
Document: P2034R0
Author: Ryan McDougall <mcdougall.ryan@gmail.com>
Audience: EWG-I
Project: ISO/IEC JTC1/SC22/WG21 14882: Programming Language — C++

Partially Mutable Lambda Captures

Background
Lambdas were introduced in N2550, and while previous drafts considered mutable capture
by value, the original wording left captures entirely const. N2658 salvaged mutable for all
captures by allowing mutable keyword to modify the call.

P0288 was approved by LEWG, and a central improvement is that it respects the const
modifier on function types (ie. any_invocable<void(int) const>). This means an
any_invocable with a const modifier on its call type will only bind to lambdas that are not
marked mutable .

A type that is “logically const” is a type that has some mutable members that do not
fundamentally change the invariants of the object, even when it is const. This means
any_invocable , and any other const-correct library, cannot work with logically const
lambdas.

Motivation
Type erased callables like std::function or std::any_invocable are the backbone
of most asynchronous systems. Users of such systems close their operations in lambdas
and place them in a concurrent queue to be processed elsewhere. Performance is often key
in such systems, and such operations may want its own local reusable scratch memory. Or
perhaps an accumulator for hysteresis over multiple calls.

struct MyRealtimeHandler {

 const Callback callback_;

 const State state_;

 mutable Buffer accumulator_;

 void operator(Timestamp t)() const {

 callback_(state_, accumulator_, t);

 }

};

concurrent::queue<any_invocable<void(Timestamp) const> queue;

queue.push(MyRealtimeHandler{f, s});

Moreover, a classic use for mutable members in bespoke classes is std::mutex .

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2550.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2529.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2658.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2019/p0288r5.html
https://isocpp.org/wiki/faq/const-correctness#mutable-data-members

struct MyThreadedAnalyzer {

 const State& state_;

 mutable std::mutex& mtx_;

 void operator(Slice slice)() const {

 std::lock_guard<std::mutex> lock{mtx_};

 analyze(state_, slice);

 }

};

concurrent::queue<any_invocable<void(Slice) const> queue;

queue.push(MyThreadedAnalyzer{s, m});

L ambdas in such cases require work-arounds, such as abandoning logical const
correctness, or using intermediary types (such as std::ref) that do not propagate
constness.

Proposal
Allow lambda capture initialization to be mutable qualified, as below. This would have the
effect of declaring the captured variable to be mutable.

auto a = [mutable x, y]() {};

// equivalent to:

struct A {

 mutable X x;

 const Y y;

 void operator() const {}

};

Before After

struct A {

 const State state;

 mutable Buffer buf;

 void operator() const {

 // ...

 }

};

// manual bespoke type
any_invocable<void() const> f = A{s, b};

any_invocable<void() const> f =

 [s, mutable b]() {

 // ...

 };

// loss of const correctness
any_invocable<void()> f =

any_invocable<void() const> f =

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2013/n3610.html

 [s, b]() mutable {

 // ...

 };

 [s, mutable b]() {

 // ...

 };

// loss of regular value type
any_invocable<void()> f =

 [s, buf_ptr = &b]() mutable {

 // ...

 };

any_invocable<void() const> f =

 [s, mutable buf = b]() {

 // ...

 };

struct B {

 const State& state;

 mutable std::mutex& mtx;

 void operator() const {

 // ...

 }

};

// manual bespoke type
any_invocable<void() const> f = B{s, m};

any_invocable<void() const> f =

 [&s, mutable &m]() {

 // ...

 };

// loss of const correctness
any_invocable<void()> f =

 [&s, &m]() mutable {

 // ...

 };

any_invocable<void() const> f =

 [&s, mutable &m]() {

 // ...

 };

// manual non-const-propagating wrapper
any_invocable<void()> f =

 [&s, mtx = std::ref(m)]() mutable {

 // ...

 };

any_invocable<void() const> f =

 [&s, mutable &mtx = m]() {

 // ...

 };

Possible Extensions
1. If lambda capture initialization can be modified by mutable and lambda call can be

modified by mutable , then lambda calls modified by mutable should be able to
declare some of their captures const .

auto b = [x, const y]() mutable {};

// equivalent to:

struct B {

 X x;

 const Y y;

 void operator() {}

};

2. For full symmetry it should be allowed to declare the lambda call const -- just as you

are able in a bespoke callable function object. Presumably the user would declare

the lambda mutable or const according to ideal semantics, and some minority of
capture initialization would be the opposite, as an exception.

auto c = [const x, mutable y]() const {};

// equivalent to:

struct C {

 const X x;

 mutable Y y;

 void operator() const {}

};

Thanks
Credit to my colleague Patrick McMichael for suggesting the idea and reviewing the draft.

