

1

Project: Programming Language C++, Library Working Group
Document number: P0122R4
Date: 2017-02-06
Reply-to: Neil MacIntosh neilmac@microsoft.com

span: bounds-safe views for sequences
of objects

Contents
Changelog ...2

Changes from R0 ...2

Changes from R1 ...2

Changes from R2 ...2

Changes from R3 ...2

Introduction ..2

Motivation and Scope ...3

Impact on the Standard ..3

Design Decisions ...3

View not container ...3

No configurable view properties ..4

View length and measurement ..4

Value Type Semantics ...5

Range-checking and bounds-safety ..5

Element types and conversions ..5

Element access and iteration ..6

Construction ...6

Byte representations and conversions ...7

Comparisons ...8

Creating sub-spans ...8

Multidimensional span ...9

Proposed Wording Changes ...9

Acknowledgements ... 22

2

References ... 22

Changelog
Changes from R0

 Changed the name of the type being proposed from array_view to span following feedback from
LEWG at the Kona meeting.

 Removed multidimensional aspects from the proposal. span is now always single-dimension and
contiguous.

 Added details on potential interoperation with the multidimensional view type from P0009 [5].
 Removed functions to convert from span<byte> to span<T> as they are not compatible with type

aliasing rules.
 Introduced dependency on P0257 [6] for definition of byte type, in order to support span as a

method of accessing object representation.
 Added section containing proposed wording for inclusion in the standard.
 Simplified span interface based on reviewer feedback.

Changes from R1
 Added difference_type typedef to span to better support use in template functions.
 Removed const_iterator begin const() and const_iterator end const () members of span based on

LEWG feedback. For a view type like span, the constness of the view is immaterial to the constness
of the element type, the iterator interface of span now reflects that.

 Removed the deletion of constructors that take rvalue-references based on LEWG feedback.
 Added support for construction from const Container&.

Changes from R2
 Wording cleanup: removed const on non-member functions and inappropriate noexcept

specifiers. Improved wording to be clear that the reverse_iterator is not contiguous. Removed
constexpr from as_bytes() and as_writeable_bytes() as it would be illegal. Tidied up effects of
last() overloads and of array/std::array constructors for cases when the array is empty.

 Added back cbegin() and cend() and const_iterator type based on LEWG feedback in Oulu.
 Improved colors.

Changes from R3
 Updated the wording to be differences against the N4618.

Introduction
This paper presents a design for a fundamental vocabulary type span.

The span type is an abstraction that provides a view over a contiguous sequence of objects, the storage
of which is owned by some other object. The design for span presented here provides bounds-safety
guarantees through a combination of compile-time and (configurable) run-time constraints.

3

The design of the span type discussed in this paper is related to the span previously proposed in N3851
[1] and also draws on ideas in the array_ref and string_ref classes proposed in N3334 [2]. span is closely
related to the generalized, multidimensional memory-access abstraction array_ref described in P0009 [5].
The span proposed here is sufficiently compatible with array_ref that interoperability between the two
types would be simple and well-defined.

While array_ref is proposed by P0009 [5] as a generalized and highly configurable view type that can
address needs for specialized domains such as scientific computing, span is proposed as a simple solution
to the common need for a single-dimensional view over contiguous storage.

Motivation and Scope
The evolution of the standard library has demonstrated that it is possible to design and implement
abstractions in Standard C++ that improve the reliability of C++ programs without sacrificing either
performance or portability. This proposal identifies a new “vocabulary type” for inclusion in the standard
library that enables both high performance and bounds-safe access to contiguous sequences of elements.
This type would also improve modularity, composability, and reuse by decoupling accesses to array data
from the specific container types used to store that data.

These characteristics lead to higher quality programs. Some of the bounds and type safety constraints of
span directly support “correct-by-construction” programming methodology – where errors simply do not
compile. One of the major advantages of span over the common idiom of a “pointer plus length” pair of
parameters is that it provides clearer semantics hints to analysis tools looking to help detect and prevent
defects early in a software development cycle.

Impact on the Standard
This proposal is a pure library extension. It does not require any changes to standard classes, functions,
or headers. It would be enhanced if could depends on the byte type and changes to type aliasing behavior
proposed in P0257 [6].

However – if adopted – it may be useful to overload some standard library functions for this new type (an
example would be copy()).

span has been implemented in standard C++ (C++11) and is being successfully used within a commercial
static analysis tool for C++ code as well as commercial office productivity software. An open source,
reference implementation is available at https://github.com/Microsoft/GSL [3].

Design Decisions
View not container
span is simply a view over another object’s contiguous storage – but unlike array or vector it does not
“own” the elements that are accessible through its interface. An important observation arises from this:
span never performs any free store allocations.

While span is a view, it is not an iterator. You cannot perform increment or decrement operations on it,
nor dereference it.

4

No configurable view properties
In the related array_ref type described in P0009 [5], properties are used to control policies such as
memory layout (column-major, row-major) and location (on heterogenous memory architectures) for
specific specializations of array_ref. span does not require properties as it is always a simple view over
contiguous storage. Its memory layout and access characteristics are equivalent to those of a built-in
array. This difference should not prevent conversions between array_ref and span instances, it merely
constrains that they could only be available in cases where array_ref properties are compatible with the
characteristics of span.

View length and measurement
The general usage protocol of the span class template supports both static-size (fixed at compile time)
and dynamic-size (provided at runtime) views. The Extent template parameter to span is used to provide
the extent of the span.

constexpr ptrdiff_t dynamic_extent = -1;

The default value for Extent is dynamic_extent: a unique value outside the normal range of lengths (0 to
PTRDIFF_MAX inclusive) reserved to indicate that the length of the sequence is only known at runtime
and must be stored within the span. A dynamic-size span is, conceptually, just a pointer and size field (this
is not an implementation requirement, however).

int* somePointer = new int[someLength];

// Declaring a dynamic-size span
// s will have a dynamic-size specified by someLength at construction
span<int> s = { somePointer, someLength };

The type used for measuring and indexing into span is ptrdiff_t. Using a signed index type helps avoid
common mistakes that come from implicit signed to unsigned integer conversions when users employ
integer literals (which are nearly always signed). The use of ptrdiff_t is natural as it is the type used for
pointer arithmetic and array indexing – two operations that span explicitly aims to replace but that an
implementation of span would likely rely upon.

A fixed-size span provides a value for Extent that is between 0 and PTRDIFF_MAX (inclusive). A fixed-size
span requires no storage size overhead beyond a single pointer – using the type system to carry the fixed-
length information. This allows span to be an extremely efficient type to use for access to fixed-length
buffers.

int arr[10];

// deduction of size from arrays means that span size is always correct
span<int, 10> s2 = arr; // fixed-size span of 10 ints
span<int, 20> s3 = arr; // error: will fail compilation
span<int> s4 = arr; // dynamic-size span of 10 ints

5

Value Type Semantics
span is designed as a value type – it is expected to be cheap to construct, copy, move, and use. Users are
encouraged to use it as a pass-by-value parameter type wherever they would have passed a pointer by
value or a container type by reference, such as array or vector.

Conceptually, span is simply a pointer to some storage and a count of the elements accessible via that
pointer. Those two values within a span can only be set via construction or assignment (i.e. all member
functions other than constructors and assignment operators are const). This property makes it easy for
users to reason about the values of a span through the course of a function body.

These value type characteristics also help provide compiler implementations with considerable scope for
optimizing the use of span within programs. For example, span has a trivial destructor, so common ABI
conventions allow it to be passed in registers.

Range-checking and bounds-safety
All accesses to the data encapsulated by a span are conceptually range-checked to ensure they remain
within the bounds of the span. What actually happens as the result of a failure to meet span’s bounds-
safety constraints at runtime is undefined behavior. However, it should be considered effectively fatal to
a program’s ability to continue reliable execution. This is a critical aspect of span’s design, and allows
users to rely on the guarantee that as long as a sequence is accessed via a correctly initialized span, then
its bounds cannot be overrun.

As an example, in the current reference implementation, violating a range-check results by default in a
call to terminate() but can also be configured via build-time mechanisms to continue execution (albeit
with undefined behavior from that point on).

Conversion between fixed-size and dynamic-size span objects is allowed, but with strict constraints that
ensure bounds-safety is always preserved. At least two of these cases can be checked statically by
leveraging the type system. In each case, the following rules assume the element types of the span objects
are compatible for assignment.

1. A fixed-size span may be constructed or assigned from another fixed-size span of equal length.
2. A dynamic-size span may always be constructed or assigned from a fixed-size span.

3. A fixed-size span may always be constructed or assigned from a dynamic-size span. Undefined
behavior will result if the construction or assignment is not bounds-safe. In the reference
implementation, for example, this is achieved via a runtime check that results in terminate() on
failure.

Element types and conversions
span must be configured with its element type via the template parameter ValueType, which is required
to be a complete object type that is not an abstract class type. span supports either read-only or mutable
access to the sequence it encapsulates. To access read-only data, the user can declare a span<const T>,
and access to mutable data would use a span<T>.

6

Construction or assignment between span objects with different element types is allowed whenever it
can be determined statically that the element types are exactly storage-size equivalent (so there is no
difference in the extent of memory being accessed), and that the types can legally be aliased.

As a result of these rules, it is always possible to convert from a span<T> to a span<const T>. It is not
allowed to convert in the opposite direction, from span<const T> to span<T>. This property is extremely
convenient for calling functions that take span parameters.

Element access and iteration
span’s interface for accessing elements is largely similar to that of array. It overloads operator[] for
element access, and offers random access iterators, making it adoptable with a minimum of source
changes in code that previously used an array, an array object, or a pointer to access more than one
object. span also overloads operator() for element access, to provide compatibility with code written to
operate against view.

span provides random-access iterators over its data, comparable to vector and array. All accesses to
elements made through these iterators are range-checked (subject to configuration as previously
described), just as if they had been performed via the subscript operator on span. There is no difference
in the mutability of the iterators returned from a const or non-const span as the constness of the
element type is already determined when the span is created. As is appropriate for a view, whether the
span itself is const does not affect the element type, and this is reflected in the simplicity of the iterator
model.

 // [span.elem], span element access
 constexpr reference operator[](index_type idx) const;
 constexpr reference operator()(index_type idx) const;
 constexpr pointer data() const noexcept;

 // [span.iter], span iterator support
 iterator begin() const noexcept;
 iterator end() const noexcept;

 const_iterator cbegin() const noexcept;
 const_iterator cend() const noexcept;

 reverse_iterator rbegin() const noexcept;
 reverse_iterator rend() const noexcept;

 const_reverse_iterator crbegin() const noexcept;
 const_reverse_iterator crend() const noexcept;

Construction
The span class is expected to become a frequently used vocabulary type in function interfaces (as a safer
replacement of “(pointer, length)” idioms), as it specifies a minimal set of requirements for safely
accessing a sequence of objects and decouples a function that needs to access a sequence from the details
of the storage that holds such elements.

7

To simplify use of span as a simple parameter, span offers a number of constructors for common container
types that store contiguous sequences of elements. A summarized extract from the specification
illustrates this:

 // [span.cons], span constructors, copy, assignment, and destructor
 constexpr span();
 constexpr span(nullptr_t);
 constexpr span(pointer ptr, index_type count);
 constexpr span(pointer firstElem, pointer lastElem);
 template <size_t N>
 constexpr span(element_type (&arr)[N]);
 template <size_t N>
 constexpr span(array<remove_const_t<element_type>, N>& arr);
 template <size_t N>
 constexpr span(const array<remove_const_t<element_type>, N>& arr);
 template <class Container>
 constexpr span(Container& cont);
 template <class Container>
 constexpr span(const Container& cont);
 constexpr span(const span& other) noexcept = default;
 constexpr span(span&& other) noexcept = default;
 template <class OtherElementType, ptrdiff_t OtherExtent>
 constexpr span(const span<OtherElementType, OtherExtent>& other);
 template <class OtherElementType, ptrdiff_t OtherExtent>
 constexpr span(span<OtherElementType, OtherExtent>&& other);

It is allowed to construct a span from the null pointer, and this creates an object with .size() == 0. Any
attempt to construct a span with a null pointer value and a non-zero length is considered a range-check
error.

Byte representations and conversions
span depends upon a distinct “byte” type that represents a single addressable byte on any system, for
object representation – in preference to common practice of using character types for this purpose. Such
a type is defined in the standard library as:

enum class byte : unsigned char {};

For more details on the proposed byte type please refer to P0257 [6].

A span of any element type that is a standard-layout type can be converted to a span<const byte> or a
span<byte> via the free functions as_bytes() and as_writeable_bytes() respectively. These operations are
considered useful for systems programming where byte-oriented access for serialization and data
transmission is essential.

// [span.objectrep], views of object representation
template <class ElementType, ptrdiff_t Extent>
 span<const byte, ((Extent == dynamic_extent) ? dynamic_extent :
(sizeof(ElementType) * Extent))> as_bytes(span<ElementType, Extent> s)
noexcept;

template <class ElementType, ptrdiff_t Extent>

8

 span<byte, ((Extent == dynamic_extent) ? dynamic_extent :
(sizeof(ElementType) * Extent))> as_writeable_bytes(span<ElementType, Extent>
) noexcept;

These byte-representation conversions still preserve const-correctness, however. It is not possible to
convert from a span<const T> be converted to a span<byte> (through SFINAE overload restriction).

Comparisons
span supports all the same comparison operations as a sequential standard library container: element-
wise comparison and a total ordering by lexicographical comparison. This helps make it an effective
replacement for existing uses of sequential contiguous container types like array or vector.

// [span.comparison], span comparison operators
template <class ElementType, ptrdiff_t Extent>
 constexpr bool operator==(const span<ElementType, Extent>& l, const
span<ElementType, Extent>& r);

template <class ElementType, ptrdiff_t Extent>
 constexpr bool operator!=(const span<ElementType, Extent>& l, const
span<ElementType, Extent>& r);

template <class ElementType, ptrdiff_t Extent>
 constexpr bool operator<(const span<ElementType, Extent>& l, const
span<ElementType, Extent>& r);

template <class ElementType, ptrdiff_t Extent>
 constexpr bool operator<=(const span<ElementType, Extent>& l, const
span<ElementType, Extent>& r);

template <class ElementType, ptrdiff_t Extent>
 constexpr bool operator>(const span<ElementType, Extent>& l, const
span<ElementType, Extent>& r);

template <class ElementType, ptrdiff_t Extent>
 constexpr bool operator>=(const span<ElementType, Extent>& l, const
span<ElementType, Extent>& r);

Regardless of whether they contain a valid pointer or null pointer, zero-length spans are all considered
equal. This is considered a useful property when writing library code. If users wish to distinguish between
a zero-length span with a valid pointer value and a span containing the null pointer, then they can do so
by calling the data() member function and examining the pointer value directly.

Creating sub-spans
span offers convenient member functions for generating a new span that is a reduced view over its
sequence. In each case, the newly constructed span is returned by value from the member function. As
the design requires bounds-safety, these member functions are guaranteed to either succeed and
return a valid span, or fail with undefined behavior (e.g. calling terminate()) if the parameters were not
within range.

 // [span.sub], span subviews
 constexpr span<element_type, dynamic_extent> first(index_type count) const;

9

 constexpr span<element_type, dynamic_extent> last(index_type count) const;
 constexpr span<element_type, dynamic_extent> subspan(index_type offset,
index_type count = dynamic_extent) const;

first() returns a new span that is limited to the first N elements of the original sequence. Conversely,
last() returns a new span that is limited to the last N elements of the original sequence. subspan() allows
an arbitrary sub-range within the sequence to be selected and returned as a new span.

All three member functions are overloaded in forms that accept their parameters as template
parameters, rather than function parameters. These overloads are helpful for creating fixed-size span
objects from an original input span, whether fixed- or dynamic-size.

 template <ptrdiff_t Count>
 constexpr span<element_type, Count> first() const;
 template <ptrdiff_t Count>
 constexpr span<element_type, Count> last() const;
 template <ptrdiff_t Offset, ptrdiff_t Count = dynamic_extent>
 constexpr span<element_type, Count> subspan() const;

Multidimensional span
span as presented here only supports a single-dimension view of a sequence. This covers the most
common usage of contiguous sequences in C++. span has convenience (such as iterators, first(), last(),
and subspan()) and default behaviors that make most sense in a single-dimension.

Adding support for multidimensional and noncontiguous (strided) views of data is deferred to a
separate type not described here. One such candidate would be the more general array_ref facility
described in P0009 [5]. The interface of span is sufficiently compatible with that of array_ref, that users
should not feel any significant discontinuity between the two. In fact, it is entirely possible to implement
a span using array_ref.

Proposed Wording Changes
The following proposed wording changes against the working draft of the standard are relative to N4567
[7]. If byte type would be available in the working draft, as proposed in P0257 [6] then the functions in
section [span.objectrep] would use “byte” for the placeholder byte.

17.5.1.2 Headers [headers]

2 The C++ standard library provides 6162 C++ library headers, as shown in Table 16.

Table 16 – C++ library headers

<algorithm> <fstream> <list> <regex> <thread>
<array> <functional> <locale> <scoped_allocator> <tuple>
<atomic> <future> <map> <set> <type_traits>
<bitset> <initializer_list> <memory> <typeindex>
<chrono> <iomanip> <mutex> <sstream> <typeinfo>
<codecvt> <ios> <new> <stack> <unordered_map>
<complex> <iosfwd> <numeric> <stdexcept> <unordered_set>
<condition_variable> <iostream> <ostream> <streambuf> <utility>
<deque> <istream> <queue> <string> <valarray>

10

<exception> <iterator> <random> <strstream> <vector>
<forward_list> <limits> <ratio> <system_error>

23 Containers library [containers]

23.1 General [containers.general]

2 The following subclauses describe container requirements, and components for sequence containers,
associative containers, and views as summarized in Table 82.

Table 82 – Containers library summary

Subclause Header(s)
23.2 Requirements
23.3 Sequence containers <array>

<deque>
<forward_list>
<list>
<vector>

23.4 Associative containers <map>
<set>

23.5 Unordered associative containers <unordered_map>
<unordered_set>

23.6 Container adaptors <queue>
<stack>

23.7 Views

23.7 Views [views]

23.7.1 General [views.general]

1 The header defines the view span. A span is a view over a contiguous sequence of objects, the
storage of which is owned by some other object.

Header synopsis

namespace std {

// [views.constants], constants
constexpr ptrdiff_t dynamic_extent = -1;

// [span], class template span
template <class ElementType, ptrdiff_t Extent = dynamic_extent>
class span;

// [span.comparison], span comparison operators
template <class ElementType, ptrdiff_t Extent>
 constexpr bool operator==(const span<ElementType, Extent>& l, const
span<ElementType, Extent>& r);

11

template <class ElementType, ptrdiff_t Extent>
 constexpr bool operator!=(const span<ElementType, Extent>& l, const
span<ElementType, Extent>& r);

template <class ElementType, ptrdiff_t Extent>
 constexpr bool operator<(const span<ElementType, Extent>& l, const
span<ElementType, Extent>& r);

template <class ElementType, ptrdiff_t Extent>
 constexpr bool operator<=(const span<ElementType, Extent>& l, const
span<ElementType, Extent>& r);

template <class ElementType, ptrdiff_t Extent>
 constexpr bool operator>(const span<ElementType, Extent>& l, const
span<ElementType, Extent>& r);

template <class ElementType, ptrdiff_t Extent>
 constexpr bool operator>=(const span<ElementType, Extent>& l, const
span<ElementType, Extent>& r);

// [span.objectrep], views of object representation
template <class ElementType, ptrdiff_t Extent>
 span<const char, ((Extent == dynamic_extent) ? dynamic_extent :
(sizeof(ElementType) * Extent))> as_bytes(span<ElementType, Extent> s)
noexcept;

template <class ElementType, ptrdiff_t Extent>
 span<char, ((Extent == dynamic_extent) ? dynamic_extent :
(sizeof(ElementType) * Extent))> as_writeable_bytes(span<ElementType,
Extent>) noexcept;

} // namespace std

23.7.2 Class template span [views.span]

1 A span is a view over a contiguous sequence of objects, the storage of which is owned by some other
object.

2 ElementType is required to be a complete object type that is not an abstract class type.

3 The iterator type for span is a random access iterator and contiguous iterator. The
reverse_iterator type is a random access iterator.

namespace std {

// A view over a contiguous, single-dimension sequence of objects
template <class ElementType, ptrdiff_t Extent = dynamic_extent>
class span {
public:
 // constants and types
 using element_type = ElementType;
 using index_type = ptrdiff_t;
 using difference_type = ptrdiff_t;
 using pointer = element_type*;

12

 using reference = element_type&;
 using iterator = /*implementation-defined */;
 using const_iterator = /* implementation-defined */;
 using reverse_iterator = reverse_iterator<iterator>;
 using const_reverse_iterator = reverse_iterator<const_ite

 constexpr static index_type extent = Extent;

 // [span.cons], span constructors, copy, assignment, and destructor
 constexpr span() noexcept;
 constexpr span(nullptr_t) noexcept;
 constexpr span(pointer ptr, index_type count);
 constexpr span(pointer firstElem, pointer lastElem);
 template <size_t N>
 constexpr span(element_type (&arr)[N]);
 template <size_t N>
 constexpr span(array<remove_const_t<element_type>, N>& arr);
 template <size_t N>
 constexpr span(const array<remove_const_t<element_type>, N>& arr);
 template <class Container>
 constexpr span(Container& cont);
 template <class Container>
 span(const Container&);
 constexpr span(const span& other) noexcept = default;
 constexpr span(span&& other) noexcept = default;
 template <class OtherElementType, ptrdiff_t OtherExtent>
 constexpr span(const span<OtherElementType, OtherExtent>& other);
 template <class OtherElementType, ptrdiff_t OtherExtent>
 constexpr span(span<OtherElementType, OtherExtent>&& other);
 ~span() noexcept = default;
 constexpr span& operator=(const span& other) noexcept = default;
 constexpr span& operator=(span&& other) noexcept = default;

 // [span.sub], span subviews
 template <ptrdiff_t Count>
 constexpr span<element_type, Count> first() const;
 template <ptrdiff_t Count>
 constexpr span<element_type, Count> last() const;
 template <ptrdiff_t Offset, ptrdiff_t Count = dynamic_extent>
 constexpr span<element_type, Count> subspan() const;
 constexpr span<element_type, dynamic_extent> first(index_type count)
const;
 constexpr span<element_type, dynamic_extent> last(index_type count)
const;
 constexpr span<element_type, dynamic_extent> subspan(index_type
offset, index_type count = dynamic_extent) const;

 // [span.obs], span observers
 constexpr index_type length() const noexcept;
 constexpr index_type size() const noexcept;
 constexpr index_type length_bytes() const noexcept;
 constexpr index_type size_bytes() const noexcept;
 constexpr bool empty() const noexcept;

 // [span.elem], span element access

13

 constexpr reference operator[](index_type idx) const;
 constexpr reference operator()(index_type idx) const;
 constexpr pointer data() const noexcept;

 // [span.iter], span iterator support
 iterator begin() const noexcept;
 iterator end() const noexcept;

 const_iterator cbegin() const noexcept;
 const_iterator cend() const noexcept;

 reverse_iterator rbegin() const noexcept;
 reverse_iterator rend() const noexcept;

 const_reverse_iterator crbegin() const noexcept;
 const_reverse_iterator crend() const noexcept;

private:
 pointer data_; // exposition only
 index_type size_; // exposition only
};

// [span.comparison], span comparison operators
template <class ElementType, ptrdiff_t Extent>
 constexpr bool operator==(const span<ElementType, Extent>& l, const
span<ElementType, Extent>& r);

template <class ElementType, ptrdiff_t Extent>
 constexpr bool operator!=(const span<ElementType, Extent>& l, const
span<ElementType, Extent>& r);

template <class ElementType, ptrdiff_t Extent>
 constexpr bool operator<(const span<ElementType, Extent>& l, const
span<ElementType, Extent>& r);

template <class ElementType, ptrdiff_t Extent>
 constexpr bool operator<=(const span<ElementType, Extent>& l, const
span<ElementType, Extent>& r);

template <class ElementType, ptrdiff_t Extent>
 constexpr bool operator>(const span<ElementType, Extent>& l, const
span<ElementType, Extent>& r);

template <class ElementType, ptrdiff_t Extent>
 constexpr bool operator>=(const span<ElementType, Extent>& l, const
span<ElementType, Extent>& r);

// [span.objectrep], views of object representation
template <class ElementType, ptrdiff_t Extent>
 constexpr span<const byte, ((Extent == dynamic_extent) ?
dynamic_extent : (sizeof(ElementType) * Extent))>
as_bytes(span<ElementType, Extent> s);

template <class ElementType, ptrdiff_t Extent>

14

 constexpr span<byte, ((Extent == dynamic_extent) ? dynamic_extent :
(sizeof(ElementType) * Extent))> as_writeable_bytes(span<ElementType,
Extent>);

} // namespace std

 23.7.2.1 span constructors, copy, assignment, and destructor [span.cons]

 constexpr span() noexcept;
 constexpr span(nullptr_t) noexcept;

Remarks: if extent != dynamic_extent && extent != 0 then the program is ill-formed.

Effects: Constructs an empty span.

Postconditions: size() == 0 && data() == nullptr

Complexity: Constant.

 constexpr span(pointer ptr, index_type count);

Requires: When ptr is null pointer then count shall be 0. When ptr is not null pointer, then it shall
point to the beginning of a valid sequence of objects of at least count length. count shall always be >=
0. If extent is not dynamic_extent, then count shall be equal to extent.

Effects: Constructs a span that is a view over the sequence of objects pointed to by ptr. If ptr is null
pointer or count is 0 then an empty span is constructed.

Postconditions: size() == count && data() == ptr

Complexity: Constant.

Throws: Nothing

 constexpr span(pointer firstElem, pointer lastElem);

Requires: distance(firstElem, lastElem) >= 0. If extent is not equal to dynamic_extent,
then distance(firstElem, lastElem) shall be equal to extent.

Effects: Constructs a span that is a view over the range [firstElem, lastElem). If
distance(firstElem, lastElem) then an empty span is constructed.

Postconditions: size() == distance(firstElem, lastElem) && data() == firstElem

Complexity: Constant.

Throws: Nothing

15

 template <size_t N>
 constexpr span(element_type (&arr)[N]) noexcept;
 template <size_t N>
 constexpr span(array<element_type, N>& arr);
 template <size_t N>
 constexpr span(array<remove_const_t<element_type>, N>& arr);
 template <size_t N>
 constexpr span(const array<remove_const_t<element_type>, N>& arr);

Remarks: If extent != dynamic_extent && N != extent, then the program is ill-formed.

The third constructor shall not participate in overload resolution unless
is_const<element_type>::value is true.

Effects: Constructs a span that is a view over the supplied array.

 Postconditions: size() == N && data() == addressof(arr[0])

Complexity: Constant

Throws: Nothing

 template <class Container>
 constexpr span(Container& cont);
 template <class Container>
 constexpr span(const Container& cont);

Remarks: The constructor shall not participate in overload resolution unless:

- Container meets the requirements of both a contiguous container (defined in 23.2.1/13) and a
sequence container (defined in 23.2.3).

- The Container implements the optional sequence container requirement of operator[]
(defined in Table 100).

- Container::value_type is the same as remove_const_t<element_type>.

The constructor shall not participate in overload resolution if Container is a span or array.

The second constructor shall not participate in overload resolution unless is_const<element_type>
== true.

Requires: If extent is not equal to dynamic_extent, then cont.size() shall be equal to extent.

Effects: Constructs a span that is a view over the sequence owned by cont.

Postconditions: size() == cont.size() && data() == addressof(cont[0])

Complexity: Constant.

16

Throws: Nothing

 constexpr span(const span& other) noexcept = default;
 constexpr span(span&& other) noexcept = default;

Effects: Constructs a span by copying the implementation data members of another span.

Postconditions: other.size() == size() && other.data() == data()

Complexity: Constant.

 template <class OtherElementType, ptrdiff_t OtherExtent>
 constexpr span(const span<OtherElementType, OtherExtent>& other);

 template <class OtherElementType, ptrdiff_t OtherExtent>
 constexpr span(span<OtherElementType, OtherExtent>&& other);

Remarks: These constructors shall not participate in overload resolution unless trying to access
OtherElementType through an ElementType* would meet the rules for well-defined object access
defined in 3.10/10.

Requires: If extent is not equal to dynamic_extent, then other.size() shall be equal to extent.

Effects: Constructs a span by copying the implementation data members of another span, performing
suitable conversions.

Postconditions: size() == other.size() &&
data() == reinterpret_cast<pointer>(other.data())

Complexity: Constant.

Throws: Nothing

 span& operator=(const span& other) noexcept = default;
 span& operator=(span&& other) noexcept = default;

Effects: Assigns the implementation data of one span into another.

Postconditions: size() == other.size() && data() == other.data()

Complexity: Constant.

 23.7.2.2 span subviews [span.sub]

 template <ptrdiff_t Count>

17

 constexpr span<element_type, Count> first() const;

Requires: Count >= 0 && Count <= size()

Effects: Returns a new span that is a view over the initial Count elements of the current span.

Returns: span(data(), Count);

Complexity: Constant.

 template <ptrdiff_t Count>
 constexpr span<element_type, Count> last() const;

Requires: Count >= 0 && Count <= size()

Effects: Returns a new span that is a view over the final Count elements of the current span.

Returns: span(data() + (size() – Count), Count)

Complexity: Constant.

 template <ptrdiff_t Offset, ptrdiff_t Count = dynamic_extent>
 constexpr span<element_type, Count> subspan() const;

Requires: (Offset == 0 || Offset > 0 && Offset < size()) && (Count == dynamic_extent
|| Count >= 0 && Offset + Count <= size())

Effects: Returns a new span that is a view over Count elements of the current span starting at element
Offset. If Count is equal to dynamic_extent, then a span over all elements from Offset onwards is
returned.

Returns: span(data() + Offset, Count == dynamic_extent ? size() – Offset : Count)

Complexity: Constant

 constexpr span<element_type, dynamic_extent> first(index_type count)
const;

Requires: count >= 0 && count <= size()

Effects: Returns a new span that is a view over the initial count elements of the current span.

Returns: span(data(), count);

Complexity: Constant.

18

 constexpr span<element_type, dynamic_extent> last(index_type count)
const;

Requires: count >= 0 && count <= size()

Effects: Returns a new span that is a view over the final count elements of the current span.

Returns: span(data() + (size() – count), count)

Complexity: Constant.

 constexpr span<element_type, dynamic_extent> subspan(index_type
offset, index_type count = dynamic_extent) const;

Requires: (offset == 0 || offset > 0 && offset < size()) && (count == dynamic_extent
|| count >= 0 && offset + count <= size())

Effects: Returns a new span that is a view over Count elements of the current span starting at element
offset. If count is equal to dynamic_extent, then a span over all elements from offset onwards is
returned.

Returns: span(data() + offset, count == dynamic_extent ? size() – offset : count)

Complexity: Constant

 23.7.2.2 span observers [span.obs]

 constexpr index_type length() const noexcept;

Effects: Equivalent to: return size();

 constexpr index_type size() const noexcept;

Effects: Returns the number of elements accessible through the span.

Returns: >= 0

Complexity: Constant

 constexpr index_type length_bytes() const noexcept;

Effects: Equivalent to: return size_bytes();

19

 constexpr index_type size_bytes() const noexcept;

Effects: Returns the number of bytes used for the object representation of all elements accessible through
the span.

Returns: size() * sizeof(element_type)

Complexity: Constant

 constexpr bool empty() const noexcept;

Effects: Equivalent to: size() == 0;

Returns: size() == 0

Complexity: Constant

 23.7.2.3 span element access [span.elem]

 constexpr reference operator[](index_type idx) const;
 constexpr reference operator()(index_type idx) const;

Requires: idx >= 0 && idx < size()

Effects: Returns a reference to the element at position idx.

Returns: *(data() + idx)

Complexity: Constant

 constexpr pointer data() const noexcept;

Effects: Returns either a pointer to the first element in the sequence accessible via the span or the null
pointer if that was the value used to construct the span.

Returns: (for exposition) data_

Complexity: Constant

23.7.2.4 span iterator support [span.iterators]

 iterator begin() const noexcept;

20

Returns: An iterator referring to the first element in the span.

Complexity: Constant

 iterator end() const noexcept;

Returns: An iterator which is the past-the-end value.

Complexity: Constant

 reverse_iterator rbegin() const noexcept;

Returns: Equivalent to reverse_iterator(end()).

Complexity: Constant

 reverse_iterator rend() const noexcept;

Returns: Equivalent to: return reverse_iterator(begin());

Complexity: Constant

23.7.2.5 span comparison operators [span.comparison]

template <class ElementType, ptrdiff_t Extent>
 constexpr bool operator==(const span<ElementType, Extent>& l, const
span<ElementType, Extent>& r);

Effects: Equivalent to: return equal(l.begin(), l.end(), r.begin(), r.end());

template <class ElementType, ptrdiff_t Extent>
 constexpr bool operator!=(const span<ElementType, Extent>& l, const
span<ElementType, Extent>& r);

Effects: Equivalent to: return !(l == r);

template <class ElementType, ptrdiff_t Extent>

21

 constexpr bool operator<(const span<ElementType, Extent>& l, const
span<ElementType, Extent>& r);

Effects: Equivalent to: return lexicographical_compare(l.begin(), l.end(), r.begin(),
r.end());

template <class ElementType, ptrdiff_t Extent>
 constexpr bool operator<=(const span<ElementType, Extent>& l, const
span<ElementType, Extent>& r);

Effects: Equivalent to: return !(l > r);

template <class ElementType, ptrdiff_t Extent>
 constexpr bool operator>(const span<ElementType, Extent>& l, const
span<ElementType, Extent>& r);

Effects: Equivalent to: return (r < l);

template <class ElementType, ptrdiff_t Extent>
 constexpr bool operator>=(const span<ElementType, Extent>& l, const
span<ElementType, Extent>& r);

Effects: Equivalent to: return !(l < r);

23.7.2.6 views of object representation [span.objectrep]

template <class ElementType, ptrdiff_t Extent>
 span<const byte, ((Extent == dynamic_extent) ? dynamic_extent :
(sizeof(ElementType) * Extent))> as_bytes(span<ElementType, Extent> s)
noexcept;

Effects: Constructs a span over the object representation of the elements in s.

Returns: { reinterpret_cast<const byte*>(s.data()), sizeof(ElementType) *
s.size()) }

template <class ElementType, ptrdiff_t Extent>
 span<byte, ((Extent == dynami c_extent) ? dynamic_extent :
(sizeof(ElementType) * Extent))> as_writeable_bytes(span<ElementType,
Extent>) noexcept;

22

Remarks: This function will not participate in overload resolution when
is_const<ElementType>::value is true.

Effects: Constructs a span over the object representation of the elements in s.

Returns: { reinterpret_cast<byte>(s.data()), sizeof(ElementType) * s.size()) }

Acknowledgements
This work has been heavily informed by N3851 (an array_view proposal) and previous discussion amongst
committee members regarding that proposal. Gabriel Dos Reis, Titus Winters and Stephan T. Lavavej
provided valuable feedback on this document. Thanks to Casey Carter and Daniel Krügler for detailed
feedback on the wording.

This version of span was designed to support the C++ Core Coding Guidelines [4] and as such, the current
version reflects the input of Herb Sutter, Jim Springfield, Gabriel Dos Reis, Chris Hawblitzel, Gor Nishanov,
and Dave Sielaff. Łukasz Mendakiewicz, Bjarne Stroustrup, Eric Niebler, and Artur Laksberg provided
helpful review of this version of span during its development.

The authors of P0009 were invaluable in discussing how span and array_ref can be compatible and by
doing so support a programming model that is safe and consistent as users move between a single
dimension and multiple dimensions.

References
[1] Łukasz Mendakiewicz, Herb Sutter, “Multidimensional bounds, index and span“, N3851, 2014,
[Online], Available: http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2014/n3851.pdf.

[2] J. Yasskin, "Proposing array_ref<T> and string_ref", N3334 14 January 2012, [Online], Available:
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2012/n3334.html.

[3] Microsoft, “Guideline Support Library reference implementation: span”, 2015, [Online],
Available: https://github.com/Microsoft/GSL

[4] Bjarne Stroustrup, Herb Sutter, “C++ Core Coding Guidelines”, 2015, [Online], Available:
https://github.com/isocpp/CppCoreGuidelines

[5] H. Carter Edwards et al., “Polymorphic Multidimensional Array View”, P0009, 2015, [Online],
Available: http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/p0009r0.html

[6] Neil MacIntosh, “A byte type for increased type safety”, P0257, 2016, [Online], Available:
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0257r0.html

[7] Richard Smith, “Working Draft: Standard For Programming Language C++”, N4618, 2016, [Online],
Available: http://open-std.org/JTC1/SC22/WG21/docs/papers/2016/n4618.pdf

