
Document Number: p1138r0

Date: 2018-06-22

Reply-to: Aaron Ballman <aaron@aaronballman.com>

Author: Aaron Ballman <aaron@aaronballman.com>

Audience: SG1, Evolution Working Group

Deprecating ATOMIC_VAR_INIT

Motivation
The ATOMIC_VAR_INIT macro was introduced as a way to constant initialize atomic variables in a

manner suitable for both C and C++ source code. It was believed that this was necessary in order to

allow an atomic initialization to also initialize embedded locks, as it provides a syntactic marker for the

compiler to trivially know where to generate the embedded lock initialization. However, to date, no

implementation has required this latitude in the form of an explicit syntactic marker. Further, exposing

the initialization via a macro results in the macro being unsuitable for initializing certain types, like

aggregates. For instance,

#include <atomic>

struct S {

 int i, j;

};

std::atomic<S> s1 = ATOMIC_VAR_INIT({});

std::atomic<S> s2 = ATOMIC_VAR_INIT({1});

std::atomic<S> s3 = ATOMIC_VAR_INIT({1, 2});

In this code example, the initialization of s3 is ill-formed in all implementations I was able to test (Clang,

GCC, MSVC, and ICC). The typical implementation of ATOMIC_VAR_INIT looks like:

#define ATOMIC_VAR_INIT(value) (value)

Because the ATOMIC_VAR_INIT macro only accepts a single argument, the presence of the comma in

what the programmer believes to be an aggregate initializer is instead interpreted as a comma

separating function-like macro arguments.

WG14 considered these concerns in DR 485 and elected to deprecate the ATOMIC_VAR_INIT macro

in C17 with the intention of removing the macro in a future revision of the C standard [DR 485]. Use of

the ATOMIC_VAR_INIT macro is no longer required when explicitly initializing an atomic object in C;

instead, automatic variables are left in an indeterminate state and the zero-initialization of a static or

thread-local variable is required to leave the object in a valid state.

This paper is intended to realign C and C++ by deprecating the ATOMIC_VAR_INIT macro. Given the

overlap with P0883 regarding atomic initialization, which was approved by SG1 in Rapperswil 2018 to

target LEWG for C++2a, this paper does not propose modifying the behavior of default initialization of

atomic objects, retaining the C++ status quo for that behavior [P0883]. If P0883 is not adopted but this

proposal is, the result will be an inconsistency where a variable with static or thread-local storage

duration will be uninitialized in C++ but zero-initialized in C.

Proposed Wording
Delete [atomics.types.operations]p4 (the definition of ATOMIC_VAR_INIT).

Add new Subclause to Annex D:

D.XX Deprecated atomic operations [depr.atomics]

1 The following macro is declared in addition to those operations defined in 32.6.1:

#define ATOMIC_VAR_INIT(value) see below

The macro expands to a token sequence suitable for constant initialization of an atomic variable of static

storage duration of a type that is initialization-compatible with value. [ Note: This operation may need to

initialize locks. — end note ] Concurrent access to the variable being initialized, even via an atomic

operation, constitutes a data race. [ Example:

atomic<int> v = ATOMIC_VAR_INIT(5);

— end example ]

Acknowledgements
Thank you to Hans Boehm for reviewing the paper.

References
[DR 485]

Clarification Request Summary for C2x Version 1.14. Blaine Garst. http://www.open-

std.org/jtc1/sc22/wg14/www/docs/n2257.htm#dr_485

[P0883]

Fixing Atomic Initialization, Rev0. Nicolai Josuttis. http://www.open-

std.org/jtc1/sc22/wg21/docs/papers/2018/p0883r0.pdf

