `-BinaryOperator 'double' '*' 
  |       |   |-ImplicitCastExpr 'double' <LValueToRValue> 
  |       |   | `-DeclRefExpr 'double' lvalue Var 'da' 'double' 
  |       |   `-ImplicitCastExpr 'double' <LValueToRValue> 
  |       |     `-DeclRefExpr 'double' lvalue Var 'a' 'double' 
  |       `-ImplicitCastExpr 'double' <LValueToRValue> 
  |         `-DeclRefExpr 'double' lvalue Var 'dx2' 'double' 
  `-ReturnStmt 

    `-ImplicitCastExpr 'double' <LValueToRValue> 
      `-DeclRefExpr 'double' lvalue Var 'dx2' 'double' 



References 
[1] Various Authors 

Wikipedia entry: Differentiable Programming 
[2] Various Authors, 

Community Portal for Automatic Differentiation 
[3] Christian Bischof and Martin Bücker, 

Computing Derivatives of Computer Programs 
Modern Methods and Algorithms of Quantum Chemistry: Proceedings, Second Edition 
NIC-Directors, 2000 

[4] Michael Innes 
Don't Unroll Adjoint: Differentiating SSA-Form Programs 

[5] Cristian Homescu 
Adjoints and Automatic (Algorithmic) Differentiation in Computational Finance 
arXiv, 10 Jul 2011 

[6] Bert Speelpenning 
Compiling fast partial derivatives of functions given by algorithms 
Technical report, Illinois Univ., Urbana (USA). Dept. of Computer Science, 1980 

[7] Swift for Tensorflow 
(retrieved May 2019) 

[8] Tzu-Mao Li 
Differentiable Visual Computing 
PhD Thesis at MIT, June 2019 

[9] Phil Ruffwind 
Reverse-mode automatic differentiation: a tutorial 

[10] Vassilev, V., Vassilev, M., Penev, A., Moneta, L. and Ilieva, V., 2015. Clad—automatic 
differentiation using Clang and LLVM. In Journal of Physics: Conference Series (Vol. 608, 
No. 1, p. 012055). IOP Publishing. 

[11] Dan Piponi 
Automatic Differentiation, C++ Templates and Photogrammetry 

[12] Marco Foco 
PAN repository - experiments in differentiability 

[13] Maxima Open Source Project Website 
[14] Maplesoft's Maple Website 
[15] Wolfram's Mathematica Website 
[16] Yuanming Hu, Luke Anderson, Tzu-Mao Li, Qi Sun, Nathan Carr, Jonathan Ragan-Kelley, 

Frédo Durand 
DiffTaichi: Differentiable Programming for Physical Simulation 

[17] A. Baydin, B. Pearlmutter, A. Radul, and J. Siskind 
Automatic Differentiation in Machine Learning: a Survey 
Journal of Machine Learning Research, 2018 

https://en.wikipedia.org/wiki/Differentiable_programming
https://www.autodiff.org/
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.140.7496&rep=rep1&type=pdf
https://arxiv.org/abs/1810.07951
https://arxiv.org/abs/1107.1831
https://www.osti.gov/servlets/purl/5254402
https://www.tensorflow.org/swift
https://people.csail.mit.edu/tzumao/phdthesis/phdthesis.pdf
https://rufflewind.com/2016-12-30/reverse-mode-automatic-differentiation
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.89.7749&rep=rep1&type=pdf
https://github.com/mfoco/pan
http://maxima.sourceforge.net/
https://www.maplesoft.com/products/Maple/
https://www.wolfram.com/mathematica/
https://arxiv.org/abs/1910.00935
http://jmlr.org/papers/volume18/17-468/17-468.pdf


[18] Various Authors (Matthieu Pulver for autodiff.hpp) 
Boost.Math repository 

[19] Wenzel Jakob 
Enoki library 

[20]   Vassil Vassilev, et al 
CLAD repository 

[21] Instead of Rewriting Foreign Code for Machine Learning, Automatically Synthesize Fast 
Gradient, 2020. Moses, William S. and Churavy, Valentin. In Advances in Neural 
Information Processing Systems 33 

[22] Filip Srajer, Zuzana Kukelova, and Andrew Fitzgibbon. A benchmark of selected algorithmic 
differentiation tools on some problems in computer vision and machine learning. 
Optimization Methods and Software, 33(4-6):889–906, 2018. 

[23] L. Hascoët and V. Pascual. The Tapenade Automatic Differentiation tool: Principles, Model, 
and Specification. ACM Transactions On Mathematical Software, 39(3), 2013. 

[24] Robin J Hogan. Fast reverse-mode automatic differentiation using expression templates in 
C++. ACM Transactions on Mathematical Software (TOMS), 40(4):1–16, 2014. 

[25] Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang, Zachary 
DeVito, Zeming Lin, Alban Desmaison, Luca Antiga, and Adam Lerer. Automatic 
differentiation in PyTorch. In NIPS 2017 Workshop Autodiff, 2017. 

[26] Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey Dean, 
Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard, et al. TensorFlow: A 
system for large-scale machine learning. In 12th USENIX Symposium on Operating 
Systems Design and Implementation (OSDI 16), pages 265–283, 2016. 

[27] Mike Innes, Neethu Maria Joy, Tejan Karmaly 
Reinforcement Learning vs. Differentiable Programming 
ODSC - Open Data Science | Medium 

[28] Microsoft 
ADBench repository 

[29] William S. Moses, et al 
Enzyme repository 

https://github.com/boostorg/math
https://enoki.readthedocs.io/
https://github.com/vgvassilev/clad
https://medium.com/@ODSC/reinforcement-learning-vs-differentiable-programming-48528f464795
https://github.com/microsoft/ADBench
https://github.com/wsmoses/Enzyme/tree/master/enzyme/benchmarks

