
Document Number: P1443R0 
Date:   2019-01-21 
Authors:  Michael Wong 
Project:   Programming Language C++, SG14 Games Dev/Low Latency/Financial 
Trading/Banking/Simulation/Embedded  
Reply to:  Michael Wong <michael@codeplay.com> 
 

SG14: Low Latency Meeting Minutes 2018/07/11-
2019/01/09 
 
 

Contents 
Minutes for 2018/07/11 SG14 Conference Call ............................................................................. 2 

Minutes for 2018/08/15 SG14 Conference Call ........................................................................... 10 

Minutes for 2018/09/12 SG14 Conference Call ........................................................................... 17 

Minutes for 2018/10/10 SG14 Conference Call ........................................................................... 21 

Minutes for 2018/12/12 SG14 Conference Call ........................................................................... 26 

Minutes for 2019/01/09 SG14 Conference Call ........................................................................... 32 

 

 



Minutes for 2018/07/11 SG14 Conference Call 
Agenda: 

1. Opening and introductions 

1.1 Roll call of participants 

Michael Wong, Andreas Weis, Andreas Fertig, Ben Craig, , Hubert Tong,  , Joseph Loser, Kevin 
Boissonneault, Dan Kalowsky, Herb Sutter, Lei Hou, Paul Bendixen, Mateusz Pusz, Rene 
Rivera, Vinnie Falco, Arthur O dwyer, John MacFarlane, Ben Saks , Dalton Woodard 

 
1.2 Adopt agenda 

 

Yes  

1.3 Approve minutes from previous meeting, and approve publishing  previously approved 
minutes to ISOCPP.org 

Yes  

1.4 Action items from previous meetings 

2. Main issues (125 min) 

2.1 General logistics 

Review last call discussions 

RAP C++ Std meeting updates  
P709 was reviewed at LEWG, just 2 sections, that SG14 approved, changing precondiitons in std 
lib from exceptions to contracts, already doing this since Walter Brown's papers 
also reviewed out of memory treat like other errors, LEWG liked it a lot, path needs to be 
worked out, and needs braoder opininon and review, 
Post meeting mailing of paper, change the defaul new handler from throwing bad alloc to 
terminate 
the other 2 parts was not part of LEWG, opt in light weigh exceptions, and try catch sugar, these 
needs to go to EWG, likely SAN, or Kona 
 
Paul B: ranges in embedded domains, seems to progressing 
seems to blow up your executable , seems to confuse the optimizer, fn calls do not get foled 
away, code size 
is it V3, or V2 (Concept enabled)< send direct to casey carter, or Eric Niebler 



AI  Paul Bendixen: was looking at original Eric Niebler version, will connect with Casey, Eric, 
and Craig 
 
CPpCON SG14: please sign up at SG14, only 50 seats left 
FYI: same room as last time, same number of paid ticket 40 last year 
 
Matt Bentley: std: list changes for that for std2; std2 is no more 
Titus on cppcast mentions making chanegs without separate namespace, multirevision changes  
OK this could work well, this is what I am looking for, remove slice, and change complexity 
requirements, opens up std:list to be implemented more efficiently 
will rewrite the paper 
 

 
2.2 Paper reviews 

 
2. 2.1 papers by Ben Craig: 
I would like to discuss P1105R0 "Leaving no room for a lower-level language: A C++ Subset" 
 
Pre mailing draft discussion here... 
https://groups.google.com/a/isocpp.org/forum/m/#!topic/sg14/xC1QeOyMDho 
 
 
RTTI, etc (all in red box) none will be required in a free standing impl of C++, use feature test 
macro to test for it 
exceptions are not required  
Global init and tear down 
constructor running before main, none is required in C++98 for freestanding, all impl defined,  
 
dont want to make it required as it is not free 
 
new stuff: 
new dynamic exceptions,  
throw is UB: allows people to translate exception from exception to error code,  
have polls for this 
if const expr false branch still has to look OK, can be just token soup, keeping exception 
hierarchy will allow such code to exists 
Hubert: show focus on code gen here for if const expr false 
fno-exception on IBM platforms need to be aware of this,  
 
Need to find a different way to phrase this, if const expr false is close but may not be exactly 
right 
 
Vinnie: what about function level? thread safe statics,  
if u have a constructor then it is ill-formed, 
all this is done before fn runs, so impl defined. 

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p1105r0.html
https://groups.google.com/a/isocpp.org/forum/m/#!topic/sg14/xC1QeOyMDho


 
if exception is turned off, noexcept returns false most times, but  
if u explicitly said noexcept false, we will respect that otherwise, true 
this will leave the door open for static exceptions 
 
Arthur: a bit nervous about this 
want freestanding as a strict subset 
 
Hubert: signature changing, its the tip of the iceberg, requirement on program is such that u 
really cant mix object files, really different world, no binary compat between hosted and 
frestanding 
 
No mention of ABI compatibility, have to pick one for mixing object files, crossing library 
boundaries 
This last bit was Ben's response. The answer was that mixing object files will indeed run into 
snags, but shared libraries (HT: with proper encapsulation) could work. 
Herb: do u want comment on this now,  
as the type system is not part of this, vast majority of std lib is pre conditions,  you are doing this 
preemptively, and lib will catch up 
if u throw bad alloc it will terminate 
changing code to noexcept, chanegs it to a fn that throws pretends liek it never fails 
A: I dodged the problem in freestanding, this builds on P0829 free standing, I include only things 
that do not throw and do not allocate,  I dont propose alternative error handling just avoid them 
OK you ban fns that allocate, could allow some of those,  
A: provide legal extensions 
 
slide 5: these features without an OS dont build, mostly linker warnings 
pull in heavier weigh floating library that bloats your code 
 
if you use within an  OS kernel, same things will likely blow up 
thread safe statics and floating point will do the wrong thing 
 
if you use these in a C++ Signal handler, same things lead to UB 
 
intent to have free standing get the nearly full language, allows EA, Bloomberg to just use the 
free standing bits that work 
 
slide 14/15 from D & E 
 
Herb: may have a chance for a subset, freestanding is mostly ignored, 
subset is an issue with Bjarne, dont compare it with embedded C++ 
subset problems: abi compat, say what STl do, etc, freestanding is ignored and underspecified on 
purpose 
provide substitute, maybe Arthur or Herb to do alternative for RTTI 
 



Hubert: too much choice, is it for committee to choose, or options to th standard, turn off 
exceptions, turn off the heap separately, hard to integrate into a unified free standing, 
dancing around a reduced library for the language 
My point is not about the C++ standard library, but the runtime support library that the core 
language requires. What I said was that the implications of needing a possibly different runtime 
support library should be made clear up front. 
may be mention it near the top, 
people costs  
I was saying something along the lines that it would help the audience to see the costs of a 
solution, not just the end effects and motivation. 
 
subset is not preferred whereas Bjarne prefers to have supersets first, before subsetting 
 
want as much C++ that will technically work, not be a fork of what is there right now 
this is not banning feature, going with optional; C++17 need almost all of the language , library 
needs less to be free standing 
trying to aim for greater library 
 
 
Ben: why nearly maximal 
A: enum for execution policy,  
 
Poll 1: get rid of free standing 
SF/WF/N/WA/SA 
0/1/2/9/11 
Poll 2: modify along the paper, encouragement for further work, agree with most of it 
SF/WF/N/WA/SA 
5/13/4/0/0 
 
does not try to block the zero overhead paper for polls 2, 3,4,5,6 
please give us these features 
 
Poll 3,4,5,6 done in reflector 
 
 
 
 
2.2.2 Papers by Arthur O'Dwyer: 
I have started working on a draft paper on "trivially relocatable," a.k.a. my attempt to obsolesce 
Niall's P1029 [[move_relocates]]. 
But I mention it here only for general interest, because it sounds like there will be plenty to talk 
about on this telecon without rushing my paper. 
I am about to send a draft to Niall for his comments. 
If anyone else's interest in the topic of "trivially relocatable" / P1029 is so great that they want a 
coauthorship and/or to help with a Clang implementation and/or to present my paper in San 
Diego, please shoot me an email! 

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p1029r0.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p1029r0.pdf


 
Please email Arthur.  

2.2.3 papers by Niall Douglas 

D1095R0/N2xxx draft 3: A C Either metatype (for P0709 Zero-overhead deterministic 
exceptions) 

 
Draft 2 of D1095/N2259 C _Either(A, B) proposal paper 

D1027R0 draft 3: SG14 design guidelines for latency preserving (standard) libraries 

Are people finding this paper more palatable then the original paper? 

D1028R0 draft 2: SG14 status_code and standard error object for P0709 Zero-overhead 
deterministic exceptions 

 
Working with Wg14 C to see what they can do about deterministic exceptions into C  
_Fails as a new eyword 
errno propagates to caller 
C might add this 
WG14 has a counter proposal 
might need people to attend, Michael could help 
 
Hubert: posix has fns that tries to change errno, abi implications of not changing errno is big 
scary without a side channel 
A: backwards compat is big, and current proposal will be backwards compat binary wise too 
this means a new linkage signature? 
A: associate things in object file for failed functions, else mangle it 
which version will get call? acosf are type generics, redispatch to acosf_fail, Jens(from C) 
 
_Fail will take a type normally, except with errno, the fn that calls _Fail needs to set errno before 
it exits, Dalton Woodard likes the special magic here 
earlier discussion on green threads in TLS, from his discussion on this 
also wants to introduce contracts to C, 
 
AI: michael to contact Daniel Garcia 
 
 
 
 
 

2.2.4  papers by John McFarlane: 

There are two numerics paper revisions I may not yet have inflicted on SG14: 



- P1050R0 - fractional (presented in Rapperswil) 
aim to avoid precision loss 
interface concerns? 
2/4 is not reduced to 1/2 unless you ask for it 
LEWG feedback? 
ratio is taken 
rational and irrational 
Ben: fixed point can be used in the emedded world, without floating point co proc, 
not sure I see same wide usage of fractional number system 
 
struct not a class because there are no invariants 
 
Vinnie suggested fract,  
Michael: fraction 
Jan Wilmans : provide more code examaples 
 
 
 
  
- P0828R1 - elastic_integer (new revision of paper I *think* we discussed in February) 
 

 

 

2.2.2 any other proposal for reviews? 

 
 

2.3 Domain-specific discussions 

I would like to nominate Ben Craig as additional domain chair for Embedded 

2.3.1  Embedded domain discussions: Wooter and Odin Holmes,  

2.3.3  Games Domain: John McFarlane, Guy Davidson and Paul Hampson 
2.3.4  Finance Domain: Carl Cooke, Neal Horlock, Mateusz Pusz and Clay Trychta 

2.4 Other Papers and proposals 

 

2.5 Future F2F meetings: 

SG14 at CPPCON:  

https://www.google.com/url?q=https%3A%2F%2Fgithub.com%2Fjohnmcfarlane%2Fpapers%2Fblob%2Fmaster%2Fwg21%2Fp1050.md&sa=D&sntz=1&usg=AFQjCNGc6hS_aOA-1GaCIFh3R5_GUzjW3w
https://github.com/johnmcfarlane/papers/blob/master/wg21/p0828r1.md


https://groups.google.com/a/isocpp.org/forum/#!topic/sg14/EbqoO03Z7JQ 

I'm still looking for talks and contributions to Meeting Embedded, so maybe Codeplay is 
interested: https://meetingembedded.com/2018/ 
Update on Meeting Embedded: right now I have 5confirmed talks, with a 6th one pending. 
Going to make the decisions on the other talks by end of July. Maybe there is only room for one 
or two more talks... 
  

2.6 future C++ Standard meetings: 

https://isocpp.org/std/meetings-and-participation/upcoming-meetings 

• (not a WG21 meeting, limited agenda, library processing) 2018-08-20 to 24: Batavia, 
IL, USA 

• (not a WG21 meeting, limited agenda, modules) 2018-09-20 to 21: Seattle, WA, USA; 
Microsoft 

• (not a WG21 meeting, limited agenda, executors) 2018-09-22 to 23: Seattle, WA, USA; 
Standard C++ Foundation, CppCon 

• (SG14 meeting) 2018-09-26: Seattle, WA, USA; Standard C++ Foundation, CppCon 
• 2018-11-05 to 10: San Diego, CA, USA; Qualcomm 
• 2019-02-18 to 23: Kona, HI, USA; Standard C++ Foundation, NVIDIA, Plum Hall, Jens 

Maurer 
• 2019-07-15 to 20: Cologne, Germany; Nicolai Josuttis 
• 2019-11-04 to 09: Belfast, Northern Ireland; Archer Yates 

  

3. Any other business  
Reflector 
https://groups.google.com/a/isocpp.org/forum/?fromgroups=#!forum/sg14 
As well as look through papers marked "SG14" in recent standards committee paper mailings: 
http://open-std.org/jtc1/sc22/wg21/docs/papers/2015/ 
http://open-std.org/jtc1/sc22/wg21/docs/papers/2016/ 

Code and proposal Staging area 
https://github.com/WG21-SG14/SG14 
4. Review 

4.1 Review and approve resolutions and issues [e.g., changes to SG's working draft] 

4.2 Review action items (5 min) 

 
5. Closing process 

https://groups.google.com/a/isocpp.org/forum/#!topic/sg14/EbqoO03Z7JQ
https://meetingembedded.com/2018/
https://isocpp.org/std/meetings-and-participation/upcoming-meetings
http://open-std.org/JTC1/SC22/WG21/docs/papers/2018/n4715.pdf
https://groups.google.com/a/isocpp.org/forum/?fromgroups=#!forum/sg14
http://open-std.org/jtc1/sc22/wg21/docs/papers/2015/
http://open-std.org/jtc1/sc22/wg21/docs/papers/2016/
https://github.com/WG21-SG14/SG14


 
5.1 Establish next agenda  
Aug 15 

Niall's papers + others  

 
5.2 Future meeting 

July 11: this meeting 
Aug 8: Michael away; moved to Aug 15: cppcon Sg14 meeting planning 
Sept 12: CPPCon planning 
Sep 26: CPPCON SG14 F2F 

 

 
  



Minutes for 2018/08/15 SG14 Conference Call 
 
Meeting minutes by Michael 
 
 
bbMichael Wong, Ben Craig, Billy Baker, Brett Searle, Guy Davidson, Paul Bendixen, Ronan 
Keryell, Ronen Friedman, Hubert tong, Staffan Tjornstrom, John McFarlane, Ben Saks, Niall 
Douglas, Jan Wlmans, Athur O'Dwyer, Dalton Woodard, Rene Riviera, Dan Kalowsky, Dan 
Cholland, Odin Holmes, Andreas Weis 

 
1.2 Adopt agenda 

Approve.   

 
1.3 Approve minutes from previous meeting, and approve publishing  previously approved 
minutes to ISOCPP.org 

Approve.   

1.4 Action items from previous meetings 

D1028R0 draft 2: SG14 status_code and standard error object for P0709 Zero-overhead 
deterministic exceptions: Michael to connect Daniel Garcia on Contracts. Done and awaiting 
reply, Cancelled. 

May have come from John,  
push back from Wg14 on Deterministic exceptions 
working with Herb to expand his paper, have a series of static exception 
Sept 17 is the deadline for papers,to send to John McFarlane, and posted to SG14 reflector, John 
will maintain the list  
Dxxx papers for new paper 
Pxxx papers for previously reviewed (in C++ Std Committee meeting) papers 

2. Main issues (125 min) 

2.1 General logistics 

Review last call discussions 

SG14 at CPPCON logistics (John McFarlane) 

https://groups.google.com/a/isocpp.org/forum/#!topic/sg14/EbqoO03Z7JQ 

Doodle poll: https://doodle.com/poll/t4n2ctzqf73hri9m 

https://groups.google.com/a/isocpp.org/forum/#!topic/sg14/EbqoO03Z7JQ
https://doodle.com/poll/t4n2ctzqf73hri9m


also eventbrite registration, we are over 50, will get ISO tag on badge 
 

Papers so far: 

P1144 "Object relocation in terms of move plus destroy,"Arthur O'Dwyer 

Linear Algebra, Guy Davidson 

P1105R0 "Leaving no room for a lower-level language: A C++ Subset", will need a proxy 
 
Sept 17 is the deadline anywhere in the world midnight 

 
2.2 Paper reviews 

 
2. 2.1 papers by Ben Craig: 
I would like to discuss P1105R0 "Leaving no room for a lower-level language: A C++ Subset" 
 
Pre mailing draft discussion here... 
https://groups.google.com/a/isocpp.org/forum/m/#!topic/sg14/xC1QeOyMDho 
 
Results from July 11: 
Poll 1: get rid of free standing 
SF/WF/N/WA/SA 
0/1/2/9/11 
Poll 2: modify along the paper, encouragement for further work, agree with most of it 
SF/WF/N/WA/SA 
5/13/4/0/0 
 
does not try to block the zero overhead paper for polls 2, 3,4,5,6 
please give us these features 
 
Poll 3,4,5,6 done in reflector 
Poll 3: noxcept should behave differently: 0/4/3/5/0, no consensus 
4, 5,6 all on what to do with throw stmts when exception is not there 
4: undefined: 0/3/6/3/1 
5: ill-formed: 1/3/1/5/3 
6: call std:terminate: 0/4/7/2/0 (least hated) 
 
Ben Saks may be able to proxy this (AI: send ben the recording) 
Jan: why not a customization pt? Will think about it 
 
 
 
 

http://www.google.com/url?q=http%3A%2F%2Fwww.open-std.org%2Fjtc1%2Fsc22%2Fwg21%2Fdocs%2Fpapers%2F2018%2Fp1105r0.html&sa=D&sntz=1&usg=AFQjCNEXnCKT5vXZT_F1ilT8j_yiUiWX8g
http://www.google.com/url?q=http%3A%2F%2Fwww.open-std.org%2Fjtc1%2Fsc22%2Fwg21%2Fdocs%2Fpapers%2F2018%2Fp1105r0.html&sa=D&sntz=1&usg=AFQjCNEXnCKT5vXZT_F1ilT8j_yiUiWX8g
https://groups.google.com/a/isocpp.org/forum/m/#!topic/sg14/xC1QeOyMDho


2.2.2 Papers by Arthur O'Dwyer: 
 
P1144 "Object relocation in terms of move plus destroy,"Arthur O'Dwyer 
https://groups.google.com/a/isocpp.org/forum/#!topic/sg14/6mAbZOTdVjk 
 
Pre sent to get people to read it first 
 
 John: compare to memcpy, how? 
 
A; smart compilers may be able to optimize this by coalescing, but no compiler can do all this 
How this interact with object model and memory model may be a concern, may the OM should 
redirect to UB SG12 
this is not Richard Smith's Bless P0593 
 
Paul asks how this is not similar to object construction in Bless 
A: need to look at the paper, but it could be related to implicit lifetime, when memory returns fro 
malloc, there is a moment when it is still without type; 
implicit life time and trivially copyable types would be fine with Bless 
Hubert: difference between reading and writing 
A; when you make something to be a struct type, when you first access it, it will be a struct, but 
until then it still has undefined type, making it not work for network protocols, deserialiation 
"undefined type" -> "indeterminate value" 
AIUI: 
When you receive untyped storage from some places (e.g. malloc), it'll be in this "blessed" 
superposition of states. 
You can use that blessed storage like a struct (as long as the struct type is an "implicit-lifetime 
type"); if you do, then that effect ripples backwards in time and causes the implementation to 
ensure that there really is a struct there (notionally by inserting a call to the trivial default 
constructor, I think).  But, if you were to use the storage like a float instead, then that effect 
would ripple backward and force the implementation to ensure that there really was a float there. 
So any typed access causes the superposition of types to "collapse." 
However, wherever you got this storage from, it had an indeterminate value — that hasn't 
changed.  So even once the superposition of types collapses into a concrete type, it's still not safe 
for you to read the value right away, because it's indeterminate. 
In other words, 
    struct S *p = malloc(sizeof *p); 
    p.x = 42; 
is safe because the assignment operator has no preconditions. However, 
    struct S *p = malloc(sizeof *p); 
    int i = p.x; 
remains undefined behavior because — although post-P0593 it would no longer violate strict 
aliasing by reading from the wrong type — nevertheless it's still reading an indeterminate value. 
 
I just realized that P0593 would effectively make `calloc` into a synonym for `malloc` (`calloc` 
claims to return "zeroed storage"; this has never had a defined meaning but worked in practice; 
but P0593 would guarantee that `calloc` returns storage where, when you read it, you receive an 

https://groups.google.com/a/isocpp.org/forum/#!topic/sg14/6mAbZOTdVjk
https://groups.google.com/a/isocpp.org/forum/#!topic/sg14/6mAbZOTdVjk


indeterminate value).  Hubert, is that your understanding of how it would work?  (And I'm sure 
this is off-topic for SG14... :p ) 
 
The question is with regards to the timing of when the lifetime begins, and the notional memcpy 
from a source of all-zero bytes to the memory associated with the object. P0593 does not rule out 
the possibility that the lifetime begins before the notional memcpy. This seems to indicate that 
realloc should probably also have memmove-like behaviour. I think the operator new and 
operator new[] cases need more thinking in terms of whether the "old memory values" may be 
read in the body of the allocation function and whether the new object may be written to within 
said body; there would need to be a clear demarcation between the lifetime of the old and the 
new objects. 
 
Will be on cppchat podcast to talk about this 
 
 

2.2.3 papers by Niall Douglas 

D1095R0/N2xxx draft 3: A C Either metatype (for P0709 Zero-overhead deterministic 
exceptions) 

 
Draft 2 of D1095/N2259 C _Either(A, B) proposal paper 

 

D1028R0 draft 2: SG14 status_code and standard error object for P0709 Zero-overhead 
deterministic exceptions 

Reviewed Jul 11 

 
D1027R0 draft 4: SG14 design guidelines for latency preserving (standard) libraries 

https://groups.google.com/a/isocpp.org/forum/#!topic/sg14/g8_C2ZV5pxA 

get design points, blocking me 
low vs fixed latency 
fileI/O divided by equivalent memcpy 
latency preserving: not all Std lib, not including barriers 
Brett: preloading stage is not deterministic, then get a hot path once in cache,  
A: this is consistent with fixed latency 
Arthur: section 2 could make a great talk, offer a guideline/review checklist for people to use 
when building/designing library 
John: as a by product of just having more efficient API will yield lower latency, similar to the 
idea of wide and narrow contracts benefits 
Ronen: paper combines many different things of different importance, 2.3/4 are just nice to have  
A; for SIMD 2.3/4 is very important , depends on your domain 

https://groups.google.com/a/isocpp.org/forum/#!topic/sg14/g8_C2ZV5pxA


hence they are guidelines 
Ben C: where to draw th line between strong vs weak guidelines, and when to apply or not; need 
a better framework? 
2.1 due to how dynamic memory works, hard to get them to free memory and remain 
determinstic 
need to pre push to cold path 
instead of using the heap, can use the stack for super hot memory 
caution here depending on if alloca is OK to use 
Brett: to preserve fixed latency, it needs to limited 
Ben C: dont want to rule out great STL containers just because of how memory is allocated 
if not in hot path, not that we dont care 
Paul: from embedded side, can we still use  std: allocator in cold path 
it is up to design of library to decide if it take no allocation guarantee seriously 
Odin: if I can get what Library fns can give that guarantee 
A: python is an example of entirely deterministic approach,  
Niall:  
Have the user supply memory to you, dont allocate it yourself 
 
Should this guideline be published,  
write this paper like core guidelines, to be added there 
using motivation, examples, and alternatives, exceptions,  
Can we bring this into the core guidelines 
 
future paper shoudl restructure to look like CG on a github 
 
 
 
 
 
 
 
 
 
 
 

2.2.4  papers by John McFarlane: 

There are two numerics paper revisions I may not yet have inflicted on SG14: 
- P1050R0 - fractional (presented in Rapperswil) 
Results from July 11: 
reflector bikeshed: 
https://groups.google.com/a/isocpp.org/forum/#!topic/sg14/z2oaLOBvYDY 
 
- P0828R1 - elastic_integer (new revision of paper I *think* we discussed in February) 
P0828 elastic_integer last 
time: https://github.com/johnmcfarlane/papers/blob/master/wg21/p0828r1.md 

https://github.com/johnmcfarlane/papers/blob/master/wg21/p1050.md
https://groups.google.com/a/isocpp.org/forum/#!topic/sg14/z2oaLOBvYDY
https://github.com/johnmcfarlane/papers/blob/master/wg21/p0828r1.md
https://github.com/johnmcfarlane/papers/blob/master/wg21/p0828r1.md


 

 

2.2.2 any other proposal for reviews? 

 
 

2.3 Domain-specific discussions 

I would like to nominate Ben Craig as additional domain chair for Embedded 

2.3.1  Embedded domain discussions: Wooter and Odin Holmes 
2.3.3  Games Domain: John McFarlane, Guy Davidson and Paul Hampson 
2.3.4  Finance Domain: Carl Cooke, Neal Horlock, Mateusz Pusz and Clay Trychta 

2.4 Other Papers and proposals 

 

2.5 Future F2F meetings: 

SG14 at CPPCON:  

https://groups.google.com/a/isocpp.org/forum/#!topic/sg14/EbqoO03Z7JQ 

Doodle poll: https://doodle.com/poll/t4n2ctzqf73hri9m 

 

Meeting Embedded: https://meetingembedded.com/2018/ 

2.6 future C++ Standard meetings: 

https://isocpp.org/std/meetings-and-participation/upcoming-meetings 

• (not a WG21 meeting, limited agenda, library processing) 2018-08-20 to 24: Batavia, 
IL, USA 

• (not a WG21 meeting, limited agenda, modules) 2018-09-20 to 21: Seattle, WA, USA; 
Microsoft 

• (not a WG21 meeting, limited agenda, executors) 2018-09-22 to 23: Seattle, WA, USA; 
Standard C++ Foundation, CppCon 

• 2018-11-05 to 10: San Diego, CA, USA; Qualcomm, Oct 8 is the mailing deadline. 
• 2019-02-18 to 23: Kona, HI, USA; Standard C++ Foundation, NVIDIA, Plum Hall, Jens 

Maurer 
• 2019-07-15 to 20: Cologne, Germany; Nicolai Josuttis 
• 2019-11-04 to 09: Belfast, Northern Ireland; Archer Yates 

https://groups.google.com/a/isocpp.org/forum/#!topic/sg14/EbqoO03Z7JQ
https://doodle.com/poll/t4n2ctzqf73hri9m
https://meetingembedded.com/2018/
https://isocpp.org/std/meetings-and-participation/upcoming-meetings
http://open-std.org/JTC1/SC22/WG21/docs/papers/2018/n4715.pdf


3. Any other business  

Brett Serale: asking for CPPCON interviews 
Michael: Bjarne presenting Embedded C++ at NDC Oslo. 
  

Reflector 
https://groups.google.com/a/isocpp.org/forum/?fromgroups=#!forum/sg14 
As well as look through papers marked "SG14" in recent standards committee paper mailings: 
http://open-std.org/jtc1/sc22/wg21/docs/papers/2015/ 
http://open-std.org/jtc1/sc22/wg21/docs/papers/2016/ 

Code and proposal Staging area 
https://github.com/WG21-SG14/SG14 
4. Review 

4.1 Review and approve resolutions and issues [e.g., changes to SG's working draft] 

4.2 Review action items (5 min) 

 
5. Closing process 

 
5.1 Establish next agenda  
Sept 12 

 
5.2 Future meeting 

July 11: this meeting 
Aug 8: Michael away; moved to Aug 15: cppcon Sg14 meeting planning 
Sept 12: CPPCon planning 
Sep 26: CPPCON SG14 
 

https://groups.google.com/a/isocpp.org/forum/?fromgroups=#!forum/sg14
http://open-std.org/jtc1/sc22/wg21/docs/papers/2015/
http://open-std.org/jtc1/sc22/wg21/docs/papers/2016/
https://github.com/WG21-SG14/SG14


 

Minutes for 2018/09/12 SG14 Conference Call 

1.1 Roll call of participants 

Michael Wong, John McFarlane, Andreas Weis, Ben Craig, Ben Saks, Brett Searles, Charles 
Bay, Rene Rivera, Staffan Tj, Hubert Tong, Ronen Friedman, Jan Wilmans 

 
1.2 Adopt agenda 

Approve  

 
1.3 Approve minutes from previous meeting, and approve publishing  previously approved 
minutes to ISOCPP.org 

1.4 Action items from previous meetings 

D1028R0 draft 2: SG14 status_code and standard error object for P0709 Zero-overhead 
deterministic exceptions: Michael to connect Daniel Garcia on Contracts 

2. Main issues (125 min) 

2.1 General logistics 

Review last call discussions 

SG14 at CPPCON logistics (John McFarlane) 

https://groups.google.com/a/isocpp.org/forum/#!topic/sg14/EbqoO03Z7JQ 

Doodle poll: https://doodle.com/poll/t4n2ctzqf73hri9m 

Papers so far: 

P1144 "Object relocation in terms of move plus destroy,"Arthur O'Dwyer 

Linear Algebra, Guy Davidson 

May not be ready, but ok to do discussion  

Leaving no room for a lower-level language: A C++ Subset, Ben Craig (Ben Saks) 

updated draft by next Monday Sept 17  

P0468R1 (retain_ptr<T, R>), Isabella Muerte 

https://groups.google.com/a/isocpp.org/forum/#!topic/sg14/EbqoO03Z7JQ
https://doodle.com/poll/t4n2ctzqf73hri9m


Was this presented in previous cppcon?  

std::byteswap, Isabella Muerte 

she also mentioned some SG15 papers, but only if we have time  

https://groups.google.com/a/isocpp.org/forum/#!topic/sg14/d807OXJ_gts 

 

Deterministic exceptions 
should schedule Nile and Herbs papers together 
 
put Ben's paper before or after these 
 
add John's numerics papers 
 
Please get a D number for these papers 
 
Eventbrite invites sent 
 

2.2 Paper reviews 

 
 

2.2.1 papers by Niall Douglas 

Niall may not make this meeting.  

P1095R0/N2289 draft 3: A C Either metatype (for P0709 Zero-overhead deterministic 
exceptions) 

need to do this here as Niall will not be at cppcon 
this is final consensus paper between wg14 and wg21, and reflectors and austin working group 
_Either type is now gone, replaced by aggregate designated initializer (C) 
C22 may be a target for this 
C and Austin working group seems happy, SG14? if yes then there is pressure for C++23 
fails call is now like an attribute 
everyone wants errno function to be pure 
 
is the compiler going to need to know special things abbout the error structure in order to return 
part of it through the carry flag? No dont need special knowledge 
 
fail function is called either using try or catch... reduces complexity 
fails(e) maps close to throws(e)  
allows C and C++ code to interact 

https://groups.google.com/a/isocpp.org/forum/#!topic/sg14/d807OXJ_gts


 
option of undef within CPP file to avoid conflicts 
 
on C front, we dont have major collision concern,  
if we want this to build in C++, then the fails may have bikeshedding, make them context 
sensitive will avoid that 
consider modules as an example  
 
paper is not published yet for SAN, but it is on WG14 
 
what can C++ do with designated initializers?  
 
Sorry I disconnected. 
 
 

 
Draft 2 of D1095/N2259 C _Either(A, B) proposal paper 

 

D1028R0 draft 2: SG14 status_code and standard error object for P0709 Zero-overhead 
deterministic exceptions 

Reviewed Jul 11 

 
D1027R0 draft 4: SG14 design guidelines for latency preserving (standard) libraries 

https://groups.google.com/a/isocpp.org/forum/#!topic/sg14/g8_C2ZV5pxA 

2.2.2  papers by John McFarlane: 

There are two numerics paper revisions I may not yet have inflicted on SG14: 
- P1050R0 - fractional (presented in Rapperswil) 
Results from July 11: 
reflector bikeshed: 
https://groups.google.com/a/isocpp.org/forum/#!topic/sg14/z2oaLOBvYDY 
 
been working on fractions more, mostly the same 
lewg bikeshed may change the name from fractional 
have a type that allows to express generating a fixed point number , and state how wide and how 
many digits it should have 
also useful for performing math ops when you might do a bunch of stuff, then reduce that down 
to a single value, but looses precision along the way if you don't have fractional, especially with 
irrational numbers 
do I want the bare minimum of operators or a fully fleshed out numeric type 
this is mostly discussed last time 

https://groups.google.com/a/isocpp.org/forum/#!topic/sg14/g8_C2ZV5pxA
https://github.com/johnmcfarlane/papers/blob/master/wg21/p1050.md
https://groups.google.com/a/isocpp.org/forum/#!topic/sg14/z2oaLOBvYDY


can you have complex, if you can have any numeric type? 
makes sense if you define behaviour in terms of the actual implementation 
is there an absolute value function, for a complex number requires hypotenuse-> what 
mathmatical concept can we put in here? 
numerics types they are a ton of operators,  
 
From the chat: 
we have a use case for a 'to_base' free function, the idea is that we do fixed base fractional math, 
so we'd  want to represent 1/2 as 32/64 
Yes we look to support that for financial sector 
Any auto handling of either num or denom overflowing their type?e.g. when defining the 
fraction as a pair of int16_t, should we have the option to have, e.g the mult operator decide to 
perform partial/full early divide if any of the numbers will overflow? 
Yes this is in elastic integer paper 
if they widen too far, exceed 64bit, get compiler error 
i have to decide in the analysis whether to postpone the reduction, but this might cause me to 
lose precision 
what I have is the laziest solution, so its up to you when to call the reduce function 
 
Wanted to point out: handling the internals as floating point values brings up the whole mess of 
dealing with precision loss over the computations. Which seems to be contrary to the usual goals 
of fractional implementations 
ok may be design space is too large  
 
 
 
 
  
- P0828R1 - elastic_integer (new revision of paper I *think* we discussed in February) 
 
may change is FAQ 
presented in LEWG, there we re a few problems in synopsis 
mult doubles bit, addition increases bits by 1 
 
cheaper then checking a carry flag, you mean zero runtime cost, since the decided return type is a 
compiler time calculation right? 
yes agreed 
 
detect overflow on mult is expensive, because we use inverse and division is expensive 
gcc and clang offer intrinsics in constant expressions 
 
 
Towards a static_number 

https://github.com/johnmcfarlane/papers/blob/master/wg21/p0828r1.md


Minutes for 2018/10/10 SG14 Conference Call 

Roll call of participants 

Michael Wong, Andreas Fertig, Ben Craig, Billy Baker, Charley Bay, Guy Davidson,John 
Mcfarlane, Paul Bendixen, Ronen Friedman, Staffen TJ , Ronan Keryell, Herb Sutter 

 
1.2 Adopt agenda 

+Ben Craig, small subset of Free standing  
Yes 

 
1.3 Approve minutes from previous meeting, and approve publishing  previously approved 
minutes to ISOCPP.org 

Yes  

1.4 Action items from previous meetings 

2. Main issues (125 min) 

2.1 General logistics 

Review last call discussions 

SG14 at CPPCON logistics (John McFarlane) and outcome 

 

Logistics 
SAN + KON is likely the last meeting to admit C++20 features, 
 
Graphics: 
RAP loss consensus on supporting Graphics TS 
BSI wants to publish its own standard 
status quo is to continue 
submitted P1200 highnoon for graphics proposal on what to do next, given that some NBs want 
to have graphics 
JF bastien has put forward response on Apple requirement, he is trying to reconnect 
will not be in SAN 
going ahead with plan B to implement the paper in pieces, starting with LA 
Geometry next, then color, lines 
there is a surprise where this was encouraged first, then there was objection so there is a 
disconnect 



new information from new paper will ask LEWG to reconsider based on NBs request, so it can 
go several ways: back to SG13, back to LEWG, or ? ask to have some email reflector discussion 
first, to save plenary time 
 
Will there be SG14 meeting in SAN: 
No, not yet. We have trouble pulling people out of existing WG meetings especially during 
critical C++ 20 schedule deadlines. May be when we are out of crunch (post-Kona). then we can 
start more regular meeting, especially when we broadcast the expectation. 
Having more SG parallel meetings will improve throughput for longer term future proposals. 
EWG can be focused on more immediate proposal, while SG14 can focus on more longer term 
proposal future proposal.  
 
SG14 consumers are SG1 and LEWG mostly but also look at mostly long term future Future 
proposal.  
 

2.2 Paper reviews 

 
2.2.1 by Michael 
Affinity in C++ 
need high granularity, need absolute control, dont want to rework our magic constants 
code and unit test to completion our discovery algo, then the problem is solved. 
compute farms slices and dices itself, loads vary 
 
only static discovery for now, but later may be 
dynamic discovery needed? resources die, or become overloaded?  coming back online? 
 
I just want one thread, and place it on one that is not overscribed 
can we do this place one thread in the least contention possible? this may not be the point of this 
paper? 
use scatter  
 
 
Pipelines in C++ 
question about error handling  
does coroutine help? Yes on fpga, different hw coexisting at the same time 
 
big data scenario with pipeline helps testablitywith composability, can individually test pipeline 
stages  
is used for cross simulation 
can replace stage of pipelne with simulations 
 
working on a project now where we do our own pipeline, similar to this proposal 
1. assigning data 
2. how do you make a scheduler,  
should this be in a separate library? due to scheduling being a large piece of work 



yes, this is where customization point, and how it relates to executors 
 
tagging specific data items, through the pipeline 
for HW error events, without discarding it, 
suggest this for customization point 
 
No objection to investigating further. 
 
 
 
 
  
Ben Craig proposal   
https://groups.google.com/a/isocpp.org/forum/#!topic/P1212R0: Modules and 
Freestandingsg14/tgMH77nm8eE 
https://groups.google.com/a/isocpp.org/forum/#!topic/sg14/tgMH77nm8eE 
 
P0581: how to layout the standard library when we have modules, forcing function for this paper 
P0829 adds to the library 
P1105 is on removals from core 
going over options in 2 
eliminating freestanding is strongly opposed by sg14 
p0829+P1105 would expand the library but subset the language (opposed by some) but is 
recommended by Ben and SG14 poll 
how to superset the language then subset 
subset the language makes it incomplete 
are there general facility we can add now, that once added then we can cleave, to create a clean 
subset 
 
this assume proposal x, y ,z as a prerequisite 
the free standing library being proposed does not require light-weight deterministic eh,  
if we had light-weight deterministic eh, then we can use some of those facilities in embedded. 
 
Look at Bjarne's recent Norway talk on embedded programming 
 
2 basic issues not addressed for embedded C++:  
1. being able to use threads (like thread attributes) help Patrice Roy 
2. C++ mutexes, can't use those (unless we have priority and inheritance) get collaboration here  
 
 
 
 
 
 
 
 

https://groups.google.com/a/isocpp.org/forum/#!topic/P1212R0
https://groups.google.com/a/isocpp.org/forum/#!topic/sg14/tgMH77nm8eE


2.2.2 Linear Algebra immediately after this call: 
https://nvmeet.webex.com/nvmeet/j.php?MTID=m1e71b8e56f2b64c972751941953ba265 
 
Other papers 
 

 

 

2.2.2 any other proposal for reviews? 

 
 

2.3 Domain-specific discussions 

2.3.1  Embedded domain discussions: Ben Craig, Wooter and Odin Holmes 
2.3.3  Games Domain: John McFarlane, Guy Davidson and Paul Hampson 
2.3.4  Finance Domain: Carl Cooke, Neal Horlock, Mateusz Pusz and Clay Trychta 

2.4 Other Papers and proposals 

 

2.5 Future F2F meetings: 

SG14 at CPPCON:  

https://groups.google.com/a/isocpp.org/forum/#!topic/sg14/EbqoO03Z7JQ 

Doodle poll: https://doodle.com/poll/t4n2ctzqf73hri9m 

 

Meeting Embedded: https://meetingembedded.com/2018/ 

2.6 future C++ Standard meetings: 

https://isocpp.org/std/meetings-and-participation/upcoming-meetings 

• 2018-11-05 to 10: San Diego, CA, USA; Qualcomm 
• 2019-02-18 to 23: Kona, HI, USA; Standard C++ Foundation, NVIDIA, Plum Hall, Jens 

Maurer 
• 2019-07-15 to 20: Cologne, Germany; Nicolai Josuttis 
• 2019-11-04 to 09: Belfast, Northern Ireland; Archer Yates 

3. Any other business  

https://nvmeet.webex.com/nvmeet/j.php?MTID=m1e71b8e56f2b64c972751941953ba265
https://groups.google.com/a/isocpp.org/forum/#!topic/sg14/EbqoO03Z7JQ
https://doodle.com/poll/t4n2ctzqf73hri9m
https://meetingembedded.com/2018/
https://isocpp.org/std/meetings-and-participation/upcoming-meetings
http://open-std.org/JTC1/SC22/WG21/docs/papers/2018/n4715.pdf


Lots of interest in machine learning group. Herb and I will coordinate. 
What will help ML in C++ 
high level design reflection, differenetiation, optimizaiton, fusion 
 
  

Reflector 
https://groups.google.com/a/isocpp.org/forum/?fromgroups=#!forum/sg14 
As well as look through papers marked "SG14" in recent standards committee paper mailings: 
http://open-std.org/jtc1/sc22/wg21/docs/papers/2015/ 
http://open-std.org/jtc1/sc22/wg21/docs/papers/2016/ 

Code and proposal Staging area 
https://github.com/WG21-SG14/SG14 
4. Review 

4.1 Review and approve resolutions and issues [e.g., changes to SG's working draft] 

4.2 Review action items (5 min) 

 
5. Closing process 

 
5.1 Establish next agenda  
Nov 14 cancelled due to post SAN and SC18 

Dec 12 

 
5.2 Future meeting 

Oct 10: this meeting 
Nov 14: Cancelled 
Dec 12: 
 

https://groups.google.com/a/isocpp.org/forum/?fromgroups=#!forum/sg14
http://open-std.org/jtc1/sc22/wg21/docs/papers/2015/
http://open-std.org/jtc1/sc22/wg21/docs/papers/2016/
https://github.com/WG21-SG14/SG14


Minutes for 2018/12/12 SG14 Conference Call 

Roll call of participants 

Michael Wong, Ben Craig, Billy Baker, Andreas Fertig, Bjarne Stroustrup, Charley Bay, Carter 
Edwards, Guy Davidson, Jan Willmans, John McFarlane, Matthieu Brucker, Paul Bendixen, 
Ryan Petrie, Sergey, Steffan Tjerstrom, Thomas Feher, Arthur O'Dwyer, Kirk Shoop, Hubert 
Tong, Rene Rivera, Paul McKenney, Niall Douglas, 

 
1.2 Adopt agenda 

Yes   

 
1.3 Approve minutes from previous meeting, and approve publishing  previously approved 
minutes to ISOCPP.org 

Yes 
 

1.4 Action items from previous meetings 

2. Main issues (125 min) 

2.1 General logistics 

Review last call discussions. 

2 new SGs mailing lists for SG19 Machine Learning 

https://groups.google.com/a/isocpp.org/forum/#!forum/sg19 

and SG20 Education 

https://groups.google.com/a/isocpp.org/forum/?fromgroups=#!forum/sg20 

https://isocpp.org/std/forums 

Any meeting rooms required for Kona? 

EWG-I will meet Mon-Wed. 
LEWG-I is penciled in for Mon-Thu, considering the outcome in San Diego. 

SG12/WG23 will meet Wed-Fri - the last day being SG12-focused. 

https://groups.google.com/a/isocpp.org/forum/#!forum/sg19
https://groups.google.com/a/isocpp.org/forum/?fromgroups=#!forum/sg20
https://isocpp.org/std/forums


 
SG20 (education)  would like to meet on Thursday (all day) 

Suggest SG14 Friday Morning or afternoon. 

SG14 Morning.   

Who is coming?  

 

2.2 Paper reviews 

 
2.2.1 Embedded/freestanding vs hosted 
Goal, paper for for Kona, or evening session 
 
P13760:  
Summary of freestanding evening session discussions 
https://groups.google.com/a/isocpp.org/forum/?fromgroups#!topic/sg14/3B-Eg3cnETM 
 
JanW : why type-id was removed from free-standing? 
A: concerns about subsetting in general 
PM: lot feel that they require program to run everywhere, can portability be limited? 
HT: helpful if we look at video encoding standard 
BC: Vulkan and OpenGL has feature set discussed 
BS: main problem with subsetting is NOT because people wanted universal portability 
freestanding is just one thing in people's mind and no single subset that can serve a large enough 
group, more dominant then any others 
Situation when we cannot use alloc, due to performance, but in other cases, no floating point, or 
no exceptions, 
So subsetting does not necessarily solve this 
So how do we identify a subset. The problem seems to be multi-dimensional, and hard real-time 
constraints 
JM: will post question 
 
Ben Craig presents: 
Slide 1: 
Embdeded is not the right question 
its about resources 
2: 
What is an OS is not useful either 
some have scheduler,  
3. quote from DE 
what a programmer can rely on in general 
4 
expect tool chain to catch up 

https://groups.google.com/a/isocpp.org/forum/?fromgroups#!topic/sg14/3B-Eg3cnETM


5. Hosted C++ the dark side 
simd, shared memory, heterogeneous needs extensions 
MW: as these things stablize we add them to standard 
6. theory is everything is there 
7. in practice, you have to finish the job of the tool chain 
malloc, thread-local, exception, needs possibly a lot of work to make work 
everyones dialect is freestanding - conforming features + varying extensions, 
8. freestanding dark side 
can do integer math, custom heap data structures 
now 20+ years later, still no expectation anything else will be there 
9. in the entire stack 
who to blame, who should provide the core language C++ runtime support 
GCC cannot know all 
in practice, the customer application, has to fill in the blanks 
10. freestanding goal 
have something that means vendor can catchup to even if it is in future 
11. back to D&E quote 
12. problem features in priority order 
highest is EH, lowest is floating point 
EH needs thread local, rtti, and calls terminate when it goes bad 
13. not meant to get rid of all these features, we can do shades for grey 
status quo: accept non-compliance 
change the feature: by not forking the language hopefully 
14. suggested heuristics 
3 rules that helps to  guide future design 
FS is signal/interrup safe, then needs to get rid of locked atomics, just use a spin lock 
thread safe statics,  
15. zero overhead rule from D&E 
 
BS: what is this for? how you characterize the domain for which these things are useful or not 
A: these are difficult to implement or use effectively and on GPUs 
MS kernel driver does not support C++ exceptions, we know exceptions on x86 processors, is it 
too difficult or too expensive to implement that 
 
type based exceptions dont know how to do it in a zero-overhead way, implementations have 
restrictions, like single inheritance 
BS: how about using error codes 
A: current environment, have to pay something for error handling, proportional to amount we use 
it, if there is a big call stack, those frames dont have overheads for error codes; OTOH, if we 
have eh, even if they dont throw all the way down, still have overhead 
HT: call stack that only throws at the bottom?  
A: still need exception table 
JW: dont want to call it a subset, but it is a subset that we want to rely on in those environment,  
but BS saids it is not clear what that environment is 
HT saids in terms of cost of implementation  
JW/BC: prevent vendors from implementing the same stuff again for increasing exotic platforms 



JW: not about defining a subset, but about what is standard implemented that any vendor can 
adopt 
BC: most of these require knowing something about the operating environment 
JW: can we specifiy better customization points? 
BC: with op new delete, customization point is already there, terminate already has one, I want 
one at build time,  
tls and thread safe statics, the protocol for a customization point is very constraining, some have 
per processor implementation 
JW: having the customization point is not enough, need to say if the feature is there or not 
BC: we say now you have to implement it, dont say how 
are there any features additionally that should be on slide 12? 
BS: embedded C++ in 90s failed and similar to this, again it was not well characterized what it 
was supposed to do, namespaces was banned 
what is domain you are trying to solve, then risk falling into embedded C++ trap 
BC: embedded was trying to reduce implementer burden 
Strict subset, not a fork 
BS: problem is when you take away feature, often you find you need it back 
BC: have existing code that is operating with these constraints, none of these are operating in 
windows kernel, may be zero-cost exceptions from Herb 
BS: MS has already 3 kinds of exceptions,  
JW: new delete, global init teardown, attack these as low hanging fruits first, then locked 
atomics, 
PB: 2 papers one adds to freestanding, and one that subtracts,  
could this be a direction, before a final definition 
BC: additive to standard library, 
no lower level paper is subtracting features,in core language 
from Niall to everyone: 
Even in C, not all of C is provided by many embedded toolchains. A recent, slightly angry, 
debate on WG14 was over strict aliasing for example (some feel very strongly that it needs to be 
banned in future C standards). 
Kirk Shoop presentation on Abstract machine. 
heterogeneous machines accrediting overtime 
slide 1: 
perhaps a subsumption hierarchy 
slide 2: 
std library feature varies on multiple axis, 
3.  
similaryly we vary std library on input output traversal position 
4. this is not subsetting, just capability dependent 
5. then have diversity of discrete machines, we have papered over that 
now have connected machines, sharing resources 
6. single abstract machine have illusion of homogeneity 
7. but as a collection of connected machine, then we can define each machine as an abstract 
machine 
8. always start with algo 



for every library feature, define the hardware feature requireed to operate, and organize that into 
hierarchy of Concepts,  
define abstract machine as some permutations of supported COncepts 
implement library with tag-dispatch based on concepts 
implement library with awareness of these connections 
9. constexpr can be exposed as an eval method in Std::, constexpr defines and abstratc machine 
distributed: a collection of machines with connections 
HT: prefer to run it can, and give an error where it can't, people dont want the interfaces in 
library that throw eh,  
KS: define eh as a subsumption hierarchy a fn can be eh transparent, another would depended eh 
to run, or in the presence of eh it would terminate 
KS: overtime we would still need this funcitonality with fewer requirements 
BS: like some of it, people have implemented STL using memory pools 
BC: stuff that is in templates you can do a lot of this, some in std lib not in templates, harder to 
do this dispatching due to static assert firing 
static if is dead, constexpr if is only inside templates 
some concrete cases: 3 algorithms the traditional non-parallel algo headers, if you can get a 
different temp buffer,  in palce merge, stable sort, stable partition, can consider what the 
dispatching is, this can change teh big O overhead with tag dispatching 
in my freestanding lib proposal, std::variant if it is in eh by value, calls visit and it throws eh, if 
eh is not on, then you cant into that stage 
JM: like to see some examples, interesting examples,  
BC: containers unordered map what those with look like 
BS: need concrete examples here 
quote is quoting from Alex 
PB: this type of Concept, based off the feature test macros? and those would be defined for every 
machine type, 
BS: hope not, as it increases dialects 
write my program to test for hundred different things 
only mageable cause you ignore them most of the time 
JM: useless for writing applications, writing a library, dont know all the features you need 
KS: most library dont care about most of the features 
JM: can add deduction guides if can test for deduction guides, if not, then the library dont  
BS: macros foul out ides 
use them deep in the library, and not the primary interafce 
 
Does nothing lower then C++ apply to Library? 
https://groups.google.com/a/isocpp.org/forum/?fromgroups#!topic/sg14/Azg-X-PfmrY 
no lower level language in library side, 
BC: zero overhead rule stick with library side, mostly we do, a few places where we have 
standard library globals, so I am paying for it if I accidentally included in that header 
BS: foundation lib should follow zero-overhead principle, does not mean we could not have std 
library, a convenience lib, that is not interested in zero-overhead all the time 
BC: as long as it is global, convenient, and I use it then its fine 
BS: feel some pain when I cant do a simple output of histogram, no std graphics lib to allow me 
to do this 

https://groups.google.com/a/isocpp.org/forum/?fromgroups#!topic/sg14/Azg-X-PfmrY


such lib would not be zero overhead for any expert 
the point is I dont see why we could only have one kind of graphics, one that is universal, and 
one that is specialized taking advantage of the hardware 
one is to make the next matrix movie, and one just to do histograms, anything available 
universally would not be up to making matrix movies 
does not need every single line of code is optimal 
BC: graphics globals are fine as long as in graphics specific header, but dont include them from 
type traits headers 
Niall had a set of guidelines that preserve the same guarantees 
 
 
Final comments: 
cb: eminently practical way of going forward on ben's proposal slides 
we have a free standing approach and its called C 
execution discipline cannot be guaranteed 
ND: WG14 and safe C dialect: if we can const expr to be able to run C code subset that is safe, 
better then current effort on C Safe secure 
BC: floating point is the main contentious points, can do it with constexpr, but not with 
freestanding 
BS: practical real world vs academics, remember when constexpr was unimplemtable, need to 
idealistic 
 
MW: do we have enough for a summarizing paper for Kona 
BS: perfer someone else lead write it as coming from me would seem the same 
PB: can we combine some of what Kirk has but not use Feature test macros, urge Kirk to write a 
paper 
HT: Concepts can be used in this way 
MW: urge Kirk to get with a Concept expert to explore this further 
No polls were asked for  
 
MW: Ok, if I get time, I may write this up with Ben based on the notes. 
- show quoted text - 
Jan 21:  mailing deadline 



Minutes for 2019/01/09 SG14 Conference Call 
Michael, Andreas Fertig, Andreas Weis, Ben Craig, Ben Saks, Bob Steagall, Charley Bay, Guy 
Davidson, Hubert Tong, Jan Wilmans, Odin Holmes, Paul Bendixen,  Rene Rivera, Ronan 
Keryell, Ronen Friedman, Niall Douglas, Maikel, Arthur O'dwyer 

 
1.2 Adopt agenda 

Approved.   

 
1.3 Approve minutes from previous meeting, and approve publishing  previously approved 
minutes to ISOCPP.org 

Approved.   

1.4 Action items from previous meetings 

2. Main issues (125 min) 

2.1 General logistics 

Review last call discussions. 

Slowly to Zoom from Webex.   

2 new SGs mailing lists for SG19 Machine Learning 

https://groups.google.com/a/isocpp.org/forum/#!forum/sg19 

and SG20 Education 

https://groups.google.com/a/isocpp.org/forum/?fromgroups=#!forum/sg20 

https://isocpp.org/std/forums 

Any meeting rooms required for Kona? 

EWG-I will meet Mon-Wed. 
LEWG-I is penciled in for Mon-Thu, considering the outcome in San Diego. 

SG12/WG23 will meet Wed-Fri - the last day being SG12-focused. 

 
SG20 (education)  would like to meet on Thursday (all day) 

SG14 Friday Morning, SG19 Friday afternoon. 

https://groups.google.com/a/isocpp.org/forum/#!forum/sg19
https://groups.google.com/a/isocpp.org/forum/?fromgroups=#!forum/sg20
https://isocpp.org/std/forums


Who is coming? Michael, Ben Craig, Ronan, Bob, ben Saks,  

 

2.2 Paper reviews 

 
2.2.1 Embedded/freestanding vs hosted 
P13760:  
Summary of freestanding evening session discussions 
https://groups.google.com/a/isocpp.org/forum/?fromgroups#!topic/sg14/3B-Eg3cnETM 
Does nothing lower then C++ apply to Library? 
https://groups.google.com/a/isocpp.org/forum/?fromgroups#!topic/sg14/Azg-X-PfmrY 
 
Outcome from Dec call: 
In the SG14 session, he mentioned 2 that he prefers 
* Freestanding is signal / interrupt safe 
* Freestanding requires no special dispensation from the operating environment above what 
freestanding C99 requires 
 
But there are other possible directions 
* Freestanding should be as small as possible 
* Freestanding has all the same core language features as hosted 
 
Ben C: 2 issues that come up most are 
a. what is the intended target, is that clear or not: kernel developer, microcontroler, gpu, fpga? 
TPU ? 
b. if there is no one subset for all, what can we do ? will provide implementable usable C++ 
subset, to minimize the gap, not necessarily what every domain wants 
c. Pain points: is the gap between what toolchains provide and what is needed 
a paper summary can be published  by Ben 
 
DG discussion, socializing here first: 
all agreed there is no suitable definiton of embedded 
none of this fits within the todays freestanding definition  
Language: removing freestanding as a definition, if we have a minimal set, then that would 
wrongly encourage maximal portability 
potentially heading in a direction where we can say if FP, atomics, EH, is supported, and what 
facilities is available, 
And have a fallback path (compile fail) 
Library in supporting a list similar to what Ben's has previously 
 
No better then what we have today? we are encouraging full implementation and that there is no 
difference with host 
now you just get a hard error, instead of wrong behaviour 
parts of hosted just not implementable, need a subset that excludes this 
its actually a matter of how expensive it is to implement it, may be everything is implementable 

https://groups.google.com/a/isocpp.org/forum/?fromgroups#!topic/sg14/3B-Eg3cnETM
https://groups.google.com/a/isocpp.org/forum/?fromgroups#!topic/sg14/Azg-X-PfmrY


instead of minimal bar, is it vendor query? could this fragment into 8-9 version, even harder to 
keep to up to date 
 
important to point out that somethings do not makes sense. Can we better say what we cannot 
support 
no argument on library side 
language subset is problem, so can we get guidelines on how libraries can be implmented, that 
can get more buyin 
venn diagram, very large, negative defenition vs position definiton, harder to define what is not 
there 
group prefers a list of things that are unlikely to be there 
11/14 std library is std practice, embedded domains does not have std practice 
Guideline for pain points for embeded as a standing document . 
 
"optional features" vs "features that can't be implemented on every platform". 
implement everything could be bloated 
implemnting everything could lead to performance issues, so enable fallback path 
even an inefficient implementation is ok 
 
potential for more studies on costs, both compile and runtime. 
Is it the DG's position that a freestanding library (along the lines of Bens p0829 I believe) is ok, 
but changes to the language (such as removing rtti, exeptions or such) is out? I believe that 
would be an ok compromise. Also, that library would be so bare bones that only the vendors who 
are actually the target would want to provide only that (Who'd want a a deskotop c++ compiler 
that doesn't support vector and string?) 
Evening session Kona: Monday 
 
 
as part of the freestanding / exception discussion, could we discuss std::expected? It was 
forwarded to LWG by LEWG over a year ago, and is merely waiting on wording review. I think 
the SG14 constituency care about this very much, and voicing their concerns would help move 
things along.   
we can support adding it to freestanding library, but would have to omit .value function as they 
throw 
very similar to std: optional which also has .value 
freestanding does not have a good std library error type 
differences between outcome and expected. 
FAQ in outcome docs 
1. outcome is targeting boost user, expected for general C++ user space 
2. optional api vs variant is better, outcome duplicates variant model, expected is around a 
success oriented path, but outcome is neutral 
3. typing: expected need more typing, outcomes does not 
4. expected hardcoded an exception throw in .value, outcome does not have this exception, 
.value can just do undefined behaviour, or halt 
should add variant as the fundamental design 



why after writing expected, why can't I just report a failure, why explicit constructors, Vincent 
does not like the implicit model 
outcome is much bigger 
Niall: better then nothing 
Arthur: ok as a type, dual api hazard, should resist redoing filesystems with adding this api 
Ben: not strongly either way 
though many feel std:expected is not muli-order better 
Andreas weis: complaint and had to address this need, some kind is needed 
if  Herb's paper is approved, then a lot of use cases for expected and outcome goes away 
like iterator, multiple error handling needs similar to reduce multiple nxn explosion 
unlike iterator, we only have really 2 syntax 
compile time load similar to optional or more expensive due to storage, Peter Dimov feels 
outcome has less compile time burden 
sceptical: compile time of different variant implementations and sfinae of many different 
constructors, expected has fewer constructors 
The "throwing" issue is why we've adopted Outcome in our code  
sg14 is generally OK with std: expected 
 
 
 
 
2.2.2 Linear Algebra update + notes from Dec 5 (first Monday every month) 
https://groups.google.com/a/isocpp.org/forum/?fromgroups#!topic/sg14/JGKsRVrzkAY 
Jan 2 
https://11950069482448417429.googlegroups.com/attach/60d4bfb6a587d/02jan2019.txt?part=0.
1&view=1&vt=ANaJVrEPWoxHPpZ54t6CiYjZtaaNNv6rM23380AXmdr0gyxB6X5rLNiYkV
M65h1TPpvpjZoqeaUgjRnsRUTe3ZVwfPvQyBQl27VnYlaN-y4j8EEcf0jWCWY 
Next call: Feb 6 E PM ET 
 
Linear Algebra Layer  
https://docs.google.com/document/d/1poXfr7mUPovJC9ZQ5SDVM_1Nb6oYAXlK_d0ljdUAt
SQ/edit 
Paper from Guy 
Concerns about identifiers using another code point: can we use actual identifiers like bit, but it 
would be longer to type 
else we can use subnamespace,  
can we use overloads? yes its an option 
 
a third paper is 1385 on initial LA design 
what is the problem against subnamespace: Titus feels it encourages users to have a high level 
using directive, this can lead to ADL issues, but ranges has a subnamespace 
 http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/p0816r0.pdf 
 
Linear Algebra History from Mark 
https://groups.google.com/a/isocpp.org/forum/#!msg/sg14/BG8Es5UuywU/tV5EdHGtBwAJ  
 
2.2.3: Any serious study on cost of Exception vs cost of Error Codes 

https://groups.google.com/a/isocpp.org/forum/?fromgroups#!topic/sg14/JGKsRVrzkAY
https://11950069482448417429.googlegroups.com/attach/60d4bfb6a587d/02jan2019.txt?part=0.1&view=1&vt=ANaJVrEPWoxHPpZ54t6CiYjZtaaNNv6rM23380AXmdr0gyxB6X5rLNiYkVM65h1TPpvpjZoqeaUgjRnsRUTe3ZVwfPvQyBQl27VnYlaN-y4j8EEcf0jWCWY
https://11950069482448417429.googlegroups.com/attach/60d4bfb6a587d/02jan2019.txt?part=0.1&view=1&vt=ANaJVrEPWoxHPpZ54t6CiYjZtaaNNv6rM23380AXmdr0gyxB6X5rLNiYkVM65h1TPpvpjZoqeaUgjRnsRUTe3ZVwfPvQyBQl27VnYlaN-y4j8EEcf0jWCWY
https://11950069482448417429.googlegroups.com/attach/60d4bfb6a587d/02jan2019.txt?part=0.1&view=1&vt=ANaJVrEPWoxHPpZ54t6CiYjZtaaNNv6rM23380AXmdr0gyxB6X5rLNiYkVM65h1TPpvpjZoqeaUgjRnsRUTe3ZVwfPvQyBQl27VnYlaN-y4j8EEcf0jWCWY
https://docs.google.com/document/d/1poXfr7mUPovJC9ZQ5SDVM_1Nb6oYAXlK_d0ljdUAtSQ/edit
https://docs.google.com/document/d/1poXfr7mUPovJC9ZQ5SDVM_1Nb6oYAXlK_d0ljdUAtSQ/edit
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/p0816r0.pdf
https://groups.google.com/a/isocpp.org/forum/#!msg/sg14/BG8Es5UuywU/tV5EdHGtBwAJ


 

DG is discussing proposals for study  

2.2.2 any other proposal for reviews? 

 
 

2.3 Domain-specific discussions 

2.3.1  Embedded domain discussions: Ben Craig, Wooter and Odin Holmes 

Destructor paper  

2.3.3  Games Domain: John McFarlane, Guy Davidson and Paul Hampson 

Tooling to fill in the gap of C++ ecosystem 
USe Sg20 as a way to disseminate complex features 
Games reaction possibly due to over cleverness of pythagorean triples 
for previous C++, similar reactions happen as they want to move slower camp 
compile times is always the major complaint 
debugging and constexpr, and metaprogramming techniques are hard to debug 
previously was template complexity, and the extra load it puts on tools, with sfinae 
embedded is less worry about compile time, but debuggability is a hugh concern, shipping code 
with O0 
consider why Unity is moving their code to C# 
It's usually not the metprogramming that breaks debugging for us gamedevs. It's inlining and 
variable optimization ellision that kill debugability. 
Ranges can be off putting, introduces a lot of new vocabulary, they stick with well known 
constructs,  

2.3.4  Finance Domain: Carl Cooke, Neal Horlock, Mateusz Pusz and Clay Trychta 

2.4 Other Papers and proposals 

 

2.5 Future F2F meetings: 

Embo++ https://www.embo.io/ 

March 14-17 Bochum 

SG14 meeting in Embo++, uncontacted primitive tribesmen : siemen, etc, will join, all welcome 
please join  

2.6 future C++ Standard meetings: 

https://www.embo.io/


https://isocpp.org/std/meetings-and-participation/upcoming-meetings 

• 2019-02-18 to 23: Kona, HI, USA; Standard C++ Foundation, NVIDIA, Plum Hall, Jens 
Maurer 

• 2019-07-15 to 20: Cologne, Germany; Nicolai Josuttis 
• 2019-11-04 to 09: Belfast, Northern Ireland; Archer Yates 

3. Any other business  
Reflector 
https://groups.google.com/a/isocpp.org/forum/?fromgroups=#!forum/sg14 
As well as look through papers marked "SG14" in recent standards committee paper mailings: 
http://open-std.org/jtc1/sc22/wg21/docs/papers/2015/ 
http://open-std.org/jtc1/sc22/wg21/docs/papers/2016/ 

Code and proposal Staging area 
https://github.com/WG21-SG14/SG14 
4. Review 

4.1 Review and approve resolutions and issues [e.g., changes to SG's working draft] 

4.2 Review action items (5 min) 

 
5. Closing process 

 
5.1 Establish next agenda  

Feb 14 tentative 

 
5.2 Future meeting 

Dec 12: Freestanding. DONE 
Jan 9: this meeting 
Jan 21: mailing deadline 
Feb 14: valentines day 
Feb 18: C++ Std meeting Kona 
 
 
 

 
 
 
 

https://isocpp.org/std/meetings-and-participation/upcoming-meetings
https://groups.google.com/a/isocpp.org/forum/?fromgroups=#!forum/sg14
http://open-std.org/jtc1/sc22/wg21/docs/papers/2015/
http://open-std.org/jtc1/sc22/wg21/docs/papers/2016/
https://github.com/WG21-SG14/SG14


 

 
 


	Minutes for 2018/07/11 SG14 Conference Call
	Minutes for 2018/08/15 SG14 Conference Call
	Minutes for 2018/09/12 SG14 Conference Call
	Minutes for 2018/10/10 SG14 Conference Call
	Minutes for 2018/12/12 SG14 Conference Call
	Minutes for 2019/01/09 SG14 Conference Call

