
Document Number: P0350R1

Date: 2017-07-30

Reply-to: Matthias Kretz <m.kretz@gsi.de>

Audience: LEWG

Integrating simd with parallel
algorithms

ABSTRACT

This paper discusses a new execution policy for integrating simd with parallel algo-
rithms.

CONTENTS

0 Remarks 1
1 Changelog 1
2 Straw Polls 1
3 Introduction 1
4 Parallel Algorithms 2
A Acknowledgements 8
B Bibliography 8



P0350R1 0 Remarks

0 REMARKS

• This documents talks about “vector” types/objects. In general this will not re-
fer to the std::vector class template. References to the container type will
explicitly call out the std prefix to avoid confusion.

• [P0214R5] is the last paper on simd.

1 CHANGELOG

1.1 changes from r0

Previous revision: [P0350R0].

• Update to apply against C++17 wording.

• Removed executors discussion because the executors design has not left SG1
yet.

• Updated example code to reflect changes in P0214.

2 STRAW POLLS

2.1 sg1 at oulu

Poll: Ship it to LEWG?
SF F N A SA

6 6 2 0 0

3 INTRODUCTION

Parallel Algorithms enable implementations of the existing STL algorithms to use
non-sequential semantics when executing the user-supplied code (explicit callable or
implicit operator call). The first argument to the algorithm function determines this
change in execution semantics via an execution policy. This paper introduces a new
execution policy, called execution::simd. execution::simd requires user-provided
function objects to be callable with simd<T, Abi> arguments instead of the T ar-
guments the std::execution::seq variant would use. The algorithm therefore pro-
cesses chunks of simd<T, Abi>::size() objects concurrently. The execution order
of the chunks retains the sequential semantics of the non-parallel algorithms.

1



P0350R1 4 Parallel Algorithms

1 std::vector<float> data;
2 data.resize(99);
3 iota(execution::simd, data.begin(), data.end(), 0.f);
4 for_each(execution::simd, data.begin(), data.end(), [](auto &x) {
5 x *= x;
6 });

Listing 1: Example using execution::simd with iota and for_each.

As a consequence, the applicability of the execution policy is limited to iterators
where simd<Iterator::value_type> is a valid template instantiation of simd. A fu-
ture extension of simd may lift this restriction by allowing certain (or all) user-defined
types as first template argument to simd.

4 PARALLEL ALGORITHMS

4.1 example

Consider the example in Listing 1. The iota and for_each functions each could cre-
ate an internal simd iterator adaptor, depending on the iterator category. Being able
to determine whether the storage, the iterator points to, is contiguous, is most im-
portant in this context as it enables vector loads and stores. Since the std::vector
iterators are contiguous iterators, the example implementations shown in Listing 2
and Listing 3 could be used for the example.

Both implementations might be improved with a prologue that enables aligned
loads and stores. Also note that for_each allows the Function parameter to mutate
the argument if the iterator is a mutable iterator. The implementation uses a compile-
time trait to determine whether the function f uses a reference parameter, in which
case it stores the temporary simd object back. Otherwise, the store is optimized
away.

Figure 1 shows a visualization how the iota implementation works. The init simd
object is stored via vector stores to 4 (assuming native simd::size() == 4) elements
in the std::vector. In each iteration the init object is incremented by simd::size()
and stored to the following elements in the std::vector. Since the std::vector has
99 elements, the last three elements cannot be initialized with a vector store of four
elements. Instead the epilogue recursion generates a new init simd object for size
2 and subsequently for size 1.

Figure 2 visualizes the end of the for_each implementation. The main for loop
processes four elements of the std::vector in parallel. It executes a vector load, calls
the user-provided function with the temporary simd object, and executes a vector
store back to the same memory location. The remaining three elements are again

2



P0350R1 4 Parallel Algorithms

1 template <size_t N>
2 void epilogue(ContiguousIterator first, ContiguousIterator last,
3 ContiguousIterator::value_type first_value);
4

5 template <>
6 inline void epilogue<0>(ContiguousIterator, ContiguousIterator,
7 ContiguousIterator::value_type) {}
8

9 template <size_t N>
10 inline void epilogue(ContiguousIterator first, ContiguousIterator last,
11 ContiguousIterator::value_type first_value) {
12 if (distance(first, last) >= N) {
13 using T = ContiguousIterator::value_type;
14 using V = simd<T, abi_for_size_t<N>>;
15 const V init = V([&](auto i) { return T(i); }) + first_value;
16 store(init, std::addressof(*first), flags::element_aligned);
17 first += V::size();
18 }
19 epilogue<V::size() / 2>(first, last, init[V::size() - 1] + 1);
20 }
21

22 void iota(execution::simd_policy, ContiguousIterator first, ContiguousIterator last,
23 float first_value) {
24 using T = ContiguousIterator::value_type;
25 using V = simd<T, simd_abi::native>;
26 V init = V([&](auto i) { return T(i); }) + first_value;
27 const V stride = T(V::size());
28 for (; distance(first, last) >= V::size(); first += V::size(), init += stride) {
29 store(init, std::addressof(*first), flags::element_aligned);
30 }
31 epilogue<V::size() / 2>(first, last, init[V::size() - 1] + 1);
32 }

Listing 2: Implementation idea for the iota function used in Listing 1.

3



P0350R1 4 Parallel Algorithms

1 template <size_t N>
2 void epilogue(ContiguousIterator first, ContiguousIterator last, UnaryFunction f);
3

4 template <>
5 inline void epilogue<0>(ContiguousIterator, ContiguousIterator, UnaryFunction) {}
6

7 template <size_t N>
8 inline void epilogue(ContiguousIterator first, ContiguousIterator last,
9 UnaryFunction f) {

10 using V = simd<ContiguousIterator::value_type, abi_for_size_t<N>>;
11 V tmp(std::addressof(*first), flags::element_aligned);
12 f(tmp);
13 if (is_functor_argument_mutable<UnaryFunction, V>::value) {
14 store(tmp, std::addressof(*first), flags::element_aligned);
15 }
16 epilogue<V::size() / 2>(first, last, f);
17 }
18

19 void for_each(execution::simd_policy, ContiguousIterator first,
20 ContiguousIterator last, UnaryFunction f) {
21 using V = simd<ContiguousIterator::value_type, simd_abi::native>;
22 for (; distance(first, last) >= V::size(); first += V::size()) {
23 V tmp(std::addressof(*first), flags::element_aligned);
24 f(tmp);
25 if (is_functor_argument_mutable<UnaryFunction, V>::value) {
26 store(tmp, std::addressof(*first), flags::element_aligned);
27 }
28 }
29 epilogue<V::size() / 2>(first, last, f);
30 }

Listing 3: Implementation idea for the for_each function used in Listing 1.

4



P0350R1 4 Parallel Algorithms

0
1
2
3

0
1
2
3

+
+
+
+

4
4
4
4

=
=
=
=

4
5
6
7

4
5
6
7

+
+
+
+

4
4
4
4

=
=
=
=

8
9

10
11

88
89
90
91

+
+
+
+

4
4
4
4

=
=
=
=

92
93
94
95

96
96

+
+

0
1

=
=

96
97

98 + 0 = 98

Figure 1: Visualization of chunking the iota call with 𝒲T = 4 in Listing 1.

handled by an epilogue recursion which divides the number of processed elements
by 2 with every step.

For both algorithms it would be perfectly valid to implement the epilogue as a
sequential loop using simd objects with size 1.

4.2 wording for the policy

Add a new execution policy to [N4659, §23.19.2]:
§23.19.2 [execution.syn]

// 23.19.6, parallel and unsequenced execution policy
class parallel_unsequenced_policy;

// 23.19.7, simd execution policy
class simd_policy;

5



P0350R1 4 Parallel Algorithms

92
93
94
95

*
*
*
*

92
93
94
95

=
=
=
=

92²
93²
94²
95²

96
97

*
*

96
97

=
=

96²
97²

98 * 98 = 98²

Figure 2: Visualization of chunking the foreach call with 𝒲T = 4 in Listing 1.

6



P0350R1 4 Parallel Algorithms

// 23.19.78, execution policy objects:
inline constexpr sequenced_policy seq{ unspecified };
inline constexpr parallel_policy par{ unspecified };
inline constexpr parallel_unsequenced_policy par_unseq{ unspecified };
inline constexpr simd_policy simd { unspecified };

Renumber §23.19.7 to §23.19.8 and add §23.19.7 [execpol.simd]:

class simd_policy { unspecified };

1 The class simd_policy is an execution policy type used as a unique type to disambiguate parallel al-
gorithm overloading and indicate that a parallel algorithm’s execution may be vectorized using simd for
interfacing with user-provided functionality.

2 During the execution of a parallel algorithm with the execution::simd_policy policy, if the invocation
of an element access function exits via an uncaught exception, terminate() shall be called.

Add to §23.19.8 [execpol.objects]:

inline constexpr execution::simd_policy execution::simd{ unspecified };

[N4659, §28.4.2] defines requirements on user-provided function objects. This might
be the right place to add:

§28.4.2 [algorithms.parallel.user]

4 Function objects passed into parallel algorithms instantiated with the execution::simd execution policy shall be
callable with any argument of type simd<T, Abi>, where T is the type obtained from dereferencing the iterator.

The following subsection in [N4659, §28.4.3] defines the semantics of the execution
policies. A new paragraph for execution::simd is needed. The intent is to

1. constrain execution to the calling thread,

2. allow implementations to assume unordered access for all internal element
access functions (most importantly loads and stores),

3. apply user-provided function objects in the order the simd chunks are created
from sequential iteration over the iterator(s).

7



P0350R1 A Acknowledgements

§28.4.3 [algorithms.parallel.exec]
12 The invocations of element access functions in parallel algorithms invoked with an execution policy object of

type execution::simd_policy are permitted to execute in an unordered fashion in the calling thread, except
for the application of user-provided function objects. User-provided function objects are called with an implemen-
tation-defined number of sequence elements combined into a simd<T, Abi> object. The type for Abi is chosen
by the implementation. It may be different for subsequent applications of the user-provided function in the same
parallel algorithm invocation. The type for T is the decayed type of the sequence elements. The order of elements
in the simd object is equal to the order of the corresponding elements in the sequence argument. The invocation
order of user-provided function objects is sequential.

It is my understanding that we do not want to add anything to [N4659, §28.4.4
[algorithms.parallel.exceptions]] at this point. The situation is simpler for the execu-
tion::simd policy. It is almost equivalent to the seq policy.

4.3 wording for individual algorithms

I have not identified the need for any additional wording in the subsections on the
individual algorithms for the execution::simd_policy at this point.

A ACKNOWLEDGEMENTS

This work was supported by GSI Helmholtzzentrum für Schwerionenforschung and
the Hessian LOEWE initiative through the Helmholtz International Center for FAIR (HIC
for FAIR).

B BIBLIOGRAPHY

[P0214R5] Matthias Kretz. P0214R5: Data-Parallel Vector Types & Operations. ISO/IEC
C++ Standards Committee Paper. 2017. url: http://www.open- std.org/
jtc1/sc22/wg21/docs/papers/2017/p0214r5.pdf.

[P0350R0] Matthias Kretz. P0350R0: Integrating datapar with parallel algorithms
and executors. ISO/IEC C++ Standards Committee Paper. 2016. url: http:
//www.open- std.org/jtc1/sc22/wg21/docs/papers/2016/p0350r0.
pdf.

8

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/p0214r5.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/p0214r5.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0350r0.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0350r0.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0350r0.pdf


P0350R1 B Bibliography

[N4659] Richard Smith, ed. Working Draft, Standard for Programming Language
C++. ISO/IEC JTC1/SC22/WG21, 2017. url: http : / / www . open - std . org /
jtc1/sc22/wg21/docs/papers/2017/n4659.pdf.

9

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/n4659.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/n4659.pdf

	0 Remarks
	1 Changelog
	1.1 Changes from R0

	2 Straw Polls
	2.1 SG1 at Oulu

	3 Introduction
	4 Parallel Algorithms
	4.1 Example
	4.2 Wording for the policy
	4.3 Wording for individual algorithms

	A Acknowledgements
	B Bibliography

