
Doc. no.: P0903R0
Date: 2018-02-02
Reply to: Ashley Hedberg (ahedberg@google.com),
Audience: LEWG/LWG

Define basic_string_view(nullptr)
and basic_string(nullptr)
Abstract 1

Background 2
Current behavior of string_view constructors 2
Current behavior of string constructors 2

Motivation 2
Motivation for defining string_view(nullptr) 2
Motivation for defining string(nullptr) 3

Proposed Wording 3
Define char_traits<T>::length for null arguments 3
Changes to basic_string(const charT* s, const Allocator& a = Allocator()) 4

Considerations 4

Alternative Wordings 4

Acknowledgements 5

Abstract
This paper proposes defining char_traits<T>::length(s) for s == nullptr and modifying
the requirements of basic_string(const charT* s, const Allocator& a =
Allocator()) such that basic_string_view(const charT* str) and basic_string(const
charT* s, const Allocator& a = Allocator()) become well-defined for null pointers.

mailto:ahedberg@google.com

Background

Current behavior of string_view constructors
basic_string_view(nullptr) is currently undefined behavior. Such code invokes the
basic_string_view(const charT* str) constructor, which requires that [str, str +
traits::length(str)) is a valid range [string.view.cons]. The current wording on
requirements for char_traits<T>::length is as follows [char.traits.require]:

Returns: the smallest i such that X::eq(p[i], charT()) is true.

There is no such i when p is null. Thus, basic_string_view(nullptr) is undefined.

Conversely, basic_string_view() and basic_string_view(nullptr, 0) are both defined
to construct an object with size_ == 0 and data_ == nullptr [string.view.cons].

Current behavior of string constructors
basic_string(nullptr) is currently undefined behavior. Such code invokes the
basic_string(const charT* s, const Allocator& a = Allocator()) constructor, which
requires that s points to an array of at least traits::length(s) + 1 elements of charT
[string.cons]. As described above, traits::length(s) is undefined when s is null. Thus,
basic_string(nullptr) is undefined.

Conversely, basic_string() and basic_string(nullptr, 0) are both defined to construct
an object with size() == 0 [string.cons].

Motivation

Motivation for defining string_view(nullptr)
Having a well-defined basic_string_view(nullptr) makes migrating char* APIs to
string_view APIs easier. Here's an example API which we may wish to migrate to
string_view:

void foo(const char* p) {
 if (p == nullptr) return;
 // Process p
}

http://wg21.link/string.view.cons
http://wg21.link/char.traits.require
http://wg21.link/string.view.cons
http://wg21.link/string.cons
http://wg21.link/string.cons

Callers of foo can pass null or non-null pointers without worry. However, this function cannot be
safely migrated to accept string_view unless one can statically determine that no null char*
is ever passed to it:

void foo(std::string_view sv) {
 if (sv.empty()) return; // Too late - constructing sv from nullptr is undefined!
 // Process sv
}

If basic_string_view(nullptr) becomes well-defined, APIs currently accepting char* or
const string& can all move to std::string_view without worrying about whether
parameters could ever be null.

This change also makes instantiating empty string_view objects more consistent across
constructors. basic_string_view(), basic_string_view(nullptr), and
basic_string_view(nullptr, 0) will all construct an object with size_ == 0 and data_ ==
nullptr. Furthermore, it increases consistency across library versions without penalty.
libstdc++, the proposed std::span, absl::string_view, and gsl::string_span already
support constructing a string_view-like object from a null pointer with no size; libc++ and
MSVC do not.

Motivation for defining string(nullptr)
With the above proposal, basic_string_view(), basic_string_view(nullptr),
basic_string_view(nullptr, 0), basic_string(), and basic_string(nullptr, 0)
would all be well-defined. Defining basic_string(nullptr) makes instantiating empty string
objects more consistent across constructors of that class, and is consistent with the proposed
behavior for string_view.

libstdc++ already supports constructing a string object from a null pointer with no size; libc++
and MSVC do not.

Proposed Wording

Define char_traits<T>::length for null arguments
Change the Assertion/note pre-/post-condition column for the expression X::length(p) as
follows [char.traits.require]:

Returns: 0 if p == nullptr; else, the smallest i such that X::eq(p[i],charT()) is
true.

http://wg21.link/p0122
http://wg21.link/p0122
http://wg21.link/char.traits.require

Changes to basic_string(const charT* s, const
Allocator& a = Allocator())
Change the requirements for basic_string(const charT* s, const Allocator& a =
Allocator()) as follows [string.cons]:

Requires: if s != nullptr, s points to an array of at least traits::length(s) + 1
elements of charT

Considerations
The proposed char_traits<T>::length change would cause both
traits::length(nullptr) and traits::length("") to return 0. This is ambiguous.
However, basic_string_view("") and basic_string_view(nullptr, 0) both construct
objects where size() == 0, so there is precedent for this ambiguity.

The proposed char_traits<T>::length change also requires its implementations to check for
nullptr and branch accordingly. However, char_traits<T>::length is already an O(n)
operation in the non-null case, so the cost of a branch is much smaller relative to the existing
behavior.

Alternative Wordings
If inserting a branch in char_traits<T>::length is undesirable, the
basic_string_view(const charT* str) constructor could be changed instead:

Change the requirements and effects for basic_string_view(const charT* str) as follows
[string.view.cons]:
Requires: if str != nullptr, [str, str + traits::length(str)) is a valid range.
Effects: Constructs a basic_string_view, with the postconditions in Table 56:

Table 56 -- basic_string_view(const charT*) effects

Element Value

data_ str

size_ 0 if str == nullptr; else, traits::length(str)

http://wg21.link/string.cons
http://wg21.link/string.view.cons

Acknowledgements
● Titus Winters for proposing that I write this proposal.
● Matt Calabrese for assistance in navigating existing committee papers, notes. etc.
● Titus Winters, Matt Calabrese, John Olson for providing feedback on drafts of this

proposal.

