

Document number P0716R0

Date 2017-06-19

Authors Richard Smith <​richard@metafoo.co.uk​>
Andrew Sutton <​asutton@uakron.edu​>

Audience Evolution

Unified concept definition syntax

Introduction
At Kona, P0324R0 was presented and Evolution gave the following guidance (given in the usual
strongly in favor | in favor | neutral | against | strongly against form):

Explore removing the distinction between function-like and variable-like concept definitions?
 24 | 23 | 1 | 0 | 0
Explore removing the bool?
 20ish | 10ish | 5 | 0 | 0

However, no vote was taken to forward P0324R0 to core. Discussion since Kona has indicated
that there is still a very high level of support for this change. This paper requests that such a
vote be taken, and suggests a specific approach from those proposed by P0324R0.

Rationale
We refer the reader to P0324R0 for detailed rationale for the proposed change, but would
highlight the following points:

● With both function and variable templates permitted, the user of a concept must know
which form is used: implementation details leak into the interface

● Function and variable declarations carry a large amount of baggage (linkage, declarator
syntax, forward declarations, type specifiers, various initialization syntaxes, initialization
order issues, destruction semantics, and so on) that do not make sense for concepts.
We should not burden concepts with this baggage.

Background
The original concepts proposal developed in 2011 defined functions in terms of functions, using
concept ​ as a declaration specifier. Variable templates were added to C++14 in the 2013

mailto:richard@metafoo.co.uk
mailto:asutton@uakron.edu

Bristol meeting. Several committee members noted that the the parentheses on concepts could
be omitted if the declaration specifier also applied to variable templates. That change was
accepted, ultimately leading to issues discussed in P0324R0.

Approach
We propose restricting to a single concept definition syntax, similar to the current syntax but with
the “bool” removed and with the other complexities of variable declaration syntax similarly
excised. Specifically, the only permitted syntax would be:

 ​template < ​ ​template-parameter-list​ ​>
 ​concept ​ ​identifier​ ​= ​ ​constraint-expression​ ​;

For simplicity of exposition, we propose following a path similar to P0324R0’s Approach 3 or 5:
define a separate grammar production for concepts instead of reusing the function / variable
declaration grammar. However, such an approach is intended to be formally equivalent to
defining a concept as being a variable template that is implicitly declared to be ‘constexpr bool’
and where grammatical complexities beyond the syntax above are disallowed (some, but not all,
of these restrictions already exist in the Concepts TS).

We propose removing the ability to overload concepts on differing ​template-parameter-list​s. This
removal is not fundamental: with the above reformulation of concepts as being distinct from
variables, we could permit overloading without needing to introduce overloading on template
parameters to variable templates, but there seems to be little support for retaining the ability to
overload concepts.

We propose one additional change, mentioned in footnote 4 of P0324R0: we propose that an
id-expression​ naming a specialization of a concept (such as ​Trivial<int> ​) be a prvalue,
rather than a lvalue. This means that concept specializations behave like manifest constants,
not like variables, and matches the behavior of other manifest constants, such as literals,
(non-reference) non-type template arguments, and enumerators. This also avoids the need for
such concept specializations to be emitted as data in executables.

Interaction with Ranges TS
The Ranges TS currently does make use of concept overloading for several concepts (such as
providing both ​EqualityComparable<T> ​ and ​EqualityComparable<T, U> ​ for
determining whether a type is equality comparable to itself and to another type). It also
exclusively uses function concepts, in order to serve the dual goals of permitting overloading
and avoiding concept users from needing to know whether a particular concept is a function
concept or a variable concept.

A separate paper from Eric Niebler will propose switching the Ranges TS to non-overloaded
variable concepts, and the primary authors of the Ranges TS have raised no objection to
unifying the concept definition syntax as described here.

