

Document No: WG21 N4664

Date: 2017-03-30

Project: Programming Language C++

References:

Reply to: Barry Hedquist <beh@peren.com>

INCITS/PL22.16 IR

ISO/IEC CD 14882, C++ 2017, National Body Comments

Attached is a complete set of National Body Comments submitted to JTC1 SC22 in response to

the SC22 Ballot for ISO/IEC CD 14882, Committee Draft of the revision of ISO/IEC

14882:2014, aka C++ 2017.

Document numbers referenced in the ballot comments are WG21 documents unless otherwise

stated.

Template for comments and secretariat observations Date: 03/24/2017 Document: Project:ISO 14882

MB/

NC1

Line

number

(e.g. 17)

Clause/

Subclause

(e.g. 3.1)

Paragraph/

Figure/

Table/

(e.g. Table 1)

Type of

comment2

Comments Proposed change Observations of the

secretariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)

2 Type of comment: ge = general te = technical ed = editorial

page 1 of 2
ISO/IEC/CEN/CENELEC electronic balloting commenting template/version 2012-03

ES 1 1 7.1.6 1,3 Te The proposed feature of inline variables goes
beyond the original problem to be solved. That is,
avoiding the need to provide a definition for any
static data member (constexpr or not) from a
class.

Remove inline variables from C++17.

Solve exclusively the multiple definitions of:

a) Constexpr data members

b) Static data members

Rejected. There was no
consensus to adopt this
change.

ES 2 2 8.5 1 Te While structured bindings are a very useful
feature the latest syntax after last minute
modification make it more complex and less
uniform.

The use of bracktes may introduce problems with
attributes and lambdas

Reconsider the braces syntax instead of the
brackets syntax.

Rejected. There was no
consensus to adopt this
change.

ES 3 3 D.1 1 Ed Example should use constexpr for variable
declaration.

Change:

struct A {
static constexpr int n = 5; // definition (declaration
in C++ 2014)
};

const int A::n; //

to:

struct A {
static constexpr int n = 5; // definition (declaration
in C++ 2014)
};

constexpr int A::n; //

Accepted

ES 4 4 Ge Concepts is a highly relevant feature with field
experience.

We strongly support the introduction of Concepts
to C++17. If such introduction is considered
impossible, we suggest Concepts TS is
introduced at the beginning of the process for the

Adopt Concepts TS for C++17. Alternatively
consider introducing it in the draft for the next
standard.

Rejected. There was no
consensus to adopt this
change.

Template for comments and secretariat observations Date: 03/24/2017 Document: Project:ISO 14882

MB/

NC1

Line

number

(e.g. 17)

Clause/

Subclause

(e.g. 3.1)

Paragraph/

Figure/

Table/

(e.g. Table 1)

Type of

comment2

Comments Proposed change Observations of the

secretariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)

2 Type of comment: ge = general te = technical ed = editorial

page 2 of 2
ISO/IEC/CEN/CENELEC electronic balloting commenting template/version 2012-03

next standard.

ES 5 5 Ge Unified syntax call provides a simplification
mechanism and would allow simplifications to
many libraries.

Consider separately the two halves of unified
syntax call

Rejected. There was no
consensus to adopt this
change.

ES 6 6 Ge Operator dot provides important benefits to
developers

Consider the introduction. Rejected. There was no
consensus to adopt this
change.

ES 7 7 Ge Default comparisons will allow the reduction of
boilerplate code.

Reconsider default comparisons or at least the
==/!= part.

Rejected. There was no
consensus to adopt this
change.

ES 8 8 23.1.1
[container.n
ode] and
paragraphs
relating to
this in 23.1
[container].

 Te Node handles are an over-specified solution to
the relatively simple problem of moving nodes
between associative containers, which can be
done with a more conservative interface similar to
std::list::splice. There is a lack of consistency with
std::list, where splicing and merging can be done
but there is no node handle-based interface, yet
lists are indeed node based, too. P00832
acknowledges the simpler solution (by Talbot) but
dismisses it as it offered “no further advantages”:
however, the further advantages or use cases
node handles allegedly provide are not clear at
all.

Remove the changes proposed in P00382 and
settle on a more conservative interface akin to that
of std::list.

Rejected. There was no
consensus to adopt this
change.

WG21 Working Paper: ISO/IEC CD 14882 USNB Comments, Responses Date: Mar30, 2017 Document: SC22 N5131 Project: 14882

MB/

NC1

Line

number

(e.g. 17)

Clause/

Subclause

(e.g. 3.1)

Paragraph/

Figure/ Table/

(e.g. Table 1)

Type of

comment2

Comments Proposed change Observations of

the secretariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. US for United States; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial

page 1 of 43
ISO/IEC/CEN/CENELEC electronic balloting commenting template/version 2012-03

US
1

 [expr] (5)

and other clauses

 te The recent revisions to the rules for expression
evaluation order are proving to be far more
contentious than anticipated, and seem to be
adversely affecting consensus for adopting this
Committee Draft as the next C++ standard. See
P0145R3

See P0145R3

Rejected

There was no consensus to adopt this
change.

US
2

 [expr] (5) and other clauses
amended by ISO/IEC TS
19717:2015

 te Independent of their applicability to Concepts, the
requires-clause and requires-expression parts of the
Concepts-Lite TS seem generally regarded as
useful and uncontroversial C++ language features.
Adopting these features now would reduce
dissatisfaction with the absence of Concepts-Lite
from the CD, and thereby improve consensus for its
adoption.

Extract (from ISO/IEC TS 19717:2015) the
wording that specifies the syntax and semantics
of the requires-clause and requires-expression
features. Amend this wording pursuant to
relevant issues list resolutions and then apply
the updated wording.

Rejected

There was no consensus to adopt this
change.

US
3

 [expr.ass] (5.18) and/or other
clauses affected by P0145R3

 te It is very surprising that expressions such as the
following are required to have different outcomes
when the evaluations of a and b have overlapping
side effects:

 a @= b

 a.operator@=(b)

Ensure that such expression pairs are
guaranteed to provide identical results and side
effects.

 Perhaps the simplest way to do so is to
change in ¶1: “The right left operand is
sequenced before the left right operand.”

 Alternatively, restore the status quo ante.

Rejected

There was no consensus to adopt this
change.

US
4

 [dcl.
decomp] (8.5)

¶3 ed When referring to a type trait’s value, the _v forms
are usually preferred.

Replace std::tuple_size<E>::value by
std::tuple_size_v<E>.

Rejected.

While _v forms are generally
preferred in library clauses,
defining the core language
semantics in terms of an alias
template seems to introduce
undue complexity. Thus, there
was no consensus to adopt this
change.

US
5

 [over.binary] (13.5.2) ¶1 te Remove users’ need to write boilerplate code for
many or most of the comparison operators !=, >, <=,
and >=, while:

 Preserving backward compatibility for the Standard
Library as well as for all existing well-formed user
code, and

Append to ¶1 (or add as new ¶2):

If neither form of the operator function has been
declared, then for each binary operator @
appearing in the left column of Table n, x @ y
shall instead be reinterpreted as shown in the
corresponding right column entry.

Rejected

There was no consensus to adopt this
change.

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0145r3.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0145r3.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0145r3.pdf

WG21 Working Paper: ISO/IEC CD 14882 USNB Comments, Responses Date: Mar30, 2017 Document: SC22 N5131 Project: 14882

MB/

NC1

Line

number

(e.g. 17)

Clause/

Subclause

(e.g. 3.1)

Paragraph/

Figure/ Table/

(e.g. Table 1)

Type of

comment2

Comments Proposed change Observations of

the secretariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. US for United States; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial

page 2 of 43
ISO/IEC/CEN/CENELEC electronic balloting commenting template/version 2012-03

 Remaining faithful to the EqualityComparable and
LessThanComparable concepts (as promulgated,

for example, in SGI’s implementation of the STL).

Table n — Reinterpretation of selected binary
operators [reinterpretation]

Expression Reinterpretation

x != y !(x == y)
x > y y < x
x >= y !(x < y)
x <= y !(y < x)

US
6

 [temp.deduct] (14.8.2) te Per [c++std-core-26539], “we're missing the core
wording for template argument deduction for partial
specializations.” This lack affects such code as the
detection idiom’s application of void_t, as
exemplified in the Library Fundamentals 2 TS.

Provide the missing wording, thereby possibly
also resolving related open CWG issues such as
697 and 2054.

Rejected

There was no consensus to adopt this
change for this revision, however, an
issue will be opened for future
consideration.

US
7

 All library Clauses te P0091R3 “Template argument deduction for class

templates (Rev. 6)” was adopted for the core
language, but the Standard Library makes no
explicit use of this new feature, even though the

promise of such use provided strong motivation for
the feature.

Analyze the Standard Library’s constructors to
determine which classes would profit from
explicit deduction guides. Formulate the
appropriate guides for those classes and insert
them in their respective types.

Accepted. See P0433R2

US
8

 All library Clauses te The Standard Library mistakenly uses Requires:
clauses to express two distinct kinds of
requirements: some requirements can be statically
checked, while others can’t. We should insist on
statically checked requirements wherever possible,
leading to an ill-formed program when such a
requirement is violated.

See p0411r0 Rejected

There was no consensus to adopt this
change at this time, however a paper
exists for Post-2017. See P0411R0)

US
9

 [meta.type.
synop] (20.15.2)

Synopsis ed Unlike all other value-returning type traits, this
synopsis has no entry for
has_unique_object_representations_v.

See also the related comment re [meta.unary.prop]
(20.15.4.3).

Insert the missing entry, with the obvious
definition, following the entry for
has_virtual_destructor_v.

Accepted - Editorial

US
10

 [meta.type.
synop] (20.15.2)

¶1 te A user specialization of any type trait should
produce an ill-formed program, not merely one
whose behavior is unspecified.

Reword the paragraph as follows:

Unless otherwise specified, a program that adds
specializations for any of the templates defined

Rejected

There is no consensus for change.

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0091r3.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/p0433r2.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0411r0.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0411r0.html

WG21 Working Paper: ISO/IEC CD 14882 USNB Comments, Responses Date: Mar30, 2017 Document: SC22 N5131 Project: 14882

MB/

NC1

Line

number

(e.g. 17)

Clause/

Subclause

(e.g. 3.1)

Paragraph/

Figure/ Table/

(e.g. Table 1)

Type of

comment2

Comments Proposed change Observations of

the secretariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. US for United States; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial

page 3 of 43
ISO/IEC/CEN/CENELEC electronic balloting commenting template/version 2012-03

See also the related comment re [execpol.
type] (20.19.3).

in this subclause is ill-formed; no diagnostic
required.

US
11

 [meta.unary.prop]

(20.15.4.3)

Last row
of Table
38 and
also ¶9

ed For consistency with similar specifications,
has_unique_object_representations_v<T> should be
used in place of
has_unique_object_representations<T>
::value.

See also the related comment re [meta.type.synop]
(20.15.2).

Make the obvious replacements. Accept with modification.
In the reference in paragraph 9,
::value was removed to match similar
specifications, instead of changing to
the _v form.

US
12

 [meta.unary.prop]

(20.15.4.3)

Table 38 ed The conditions for is_signed and is_unsigned
unnecessarily refer to bool_constant.

Remove bool_constant<>::value from these two
entries, leaving only the boolean expressions
that these tokens surround.

Accepted

US
13

 [meta.unary.prop]

(20.15.4.3)

Table 38 ed When referring to a type trait’s value, the _v forms
are usually preferred.

Replace std::is_destructible<T>::value by
std::is_destructible_v<T> throughout the affected
table cell.

Accept with modification - Editorial.
Condition for is_destructible
rephrased to avoid use of
is_destructibie<T>::value

US
14

 [execpol.
type] (20.19.3)

¶3 te A user specialization of any type trait should
produce an ill-formed program, not merely one
whose behavior is unspecified.

See also the related comment re [meta.type.
synop] (20.15.2).

Reword the paragraph as follows:

Unless otherwise specified, a program that adds
specializations for is_execution_policy is ill-
formed; no diagnostic required.

Rejected. There was no consensus to
adopt this change.

US
15

 25.2.4 2 te Calling 'std::terminate' when an element access
function exits via. an uncaught exception effectively
disables the normal means of C++ error handling
and propagation when using the parallel algorithms.
This will be both confusing to users and a common
source of bugs. Furthermore, by defining this
behavior we are essentially preventing further
solutions to this problem.

There are several solutions that would be
acceptable, among them:

1. Make it undefined behavior when an element
access function exits via. an uncaught exception.
This will allow for a future solution to this
problem that is backwards compatible.

2. When an element access function exits via. an
uncaught exception, throw a 'std::exception_list'
which represents a collection of exceptions that
were thrown in parallel.

Rejected. There is no consensus to
adopt this change.

WG21 Working Paper: ISO/IEC CD 14882 USNB Comments, Responses Date: Mar30, 2017 Document: SC22 N5131 Project: 14882

MB/

NC1

Line

number

(e.g. 17)

Clause/

Subclause

(e.g. 3.1)

Paragraph/

Figure/ Table/

(e.g. Table 1)

Type of

comment2

Comments Proposed change Observations of

the secretariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. US for United States; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial

page 4 of 43
ISO/IEC/CEN/CENELEC electronic balloting commenting template/version 2012-03

3. When an element access function exits via. an
uncaught exception, throw an unspecified
'std::exception'.

4. Rename the parallel algorithms to clarify that
exception throwing code will result in a call to
'std::terminate'. For example
'std::exceution::parallel_policy' would be
renamed to
'std::exceution::parallel_policy_noexcept' and
'std::execution::par' would be renamed to
'std::execution::par_noexcept'.

US
16

 25.2.5 2 te It is unclear what behavior a parallel algorithm will
have when a user-provided function exits via. an
uncaught exception. This statement seems to
require most parallel algorithms to
nodeterministically choose one of the exceptions
thrown and then re-throw that in the calling thread.

Clarify in section 25.2.5 what happens when a
user-provided function throws an exception.

Rejected. There is no consensus to
adopt this change.

US
17

 25.2.5 2 te This statement seems to require most parallel
algorithms to nodeterministically choose one of the
exceptions thrown and then rethrow that in the
calling thread. In the case that multiple threads
witness an exception from a user-provided function,
all but one of those exceptions gets discarded. It is
much preferrable to have all exception data
preserved.

When a user-provided function exits via. an
uncaught exception, throw a 'std::exception_list'
structure which represents a collection of
exceptions that were thrown in parallel.

Rejected. There is no consensus to
adopt this change.

US
18

 [depr.except.spec] (D.3)

and other subclauses per

P0003r4

 te Dynamic exception specifications have long been
superseded, and are widely regarded as having
been a mistake. They have previously been
deprecated; it’s time to excise them.

Apply the proposed wording from p0003r4

Accepted with modification. See
P0003R5

US
19

 13.3.1.8, 14.9

and Clauses 17-30

(all library clauses)

 te The Standard Library should be reviewed with the
purpose of ensuring it takes proper advantage of
template deduction for constructors.

 Review all classes in the standard
library. For some classes, no changes
may be required:
 std::complex c(2.1, 3.5); // Deduce

Accepted

See P0512R0

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0003r4.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0003r5.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0512r0.pdf

WG21 Working Paper: ISO/IEC CD 14882 USNB Comments, Responses Date: Mar30, 2017 Document: SC22 N5131 Project: 14882

MB/

NC1

Line

number

(e.g. 17)

Clause/

Subclause

(e.g. 3.1)

Paragraph/

Figure/ Table/

(e.g. Table 1)

Type of

comment2

Comments Proposed change Observations of

the secretariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. US for United States; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial

page 5 of 43
ISO/IEC/CEN/CENELEC electronic balloting commenting template/version 2012-03

complex<double> by 14.9
In other cases, explicit deduction guides
may be necessary

 int i{5};
 std::tuple c(2.1,
reference_wrapper(i)); // Seems like it
should behave like make_tuple

The review should also consider
whether constructors in the standard
library create too much ambiguity,
making it impossible even with explicit
guides to deduce the parameters. If this
happens, options such as the following
could be considered

 1. Making it possible to remove an
implicit guide from the overload set
 2. Giving explicit guides precedence
over implicitly deduced guides
 3. Removing implicit guides from
C++17

US
20

 13.3.1.8, 14.9 TE As pointed out in P0091R3, T&& arguments in

constructors traditionally refer to rvalue references.

 template<class T> struct Wrapper
 {
 T value;
 Wrapper(T const& x): value(x) {}
 Wrapper(T && y): value(std::move(x)) {} // intent
is rvalue reference
 };
 int main() {
 std::string foo = "Hello";
 auto w = Wrapper(foo); // Error. Universal
reference is deduced

As an alternative to the approach in P0091R3,

consider whether implicit deduction guides
should use SFINAE to constrain to rvalue
references like was intended in the constructor.

Accept with Modification

See P0512R0

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0091r3.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0091r3.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0512r0.pdf

WG21 Working Paper: ISO/IEC CD 14882 USNB Comments, Responses Date: Mar30, 2017 Document: SC22 N5131 Project: 14882

MB/

NC1

Line

number

(e.g. 17)

Clause/

Subclause

(e.g. 3.1)

Paragraph/

Figure/ Table/

(e.g. Table 1)

Type of

comment2

Comments Proposed change Observations of

the secretariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. US for United States; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial

page 6 of 43
ISO/IEC/CEN/CENELEC electronic balloting commenting template/version 2012-03

 }

While P0091R3 proposes that such cases can be
handled with explicit deduction guides, a more
transparent solution would be desirable

US
21

 te The “operator dot” functionality is missing from the
CD. It has been widely expected to be included in
this version of the standards.

Integrate the functionality as described in the
latest versions of P0416r0 and P0252r1

Rejected. There was no consensus to
adopt this change.

US
22

 te The “std::byte” paper was reviewed and approved
by EWG for C++17. Its integration is missing from
the CD because it is awaiting a final review by LWG.
This feature increases type safety in C++.

See p0298r1

See p0137r1

Accept with modification. See
p0298r3

US
23

 8.5 1 te The “structured bindings” proposal originally used
braces “{}” to delimit binding identifiers. Those
delimiters were changed to brackets “[]” under the
assertion that they didn’t introduce any syntactic
problem. However, they turned out to introduce
syntactic ambiguity with attributes and lambdas. In
the light of various suggested fixes, it appears the
original syntax is more adequate.

Change the delimiters to curly braces. Rejected. There was no consensus to
adopt this change.

US
24

 9.2.3.2 3 te The current specification prohibits constexpr static
data members that are of the same type as the
enclosing class. Example:

struct A {

 int val;

 static constexpr A cst = { 42 }; // error

};

int main() {

 Return A::cst.val;

}

Defer semantics processing of initializers of
constexpr static data members until the
completion of the scope of the enclosing class.
Effectively allowing this construct.

Rejected. There was no consensus to
adopt this change as there was no
paper.

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0416r0.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0252r1.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0298r1.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0137r1.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/p0298r3.pdf

WG21 Working Paper: ISO/IEC CD 14882 USNB Comments, Responses Date: Mar30, 2017 Document: SC22 N5131 Project: 14882

MB/

NC1

Line

number

(e.g. 17)

Clause/

Subclause

(e.g. 3.1)

Paragraph/

Figure/ Table/

(e.g. Table 1)

Type of

comment2

Comments Proposed change Observations of

the secretariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. US for United States; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial

page 7 of 43
ISO/IEC/CEN/CENELEC electronic balloting commenting template/version 2012-03

US
25

 27.10.8.4.10 7 te has_filename() is equivalent to just !empty(). (So
remove_filename() fails its postcondition in its
examples.) The current definition of the relevant
predicate is useless and (therefore) ignored by the
functions that mention it.

Remove it, or reconsider after adjustments to
definition of filename() and remove_filename()
already discussed.

Rejected. See US 52, US 53, US 54
and US 60. See P0492R2

US
26

 12.1 4 ed "either has no parameters" is (technically) redundant Rephrase as a parenthetical after the general
case.

Accept

US
27

 12.6.2 10 ed “side effects” in the example Remove space. Accept

US
28

 15.2 4 te depends on “principal constructor” being the
innermost one (the non-delegating constructor), but
§12.6.2¶6 defines “principal constructor” as the
outermost one (the non-target constructor)

Change the definition in §12.6.2¶6 to be the non-
delegating constructor.

Accept with Modification

See P0490R0

US
29

 20.8.3 2 te What does it mean for (the contained) objects to be
“equivalent”?

Add definition (note that using operator==()

involves complicated questions of overload
resolution).

Rejected. There was no consensus to
adopt this change.

US
30

 26.8.7 2 ge It is highly unusual that the value of (what is for

random access iterators) last-1 is unused; this

prohibits usage of an entire container (since

end()+1 is UB).

Call attention to the peculiarity (which can be
useful when the input iterators are not
bidirectional). Provide also the scan from Scala,
where the output range is one longer than the
input.

Rejected. There was no consensus to
adopt this change..

US
31

 27.10 ge It is unfortunate that everything is defined in terms of

one implicit host system (cf. Python's posixpath,

that can be imported anywhere); consider, for
example, the impediment to a test suite.

Possibly: add a template argument for selecting
the syntax, with (at least) POSIX and Windows
conventions defined.

Rejected. There was no consensus to
adopt this change..

US
32

 27.10.2.1 3 ge What does it mean to not “provide behavior that is
not supported by a particular file system”? (Is it
permissible for the functions to not exist at all on an
implementation that expects to operate only with
such a file system?)

Clarify that ¶2 governs and an error must be
reported in such cases.

Accept with Modifications. See
P0492R2

US
33

 27.10.4.2 ge This definition is problematic: it is time-dependent,
needs permissions to verify, and conflicts with
“normal form” because it prohibits dot elements.

Remove entirely, since it is unused. Accept See P0492R2

US 27.10.4.5 ge Are there attributes of a file that are not an aspect of State that all are included, or give examples of Accept with Modifications.

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/p0492r2.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0490r0.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/p0492r2.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/p0492r2.html

WG21 Working Paper: ISO/IEC CD 14882 USNB Comments, Responses Date: Mar30, 2017 Document: SC22 N5131 Project: 14882

MB/

NC1

Line

number

(e.g. 17)

Clause/

Subclause

(e.g. 3.1)

Paragraph/

Figure/ Table/

(e.g. Table 1)

Type of

comment2

Comments Proposed change Observations of

the secretariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. US for United States; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial

page 8 of 43
ISO/IEC/CEN/CENELEC electronic balloting commenting template/version 2012-03

34 the file system? those that may not be. See P0492R2

US
35

 27.10.4.6 te What synchronization is required to avoid a file
system race? For many systems, the file system
itself is an important means of synchronization; if
that is not permitted, the entirety of §27.10 is
useless for many applications.

Specify the synchronization requirements,
perhaps the very weak ones from POSIX:

If a read() of file data can be proven (by any
means) to occur after a write() of the data, it
must reflect that write(), even if the calls are
made by different processes.

Rejected. There was no consensus to
adopt this change.

US
36

 27.10.4.9 ge Symbolic links themselves are attached to a
directory via (hard) links.

Correct definitions; allow creating hard links “to”
(really “for”) symbolic links in §27.10.15.3¶3.4.3.

Accept with Modifications. See
P0492R2

US
37

 27.10.4.12 ge The term “redundant current directory (dot)

elements” is not defined.

Define it as, presumably, any dot element except
the special case of having one at the end as a
directory name marker.

Accept with Modifications. See
P0492R2

US
38

 27.10.4.13 ed duplicates §17.3.16 Remove. Accept - Editorial

US
39

 27.10.4.15 (the note) ed dot and dot-dot are not directories (merely aliases
for some directory), so it is meaningless to say they
have no parent.

Remove the note. Accept - Editorial

US
40

 27.10.4.15 ge Not all directories have a parent. Mention this, and perhaps cross-reference

§27.10.8.1¶2 about /...

Rejected. There was no consensus to
adopt this change. See P0492R2

US
41

 27.10.4.16 ed The term “parent directory” for a (non-directory) file
is unusual.

Use “containing directory” instead, perhaps in
§27.10.4.15 as well.

Rejected. There was no consensus to
adopt this change. See P0492R2

US
42

 27.10.4.21 ed Pathname resolution does not always resolve a
symlink.

State this. Rejected. There was no consensus to
adopt this change. See P0492R2

US
43

 27.10.5 4 ge The “encoded character type” idea suggests that
paths are the result of encoding some character
sequence. Unfortunately, this is often untrue in
practice: Windows implementations typically use a

16-bit wchar_t that, in violation of §3.9.1¶5, is not

actually a character but a two-byte unit that
nominally stores results from the UTF-16 encoding
but is actually uninterpreted (significant for surrogate
pairs). Similarly, typical Linux implementations use

Remove suggestion that applications may rely

on decoding a path into a sequence of

characters, and that the exclusion of signed

char and unsigned char results from their

failure to be an encoding of anything. Warn for

functions like path::string() that the

conversion may fail.

Accept with Modifications.

See P0492R2

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/p0492r2.html
http://pubs.opengroup.org/onlinepubs/9699919799/functions/read.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/p0492r2.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/p0492r2.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/p0492r2.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/p0492r2.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/p0492r2.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/p0492r2.html

WG21 Working Paper: ISO/IEC CD 14882 USNB Comments, Responses Date: Mar30, 2017 Document: SC22 N5131 Project: 14882

MB/

NC1

Line

number

(e.g. 17)

Clause/

Subclause

(e.g. 3.1)

Paragraph/

Figure/ Table/

(e.g. Table 1)

Type of

comment2

Comments Proposed change Observations of

the secretariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. US for United States; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial

page 9 of 43
ISO/IEC/CEN/CENELEC electronic balloting commenting template/version 2012-03

8-bit char in expectation of, but without requiring,
UTF-8 encoding. Directory separators are
recognized directly from these non-character
representations, so it is appropriate for applications
to work directly with the sequences of byte or two-
byte units and perform decoding as a further step if
desired.

US
44

 27.10.8 te The explicit definition of path in terms of a string

requires that the abstraction be leaky. Consider that

the meaning of the expression p+=’/’ has very

different behavior in the case that p is empty; that a

path can uselessly contain null characters; and that
iterators must be constant to avoid having to
reshuffle the packed string.

Define member functions to express a path as

a string, but define its state in terms of the
abstract sequence of components (including the
leading special components) already described
by the iterator interface. Remove members that
rely on arbitrary manipulation of a string value.

Accept with Modifications.

See P0492R2

US
45

 27.10.8.1 ge The portability of the generic format is compromised
by the unspecified root-name.

Place limits on the contents of a root-name, or

dispense with the generic format entirely in the
course of addressing the previous issue by

weakening the path-string connections.

Accept with Modifications.

See P0492R2

US
46

 27.10.8.1 ge filename can be empty, so the productions for
relative-path are redundant.

Simplify the grammar: perhaps drastically, since
any string matches by some sequence of name
and directory-separator productions.

Accept with Modifications.

See P0492R2

US
47

 27.10.8.1 ed “.” and “..” already match the name production. Exclude them from it, or else remove the
filename/name distinction.

Accept with Modifications.

See P0492R2

US
48

 27.10.8.1 1 ge Multiple separators are often meaningful in a root-
name.

Limit the scope of the paragraph to the relative-
path.

Accept with Modifications.

See P0492R2

US
49

 27.10.8.2.2 1.3, 1.4 ge What does “method of conversion method” mean? Reword. Accept – Editorial.

US
50

 27.10.8.3 1.4 ed largely redundant with ¶1.3 Remove; add “that after array-to-pointer decay”

and decay_t<Source> to ¶1.3.

Rejected. There was no consensus to
adopt this change. See P0492R2

US
51

 27.10.8.4.3 2.3 te Failing to add a / when appending the empty string
constitutes a discontinuity (in the length of the output

Follow the example of Python’s path.join(). Accept with Modifications. See
P0492R2

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/p0492r2.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/p0492r2.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/p0492r2.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/p0492r2.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/p0492r2.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/p0492r2.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/p0492r2.html

WG21 Working Paper: ISO/IEC CD 14882 USNB Comments, Responses Date: Mar30, 2017 Document: SC22 N5131 Project: 14882

MB/

NC1

Line

number

(e.g. 17)

Clause/

Subclause

(e.g. 3.1)

Paragraph/

Figure/ Table/

(e.g. Table 1)

Type of

comment2

Comments Proposed change Observations of

the secretariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. US for United States; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial

page 10 of 43
ISO/IEC/CEN/CENELEC electronic balloting commenting template/version 2012-03

as a function of the length of the inputs) and
prevents useful applications like forcing a symlink to
be resolved.

US
52

 27.10.8.4.5 5 te The postcondition is not by itself a definition, as
illustrated by the non-idempotent behaviour in the
example.

Add a definition. Accept with Modifications. See
P0492R2

US
53

 27.10.8.4.5 7 te The “example behavior” does not correspond to the

function name, which suggests /foo/bar

/foo/ /foo/.

Rename the function to

remove_component(), or alter it to follow

Python’s path.dirname() (including its

treatment of /).

Accept with Modifications. See
P0492R2

US
54

 27.10.8.4.5 10 te The example demonstrates that this function is
broken (perhaps because the underspecified

remove_filename() is not the right thing). The

undesirable discontinuity of operator/=() is

also inherited.

Define in terms of improved and clarified
versions of the underlying functions.

Accept with Modifications. See
P0492R2

US
55

 27.10.8.4.5 11 ge This is the most egregious example (among many)

of using the type path inappropriately:

replacement is a string, not a path that might

include things like roots.

Use string_type for this and similar

parameters.

Accept with Modifications.

See P0492R2

US
56

 27.10.8.4.5 11.2 ge The conditional addition of the period produces
a(nother) discontinuity; applications will have to
include the period anyway to support empty
extensions.

Never add a period. Rejected. There was no consensus to
adopt this change. See P0492R2

US
57

 27.10.8.4.8 2 ge On Windows, absolute paths will sort in among
relative paths.

Consider including the absoluteness of a path in
its sort key.

Rejected. There was no consensus to
adopt this change. See P0492R2

US
58

 27.10.8.4.9 5 te The behavior for root paths is useless: “/” becomes
“” and (on Windows) “c:\\” becomes “c:” which is in
no way a parent of it.

Follow Python’s path.dirname(). If the

purely component-based definition is desired,

give it a name like most_components()

(inspired by the Wolfram Language).

Accept with Modifications.

See P0492R2

US
59

 27.10.8.4.9 6 te Again, using path for single path components is

bizarre.

Return string_type from this and other

similar functions (not including root_name()

Rejected. There was no consensus to
adopt this change.

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/p0492r2.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/p0492r2.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/p0492r2.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/p0492r2.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/p0492r2.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/p0492r2.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/p0492r2.html

WG21 Working Paper: ISO/IEC CD 14882 USNB Comments, Responses Date: Mar30, 2017 Document: SC22 N5131 Project: 14882

MB/

NC1

Line

number

(e.g. 17)

Clause/

Subclause

(e.g. 3.1)

Paragraph/

Figure/ Table/

(e.g. Table 1)

Type of

comment2

Comments Proposed change Observations of

the secretariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. US for United States; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial

page 11 of 43
ISO/IEC/CEN/CENELEC electronic balloting commenting template/version 2012-03

and root_path(), which make sense as

paths).

See P0492R2

US
60

 27.10.8.4.9 6 te path("/foo/").filename()==path(".")

is surprising.

Follow Python’s path.basename() and

return an empty string_type.

Accept with Modifications.

See P0492R2

US
61

 27.10.8.4.9 8 te Leading dots in filename() should not be taken

to begin an extension (e.g., .bashrc).

Follow Python’s path.splitext() in

ignoring them.

Accept with Modifications.

See P0492R2

US
62

 27.10.8.4.9 11 te It is important that

stem()+extension()==filename().

Require implementations to preserve this. Accept with Modifications.

See P0492R2

US
63

 27.10.8.4.11 1 ge It is inconsistent to take a trailing / as indicative of a

directory but not a trailing /.., (which must refer to

one).

Append the /. in all cases known to name

directories (if it is in fact necessary).

Accept with Modifications.

See P0492R2

US
64

all all all ge The present references to UCS2 in the Committee
Draft are appropriate in the interests of preventing
silent breakage of software written to older versions
of C++.

Preserve the references to UCS2 as presented
in the Committee Draft.

Accept with Modifications.

See P0618R0

US
65

all all all ge The adoption of the changes proposed in WG21
document P0386R2 (inline variables) is a step in the

right direction.

Preserve the functionality as presented in the
Committee Draft.

Accept

US
66

all all all ge The adoption of the changes proposed in WG21
document P0292R2 (constexpr if-statements) is a

step in the right direction.

Preserve the functionality as presented in the
Committee Draft.

Accept

US
67

all all all ge Further consideration of the proposal known as
Operator Dot (in P0416R0, its predecessors, etc.)

for incorporation into the current new revision of IS
14882 is not desired. The topic was controversial
among the experts in WG21. The C++ community
will benefit if the feature is not rushed.

Limit the adoption of Operator Dot such that it
may only be incorporated in a later revision of
14882 (not the revision of 14882 for which SC22
N5131 is a Committee Draft ballot).

Accept

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/p0492r2.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/p0492r2.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/p0492r2.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/p0492r2.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/p0492r2.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/p0618r0.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0386r2.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0292r2.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0416r0.pdf

WG21 Working Paper: ISO/IEC CD 14882 USNB Comments, Responses Date: Mar30, 2017 Document: SC22 N5131 Project: 14882

MB/

NC1

Line

number

(e.g. 17)

Clause/

Subclause

(e.g. 3.1)

Paragraph/

Figure/ Table/

(e.g. Table 1)

Type of

comment2

Comments Proposed change Observations of

the secretariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. US for United States; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial

page 12 of 43
ISO/IEC/CEN/CENELEC electronic balloting commenting template/version 2012-03

US
68

all all all ge Further consideration of the proposal known as
Unified Call Syntax (in P0301R1, its predecessors,

etc.) for incorporation into the current new revision
of IS 14882 is not desired. The topic was
controversial among the experts in WG21. The C++
community will benefit if the feature is not rushed.

Limit the adoption of Unified Call Syntax such
that it may only be incorporated in a later
revision of 14882 (not the revision of 14882 for
which SC22 N5131 is a Committee Draft ballot).

Accept

US
69

all all all ge Further consideration of the proposal known as
Default Comparisons (in P0221R2, its predecessors,

etc.) for incorporation into the current new revision
of IS 14882 is not desired. The topic was
controversial among the experts in WG21. The C++
community will benefit if the feature is not rushed.

Limit the adoption of Default Comparisons such
that it may only be incorporated in a later
revision of 14882 (not the revision of 14882 for
which SC22 N5131 is a Committee Draft ballot).

Accept

US
70

all all all te The adoption of P0003R4 (Removing Deprecated

Exception Specifications) would reduce language
complexity and resolve all specification issues
related to its presence in the IS.

Adopt P0003R4.

Accept. See P0003r5

US
71

all 7

[dcl.dcl]

paragraph
1

te The [identifier-list] syntax for decomposition
declarations has been reviewed for grammar
ambiguities, and is likely to be less problematic in
the face of future evolution than the case where
curly braces “{ }” are adopted in place of the square
brackets.

Preserve the syntax of decomposition
declarations as presented in the Committee
Draft.

Accept

US
72

all 1.8

[intro.object]

Para 3 te The introduction of additional special behavior for
unsigned char in contexts where it may already
occur in programs today is harmful to the
optimization which may be obtained.

Adopt std::byte (P0257R1) with necessary

changes from WG21 review and modify

1.8 [intro.object] paragraph 3 by replacing “array
of N unsigned char” with “array of N std::byte”.

Accept See P0298R2

US
73

all 27.10.8.1

[path.generic]

all te root-name is effectively implementation defined. As
acknowledged by the note under root-name in the
grammar, // is an example of what a root-name may
be.

Should root-name be // for a specific
implementation, the grammar is ambiguous.

Change under root-name in the grammar of
subclause 27.10.8.1 [path.generic]:

An implementation defined path prefix

operating system dependant name that identifies
the starting location for absolute paths.

Add a new paragraph before paragraph 1 of

Accept with Modifications.

See P0492R2

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0301r1.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0221r2.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0003r4.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0003r5.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0257r1.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0298r2.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/p0492r2.html

WG21 Working Paper: ISO/IEC CD 14882 USNB Comments, Responses Date: Mar30, 2017 Document: SC22 N5131 Project: 14882

MB/

NC1

Line

number

(e.g. 17)

Clause/

Subclause

(e.g. 3.1)

Paragraph/

Figure/ Table/

(e.g. Table 1)

Type of

comment2

Comments Proposed change Observations of

the secretariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. US for United States; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial

page 13 of 43
ISO/IEC/CEN/CENELEC electronic balloting commenting template/version 2012-03

The string //a may resolve as either

root-name root-directoryopt relative-pathopt
//root-directoryopt relative-pathopt

//relative-pathopt
//filename
//name
//a

or

root-directory relative-pathopt
directory-separator relative-pathopt
slash directory-separator relative-pathopt
slash directory-separator relative-pathopt
/directory-separator relative-pathopt
/slash relative-pathopt
//relative-pathopt
//filename
//name
//a

[path.generic]:

The root-name in a pathname is the longest
sequence of characters that could possibly form
a root-name.

US
74

all 27.10.8

[class.path]

all te The term “pathname” in 27.10.8 [class.path] is

ambiguous in some contexts.

Add the following specification to 27.10.8.2.1
[path.fmt.cvt]:

Specifications for path appends, path
concatenation, path modifiers, path

decomposition and path query are in terms of the
generic pathname format. An implementation

needs to make whatever changes necessary to
the pathname in native pathname format to

produce the specified change in the generic
pathname format, or return query result for

pathname in terms of the generic pathname
format.

See p0430r0 Section 2.1

Accept with Modifications.

See P0492R2

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0430r0.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/p0492r2.html

WG21 Working Paper: ISO/IEC CD 14882 USNB Comments, Responses Date: Mar30, 2017 Document: SC22 N5131 Project: 14882

MB/

NC1

Line

number

(e.g. 17)

Clause/

Subclause

(e.g. 3.1)

Paragraph/

Figure/ Table/

(e.g. Table 1)

Type of

comment2

Comments Proposed change Observations of

the secretariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. US for United States; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial

page 14 of 43
ISO/IEC/CEN/CENELEC electronic balloting commenting template/version 2012-03

US
75

all 27.10.8.4.1

[path.construct]

all te Extra flag in path constructors is needed to

distinguish whether source is in native pathname

format, or generic pathname format.

Refer to P0430R0 section 2.2

Accept with Modifications.

See P0430R2

US
76

all
27.10.8.1

[path.generic]

all te root-name definition is over-specified.

The description of root-name limits its use to be the
starting location for absolute paths. This is overly
restrictive and disregards established practice where
special prefixes on path names is treated as a
trigger for alternate path resolution on certain
operating systems. There are cases where such
alternative path resolution relies on context from the
environment such as the identity of the current user;
therefore, the presence of a special prefix on a path
name is not always indicative of an absolute path.

See p0430r0 section 2.3.1 Accept with Modifications.

See P0430R2

US
77

all 27.10.8.4.3

[path.append]

all te operator/ (and other append) semantics not useful if
argument has root-name.

A non-POSIX operating system could design its
generic pathname for native file type to have a root-
name and use it in some creative way. For example,
if argument p has a root-name, then p’s root-name
have to be removed before appending.

See p0430r0 section 2.3.2.

Accept with Modifications.

See P0430R2

US
78

all 27.10.15.1

[fs.op.absolute]

all te Member function absolute in 27.10.4.1 is over-
specified for non-POSIX-like operating system.
.

See p0430r0 Section 2.4.1

Accept with Modification.

See P0492R2

US
79

all 27.10.13
[class.directory_iterator]

27.10.15.3 [fs.op.copy]

27.10.15.14

[fs.op.file_size]

all te Some file system operation functions are over-
specified for implementation-defined file type.

See p0430r0 section 2.4.2

Accept with Modifications.

See P0492R2

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0430r0.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/p0430r2.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0430r0.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/p0430r2.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0430r0.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/p0430r2.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0430r0.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/p0492r2.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0430r0.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/p0492r2.html

WG21 Working Paper: ISO/IEC CD 14882 USNB Comments, Responses Date: Mar30, 2017 Document: SC22 N5131 Project: 14882

MB/

NC1

Line

number

(e.g. 17)

Clause/

Subclause

(e.g. 3.1)

Paragraph/

Figure/ Table/

(e.g. Table 1)

Type of

comment2

Comments Proposed change Observations of

the secretariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. US for United States; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial

page 15 of 43
ISO/IEC/CEN/CENELEC electronic balloting commenting template/version 2012-03

27.10.15.35 [fs.op.status]

US
80

 21.4 te Missing basic_string_view literals We have “”s for string literals, but nothing to
create string_views. Add similar wording as in
[basic.string.literals], but for basic_string_view,
preferably using “”sv . And they should be
constexpr.

Accept with Modification

See P0403R1

US
81

 21.2.3.x te More char_traits member functions should be
constexpr

With string_view, we can now build more things
at compile time. However, char_traits is limiting
us here. Mark more of the member functions in
char_traits as constexpr (in particular, compare,
length and find). The member functions move,
copy and pointer-based assign need not be
constexpr, but everything else should be.

Accept with Modification

See P0426R1

US
82

 Entire draft ge Address existing open issues in core and library
issues lists

Make technical and editorial changes as
appropriate for each issue, or resolve as NAD

Accept with Modification. Numerous
issues were addressed. The
remainder will be opened as issues
for further consideration.

US
83

 16.8 ¶ 1 te The definition of the macro __cplusplus refers to
C++14, not C++17

Update definition to reflect the expected
ratification month

Accept - Editorial

US
84

 20.14.2 ¶ 2 te The distinction between INVOKE(f, t1, t2, … tN) and
INVOKE(f, t1, t2, … tN, R) is too subtle. If the last
argument is an expression, it represents tN, if it’s a
type, then it represents R. Very clumsy.

Rename

INVOKE(f, t1, t2, … tN, R)

to

INVOKE_R(R, f, t1, t2, … tN) and adjust all uses
of this form.

(Approximately 10 occurrences of invoke would
need to change.)

Accept with Modifications

See P0604R0

US
85

 20.15.2 and 20.15.6 te The trick of encoding a functor and argument types
as a function signature for is_callable and result_of
loses cv information on argument types, fails for
non-decayed function types, and is confusing. E.g.,
 typedef int MyClass::*mp;
 result_of_t<mp(const MyClass)>;

 // should be const, but isn’t

Minimal change:

Replace

is_callable<Fn(ArgTypes...)>

with

is_callable<Fn, ArgTypes...>

and replace is_callable<Fn(ArgTypes...), R>

Accept with Modifications

See P0604R0

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/P0403r1.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0426r1.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/p0604r0.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/p0604r0.html

WG21 Working Paper: ISO/IEC CD 14882 USNB Comments, Responses Date: Mar30, 2017 Document: SC22 N5131 Project: 14882

MB/

NC1

Line

number

(e.g. 17)

Clause/

Subclause

(e.g. 3.1)

Paragraph/

Figure/ Table/

(e.g. Table 1)

Type of

comment2

Comments Proposed change Observations of

the secretariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. US for United States; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial

page 16 of 43
ISO/IEC/CEN/CENELEC electronic balloting commenting template/version 2012-03

 typedef int F(double);
 is_callable<F(float)>; // ill-formed

with is_callable_r<R, Fn, ArgTypes...>.

Do the same for is_nothrow_callable

Preferred change: All of the above, plus

deprecate

result_of<Fn(ArgTypes...)>

and replace it with

result_of_invoke<Fn, ArgTypes...>

US
86

 20.15.2 and 20.15.6 te “is_callable” is not a good name because it implies
F(A…) instead of INVOKE(F, A…)

Rename “is_callable” to “is_invocable” and
rename “is_nothrow_callable” to
“is_nothrow_invocable”

Accept with Modifications

See P0604R0

US
87

 1.10.2 ¶ 14 ed The term “block with forward progress guarantee
delegation” is cumbersome. “Forward” is redundant
and “guarantee” is implicit.

Replace the term “block with forward progress
guarantee delegation” with “block with progress
delegation” throughout the standard.

Accept with Modification. The word
“forward” will be deleted for the
specific phrase only, leaving it in all
other uses. The word “guarantee” will
be kept.

US
88

 20.19.4

Section
heading

ed “Sequential” should be “Sequenced” (per P0336r1,

which was adopted 2016-06)
Change “Sequential” to “Sequenced” in section
heading

Accept

US
89

 20.19.6 Section
heading

ed “Parallel+Vector” should be “Parallel+Unsequenced”
(per P0336r1, which was adopted 2016-06)

Change “Parallel+Vector” to
“Parallel+Unsequenced” in section heading and
change section label from “[execpol.vec]” to
“[execpol.parunseq]”

Accept with Modification.
“Parallel+Vector execution policy
renamed to “Parallel and
unsequenced execution policy”.

US
90

 25.2.3 ¶ 1 ed Need a cross-reference directing readers to
execution policies [execpol] section

Add a cross-reference link to section 20.19,
somewhere within the paragraph.

Accept - Editorial

US
91

 25.3, 25.4, 25.5 ed Presentation of parallel algorithms is confusing.
Despite having parallel overload prototypes in
section 25.1 <algorithm> synopsis and blanket
wording 25.2.5, it is still confusing to figure out which
algorithms have parallel overloads.

Copy the prototypes for the parallel algorithm
overloads alongside their serial versions in the
per-algorithm description. The common
description of a serial and parallel overload will
reinforce that they exist and have the same
semantics. In the cases where they do not have
the same semantics, their separate descriptions
will make that clear, too.

Accept - Editorial

US
92

 5.1.5 1 Te Lambda init-captures should support some form of Amend the init-capture grammar to allow for a Rejected. There was no consensus to
adopt this change at this time. It may

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/p0604r0.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0336r1.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0336r1.pdf

WG21 Working Paper: ISO/IEC CD 14882 USNB Comments, Responses Date: Mar30, 2017 Document: SC22 N5131 Project: 14882

MB/

NC1

Line

number

(e.g. 17)

Clause/

Subclause

(e.g. 3.1)

Paragraph/

Figure/ Table/

(e.g. Table 1)

Type of

comment2

Comments Proposed change Observations of

the secretariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. US for United States; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial

page 17 of 43
ISO/IEC/CEN/CENELEC electronic balloting commenting template/version 2012-03

[expr.prim.lambda] decomposition declaration, as functions returning

values intended for decomposition will become a

much more common idiom.

decomposition-capture.
be reconsidered if a paper is
proposed.

US
93

 5.2.2

[expr.call]

5 Te It is not immediately clear that expressions in the

expression-list will have a fully-specified order of

evaluation if the called function is an overloaded

operator.

Add a second note to 5.2.2 [expr.call] p5 with a

cross-reference to 13.3.1.2 [over.match.oper]

clarifying that the expression-list is evaluated in a

fully specified order when the function call is an

overloaded operator – ideally by providing an

example.

Accept See P0490R0

US
94

 5.2.3

[expr.type.conv]

2 Te To properly support universal initialization syntax

with class template deduction, this paragraph should

support initialization through T{x1, x2, ...} as well as

through T(x1, x2, ...). It is expected that while

aggregates would not implicitly be deduced this way,

a deduction guide should be able to offer such

support where desired.

Duplicate the wording for T(x1, x2, ...) to also

handle T{x1, x2, ...}

Accept with Modification

See P0490R0

US
95

 7

[dcl.dcl]

8 Te There is no obvious reason why decomposition

declarations cannot be declared as static,

thread_local, or constexpr.

Allow constexpr, static, and thread_local to the

permitted set of decl-specifiers.

Rejected. There was no consensus to
adopt this change.

US
96

 8.5

[dcl.decomp]

 Ed This specification would read much more easily with

the usual 0-based indexing than the current 1-based

index.

Use 0-based indexing for the identifier-list, and

replace all use of 'i-1' with just 'i'. The existing 'i'

subscripts would not need to change for this

rebasing.

Accept - Editorial

US
97

 8.5

[dcl.decomp]

3 Ed Prefer to use tuple_size_v and tuple_element_t

consistently through the standard, than the more

verbose tuple_size<E>::value and tuple_element<i-

1, E>::type

Consistently use _v/_t form for type traits. Rejected. There was no consensus to
adopt this change. See US 4.

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0490r0.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0490r0.html

WG21 Working Paper: ISO/IEC CD 14882 USNB Comments, Responses Date: Mar30, 2017 Document: SC22 N5131 Project: 14882

MB/

NC1

Line

number

(e.g. 17)

Clause/

Subclause

(e.g. 3.1)

Paragraph/

Figure/ Table/

(e.g. Table 1)

Type of

comment2

Comments Proposed change Observations of

the secretariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. US for United States; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial

page 18 of 43
ISO/IEC/CEN/CENELEC electronic balloting commenting template/version 2012-03

US
98

 8.5

[dcl.decomp]

3 Te The lifetime-extension rules when binding a

reference to a temporary do not seem to apply to:

auto [x,y] = std::make_pair<std::string,

string>("hello", "world");

Address the issue of lifetime extension when a

decomposition declaration potentially binds a

reference to a temporary object.

Rejected. The wording is correct as
written.

US
99

 8.5

[dcl.decomp]

 Ge Decomposition declarations are confusing in generic

code: auto [x,y,z] = f(a,b,c); may bind references if

the result is a pair or tuple (returned by value); or

copy distinct objects if f returns an array by

reference, or returns an aggregate (by value or by

reference).

Provide more consistent semantics for

predictable behavior within function templates by

not implicitly binding references to results

returned by value, or by always binding

references (and extending lifetimes) in such

cases.

Rejected. There was no consensus to
adopt this change.

US
100

 8.5

[dcl.decomp]

 Ge Decomposition declarations should provide syntax

to discard some of the returned values, just as

std::tie uses std::ignore.

Extend the grammar of decomposition

declarations to support discarded values, such

as by allowing void in the identifier-list.

Rejected. There was no consensus to
adopt this change.

US
101

 9

[class]

10 Ge The term POD no longer serves a purpose in the

standard, it is merely defined, and restrictions apply

for when a few other types preserve this vestigial

property. The is_pod trait should be deprecated,

moving the definition of a POD type alongside the

trait in Annex D, and any remaining wording

referring to POD should be struck, or revised to

clearly state intent (usually triviality) without

mentioning PODs.

Move the definition of is_pod/is_pod_v to D.12

[depr,meta.types]

Move 9p10 [class] into D.12 [depr,meta.types]

Reword footnote 40 in terms of trivial

constructors

Strike POD classes and the definition of POD

types from 3.9p9 [basic.types]

Strike 5.1.5 [expr.prim.lambda]

p4 bullet 4.4

Strike footnote 108 (from 9p10)

Accept with Modification. An issue will
be opened to correct the wording.

WG21 Working Paper: ISO/IEC CD 14882 USNB Comments, Responses Date: Mar30, 2017 Document: SC22 N5131 Project: 14882

MB/

NC1

Line

number

(e.g. 17)

Clause/

Subclause

(e.g. 3.1)

Paragraph/

Figure/ Table/

(e.g. Table 1)

Type of

comment2

Comments Proposed change Observations of

the secretariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. US for United States; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial

page 19 of 43
ISO/IEC/CEN/CENELEC electronic balloting commenting template/version 2012-03

Strike the reference to POD type in 17.3.4

[defns.character.container]

Revise definition of max_align_t in 18.2.3

[support.types.layout] p5

Revise definition of aligned_storage::type in

table 46 - Other transformations

Revise definition of aligned_union::type in table

46 - Other transformations

Update the introductory sentence to

21.1[strings] p1

US
102

 13.3.1.2

[over.match.oper]

2 Te
It is no longer legal to manually transform code from
infix form to function form. For example, the
expression a() = b() sequences b() before a() while
a().operator=(b()) sequences a() before b().

Require a left-to-right order of evaluation for

assignment operators, and for compound-

assignment operators, consistent with such

requirements on other operators.

Rejected. There was no consensus to
adopt this change.

US
103

 14.9

[temp.deduct.guide]

2 Te It is not clear that when a simple-template-id names

a template specialization, the default template

parameters of the primary template by still be relied

upon. The example from p0091r3 that clearly

shows this is the intent:

template <class Iter> vector(Iter b, Iter e) ->

vector<typename iterator_traits<Iter>::value_type>;

The allocator of the vector is clearly not named, and

If the wording is already thought to state this

clearly enough, add an example (such as in this

comment) to clarify intent for the reader.

Otherwise, amend the wording as necessary so

that default template arguments will be used, as

needed, to fill out the name of the class template

specialization.

Accept, See P0490R0

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0091r3.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0490r0.html

WG21 Working Paper: ISO/IEC CD 14882 USNB Comments, Responses Date: Mar30, 2017 Document: SC22 N5131 Project: 14882

MB/

NC1

Line

number

(e.g. 17)

Clause/

Subclause

(e.g. 3.1)

Paragraph/

Figure/ Table/

(e.g. Table 1)

Type of

comment2

Comments Proposed change Observations of

the secretariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. US for United States; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial

page 20 of 43
ISO/IEC/CEN/CENELEC electronic balloting commenting template/version 2012-03

expected to deduce as the default allocator

(std::allocator< typename

iterator_traits<Iter>::value_type>).

US
104

 16.1

[cpp.cond]

 Te __has_include has an ugly __ prefix that is not

connected to a joining symbol.

This appears necessary to avoid intruding on user-

defined macros, but there are alternative solutions.

For example, a '__' anywhere in a name is reserved

to the implementation, so we could put the '__' in the

middle instead,

Replace all use of __has_include with

has__include

Rejected. There was no consensus to
adopt this change.

US
105

 17-30

plus Annex D

 Ge The library has been getting more careful about

specifying runtime preconditions and constraints in

the type system, but both are documented in the

same Requires clause which often could be clearer,

especially when constraining how function templates

interact with SFINAE. The terminology should be

made more precise, with an expectation to uncover

and clean up a few surprising corner cases as part

of the process.

Adopt a revision of p0411r0

Rejected. There was no consensus to
adopt this change, at this time,
however it will receive future
consideration.

US
106

 17-30

plus Annex D

 Ge Review the whole library for constructors using

member typedefs to name constructor parameters

rather than template type parameters, as this inhibits

class template deduction. e.g., the unique_lock

explicit constructor taking the mutex_type typedef

would be better served naming Mutex directly, to

preserve support for deduction.

Review each constructor of each library class

template, and revise specification of parameter

types as needed.

Rejected. There was no
consensus to adopt this change.
The premise of the issue “as this
inhibits implicit class template
deduction” is no longer true.

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0411r0.html

WG21 Working Paper: ISO/IEC CD 14882 USNB Comments, Responses Date: Mar30, 2017 Document: SC22 N5131 Project: 14882

MB/

NC1

Line

number

(e.g. 17)

Clause/

Subclause

(e.g. 3.1)

Paragraph/

Figure/ Table/

(e.g. Table 1)

Type of

comment2

Comments Proposed change Observations of

the secretariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. US for United States; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial

page 21 of 43
ISO/IEC/CEN/CENELEC electronic balloting commenting template/version 2012-03

US
107

 17.3

[defintions]

 Te The term 'direct non-list initialization' needs to be

incorporated from the Library Fundamentals TS, as

several components added to C++17 rely on this

definition.

Add:

17.3.X direct-non-list-

initialization [defns.direct-non-list-init]

A direct-initialization that is not list-initialization.

Accept with Modifications

 See LWG 2911

See P0625R0

Add definition for direct-non-list-
initialization.

US
108

 20.2.2

[utility.swap]

 Te swap is a critical function in the standard library, and

should be declared constexpr to support more

widespread support for constexpr in libraries. This

was proposed in p0202r1 which was reviewed

favourably at Oulu, but the widespread changes to

the <algorithm> header were too risky and unproven

for C++17. We should not lose constexpr support for

the much simpler (and more important) <utility>

functions because they were attached to a larger

paper. Similarly, the fundamental value wrappers,

pair and tuple, should have constexpr swap

functions, and the same should be considered for

optional and variant. It is not possible to mark swap

for std::array as constexpr without adopting the rest

of the p0202r1 though, or rewriting the specification

for array swap to not use swap_ranges.

Adopt the changes to the <utility> header

proposed in p0202r1, i.e., only bullets C, D, and

E.

In addition, mark the swap functions of pair and

tuple as constexpr, and consider doing the same

for optional and variant.

Rejected. There was no consensus to
adopt this change at this time,
however an LWG issue has been
opened for future consideration.

See LWG 2800.

US
109

 20.5.1

[tuple.general]

 Te tuple should be a literal type if its elements are literal

types; it fails because the destructor is not

necessarily trivial. It should follow the form of

optional and variant, and mandate a trivial destructor

if all types in Types... have a trivial destructor. It is

not clear if pair has the same issue, as pair specifies

Document the destructor for tuple, and mandate

that it is trivial if each of the elements in the tuple

has a trivial destructor. Consider whether the

same specification is needed for pair.

Accept with Modification

See LWG 2796

http://www.open-std.org/jtc1/sc22/wg21/docs/lwg-defects.html#2911
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/p0625r0.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0202r1.html
http://www.open-std.org/jtc1/sc22/wg21/docs/lwg-active.html#2800
http://www.open-std.org/jtc1/sc22/wg21/docs/lwg-active.html#2796

WG21 Working Paper: ISO/IEC CD 14882 USNB Comments, Responses Date: Mar30, 2017 Document: SC22 N5131 Project: 14882

MB/

NC1

Line

number

(e.g. 17)

Clause/

Subclause

(e.g. 3.1)

Paragraph/

Figure/ Table/

(e.g. Table 1)

Type of

comment2

Comments Proposed change Observations of

the secretariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. US for United States; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial

page 22 of 43
ISO/IEC/CEN/CENELEC electronic balloting commenting template/version 2012-03

data members first and second, and appears to

have an implicitly declared and defined destructor.

US
110

 20.5.2.1

20.6.3.1

20.11.1.2.1

 Te The move constructors for tuple, optional, and

unique_ptr should return false for

is_(nothrow_)move_constructible_v<TYPE> when

their corresponding Requires clauses are not

satisfied, as there are now several library clauses

that are defined in terms of these traits. The same

concern applies to the move-assignment operator.

Note that pair and variant already satisfy this

constraint.

 Rejected

There is no consensus for changing
this item.

US
111

 20.6.3.1

[optional.object]

 Te The copy and move constructors of optional are not

constexpr. However, the constructors taking a const

T& or T&& are constexpr, and there is a precedent

for having a constexpr copy constructor in 26.5.2

[complex]. The defaulted copy and move

constructors of pair and tuple are also conditionally

constexpr (see 20.4.2 [pairs.pair] p2 and 20.5.2.1

[tuple.cnstr] p2).

A strong motivating use-case is constexpr functions

returning optional values. This issue was discovered

while working on a library making heavy use of

such.

Add constexpr to:

constexpr optional(const optional &);

constexpr optional(optional &&) noexcept(see

below);

Accepted with Modifications

The definition of 'object state' applies
only to class types.

The copy and move constructors of
optional are not constexpr.

See P0625R0

US
112

 20.7.2

 [variant.variant]

 Te Variants with an empty set of alternatives fail to work

for a number of reasons. This should be explicitly

acknowledged in the design, lest we attract defect

reports on those many failings.

Either add an explicit requirement that

sizeof...(Types) > 0, or add a note that we

believe this is already implicit in the specification

that follows.

Accept with Modification. See
P0510R0

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/p0625r0.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0510r0.html

WG21 Working Paper: ISO/IEC CD 14882 USNB Comments, Responses Date: Mar30, 2017 Document: SC22 N5131 Project: 14882

MB/

NC1

Line

number

(e.g. 17)

Clause/

Subclause

(e.g. 3.1)

Paragraph/

Figure/ Table/

(e.g. Table 1)

Type of

comment2

Comments Proposed change Observations of

the secretariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. US for United States; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial

page 23 of 43
ISO/IEC/CEN/CENELEC electronic balloting commenting template/version 2012-03

US
113

 20.7.2

[variant.variant]

 Te Variants cannot properly support allocators, as any

assignment of a subsequent value throws away the

allocator used at construction. This is not an easy

problem to solve, so variant would be better

served dropping the illusion of allocator support for

now, leaving open the possibility to provide proper

support once the problems are fully understood.

Strike the 8 allocator aware constructor

overloads from the class definition, and strike

20.7.2.1 [variant.ctor] p34/35.

Strike clause 20.7.12 [variant.traits]

Strike the specialization of uses_allocator for

variant in the <variant> header synopsis, 20.7.1

[variant.general].

Rejected. There was no consensus
to adopt this change at this time.
However, an LWG issue has been
opened for future consideration.

See LWG 2901

US
114

 20.7.2

[variant.variant]

2 Te variant needs to know the size of an object in order

to compute the size of its internal buffer, so require

that any cv-qualified object type in Types... be a

complete type.

Add 'complete' in p2:

"All types in Types... shall be (possibly cv-

qualified) complete object types, (possibly cv-

qualified) void, or references."

Rejected. There was no consensus to
adopt this change.

US
115

 20.7.2

[variant.variant]

2 Te Support for void alternatives is confusing and

underspecified; it should be deferred as an

extension until a future standard. For example, if

any of the alternatives is void, the current

specification fails to satisfy the Requires clause for

all 6 relational operators, and loses (shall not

participate in overload resolution) the copy

constructor, move constructor, copy-assignment

operator, move-assignment operator, swap member

and free function. It is not clear that a variant with a

void alternative can be visited, especially in the

multiple-variant visitor case. Adding a void

alternative will render an otherwise trivial variant

destructor as non-trivial. Are all of these

consequences the intended design?

Strike '(possibly cv-qualified) void," from 20.7.2

[variant.variant] p2

From 20.7.4 [variant.get]

Strike ", and TI is not (possibly cv-qualified) void'

from p3.

Strike ", and T is not (possibly cv-qualified) void'

from p5.

Strike ", and TI is not (possibly cv-qualified) void'

from p7.

Strike ", and T is not (possibly cv-qualified) void'

from p9.

Accepted. See P0510R0

US
116

 20.7.2

[variant.variant]

2 Te Support for array alternatives does not seem to work

as expected. For example, if any of the alternatives

Add 'not an array' in p2:

"All types in Types... shall be (possibly cv-

Accepted. See P0510R0

http://www.open-std.org/jtc1/sc22/wg21/docs/lwg-active.html#2901
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0510r0.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0510r0.html

WG21 Working Paper: ISO/IEC CD 14882 USNB Comments, Responses Date: Mar30, 2017 Document: SC22 N5131 Project: 14882

MB/

NC1

Line

number

(e.g. 17)

Clause/

Subclause

(e.g. 3.1)

Paragraph/

Figure/ Table/

(e.g. Table 1)

Type of

comment2

Comments Proposed change Observations of

the secretariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. US for United States; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial

page 24 of 43
ISO/IEC/CEN/CENELEC electronic balloting commenting template/version 2012-03

is an array, the current specification fails to satisfy

the Requires clause for all 6 relational operators,

and loses (shall not participate in overload

resolution) the copy constructor, move constructor,

copy-assignment operator, move-assignment

operator (although the swap functions will work

correctly). It is difficult to activate an array

alternative - to the best of my understanding, it must

be emplaced with no arguments in order to value-

initialize the array, and then the value of each

element may be assigned as needed. Many of

these issues would be resolved if array alternatives

were implemented by storing a std::array instead,

and then exposing the exposition-only array member

(of the std::array) to the get functions, but that

seems like an experimental change that should be

investigated for the next standard. For C++17, we

should drop support for arrays (but not std::array) as

alternatives, in order to leave freedom to support

them properly in the next standard.

qualified) object types that are not arrays,

(possibly cv-qualified) void, or references to non-

array objects."

US
117

 20.7.2

[variant.variant]

2 Ge It is not clear what support is intended for function

references. The presence of a function-reference in

the list of alternatives causes some operations to fail

to instantiate/exist at all, and there is no clear benefit

to supporting function references but not function

types.

Qualify references as 'references to object

types':

"All types in Types... shall be (possibly cv-

qualified) object types, (possibly cv-qualified)

void, or references to object types."

Rejected. There was no consensus to
adopt this change. See P0510R0

US
118

 20.7.2.1

[variant.ctor]

19, 23,

27, 31

Te The form of initialization for the emplace-

constructors is not specified. We are very clear to

Insert the phrase "as if direct-non-list-initializing"

at appropriate locations in paragraphs 19, 23,

Accept with Modifications

See LWG 2903

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0510r0.html
http://www.open-std.org/jtc1/sc22/wg21/docs/lwg-active.html#2903

WG21 Working Paper: ISO/IEC CD 14882 USNB Comments, Responses Date: Mar30, 2017 Document: SC22 N5131 Project: 14882

MB/

NC1

Line

number

(e.g. 17)

Clause/

Subclause

(e.g. 3.1)

Paragraph/

Figure/ Table/

(e.g. Table 1)

Type of

comment2

Comments Proposed change Observations of

the secretariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. US for United States; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial

page 25 of 43
ISO/IEC/CEN/CENELEC electronic balloting commenting template/version 2012-03

mandate "as if by direct non-list initialization' for

each constructor in optional, so there is no

ambiguity regarding parens vs. braces. That

wording idiom should be followed by variant.

27, and 31
The form of initialization for the
emplace-constructors is not specified.

US
119

 20.7.2.3

[variant.assign]

 Te The copy-assignment operator is very careful to

not destroy the contained element until after

a temporary has been constructed, which can be

safely moved from. This makes the

valueless_by_exception state extremely rare, by

design. However, the same care and attention is

not paid to the move-assignment operator, nor the

assignment-from-deduced-

value assignment template. This concern should be

similarly important in these cases, especially the

latter.

 Accept with Modification

See LWG 2904

US
120

 20.7.4

[variant.get]

3,5 Ed For void alternatives, the get functions returning a

reference naturally fall out of overload resolution as

you cannot make a reference to void, so there is no

need to call out this special case. Note that this is

NOT the case for the get_if overloads, which would

return a pointer to void.

Strike ", and TI is not (possibly cv-qualified) void'

from p3.

Strike ", and T is not (possibly cv-qualified) void'

from p5.

Accept - Editorial

US
121

 20.7.11

[variant.hash]

1 Te The value of a variant comprises the index as well

as the contained alternative (if any), as can be seen

in the comparison operators. Make it clear that

both parts should contribute to the hash result.

Add: [Note: The value of a variant comprises the

active index and the currently contained value, if

any. Both parts should contribute to the resulting

hash value - end note]

Rejected. There was no consensus to
adopt this change.

US
122

 20.11.1.2.1

[unique.ptr.single.ctor]

4 Te unique_ptr should not satisfy

is_constructible_v<unique_ptr<T, D>> unless D is

DefaultConstructible and not a pointer type. This is

Add a Remarks: clause to constrain the default

constructor to not exist unless the Requires

clause is satisfied.

Accept with Modifications

See LWG 2801

Default-constructibility of unique_ptr

http://www.open-std.org/jtc1/sc22/wg21/docs/lwg-active.html#2904
http://www.open-std.org/jtc1/sc22/wg21/docs/lwg-active.html#2801

WG21 Working Paper: ISO/IEC CD 14882 USNB Comments, Responses Date: Mar30, 2017 Document: SC22 N5131 Project: 14882

MB/

NC1

Line

number

(e.g. 17)

Clause/

Subclause

(e.g. 3.1)

Paragraph/

Figure/ Table/

(e.g. Table 1)

Type of

comment2

Comments Proposed change Observations of

the secretariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. US for United States; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial

page 26 of 43
ISO/IEC/CEN/CENELEC electronic balloting commenting template/version 2012-03

important for interactions with pair, tuple, and variant

constructors that rely on the is_default_constructible

trait.

US
123

 20.11.1.2.1

[unique.ptr.single.ctor]

12 Te is_constructible_v<unique_ptr<P, D>, P, D const

&> should be false when D is not copy constructible,

and similarly for D&& when D is not move

constructible. This could be achieved by the

traditional 'does not participate in overload

resolution' wording, or similar.

Add a Remarks: clause to constrain the

appropriate constructors.

Accept with Modification

See LWG 2905

is_constructible_v<unique_ptr<P | D>
| P | D const &> should be false when
D is not copy constructible

US
124

 20.11.2.2

[util.smartptr.shared]

 Te Several shared_ptr related functions have wide

contracts and cannot throw, so should be marked

unconditionally noexcept.

Add 'noexcept' to:

template<class U> bool

shared_ptr::owner_before(shared_ptr<U>

const& b) const noexcept;

template<class U>

bool shared_ptr::owner_before(weak_ptr<U>

const& b) const noexcept;

template<class U> bool

weak_ptr::owner_before(shared_ptr<U> const&

b) const noexcept;

template<class U>

bool weak_ptr::owner_before(weak_ptr<U>

const& b) const noexcept;

bool owner_less::operator()(A,B) const noexcept;

// all versions

Accept with Modification

See LWG 2873

Add noexcept to several shared_ptr
related functions

US 20.11.2.2.1 4 Te This constructor should not participate in overload Add a Remarks: clause to constrain this Accept with Modification

http://www.open-std.org/jtc1/sc22/wg21/docs/lwg-active.html#2905
http://www.open-std.org/jtc1/sc22/wg21/docs/lwg-active.html#2873

WG21 Working Paper: ISO/IEC CD 14882 USNB Comments, Responses Date: Mar30, 2017 Document: SC22 N5131 Project: 14882

MB/

NC1

Line

number

(e.g. 17)

Clause/

Subclause

(e.g. 3.1)

Paragraph/

Figure/ Table/

(e.g. Table 1)

Type of

comment2

Comments Proposed change Observations of

the secretariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. US for United States; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial

page 27 of 43
ISO/IEC/CEN/CENELEC electronic balloting commenting template/version 2012-03

125
[util.smartptr.shared.const] resolution unless the Requires clause is satisfied.

Note that this would therefore apply to some

assignment operator and reset overloads, via

Effects: equivalent to some code wording.

constructor not to participate in overload

resolution unless the Requires clause is

satisfied.

See LWG 2874

Constructor
shared_ptr::shared_ptr(Y*) should be
constrained.

US
126

 20.11.2.2.1

[util.smartptr.shared.const]

8 Te This constructor should not participate in overload

resolution unless the Requires clause is satisfied.

Note that this would therefore apply to some

assignment operator and reset overloads, via

Effects: equivalent to some code wording.

Add a Remarks: clause to constrain this

constructor not to participate in overload

resolution unless the Requires clause is

satisfied.

Accept with Modification

See LWG 2875

shared_ptr::shared_ptr(Y* | D | […])
constructors should be constrained

US
127

 20.11.2.2.1

[util.smartptr.shared.const]

8 Te It should suffice for the deleter D to be nothrow

move-constructible. However, to avoid potentially

leaking the pointer p if D is also copy-constructible

when copying the argument by-value, we should

continue to require the copy constructor does not

throw if D is CopyConstructible.

Relax the requirement the D be

CopyConstructible to simply require that D be

MoveConstructible. Clarify the requirement that

construction of any of the arguments passed by-

value shall not throw exceptions. Note that we

have library-wide wording in clause 17 that says

any type supported by the library, not just this

delete, shall not throw exceptions from its

destructor, so that wording could be editorially

removed. Similarly, the requirements that A

shall be an allocator satisfy that neither

constructor nor destructor for A can throw.

Accept with Modification

See LWG 2802

shared_ptr constructor requirements
for a deleter

US
128

 20.11.2.2.1

[util.smartptr.shared.const]

9 Te As this constructor is taking ownership of a new

pointer, it should enable shared_from_this with p

(unless p == 0). Note that making this an Effect

here renders the additional enable shared_from_this

for a released unique_ptr in p27 redundant.

Add to Effects:

The first and second constructors enable

shared_from_this with (T*)p.

Rejected. This is already stated in a
different location.

US
129

 20.11.2.2.1

[util.smartptr.shared.const]

 22 Te This constructor should not participate in overload

resolution unless the requirements are satisfied, in

Add a Remarks: clause to constrain this

constructor not to participate in overload

Accept with Modification

See LWG 2876

http://www.open-std.org/jtc1/sc22/wg21/docs/lwg-active.html#2874
http://www.open-std.org/jtc1/sc22/wg21/docs/lwg-active.html#2875
http://www.open-std.org/jtc1/sc22/wg21/docs/lwg-active.html#2802
http://www.open-std.org/jtc1/sc22/wg21/docs/lwg-active.html#2876

WG21 Working Paper: ISO/IEC CD 14882 USNB Comments, Responses Date: Mar30, 2017 Document: SC22 N5131 Project: 14882

MB/

NC1

Line

number

(e.g. 17)

Clause/

Subclause

(e.g. 3.1)

Paragraph/

Figure/ Table/

(e.g. Table 1)

Type of

comment2

Comments Proposed change Observations of

the secretariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. US for United States; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial

page 28 of 43
ISO/IEC/CEN/CENELEC electronic balloting commenting template/version 2012-03

order to give correct results from the is_constructible

trait.

resolution unless the Requires clause is

satisfied.

shared_ptr::shared_ptr(const
weak_ptr<Y>&) constructor should be
constrained

US
130

 20.11.2.2.1

[util.smartptr.shared.const]

26 Te There is no ability to supply an allocator for the

control block when constructing a shared_ptr from a

unique_ptr. Note that no further shared_ptr

constructors need an allocator, as they all have pre-

existing control blocks that are shared, or already

have the allocator overload.

Add an additional shared_ptr constructor,

template <class Y, class D, class A>

shared_ptr(unique_ptr<Y, D>&& r, A alloc), with

the same semantics as the existing constructor

taking a unique_ptr, but using the alloc argument

to supply memory as required.

Rejected. There was no consensus to
adopt this change.

US
131

 20.11.2.2.1

[util.smartptr.shared.const]

27 Te The constructor delegated to by a call to r.release is

a deduction context, so unique_ptr<Y,D>::pointer

must not only convert to T*, but also unambiguously

satisfy the deduction context, or the effects clause

should include an explicit cast to T*. Such casts

must not throw exceptions, or else the released

pointer will not have its deleter run.

Revise this paragraph: [Added two (T*) casts,

added restrictions on throwing]

Effects: If r.get() == nullptr, equivalent to

shared_ptr(). Otherwise, if D is not a reference

type, equivalent to shared_ptr((T*)r.release(),

r.get_deleter()). Otherwise, equivalent to

shared_ptr((T*)r.release(), ref(r.get_deleter())).

Casts to T* must not throw exceptions;

otherwise, if an exception is thrown, the

constructor has no effect. If r.get() != nullptr,

enables shared_from_this with the value that

was returned by r.release().

Rejected. There was no consensus to
adopt this change.

US
132

 20.11.2.2.1

[util.smartptr.shared.const]

9, 27 Te As paragraphs 8-11 apply equally to the constructor

taking a unique_ptr due to the Effects: equivalent to

some code rules, there is a conflict between p9

saying d(p) is run if an exception is thrown, and p27

saying it shall have no effect.

Strike the penultimate sentence of p27, and

implicitly require the unique_ptr is released and

deleter run if an exception is thrown.

Rejected. There was no consensus to
adopt this change.

US 20.11.2.2.1 27 Ed With the revised definition of enables Strike the last sentence, which begins with "If Accept - Editorial

WG21 Working Paper: ISO/IEC CD 14882 USNB Comments, Responses Date: Mar30, 2017 Document: SC22 N5131 Project: 14882

MB/

NC1

Line

number

(e.g. 17)

Clause/

Subclause

(e.g. 3.1)

Paragraph/

Figure/ Table/

(e.g. Table 1)

Type of

comment2

Comments Proposed change Observations of

the secretariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. US for United States; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial

page 29 of 43
ISO/IEC/CEN/CENELEC electronic balloting commenting template/version 2012-03

133
[util.smartptr.shared.const] shared_from_this with p in p1, there is no need to

check r.get() != nullptr. Further, paragraphs 8-11

apply equally to the unique_ptr constructor due to

the Effects: equivalent to some code rules, and we

do not want to enable twice, so the whole sentence

is redundant.

r.get() != nullptr,".

US
134

 20.11.2.2.2

[util.smartptr.shared.dest]

1 Te The semantics for destroying the deleter and the

control-block are unclear. In particular, it is not clear

that we guarantee a lack of race conditions

destroying the control-block and deleter. Possible

race-free implementations might destroy the deleter

after running d(p), and before giving up the weak

reference held by this shared_ptr; running the

destructor for 'd' only when the last weak_ptr is

destroyed, potentially at a much later date, but

ensuring that d(p) completes before the shared_ptr

gives up its weak reference; making a copy of 'd' in

the destructor before manipulating the weak count,

and then using this copy to run 'd(p)', even while the

control-block could be concurrently reclaimed with

an expiring weak_ptr in another thread. Note that

this may be related to LWG #2751. (Also, see the

note in 20.11.2.2.10p1 [util.smartptr.getdeleter])

Clarify that the shared_ptr weak ownership of the

control block is released at the end of the

destructor, and not as the destructor begins.

Otherwise, the deleter might be destroyed even

before the destructor gets to move a copy to call

safely.

Rejected. There was no consensus to
adopt this change.

US
135

 20.11.2.2.7

[util.smartptr.shared.cmp]

2 Te The less-than operator for shared pointers

compares only those combinations that can form a

composite pointer type. With the C++17 wording for

the diamond functor, less<>, we should be able to

support comparison of a wider range of shared

Replace less<V> with just less<>, and drop the

reference to composite pointer types.

Accept with Modifications

The less-than operator for shared
pointers could do more

See P0625R0

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/p0625r0.html

WG21 Working Paper: ISO/IEC CD 14882 USNB Comments, Responses Date: Mar30, 2017 Document: SC22 N5131 Project: 14882

MB/

NC1

Line

number

(e.g. 17)

Clause/

Subclause

(e.g. 3.1)

Paragraph/

Figure/ Table/

(e.g. Table 1)

Type of

comment2

Comments Proposed change Observations of

the secretariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. US for United States; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial

page 30 of 43
ISO/IEC/CEN/CENELEC electronic balloting commenting template/version 2012-03

pointers, such that less<>::operator(shared_ptr<A>,

shared_ptr) is consistent with less<>::operator(A

*, B *).

US
136

 20.11.2.2.9

[util.smartptr.shared.cast]

2, 6, 10 Ed The returns clause for each cast mentions storing a

copy of the cast pointer in the returned shared_ptr,

unless the original pointer is empty. However, even

in the case of the empty shared_ptr, we might store

such a value to satisfy the post-condition, so saying

this in two places is redundant and potentially

contradictory. It suffices to say that each cast

returns (when successful) a shared_ptr that shares

ownership with the shared_ptr argument.

Note that static_pointer_cast (and

reinterpret_pointer_cast) could be further simplified

as:

Effects: equivalent to return shared_ptr<T>{r,

static_cast<T*>(r.get())};

Strike the un-necessary reference to storing an
object in the otherwise clause of each paragraph
(deferring to the Effects clause):
Returns: If r is empty, an empty shared_ptr<T>;
otherwise, a shared_ptr<T> object that stores

static_cast<T*>(r.get()) and shares ownership

with r.

Accept - Editorial

US
137

 20.11.2.2.9

[util.smartptr.shared.cast]

(6.2) Te It is intuitive, but not specified, that the empty pointer

returned by a dynamic_pointer_cast should point to

null.

Rephrase as:

Otherwise, shared_ptr<T>().

Accept. See P0414R2

US
138

 20.14.2

[func.require]

 Ed The INVOKE protocol is used widely beyond just the

<functional> sub-clause, and really belongs in the

front matter of clause 17, taking the definitions of

call wrappers and callable entities with it.

Move 20.14.1 [func.def] to 17.3 [definitions],

and 20.14.2 [func.require] to 17.6

[requirements].

Rejected. There was no consensus to
adopt this change.

[func.requires] are requirements
on the library; [requirements] are
requirements on the program. It
would not be appropriate to move
the former into the latter. The call

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0414r2.html

WG21 Working Paper: ISO/IEC CD 14882 USNB Comments, Responses Date: Mar30, 2017 Document: SC22 N5131 Project: 14882

MB/

NC1

Line

number

(e.g. 17)

Clause/

Subclause

(e.g. 3.1)

Paragraph/

Figure/ Table/

(e.g. Table 1)

Type of

comment2

Comments Proposed change Observations of

the secretariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. US for United States; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial

page 31 of 43
ISO/IEC/CEN/CENELEC electronic balloting commenting template/version 2012-03

wrapper terminology is only used
within the clause that defines it
(and subclauses), and in Annex
D.

US
139

 20.14.3

[func.invoke]

 Te As the INVOKE protocol is used widely throughout

the library, support for the invoke wrapper function

belongs at the same level as move, forward, and

swap. Note that as the invoke function has not yet

been published in a standard, this is the last chance

to cheaply make such a refactoring.

Move the invoke function template into the

<utility> header. Move 20.14.3 [func.invoke]

into 20.2 [utility]

Rejected. There was no consensus to
adopt this change. See US 141

US
140

 20.14.14

[unord.hash]

2 Te Specializations of std::hash for arithmetic, pointer,

and standard library types should not be allowed to

throw. The constructors, assignment operators, and

function call operator should all be marked as

noexcept.

It might be reasonable to consider making this a

binding requirement on user specializations of the

hash template as well (in p1) but that may be big a

change to make at this stage.

 Accept with Modification

See P0599R1

US
141

 20.15 [meta] Ge The free-standing <type_traits> header, through the

is_callable trait relying on the definition of INVOKE,

has a dependency on reference_wrapper in the non-

freestanding <functional> header.

Remove the dependency on reference_wrapper

in INVOKE, either by generalizing the support it

is trying to offer for all such wrapper types, or

deferring INVOKE support for reference_wrapper

until a better solution for the dependencies can

be worked out.

Rejected. There was no consensus to
adopt this change.

US
142

 20.15.2

[meta.type.synop]

 Te An alias template using the new template template

auto deduction would make integral_constant

Add to the synopsis of <type_traits>:

template <auto N>

Rejected. The was no consensus to
adopt thischange.

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/p0599r1.pdf

WG21 Working Paper: ISO/IEC CD 14882 USNB Comments, Responses Date: Mar30, 2017 Document: SC22 N5131 Project: 14882

MB/

NC1

Line

number

(e.g. 17)

Clause/

Subclause

(e.g. 3.1)

Paragraph/

Figure/ Table/

(e.g. Table 1)

Type of

comment2

Comments Proposed change Observations of

the secretariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. US for United States; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial

page 32 of 43
ISO/IEC/CEN/CENELEC electronic balloting commenting template/version 2012-03

slightly easier to use. using integer_constant =

integral_constant<decltype(N), N>;

US
143

 20.15.4.3

[meta.unary.prop]

Table 38 Te An is_aggregate type_trait is needed. The emplace

idiom is now common throughout the library, but

typically relies on direct non-list initalization, which

does not work for aggregates. With a suitable type-

trait, we could extend direct non-list-initlaization to

perform aggregate-initalization on aggregate types.

Add a new row to Table 38:

template <class T>

struct is_aggregate;

T is an aggregate type ([dcl.init.aggr])

remove_all_extents_t<T> shall be a complete

type, an array type, or (possibly cv-qualified)

void.

Accept with Modification

See LWG 2911

See P0625R0

An is_aggregate type trait is needed

US
144

 20.17.5

[time,duration]

 Te Add a deduction guide for class template duration Add to <chrono> synopsis:

template <class Rep, class Period>

duration(const Rep &) -> duration<Rep>;

Accept with Modification

See P0433R2

US
145

 21.3.1

[basic.string]

 Te There is no requirement that traits::char_type is

charT, although there is a requirement that

allocator::value_type is charT. This means that it

might be difficult to honour both methods returning

reference (such as operator[]) and charT& (like

front/back) when traits has a surprising char_type. It

seems that the allocator should NOT rebind in such

cases, making the reference-returning signatures

the problematic ones.

Add a requirement that is_same_v<typename

traits::char_type, charT> is true, and simplify so

that value_type is just an alias for charT.

Accept with Modification

See LWG 2861

See P0625R0

basic_string should require that charT
match traits::char_type

US
146

 23.2.1

[container.requirements.general]

13 Te An allocator-aware contiguous container must

require an allocator whose pointer type is a

contiguous iterator. Otherwise, functions like data for

basic_string and vector do not work correctly, along

Add a second sentence to

23.2.1 [container.requirements.general] p13:

An allocator-aware contiguous container requires

allocator_traits<Allocator>::pointer is a

Accept

http://www.open-std.org/jtc1/sc22/wg21/docs/lwg-active.html#2911
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/p0625r0.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/p0433r2.html
http://www.open-std.org/jtc1/sc22/wg21/docs/lwg-active.html#2861
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/p0625r0.html

WG21 Working Paper: ISO/IEC CD 14882 USNB Comments, Responses Date: Mar30, 2017 Document: SC22 N5131 Project: 14882

MB/

NC1

Line

number

(e.g. 17)

Clause/

Subclause

(e.g. 3.1)

Paragraph/

Figure/ Table/

(e.g. Table 1)

Type of

comment2

Comments Proposed change Observations of

the secretariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. US for United States; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial

page 33 of 43
ISO/IEC/CEN/CENELEC electronic balloting commenting template/version 2012-03

with many other expectations of the contiguous

guarantee.

contiguous iterator.

US
147

 23

[containers]

 Te One of the motivating features behind deduction

guides was constructing containers from a pair of

iterators, yet the standard library does not provide

any such deduction guides. They should be

provided in header synopsis for each container in

clause 23. It is expected that the default arguments

from the called constructors will provide the context

to deduce any remaining class template arguments,

such as the Allocator type, and default

comparators/hashers for (unordered) associative

containers. At this stage, we do not recommend

adding additional guides to deduce a (rebound)

allocator, comparator etc. due to the likely large

number of such guides. It is noted that the

requirements on iterator_traits to be an empty type

will produce a SFINAE condition to allow correct

deduction for vector in the case of the Do-The-Right-

Thing clause, resolving ambiguity between two

integers, and two iterators.

For each container in clause 23, add to the

header synopsis a deduction guide of the form:

template <class Iterator>

container(Iterator, Iterator) ->

container<typename

iterator_traits<Iterator>::value_type>;

Accepted

See P0433R2

US
148

 23.3.2

[array.syn]

 Te std::array does not support class-template deduction

from initializers without a deduction guide.

Add to <array> synopsis:

template <class TYPES>

array(TYPES&&...) ->

array<common_type_t<TYPES...>,

sizeof...(TYPES)>;

Accept with Modification

See LWG 2914

US
149

 23.3.7.3

[array.specaial]

3 Ed The array swap function also exchanges the values

of elements, which is forbidden (unless explicitly

Update the note accordingly. Rejected.

It is not clear what this comment

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/p0433r2.html
http://www.open-std.org/jtc1/sc22/wg21/docs/lwg-active.html#2914

WG21 Working Paper: ISO/IEC CD 14882 USNB Comments, Responses Date: Mar30, 2017 Document: SC22 N5131 Project: 14882

MB/

NC1

Line

number

(e.g. 17)

Clause/

Subclause

(e.g. 3.1)

Paragraph/

Figure/ Table/

(e.g. Table 1)

Type of

comment2

Comments Proposed change Observations of

the secretariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. US for United States; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial

page 34 of 43
ISO/IEC/CEN/CENELEC electronic balloting commenting template/version 2012-03

documented) by 23.2.1

[container.requirements.general] p9

is referencing; there is no note in
23.3.7.3 [array.special]/3, and
23.2.1
[container.requirements.general]/9
already excludes array from its
general requirements.

US
150

 23.6

[container.adaptors]

 Te The three container adapters should each have a

deduction guide allowing the deduction of the value

type T from the supplied container, potentially

constrained to avoid confusion with deduction from a

copy/move constructor.

For each container adapter, add a deduction

guide of the form:

template <class Container>

adapter(const Container&) -> adapter<typename

Container::value_type, Container>;

Accept with Modification

See P0433R2

US
151

 24.5.2

[insert.iterators]

 Te The three insert iterators should each have an

instantiation guide to initialize from a container.

Add to the <iterator> header synopsis:

template <class Container>

back_insert_iterator(Container&) ->

back_insert_iterator<Container>;

template <class Container>

front_insert_iterator(Container&) ->

back_insert_iterator<Container>;

template <class Container>

insert_iterator(Container&, typename

Container::iterator) ->

insert_iterator<Container>;

Rejected. See P0433R2. It says (re
iterators): No changes are required in
Clause 24 as the implicitly generated
deduction guides provide the
necessary deduction.

US
152

 24.6.1.1

[istream.iterator.cons]

 Ed see below for the default constructor should simply

be spelled constexpr. The current declaration looks

like a member function, not a constructor, and the

constexpr keyword implicitly does not apply unless

Replace see below with constexpr in the

declaration of the default constructor for

istream_iterator in the class definition, and

function specification.

Accept. See LWG 2804

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/p0433r2.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/p0433r2.html
http://www.open-std.org/jtc1/sc22/wg21/docs/lwg-active.html#2804

WG21 Working Paper: ISO/IEC CD 14882 USNB Comments, Responses Date: Mar30, 2017 Document: SC22 N5131 Project: 14882

MB/

NC1

Line

number

(e.g. 17)

Clause/

Subclause

(e.g. 3.1)

Paragraph/

Figure/ Table/

(e.g. Table 1)

Type of

comment2

Comments Proposed change Observations of

the secretariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. US for United States; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial

page 35 of 43
ISO/IEC/CEN/CENELEC electronic balloting commenting template/version 2012-03

the instantiation could make it so, under the

guarantees already present in the Effects clause.

US
153

 24.6.1.1

[istream.iterator.cons]

 Te istream_iterator default constructor requires a

DefaultConstructible T

Add a new p1:

Requires: T is DefaultConstructible

Accept with Modification

See LWG 2878

See P0625R0

Missing DefaultConstructible
requirement for istream_iterator
default constructor

US
154

 24.6.1.1 [istream.iterator.cons] 5 Te The conflation of trivial copy constructor and literal

type is awkward. Not all literal types have trivial copy

constructors, and not all types with trivial copy

constructors are literal.

Revise p5 as:

Effects: Constructs a copy of x. If T has a trivial

copy constructor, then this constructor shall be a

trivial copy constructor. If T has a constexpr copy

constructor, then this constructor shall be

constexpr.

Accept with Modification

See P0503R0

US
155

 24.6.1.1

 [istream.iterator.cons]

7 Te The requirement that the destructor is trivial if T is a

literal type should be generalized to any type T with

a trivial destructor - this encompasses all literal

types, as they are required to have a trivial

destructor.

Revise p7 as:

Effects: The iterator is destroyed. If T has a trivial

destructor, then this destructor shall be a trivial

destructor.

Accept with Modification

See P0503R0

US
156

 25

[algorithm],

26.8

[numeric.ops]

 Te Parallel algorithms cannot easily work with

InputIterators, as any attempt to partition the work is

going to invalidate iterators used by other sub-tasks.

While this may work for the sequential execution

policy, the goal of that policy is to transparently

switch between serial and parallel execution of code

without changing semantics, so there should not be

a special case extension for this policy. There is a

corresponding concern for writing through

All algorithms in the <algorithm> and <numeric>

headers that take an execution policy and an

InputIterator type should update that iterator to a

ForwardIterator, and similarly all such overloads

taking an OutputIterator should update that

iterator to a ForwardIterator.

(Conversely, if the design intent is confirmed to

support input and output iterators, add a note to

Accept with Modification See
P0467R2

http://www.open-std.org/jtc1/sc22/wg21/docs/lwg-active.html#2878
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/p0625r0.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/P0503R0.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/P0503R0.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/p0467r2.html

WG21 Working Paper: ISO/IEC CD 14882 USNB Comments, Responses Date: Mar30, 2017 Document: SC22 N5131 Project: 14882

MB/

NC1

Line

number

(e.g. 17)

Clause/

Subclause

(e.g. 3.1)

Paragraph/

Figure/ Table/

(e.g. Table 1)

Type of

comment2

Comments Proposed change Observations of

the secretariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. US for United States; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial

page 36 of 43
ISO/IEC/CEN/CENELEC electronic balloting commenting template/version 2012-03

OutputIterators. Note that the input iterator problem

could be mitigated, to some extent, by serially

copying/moving data out of the input range and into

temporary storage with a more favourable iterator

category, and then the work of the algorithm can be

parallelized. If this is the design intent, a note to

confirm that in the standard would avoid future

issues filed in this area. However, the requirement

of an algorithm that must copy/move values into

intermediate storage may not be the same as those

acting immediately on a dereferenced input iterator,

and further issues would be likely. It is not clear that

anything can be done to improve the serial nature of

writing to a simple output iterator though.

state that clearly and avoid confusion and more

issues by future generations of library

implementers.)

US
157

 25

[algorithm],

26.8

[numeric.ops]

 Ed Many algorithms list parallel overloads in the header

synopsis, but are not repeated under the

specification sub-clause for the corresponding

(serial) algorithm, unless they make substantive

tweaks to the contract. This is confusing when

looking up the specification for a given algorithm; the

parallel overloads should be added directly under

the serial forms without further change.

Ensure all parallel algorithm signatures appear

above their corresponding specification, even

when no change of contract from the serial form

is intended.

Accept - Editorial

US
158

 26.8

[numeric.ops]

 Ed The numerical algorithms in the <numeric> header

have more in common with the algorithms library

(clause 25) than they do with anything else in the

numerics library (clause 26). In particular, there is

front-matter on definitions that apply only to clause

Move 26.8 [numeric.ops] into clause 25,

preceding 25.6 [alg.c.library]. Move 26.2

[numeric.defns] under 25.1

[algorithms.general].

Rejected. There was no
consensus to adopt this change.

Including the description of the
<numerics> header in the
"Algorithms" clause instead of the
"Numerics" clause would harm the

WG21 Working Paper: ISO/IEC CD 14882 USNB Comments, Responses Date: Mar30, 2017 Document: SC22 N5131 Project: 14882

MB/

NC1

Line

number

(e.g. 17)

Clause/

Subclause

(e.g. 3.1)

Paragraph/

Figure/ Table/

(e.g. Table 1)

Type of

comment2

Comments Proposed change Observations of

the secretariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. US for United States; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial

page 37 of 43
ISO/IEC/CEN/CENELEC electronic balloting commenting template/version 2012-03

25, that is later opted-into just the numeric-

algorithms clause 26.8 [numeric.ops], and this

became more pronounced with the addition of the

parallel algorithm overloads. A more ambitious step

would be to move the contents of the <numeric>

header into <algorithm>, retaining it as a deprecated

header whose contents are the single line #include

<algorithm>. That discussion is probably better

deferred to the next revision of the standard though.

Move 20.9 [execpol] into clause 25, somewhere

before the specification of the <algorithm>

header.

organization of the standard.

US
159

 26.8.3

[Reduce]

 Te GENERALIZED_SUM should be available for only

parallel versions of the algorithm. Permuting the

operands should not be permitted for non-parallel

versions, in which case reduce is equivalent to

accumulate.

Returns:

GENERALIZED_NONCOMMUTATIVE_SUM(...).

Repeat exactly the current contract for the

overloads with a parallel policy (including the

serial policy).

Rejected. There was no consensus to
adopt this change.

US
160

 26.8.4

 [transform.reduce]

 Te transform_reduce(begin(vector_strings),

end(vector_strings), upcase, "", concat) should not

reorder the strings. The serial form of this algorithm

(i.e., with no execution policy; no change for the

explicit serial policy) should return

a GENERALIZED_NONCOMMUTATIVE_SUM

rather than the specified GENERALIZED_SUM.

Returns:

GENERALIZED_NONCOMMUTATIVE_SUM(...).

Repeat exactly the current contract for the

overloads with a parallel policy (including the

serial policy).

Rejected. There was no consensus to
adopt this change.

US
161

 26.8.5

[inner.product]

 Te There is a surprising sequential operation applying

BinaryOp1 in inner_product that may, for example,

require additional storage for the parallel algorithms

to enable effective distribution of work, and is likely

to be a performance bottleneck.

GENERALIZED_SUM is probably intended here for

For the overloads taking an execution policy,

copy the current specification, but replace

algorithm in Effects with:

GENERALIZED_SUM(plus<>(), init,

multiplies<>(*i1, *i2), ...)

Accept with Modification

See P0452R1

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/p0452r1.html

WG21 Working Paper: ISO/IEC CD 14882 USNB Comments, Responses Date: Mar30, 2017 Document: SC22 N5131 Project: 14882

MB/

NC1

Line

number

(e.g. 17)

Clause/

Subclause

(e.g. 3.1)

Paragraph/

Figure/ Table/

(e.g. Table 1)

Type of

comment2

Comments Proposed change Observations of

the secretariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. US for United States; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial

page 38 of 43
ISO/IEC/CEN/CENELEC electronic balloting commenting template/version 2012-03

the parallel version of the algorithm, with the

corresponding strengthening on constraints on

BinaryOp1 to allow arbitrary order of evaluation.

GENERALIZED_SUM(binary_op1, init,

binary_op2(*i1, *i2), ...)

US
162

 26.8.11

[adjacent.difference]

 Te The specification for adjacent_difference has baked-

in sequential semantics, in order to support

reading/writing through input/output iterators. There

should a second specification more amenable to

parallelization for the overloads taking an execution

policy.

Provide a specification for the overloads taking

an execution policy this is more clearly suitable

for parallel execution. (i.e., one that does not

refer to an accumulated state.)

Accept with Modification

See P0467R2

US
163

 30.6.3

[futures.future_error]

 Te The constructor for future_error should not be

exposition only - this is the only exception class in

the standard library that users have no clearly

specified way to throw themselves. If we want the

exception class to be limited to the standard library,

at least make the exposition-only constructor

private.

Document the exposition-only constructor. Accept See P0517R0

US
164

 30.6.7

[futures.shared_future]

 Te Add a deduction guide for creating a shared future

from a future rvalue.

Add to the <future> synopsis:

template <class R>

shared_future(future<R>&&) ->

shared_future<R>;

Accept with Modification

See LWG 2920

US
165

 30.6.9

[futures.task]

 Te The constructor that type-erases an allocator has all

of the problems of the similar function constructor

that was removed for this CD. This constructor from

'packaged_task' should similarly be removed as

well. If we prefer to keep this constructor, the current

wording is underspecified, as the Allocator argument

is not required to be type satisfying the Allocator

requirements, nor is allocator_traits used.

Strike

template <class F, class Allocator>

packaged_task(allocator_arg_t, const Allocator&

a, F&& f);

from the class definition in p2, and from 30.6.9.1

[futures.task.members] p2.

Strike the last sentence of 30.6.9.1p4.

In p3, revise "These constructors" to "This

Accept with Modification.

See LWG 2921

See P0625R0

packaged_task and type-erased
allocators

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/p0467r2.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0517r0.html
http://www.open-std.org/jtc1/sc22/wg21/docs/lwg-active.html#2920
http://www.open-std.org/jtc1/sc22/wg21/docs/lwg-active.html#2921
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/p0625r0.html

WG21 Working Paper: ISO/IEC CD 14882 USNB Comments, Responses Date: Mar30, 2017 Document: SC22 N5131 Project: 14882

MB/

NC1

Line

number

(e.g. 17)

Clause/

Subclause

(e.g. 3.1)

Paragraph/

Figure/ Table/

(e.g. Table 1)

Type of

comment2

Comments Proposed change Observations of

the secretariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. US for United States; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial

page 39 of 43
ISO/IEC/CEN/CENELEC electronic balloting commenting template/version 2012-03

constructor"

US
166

 C.1

[diff.iso]

 Ge The C standard has lower limits for many

implementation quantities, such as an #include

recursion depth of 15 rather than 256 in C++.

Suggest adding a compatibility clause for Annex B

that observes that C often has lower implementation

limits than C++, when trying to write portable code

(without calling each out specifically, as that would

be a maintenance burden for future standards).

Add C.11 [diff.implimits] with a paragraph that

portable code intended to translate in both

languages should be aware that C has lower

implementation limits than C++.

Strike 26.8.1 [numeric.ops.overview] p1.

Rejected. There was no consensus to
adopt this change.

US
167

 25.2.4 2 te Calling 'std::terminate' when an element access
function exits via. an uncaught exception effectively
disables the normal means of C++ error handling
and propagation when using the parallel algorithms.
This will be both confusing to users and a common
source of bugs. Furthermore, by defining this
behavior we are essentially preventing further
solutions to this problem.

There are several solutions that would be
acceptable, among them:

1. Make it undefined behavior when an element
access function exits via. an uncaught exception.
This will allow for a future solution to this
problem that is backwards compatible.

2. When an element access function exits via. an
uncaught exception, throw a 'std::exception_list'
which represents a collection of exceptions that
were thrown in parallel.

3. When an element access function exits via. an
uncaught exception, throw an unspecified
'std::exception'.

4. Rename the parallel algorithms to clarify that
exception throwing code will result in a call to
'std::terminate'. For example
'std::exceution::parallel_policy' would be
renamed to
'std::exceution::parallel_policy_noexcept' and
'std::execution::par' would be renamed to

Rejected. There was no consensus to
adopt this change. See P0502R0

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0502r0.html

WG21 Working Paper: ISO/IEC CD 14882 USNB Comments, Responses Date: Mar30, 2017 Document: SC22 N5131 Project: 14882

MB/

NC1

Line

number

(e.g. 17)

Clause/

Subclause

(e.g. 3.1)

Paragraph/

Figure/ Table/

(e.g. Table 1)

Type of

comment2

Comments Proposed change Observations of

the secretariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. US for United States; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial

page 40 of 43
ISO/IEC/CEN/CENELEC electronic balloting commenting template/version 2012-03

'std::execution::par_noexcept'.

US
168

 25.2.5 2 te It is unclear what behavior a parallel algorithm will
have when a user-provided function exits via. an
uncaught exception. This statement seems to
require most parallel algorithms to
nodeterministically choose one of the exceptions
thrown and then re-throw that in the calling thread.

Clarify in section 25.2.5 what happens when a
user-provided function throws an exception.

Rejected. There was no consensus to
adopt this change. See P0502R0

US
169

 25.2.5 2 te This statement seems to require most parallel
algorithms to nodeterministically choose one of the
exceptions thrown and then rethrow that in the
calling thread. In the case that multiple threads
witness an exception from a user-provided function,
all but one of those exceptions gets discarded. It is
much preferrable to have all exception data
preserved.

When a user-provided function exits via. an
uncaught exception, throw a 'std::exception_list'
structure which represents a collection of
exceptions that were thrown in parallel.

Rejected. There was no consensus to
adopt this change. See P0502R0

US
170

2 25.2.4 te The current wording does not leave the door open
for executors (a feature under development by SG1)
to modify the exception-handling behaviour of
parallel algorithms in the future without breaking
backwards compatibility.

Define a construct
std::execution::exception_handling (the “parallel
algorithms exception handling customization
point”) such that
std::execution::exception_handling(ep), where
ep is an ExecutionPolicy, is well formed and
returns an object which fulfils a
ParallelExceptionHandler concept. For the three
execution policies defined in the standard,
std::execution::exception_handling(ep) shall
return a parallel exception handler object which
shall call terminate() when the invocation of an
element access function exits via an uncaught
exception. The intention of this wording is to
cause no change to the behaviour in the

existing wording, but to ensure that the
“terminate() on uncaught exception” behaviour is
not baked into all future executors, just the
implicit “default executor”.

Accept with Modification, See
P0502R0

US
171

 20.15.2 te The *_constant<> templates (including the proposed
addition, bool_constant<>) do not make use of the
new template<auto> feature.

Add a constant<> (subject to bikeshedding)
template which uses template<auto>. Define
integral_constant<> as using
integral_constant<T, V> = constant<T(V)> or

Rejected. There was no consensus to
adopt this change. See US 144

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0502r0.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0502r0.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0502r0.html

WG21 Working Paper: ISO/IEC CD 14882 USNB Comments, Responses Date: Mar30, 2017 Document: SC22 N5131 Project: 14882

MB/

NC1

Line

number

(e.g. 17)

Clause/

Subclause

(e.g. 3.1)

Paragraph/

Figure/ Table/

(e.g. Table 1)

Type of

comment2

Comments Proposed change Observations of

the secretariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. US for United States; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial

page 41 of 43
ISO/IEC/CEN/CENELEC electronic balloting commenting template/version 2012-03

integral_constant<T, V> = constant<V>. Either
remove bool_constant, define it as using
bool_constant = constant<bool(B)> or using
bool_constant = constant.

 US
172

 17.7, 26.9

and possibly others

 ge noexcept is inconsistently applied across headers
which import components of the C standard library
into the C++ library; some functions (std::abort(),
std::_Exit(), etc) are defined as noexcept in some
places, but not in others. Some functions which
seem like they should be noexcept (std::abs(),
std::div(), etc) are not defined as noexcept.

Make the majority of the C library functions (with
exceptions such as std::qsort() and
std::bsearch(), which can call user code)
noexcept. The following comments address
areas of particular concern.

Rejected. There was no consensus to
adopt this change.

US
173

 17.7 ed In the header synopsis for <cstdlib>, std::abort(),
std::atexit() (both overloads), std::at_quick_exit()
(both overloads), std::_Exit() and std::quick_exit()
are not declared noexcept. However, in 18.5 they

are declared noexcept.

Add noexcept to the declarations of std::abort(),
std::atexit(), std::at_quick_exit(), std::_Exit() and
std::quick_exit() in 17.7.

Accept - Editorial

US
174

 17.7

and 18.5

 te std::exit() is not noexcept. Make std::exit() noexcept. Rejected. There was no consensus to
adopt this change.

US
175

 26.9

and 26.9.2

 te std::abs(), std::labs() and std::llabs() are not
noexcept.

Make all overloads of std::abs(), std::labs() and
std::llabs() noexcept.

Rejected. There was no consensus to
adopt this change.

US
176

 17.7 te std::div(), std::ldiv() and std::lldiv() are not noexcept. Make all overloads of std::div(), std::ldiv() and
std::lldiv() noexcept.

Rejected. There was no consensus to
adopt this change.

US
177

 26.9 te None of the functions in namespace std in <cmath>
are noexcept.

Make all of the functions in namespace std in
<cmath>, including the new special math
functions, noexcept.

Rejected. There was no consensus to
adopt this change.

US
178

 20.10.11 te The C library memory allocation functions declared
in <cstdlib> (std::aligned_alloc(), std::calloc(),
std::malloc(), std::realloc() and std::free()) are not
noexcept.

Make std::aligned_alloc(), std::calloc(),
std::malloc(), realloc() and std::free() noexcept.

Rejected. There was no consensus to
adopt this change.

US
179

 20.6.3 ed The heading for this section is “optional for object
types”, yet there are no specializations (partial or
otherwise) of this optional class or other optional
classes defined in the standard.

Change the heading to “Class optional”. Change
the stable tag to optional.class (following the
style of any.class, etc).

Accept with Modification - Editorial.
Renamed section label to
[optional.optional] since optional is not
a class, matching [pairs.pair],
[tuple.tuple], [variant.variant].

WG21 Working Paper: ISO/IEC CD 14882 USNB Comments, Responses Date: Mar30, 2017 Document: SC22 N5131 Project: 14882

MB/

NC1

Line

number

(e.g. 17)

Clause/

Subclause

(e.g. 3.1)

Paragraph/

Figure/ Table/

(e.g. Table 1)

Type of

comment2

Comments Proposed change Observations of

the secretariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. US for United States; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial

page 42 of 43
ISO/IEC/CEN/CENELEC electronic balloting commenting template/version 2012-03

US
180

 20.7.2 ed The heading for this section is “variant of value
types”, yet there are no specializations (partial or
otherwise) of this variant class or other variant
classes defined in the standard.

Change the heading to “Class variant”. Change
the stable tag to variant.class (following the style
of any.class, etc).

Accept with Modification.

Section label not changed (see US
179).

US
181

1 20.7.2 te Support for void alternatives in variant is
inconsistent. Incomplete types are normally
disallowed in variant. 20.7.2.1 states that “When an
instance of variant holds a value of alternate type T,
it means that a value of type T [snip] is allocated
within the storage of the variant object”; this implies
that variant requires its alternatives of object type to
be complete types (the size of which can be
determined). Thus, it is illformed to try to construct a
variant<monostate, Incomplete> v (where
Incomplete is an incomplete type) because we
cannot determine the size needed to store
Incomplete. However, variant allows (possibly cv-
qualified) void as an alternative type. Since void can
never be completed (3.9.1) it seems that variant just
assumes it has a size of 0 and requires no storage.
However, you cannot copy, move or swap a variant
with an alternative of void type.

 Disallow void alternative types as they
are incomplete or

 Rely on the fact that void alternatives
take no part of the embedded storage
and ignore them when a complete type
would otherwise be required.

Accepted with Modification. See
P0510R0

US
182

 26.8.5 ed One of the types given in the signature of
inner_product() is “Inputgterator” [sic].

s/Inputgterator/InputIterator/ Accept - Editorial

US
183

 25.1

and 26.8.1

 ge The current wording of the standard makes it very
tricky to determine whether an algorithm has a
parallel (e.g. ExecutionPolicy) overload. The header
synopses for <algorithm> and <numeric> list the
ExecutionPolicy overloads, but the definitions do not
list the overloads (which can be understood by
reading 25.2.5.2, which essentially states that
unless noted otherwise, the ExecutionPolicy
overloads have the same semantics and are thus
not listed in the definitions). This makes it hard to
determine whether an algorithm has an
ExecutionPolicy overload. For example, 25.3.1,
which defines all_of(), does not list an
ExecutionPolicy overload, but all_of() does have

 Add ExecutionPolicy overloads to all
the relevant definitions, or

 Add a note in the definition of all
algorithms which do not have

ExecutionPolicy overloads stating that
they have no such overload (e.g.
accumulate(), push_heap).

 Add a table listing all the algorithms in
<numeric> and <algorithm> which do

have ExecutionPolicy overloads, or

 Add a table listing all the algorithms in
<numeric> and <algorithm> which do
not have ExecutionPolicy overloads.

Accept with Modification - Editorial

The first proposed response was
accepted; there was no consensus or
editorial opinion that a table was also
needed.

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0510r0.html

WG21 Working Paper: ISO/IEC CD 14882 USNB Comments, Responses Date: Mar30, 2017 Document: SC22 N5131 Project: 14882

MB/

NC1

Line

number

(e.g. 17)

Clause/

Subclause

(e.g. 3.1)

Paragraph/

Figure/ Table/

(e.g. Table 1)

Type of

comment2

Comments Proposed change Observations of

the secretariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. US for United States; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial

page 43 of 43
ISO/IEC/CEN/CENELEC electronic balloting commenting template/version 2012-03

such an overload. On the other hand, 25.5.6.1,
which defines push_heap(), also does not list an
ExecutionPolicy overload, and push_heap() does
not actually have such an overload.

US
184

 26.8.1 te An ExecutionPolicy overload for inner_product() is
specified in the synopsis of <numeric>. Such an
overload seems impractical. inner_product() is
ordered and cannot be parallelized; this was the
motivation for the introduction of transform_reduce().

Delete the ExecutionPolicy overload for
inner_product().

Accept with Modification

See P0452R1

US
185

 27.10.7 te The filesystems library provides two function
signatures for (most, possibly all) of the free
functions in its interface; one signature which takes
a reference to an error_code (reporting errors by
assigning to the reference and returning) and one
which does not (reporting errors by throwing an
exception). In addition to adding a large number of
overloads, this approach makes it very tedious for
programmers to write generic functions which use
the filesystem library. If the author of such a function
wishes to provide both error_code and exception-
throwing interfaces (in the same way the filesystem
library does), two different versions of the generic
function must be written. This may also be a burden
to implementers.

Define a global error_code object called
std::throws, and change all the function
signatures in the filesystem library to have the
form R f(/*…*/, error_code& ec = throws). If an
error occurs in the function, if ec is the same
object as throws (&ec = &throws), then an
exception is thrown. Otherwise, an error code is
created and assigned to the reference ec. This
should not change the interface or error handling

behaviour of the filesystem library. This
approach has been used in the HPX library and
(IIRC) the Boost libraries including
Boost.Filesystem..

Rejected. There was no consensus to
adopt this change.

See P0492R2

 END

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/p0452r1.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/p0492r2.html

1Template for comments and secretariat observations Date: 2017-03-30 Document: SC22 WG21 N4604 Project: CD 14882

MB/

NC1

Line

number

(e.g. 17)

Clause/

Subclause

(e.g. 3.1)

Paragraph/

Figure/

Table/

(e.g. Table 1)

Type of

comment2

Comments Proposed change Observations of the

secretariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)

2 Type of comment: ge = general te = technical ed = editorial

page 1 of 18
ISO/IEC/CEN/CENELEC electronic balloting commenting template/version 2012-03

GB 1 1.1 p2 Te Paper P0063R3 changed our normative
reference to C to refer to C11 not C99, but
missed one important reference: in
[intro.scope](1.1) paragraph 2, where we define
the term "C standard", we still define it as
referring to C99 rather than C11.

It seems correct to also update that reference to
refer to C11, *except* that we will need
corresponding updates to [diff.iso] (Annex C.1) to
describe the C11 language features not available
in C++.

Rejected. There was no
consensus to adopt this
change.

GB 2 1.2 (1.1) Te The latest ECMAScript standard was released in
June 2016, while the current CD references the
1999 Third Edition. ECMAScript is used only to
define the default grammar for regular
expressions.

Update the reference in (1.1) to ECMA-262
ECMAScript 7th Edition/June 2016, or to the last
revision adopted by ISO, ISO 16262:2011.
Update the section reference in "Table 127 -
regex_constants::match_flag_type effects…" for
format_default
Review [re.grammar]

Rejected. There was no
consensus to adopt this
change.

GB 3 1.2 (1.5) Te Latest POSIX standard is ISO/IEC 9945:2009/Cor
1:2013, rather than the 2003 standard referenced
here. The current document uses POSIX to
define some error constants, define filesystem
operations, and define several regular expression
grammars.

Update the POSIX reference to ISO/IEC
9945:2009/Cor 1:2013.

Consider any updates to [cerrno.syn], the errc
enumerators in [system_error.syn] and additional

concerns for [filesystems]

Rejected. There was no
consensus to adopt this
change.

GB 4 1.2 (1.6) Te ISO standards are only supposed to have
normative references to the latest version of other
ISO standards, yet the C++17 CD still refers to
ISO/IEC 10646-1:1993, Information technology —
Universal Multiple-Octet Coded Character Set
(UCS)— Part 1: Architecture and Basic
Multilingual Plane.

Update 1.2 [intro.refs] to the current 10646
standard and make any necessary subsequent
changes to wording.

Rejected. There was no
consensus to adopt this
change.

GB 5 1.3.17 Ge The definition of the term template parameter
should be more than naming a single grammar
term, to help distinguish it from all the other
definitions of 'parameter' that include a plain-
english description

Enhance the definition of 'parameter' with a plain
English description of a template parameter.

Accepted See P0490R0

GB 6 1.3.25 Ge The definition of undefined behavior does not
allow for the requirement that 'constexpr'
functions are required to diagnose undefined
behavior in constant evaluation contexts. This
also affects what we say for SFINAE: you get a

Add the extra requirement for constexpr Accept See P0490R0

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0490r0.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0490r0.html

1Template for comments and secretariat observations Date: 2017-03-30 Document: SC22 WG21 N4604 Project: CD 14882

MB/

NC1

Line

number

(e.g. 17)

Clause/

Subclause

(e.g. 3.1)

Paragraph/

Figure/

Table/

(e.g. Table 1)

Type of

comment2

Comments Proposed change Observations of the

secretariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)

2 Type of comment: ge = general te = technical ed = editorial

page 2 of 18
ISO/IEC/CEN/CENELEC electronic balloting commenting template/version 2012-03

substitution failure if the substituted type *would
be* ill-formed (but you don't actually form it in that
case, so the program is not ill-formed); you get a
non-constant expression if the evaluation *would
have* undefined behaviour (but you don't actually
evaluate it in that case, so the behaviour is not
undefined).

GB 7 1.8 (3.3) Ed The 3rd bullet is confusing, as it is not clear
where a smaller array would come from

Provide an example of where a smaller array
would come from:

struct A {

 unsigned char a[32];

};

struct B {

 unsigned char b[16];

};

A a;

B *b = new (a.a + 8) B;

int *p = new (b->b + 4) int;

Here, two array objects satisfy the first two
bullets for the int object denoted by *p,

namely a.a and b->b. The third bullet says

that b->b provides storage for the int but

a.a does not.

Accepted - Editorial

GB 8 1.8 5 Ed The definition of 'complete object' is confusing: "If
x is a complete object, then x is the
complete object of x. Otherwise" … with the

inference that if otherwise is not triggered, the
former must have been true.

Clarify the two uses of complete object in the
sentence, perhaps "If x is a complete object,
then the complete object of x is itself."

Accepted - Editorial

GB 9 1.8 7 Te base class objects of zero size is a misleading
term, as ‘sizeof’ such an object is non-zero. Size
should not be a property of an object, rather than

A better statement is that ‘empty’ base class
objects can share the address of a non-
empty sub-object, so reword to talk about

Rejected. There was no
consensus to make this
change at this time.

1Template for comments and secretariat observations Date: 2017-03-30 Document: SC22 WG21 N4604 Project: CD 14882

MB/

NC1

Line

number

(e.g. 17)

Clause/

Subclause

(e.g. 3.1)

Paragraph/

Figure/

Table/

(e.g. Table 1)

Type of

comment2

Comments Proposed change Observations of the

secretariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)

2 Type of comment: ge = general te = technical ed = editorial

page 3 of 18
ISO/IEC/CEN/CENELEC electronic balloting commenting template/version 2012-03

a type. base class sub-objects sharing storage,
rather than having zero size.

However, an issue will be
opened for consideration
for the next revision.

GB 10 1.11 Ge ECMAScript is a registered trademark of ECMA,
and should be added to our list of
acknowledgements.

Add a new paragraph: ECMAScript is a
registered trademark of Ecma International.

Accepted - Editorial

GB 11 1.7 Ed While the number of bits in a byte is
implementation-defined, it is also exposed directly
in code as the CHAR_BIT macro in <limits.h>
from the C library,and <climits> in the C++ library.

Add a footnote pertaining to "the number of
which is implementation-defined" saying "The
number of bits in a byte is reported by the
macro CHAR_BIT in the header <climits>."

Accepted - Editorial

GB 12 Ge The BSI would like to ensure that outstanding
issues on the issues lists are all considered
before the final IS is produced.

 Accepted

GB 13 5.2.3 p2 Te The wording for template parameter
deduction for constructors allows:

 template-name foo(a,b,c);

 template-name foo{a,b,c};

 template-name(a,b,c)

… but not …

 template-name{a,b,c}

(as the wording in 5.2.3p2 only covers the
case of a template-name followed by a
parenthesized expression-list)

Add wording to 5.2.3p2 to allow the
problematic case:

A template-name corresponding to a class
template followed by a parenthesized
expression-list<ins> or by a braced-init-
list</ins>...

Accept with Modification

See P0490R0

GB 14 5.3.2 Te C++17 removed pre-incrementing on objects
of type bool. However, the last sentence in
5.3.2 was not changed to reflect this: "If x is
not of type bool, the expression ++x is
equivalent to x+=1".

Change the last sentence in 5.3.2 to "The
expression ++x is equivalent to x+=1."

Accepted

GB 15 5.1.5 18 Te CWG 2011 fixes a regression from C++14,
introduced by the resolution of CWG 2012.

Accept the proposed wording for CWG 2011
or similar wording that permits references

Accepted See P0613R0

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0490r0.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/p0613r0.html

1Template for comments and secretariat observations Date: 2017-03-30 Document: SC22 WG21 N4604 Project: CD 14882

MB/

NC1

Line

number

(e.g. 17)

Clause/

Subclause

(e.g. 3.1)

Paragraph/

Figure/

Table/

(e.g. Table 1)

Type of

comment2

Comments Proposed change Observations of the

secretariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)

2 Type of comment: ge = general te = technical ed = editorial

page 4 of 18
ISO/IEC/CEN/CENELEC electronic balloting commenting template/version 2012-03

This regression causes many existing
C++14 programs to have undefined behavior
in C++17. Example:

auto f(int &r) { return [&]{++r;}

} void g(int n) { f(n)(); }

captured by reference to be used outside
their lifetime.

GB 16 7 8 Te Decomposition declarations are allowed at
namespace scope, so it should be possible
to specify their linkage.

Allow static, extern, thread_local, and inline
specifiers, or disallow decomposition
declarations at namespace scope.

Rejected. There was no
consensus to adopt this
change.

GB 17 7 8 Te Decomposition declarations only allow cv
qualifiers and auto in the decl-specifier-seq.
There seems to be no reason to disallow
constexpr, and it would be useful to allow it.

Permit constexpr specifier. Rejected. There was no
consensus to adopt this
change.

GB 18 8.5 1 Te The rules for auto deduction and template
argument deduction do not match the rules
for decomposition declarations when the
initializer is an array.

int some_array[3];

auto [a, b, c] = some_array; //

deduces int[3]

auto x = some_array; // deduces

int*

This prevents reliable refactoring of auto

[a, b, c] = e; into auto x = e;
auto &[a, b, c] = x; and makes the

rules for auto deduction unnecessarily

complex.

Remove the special case for copying arrays
by value in decomposition declarations.

Rejected. There was no
consensus to adopt this
change.

1Template for comments and secretariat observations Date: 2017-03-30 Document: SC22 WG21 N4604 Project: CD 14882

MB/

NC1

Line

number

(e.g. 17)

Clause/

Subclause

(e.g. 3.1)

Paragraph/

Figure/

Table/

(e.g. Table 1)

Type of

comment2

Comments Proposed change Observations of the

secretariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)

2 Type of comment: ge = general te = technical ed = editorial

page 5 of 18
ISO/IEC/CEN/CENELEC electronic balloting commenting template/version 2012-03

GB 19 8.6.3 5 Te This code used to be valid and is now ill-
formed:

const int &r = 1;

constexpr int n = r;

because p0135's changes to [dcl.init.ref]
don't provide proper cv-qualification for the
created temporary object.

When a temporary object is materialized so a

reference to cv T can bind to it, the created

temporary object should be qualified by cv.

Accepted

See P0490R0

GB 20 8.5 3 Te If the user specializes tuple_size for their
type, but messes up the definition of value
somehow:

 template<> struct

std::tuple_size<MyPair> {

 const int value = 2;

 };

we will silently fall back to memberwise
decomposition. This is user-hostile.

Commit to the tuple-like interpretation if

tuple_size<E> is a complete type.

Change 8.5/3 to:

"Otherwise, if the qualified-id
::std::tuple_size<E> names a complete type,
the expression ::std::tuple_size<E>::value
shall be a well-formed integral constant
expression and the number of elements in
the identifier-list shall be equal to its value.
[…]"

Accepted

See P0490R0

GB 21 13.3.1.8 1.1 Te The addition of implicit deduction guides
causes class template argument deduction
to silently do the wrong thing in many cases,
including some in the standard library. Fixing
a bad deduction in a later version of a library
is a breaking change if anyone is using the
bad deduction. For example, with the current

standard wording, std::tuple(a, b, c)

and std::make_tuple(a, b, c) will do

Delete bullet 1 of 13.3.1.8/1, removing
implicit deduction guides from constructors of
the primary template.

Rejected. There was no
consensus to adopt this
change.

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0490r0.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0490r0.html

1Template for comments and secretariat observations Date: 2017-03-30 Document: SC22 WG21 N4604 Project: CD 14882

MB/

NC1

Line

number

(e.g. 17)

Clause/

Subclause

(e.g. 3.1)

Paragraph/

Figure/

Table/

(e.g. Table 1)

Type of

comment2

Comments Proposed change Observations of the

secretariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)

2 Type of comment: ge = general te = technical ed = editorial

page 6 of 18
ISO/IEC/CEN/CENELEC electronic balloting commenting template/version 2012-03

different things in some cases.

Once we ship this, we would not be able to

change std::tuple(a, b, c) to match

make_tuple without risk of breaking

existing code.

GB 22 15 3 This sentence twice refers to "exceptions
raised while destroying" objects, but the term
is not defined - exceptions are thrown, not
raised. This also affects Table 29 - Allocator
Requirements on the 'a.allocate. row, and a
Note in 30.3.1.3p1 [thread.thread.destr].

Change all uses of 'raise' and 'raised', where
they apply to exceptions, to 'throw' and
'thrown'.

Accepted - Editorial

GB 23 15.3 2 Te As functions and arrays decay to pointers
when thrown, it is not possible to catch such
a type by reference. This is partially
acknowledged by the implicit function/array-
to-pointer decay that occurs in a handler.
Ideally it should be ill-formed to write such a
handler, to avoid unusual mistakes;
otherwise, it would merit a note that such
nonsensical handlers are allowed for code
like:

template <typename T>

void test() {

try {

T t = {};

throw t;

}

catch(T const &) {

Add a note with the example from this
comment.

Accepted

See P0490R0

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0490r0.html

1Template for comments and secretariat observations Date: 2017-03-30 Document: SC22 WG21 N4604 Project: CD 14882

MB/

NC1

Line

number

(e.g. 17)

Clause/

Subclause

(e.g. 3.1)

Paragraph/

Figure/

Table/

(e.g. Table 1)

Type of

comment2

Comments Proposed change Observations of the

secretariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)

2 Type of comment: ge = general te = technical ed = editorial

page 7 of 18
ISO/IEC/CEN/CENELEC electronic balloting commenting template/version 2012-03

}

}

test<int[8]>(); will not catch the

'int *' exception

GB 24 15.3 4 Ed The given example for a handler that cannot
be entered is invalid, as a handler for a
derived class can still be activated after the
handler for an ambiguous base.

Add 'final' and 'unambiguous public' to the
example:

"for example by placing a handler for a
<ins>final</ins> derived class after a handler
for a corresponding <ins>unambiguous
public</ins> base class."

Accepted - Editorial

GB 25 15.1 7 Te If an exception is rethrown, it might also
want to call terminate for a function exiting
by an exception. Destructors are already
covered by separate wording, but I believe a
copy-constructor in a handler that catches
by value relies on this clause to trigger the
'terminate' call.

However, this highlights a problem with the
current wording when such a copy
constructor throws and catches an exception
by calling a function that throws from within
the constructor's compound statement.

Add wording to cover the additional case. Accepted

See P0490R0

GB 26 15.1 4 Te Which active handler is the 'last' when two
threads are handling the same exception
object? Is there some implicit sequencing
relation between handlers in different
threads? A potential data race, if both
threads think they are 'last' and destroy the
same object? A potential leak as neither
thinks it is 'last'? There is also a question of

 Accepted

See P0490R0

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0490r0.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0490r0.html

1Template for comments and secretariat observations Date: 2017-03-30 Document: SC22 WG21 N4604 Project: CD 14882

MB/

NC1

Line

number

(e.g. 17)

Clause/

Subclause

(e.g. 3.1)

Paragraph/

Figure/

Table/

(e.g. Table 1)

Type of

comment2

Comments Proposed change Observations of the

secretariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)

2 Type of comment: ge = general te = technical ed = editorial

page 8 of 18
ISO/IEC/CEN/CENELEC electronic balloting commenting template/version 2012-03

whether exception_ptr destructors for

the same exception object synchronize with
each other (even in the case where the
count does not drop to 0).

GB 27 15.5.3 Te exception_ptr and rethrow_exception allow
the same exception object to be active
multiple times in the same thread. It is not
clear if 'uncaught_exceptions' should count
such cases as a single exception object, or
should count each activation of the same
object in the current thread.

 Accepted

See P0490R0

GB 28 17 Te The C++ standard library provides many
`constexpr` global variables. These all
create the risk of ODR violations for innocent
user code. This is especially bad for the new
`ExecutionPolicy` algorithms, since their
constants are always passed by reference,
so any use of those algorithms from an inline
function results in an ODR violation.

This can be avoided by marking the globals
as `inline`.

Add inline specifier to:

— bind placeholders _1, _2, …

— nullopt, piecewise_construct,

allocator_arg, ignore

— seq, par, par_unseq in <execution>

Accepted with
Modifications

See P0607R0

GB 29 17.3.2
17.3.26

 Ed The definition of blocking is part of the
execution model defined in 1.9, so this
definition should move to clause 1, which
covers the whole standard and not just the
library.

Move subclauses [defns.block] and
[defns.unblock] under section 1.3 [intro.defs].

Accepted - Editorial

GB 30 17.3.17 Te The definition of 'object state' applies only to
class types, implying that fundamental types
and arrays do not have this property.

Replacing "an object state" with "a value of
an object" in 17.3.27 and dropping the
definition of "object state" in 17.3.17

Accepted with
Modifications.

The definition of 'object
state' applies only to class
types

GB 31 17.3.25 Ed The term character traits appears to be
defined in a non-normative note.

Provide a distinct clause to define the term
character traits, change the term to non-italic
so it does not appear to be a definition, or

Accept with Modification.
Entire note removed.

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0490r0.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/p0607r0.html

1Template for comments and secretariat observations Date: 2017-03-30 Document: SC22 WG21 N4604 Project: CD 14882

MB/

NC1

Line

number

(e.g. 17)

Clause/

Subclause

(e.g. 3.1)

Paragraph/

Figure/

Table/

(e.g. Table 1)

Type of

comment2

Comments Proposed change Observations of the

secretariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)

2 Type of comment: ge = general te = technical ed = editorial

page 9 of 18
ISO/IEC/CEN/CENELEC electronic balloting commenting template/version 2012-03

add a cross-reference if it is calling out a
specific existing definition of the term.

GB 32 17.4 Ed This subclause does not deserve a separate
title, number, and stable-name. It would
serve better as a [Note:] at the top of the
preceding clause, which provide the
definition of terms for the library.

Move 17.4 [defns.additional] p1 as a [Note:],
forming the new p1 of 17.3 [definitions], and
remove the corresponding title and stable
name.

Accept - Editorial

GB 33 17.5.2.3 3 Ed Is 'external behavior' a well-defined term, or
is 'observable behavior' the intent?

Replace 'external behavior' with 'observable
behavior'.

Accepted - Editorial

GB 34 17.6.1.1 1 Ed Macros are not entities, see 3p3 [basic] for
the definition. A better way to say this should
be found, or perhaps a footnote against the
macro term, to grandfather the casual library
usage here.

There's another (different) list of what's in the
library in 1.5p2 ("templates, classes,
functions, constants, and macros"). Neither
list seems complete.

Perhaps we could use "entities and macros"
in both 1.5p2 and 17.6.1, strike 17.6.1.1p1,
and then strike "macros" from 17.6.1.1p2?

Accepted - Editorial

GB 35 17.6.5 Te Most implementations have poor testing and
support for instantiating standard library
templates with volatile-qualified types. We
should grant a library-freedom to conforming
implementations so that support for volatile
(and const volatile) qualified types in
standard library templates is not required
unless explicitly specified - and mandate
such support for all templates in the
<type_traits> header. Additional support is
already specified in most places we would
be interested (e.g., tuple API). We may want
to additionally guarantee support through
forwarding references.

add a new 17.6.5.x Volatile Qualified Types
[res.on.volatile.type] describing the intended
level of support for volatile qualifiers.

Rejected. There was no
consensus to adopt this
change.

GB 36 17.6.5.11 (3.2) Te For bullet (3.2), no base classes are
described as non-virtual. Rather, base
classes are not specified as virtual, a subtly
different negative.

Rewrite bullet 3.2:

Every base class not specified as virtual shall
not be virtual;

Accepted with
Modifications.

Incorrect derived classes
constraints

1Template for comments and secretariat observations Date: 2017-03-30 Document: SC22 WG21 N4604 Project: CD 14882

MB/

NC1

Line

number

(e.g. 17)

Clause/

Subclause

(e.g. 3.1)

Paragraph/

Figure/

Table/

(e.g. Table 1)

Type of

comment2

Comments Proposed change Observations of the

secretariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)

2 Type of comment: ge = general te = technical ed = editorial

page 10 of 18
ISO/IEC/CEN/CENELEC electronic balloting commenting template/version 2012-03

See P0625R0 Issue 2866

GB 37 17.7 Ed The whole structure of the library clauses,
explicitly documented in 17.1
[library.general], precluded specifying library
headers in clause 17. This C header should
be documented either in clause 18, clause
20, or split between the two, with the parts
mandatory for a free-standing
implementation at least appearing in clause
18.

Move this to clause 18 Accepted - Editorial

GB 38 17.6.5.6 Te Relax the prohibition on libraries adding
constexpr; this was a constraint requested
by library implementers when constexpr was
new, and those same implementers now feel
unduly constrained.

Rewrite the whole sub-clause to support
libraries adding constexpr in a compatible
manner, much like the freedom to add a
noexcept specification.

Rejected. There was no
consensus to adopt this
change.

GB 39 17.6.5.4 4 Ge The example is supposed to highlight the
'otherwise specified' aspect of invoking ADL,
yet there is no such specification. It is
unlikely that we intend to explicitly qualify
calls to operator functions, so they probably
should be exempted from this restriction.

Fix example (and referenced clause) to
specify use of ADL, or exempt operators from
this clause, and find a better example,
probably using swap.

Accepted

See LWG 2795

GB 40 17.6.5.12 Footnote
189

Ge The freedom referenced in footnote 189 was
curtailed in C++11 to allow only non-
throwing specifications. The footnote is both
wrong, and unnecessary.

Strike footnote 189 Accepted

See P0003R5

GB 41 17.6.5.12 2,4 Te The "any other function" sentence in p4
contradicts the restriction placed in p2.

Strike the third sentence of p4, starting with
"Any other function…". Consolidate its
implementation-defined requirements into p2,
along with footnote 188.

Accepted

See P0509R1

GB 42 17.6.5.12 Footnote
188

Ge The word 'should' makes footnote 188 sound
like normative encouragement, if not an
actual mandate.

Either use a non-loaded word, such as
"typically", or move footnote 188 directly into
the main text.

Accepted

See P0509R1

GB 43 17.6.5.12 1,4 Ed The freedom to add exception specifications
is repeated in p1 and p4, in slightly different
terms, highlighting the dangers of

Consolidate the two sentences into a new p5,
as per p0003r5.

Accepted

See P0003R5

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/p0625r0.html#2866
http://www.open-std.org/jtc1/sc22/wg21/docs/lwg-active.html#2795
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0003r5.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0509r1.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0509r1.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0003r5.html

1Template for comments and secretariat observations Date: 2017-03-30 Document: SC22 WG21 N4604 Project: CD 14882

MB/

NC1

Line

number

(e.g. 17)

Clause/

Subclause

(e.g. 3.1)

Paragraph/

Figure/

Table/

(e.g. Table 1)

Type of

comment2

Comments Proposed change Observations of the

secretariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)

2 Type of comment: ge = general te = technical ed = editorial

page 11 of 18
ISO/IEC/CEN/CENELEC electronic balloting commenting template/version 2012-03

redundancy in a specification.

GB 44 20 Te P0067R3 was moved at Oulu but not applied
to the working paper due to a major
technical error discovered by the project
editor (the signatures in the synopsis for

from_chars did not match the detailed

wording).

Apply the revised wording in P0067R4 Accepted

See P0067R5

GB 45 20 Te If P0067R4 is applied consider how to parse
hexadecimally:

to_chars(beg, end, 42, 16); 16 for

hex
to_chars(beg, end, 4.2, true);

true means hex
to_chars(beg, end, 4.2,

chars_format::hex);

to_chars(beg, end, 4.2,

chars_format::hex, 2);

That is: We have 3 different formats to
specify hex depending on value types and
whether to use precision.
Which application programmer should
remember this?

May be even worse (I am not sure):

 to_chars(beg, end, 4.2, 16);

would silently convert 4.2 to 4 and

 to_chars(beg, end, 4,

chars_format::hex);

would silently convert 4 to 4.000000.

The various options should be harmonized,
possibly by use of an extended enum
approach, having the values:

 dec, hex, scientific, fixed, general

with dec (new!) as default for integral values
and general for floats

Rejected. There was no
consensus to adopt this
change.

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0067r5.html

1Template for comments and secretariat observations Date: 2017-03-30 Document: SC22 WG21 N4604 Project: CD 14882

MB/

NC1

Line

number

(e.g. 17)

Clause/

Subclause

(e.g. 3.1)

Paragraph/

Figure/

Table/

(e.g. Table 1)

Type of

comment2

Comments Proposed change Observations of the

secretariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)

2 Type of comment: ge = general te = technical ed = editorial

page 12 of 18
ISO/IEC/CEN/CENELEC electronic balloting commenting template/version 2012-03

GB 46 20.2 Te in_place_tag is an implementation detail that
should not be exposed to the user.

The declaration should be marked as
exposition-only to allow implementors to use
a name in the implementation namespace
(such as __in_place_tag) for the type.

Rejected. There was no
consensus to adopt this
change. It is obsoleted by
adoption of P0504R0

GB 47 20.11.2 Ed The approval of P0220R1 should have
added shared_ptr<T[]> and
shared_ptr<T[N]> support to C++17, but due
to editorial conflicts the change didn't get
applied to the WP.

Apply the changes from P0414R1. Accepted

See P0414R2

GB 48 20.19.7
[parallel.exe
cpol.objects]

 Ed [parallel.execpol.objects] is a subclause of
[execpol] and is adjacent to [execpol.par],
[execpol.vec] etc.

There is no reason for it to have the prefix
"parallel".

Change name [parallel.execpol.objects] to
[execpol.objects].

Accepted - Editorial

GB 49 20.6.5
[optional.ba
d_optional.a
ccess]

 Te https://issues.isocpp.org/show_bug.cgi?id=7
2 suggests changing the base class of
std::bad_optional_access, but the issue
appears to have been forgotten.

Address LEWG issue 72, either changing it
for C++17 or closing the issue.

 Accepted with
Modifications.

See P0625R0

Issue 2806

Base class of
bad_optional_access

GB 50 20.17.5
[time.duratio
n], 20.17.6
[time.point]

 Te The reference implementation in P0092R1 is

non-conforming, because it uses ++t in the

body of round(const duration<R,P>&)

and that member function is not constexpr. A

conforming implementation must do t = t

+ ToDuration?(1) or t =

ToDuration?(t.count() + 1). The

straightforward increment should work in
constant expressions.

Make all the member functions of duration
and time_point constexpr.

Accepted

See P0505R0

GB 51 20.14.3
[func.invoke]

 Te The function template std::apply() in
[tuple.apply] is required to be constexpr, but
std::invoke() in [func.invoke] isn't. The most
sensible implementation of apply_impl() is

Add 'constexpr' to std::invoke. Accepted with
Modifications

See P0625R0

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0504r0.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0414r2.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/p0625r0.html#2806
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0505r0.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/p0625r0.html#2894

1Template for comments and secretariat observations Date: 2017-03-30 Document: SC22 WG21 N4604 Project: CD 14882

MB/

NC1

Line

number

(e.g. 17)

Clause/

Subclause

(e.g. 3.1)

Paragraph/

Figure/

Table/

(e.g. Table 1)

Type of

comment2

Comments Proposed change Observations of the

secretariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)

2 Type of comment: ge = general te = technical ed = editorial

page 13 of 18
ISO/IEC/CEN/CENELEC electronic balloting commenting template/version 2012-03

exactly equivalent to std::invoke(), so this
requires implementations to have a
constexpr version of invoke() for internal
use, and the public API std::invoke, which
must not be constexpr even though it is
probably implemented in terms of the
internal version.

Issue 2894

The function template
std::apply() is required to
be constexpr but
std::invoke() isn't.

GB 52 20 Ed There are several new stable names that are
unnecessarily long, (and use underscores
which look quite ugly due to the formatting of
stable names). For example
[optional.bad_optional.access], which could
be called [bad.optional.access] or
[optional.bad.access] instead.

As an example of a sensible name, see
[time.point] which is not called
[time.time_point] even though that would be
the "obvious" choice.

Other culprits are
[memory.polymorphic.allocator.class],
[memory.resource.monotonic.buffer.ctor],
and
[func.searchers.boyer_moore_horspool.crea
tion]

Most of these seem to be in Clause 20, but
there are other examples in other Clauses.

Review stable names for new clauses added
since C++14. Consider abbreviating them
instead of using complete unabridged class
names.

Accepted - Editorial

GB 53 20.14.3
[func.invoke]

 Te std::invoke can be made trivially noexcept
using the new std::is_nothrow_callable trait:

Add the exception specifier
noexcept(is_nothrow_callable_v<F(Args&&…
)>) to std:invoke

Accepted with
Modifications.

See P0625R0

Issue 2807

std::invoke should use

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/p0625r0.html#2807

1Template for comments and secretariat observations Date: 2017-03-30 Document: SC22 WG21 N4604 Project: CD 14882

MB/

NC1

Line

number

(e.g. 17)

Clause/

Subclause

(e.g. 3.1)

Paragraph/

Figure/

Table/

(e.g. Table 1)

Type of

comment2

Comments Proposed change Observations of the

secretariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)

2 Type of comment: ge = general te = technical ed = editorial

page 14 of 18
ISO/IEC/CEN/CENELEC electronic balloting commenting template/version 2012-03

std::is_nothrow_callable

GB 54 20.8.2
[any.bad_an
y_cast]

 Te There is no specification for
bad_any_cast.what.

Add a paragraphs:

const char* what() const noexcept override;

 Returns: An implementation-defined
NTBS.

 Remarks: The message may be a null-
terminated multibyte string (17.5.2.1.4.2),
suitable for conversion and display as a
wstring (21.3, 22.4.1.4).

Accepted with
Modifications.

See P0625R0

Issue 2868

Missing specification of
bad_any_cast::what()

GB 55 20.13.6 Te It is becoming more and more apparent that
using a function type as the template
argument to result_of causes annoying
problems. That was done because C++03
didn't have variadic templates, so it allowed
an arbitrary number of types to be smuggled
into the template via a single parameter, but
it's a hack and unnecessary in C++ today.
result_of<F(Args…)> has absolutely nothing
to do with a function type that returns F, and
the syntactic trickery using a function type
has unfortunate consequences such as top-
level cv qualifiers and arrays decaying
(because those are the rules for function
types).

It might be too late to change result_of, but
we should not repeat the same mistake for
std::is_callable.

Possibly get rid of the
is_callable<Fn(ArgTypes?…), R>

specialization. Change the primary template
is_callable<class, class R =

void> to is_callable<class Fn,

class.. ArgTypes?> and define a

separate template such as
is_callable_r<class R, class Fn,

class… ArgTypes?> for the version that

checks the return type. The resulting
inconsistency might need to be
resolved/improved upon.

Accepted with
Modifications.

See P0604R0

GB 56 20.5.2.6 4 Te #include <utility>

struct X { int a, b; };

One option is to resolve LWG issue 2770:

make std::tuple_size<const T>
Accepted

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/p0625r0.html#2868
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/p0604r0.html

1Template for comments and secretariat observations Date: 2017-03-30 Document: SC22 WG21 N4604 Project: CD 14882

MB/

NC1

Line

number

(e.g. 17)

Clause/

Subclause

(e.g. 3.1)

Paragraph/

Figure/

Table/

(e.g. Table 1)

Type of

comment2

Comments Proposed change Observations of the

secretariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)

2 Type of comment: ge = general te = technical ed = editorial

page 15 of 18
ISO/IEC/CEN/CENELEC electronic balloting commenting template/version 2012-03

const auto [x, y] = X();

results in a hard error, because it attempts to

instantiate std::tuple_size<const X>,
which is not SFINAE-friendly. If the

#include or const is removed, the code

works.

SFINAE-friendly. Do not define a member

named value if

std::tuple_size<T>::value is not well-

formed.

Alternatively a core language change could
be made.

GB 57 22.5
[locale.stdcv
t]

 Ge The contents of <codecvt> are
underspecified, and will take a reasonable
amount of work to identify and correct all of
the issues. There appears to be a general
feeling that this is not the best way to
address unicode transcoding in the first
place, and this library component should be
retired to Annex D, along side <strstream>,
until a suitable replacement is standardized

Deprecate and move the whole of clause
22.5 [locale.stdcvt] to Annex D.

Accepted with
Modifications

See P0618R0

GB 58 23.2.4
[associative.
reqmts]

Table 86 -
Associative
Container
Requiremen
ts

Te P0083R3 adds new member functions which
return 'insert_return_type', which has at least
three members. It would be convenient to be
able to use the type with a decomposition
declaration: auto[ins, pos, node] =
m.insert(std::move(n));
Because the precise number of members
and their order is unspecified, and it isn't a
pair or tuple, that isn't guaranteed to work.
A custom return type was used because
pairs and tuples do not have descriptive
names for their members, but structured
bindings make it convenient to give custom
names to the members (although their order
must still be known).

Consider adding overloads of tuple_size/get
etc. that do the right thing for
UniqueAssocContainer::insert_return_type
structs, or returning a tuple, or returning a
struct with named fields, instead.

Accept with Modification

See P0508R0

GB 59 24.6.3
[istreambuf.i
terator]

 Te There is no specification for
istreambuf_iterator::operator→. This
operator appears to have been added for
C++11 by LWG issue 659, which gave the

Add specification Accepted with
Modifications.

We did not add
specification for operator

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/p0618r0.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0508r0.html

1Template for comments and secretariat observations Date: 2017-03-30 Document: SC22 WG21 N4604 Project: CD 14882

MB/

NC1

Line

number

(e.g. 17)

Clause/

Subclause

(e.g. 3.1)

Paragraph/

Figure/

Table/

(e.g. Table 1)

Type of

comment2

Comments Proposed change Observations of the

secretariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)

2 Type of comment: ge = general te = technical ed = editorial

page 16 of 18
ISO/IEC/CEN/CENELEC electronic balloting commenting template/version 2012-03

signature, but also lacked specification. ->, we just removed it. See
P0610R0, LWG 2790.

GB 60 27.5.4.2
[fpos
requirement
s]

Table 108 Ge The requirements on the 'stateT' type used
to instantiate class template 'fpos' are not
clear, and the following Table 108 - Position
type requirements is a bit of a mess. This is
old wording, and should be cleaned up with
better terminology from the Clause 17
Requirements. For example, 'stateT' might
be require CopyConstructible?,
CopyAssignable?, and Destructible. Several
entries in the final column of the table
appear to be post-conditions, but without the
'post' markup to clarify they are not
assertions or preconditions. They frequently
refer to identifiers that do not apply to all
entries in their corresponding 'Expression'
column, leaving some expressions without a
clearly defined semantic.

If 'stateT' is a trivial type, is 'fpos' also a
trivial type, or is a default constructor not
required/supported?

Clarify the requirements and the table Rejected. There was no
consensus to adopt this
change.

GB 61 30.4.2.1
[thread.lock.
guard]

 Te P0156R0 changed std::lock_guard<T> to
std::lock_guard<T…>

This is an ABI break, because the mangled
name of the type changes.

lock_guard is not movable, so is unlikely to
appear in function signatures, but the
change would break binary compatibility for
any API which took a lock_guard by
reference (e.g. where a function must only

Revert the changes from P0156R0. A
separate type could be added for the variadic
case.

Accepted with
Modifications

See P0156R2

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/p0610r0.html#2790
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/p0156r2.html

1Template for comments and secretariat observations Date: 2017-03-30 Document: SC22 WG21 N4604 Project: CD 14882

MB/

NC1

Line

number

(e.g. 17)

Clause/

Subclause

(e.g. 3.1)

Paragraph/

Figure/

Table/

(e.g. Table 1)

Type of

comment2

Comments Proposed change Observations of the

secretariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)

2 Type of comment: ge = general te = technical ed = editorial

page 17 of 18
ISO/IEC/CEN/CENELEC electronic balloting commenting template/version 2012-03

be called while a lock is held, and the lock is
passed in as "evidence" of the lock).

Whether the benefit of the change is worth
an ABI change should be considered.

GB 62 30.6.7
[futures.shar
ed_future]

3 Te There is an implicit precondition on most
shared_future operations that 'valid() ==
true', 30.6.7p3. The list of exempted
functions seems copied directly from class
'future', and would also include copy
operations for shared_futures, which are
copyable. Similarly, this would be a wide
contract that cannot throw, so those
members would be marked noexcept.

Revise p3:

"The effect of calling any member function
other than the move constructor, the copy
constructor, the destructor, the move-
assignment operator, the copy-assignment
operator, or valid() on a shared_future object
for which valid() == false is undefined." …

Add noexcept specification to the copy
constructor and copy-assignment operator, in
the class definition and where those
members are specified.

Accepted

See P0516R0

GB 63 Annex B Ge What is recommended limit for number of
captures in a lambda expression? Suggest
using the same number as number of
arguments to a function call, but could
alternatively be the number of members
allowed in a class.

Add to Annex B:

Lambda-captures in one lambda expression
[256].

Accept with Modification

See P0490R0

GB 64 Annex B Ge what is recommended limit for number of
comma-separated expressions in an
initializer list?

Add to Annex B:

Initializer-clauses in a braced-init-list [1024].

Accept with Modification

See P0490R0

The suggested limit was
thought to be too low
and was increased to
16384.

GB 65 Annex B Ge How many variables can be defined in a
decomposition declaration? Should this be
similar to the identifier-list limit for macros, at

Add to Annex B:

Variables defined by a single decomposition

Accept with Modification

See P0490R0

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0516r0.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0490r0.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0490r0.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0490r0.html

1Template for comments and secretariat observations Date: 2017-03-30 Document: SC22 WG21 N4604 Project: CD 14882

MB/

NC1

Line

number

(e.g. 17)

Clause/

Subclause

(e.g. 3.1)

Paragraph/

Figure/

Table/

(e.g. Table 1)

Type of

comment2

Comments Proposed change Observations of the

secretariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)

2 Type of comment: ge = general te = technical ed = editorial

page 18 of 18
ISO/IEC/CEN/CENELEC electronic balloting commenting template/version 2012-03

255, or closer to the number of local
variables that can be declared in a function,
1024?

declaration [256].

GB 66 Annex C
[diff.cpp11.b
asic]

 Ed [diff.cpp11.basic] in Annex C makes no
mention of needing to replace sized delete if
you replace non-sized delete, otherwise you
get undefined behaviour.

Document the change from C++11. Rejected. There was no
consensus to adopt this
change. The problem
report was incorrect; no
change is needed.

GB 67 Annex E Ed Annex E (normative) Universal character
names for identifier characters [charname]

This Annex is only referenced in the
standard in one place - 2.10 [lex.name]. As
such, it adds little value as an Annex.

Move the contents of Annex E into 2.10
[lex.name]

Accepted - Editorial

GB 68 3.9
[basic.types]

 Te The term 'literal type' is dangerous and
misleading, as text using this term really
wants to require that a constexpr
constructor/initialization is called with a
constant expression, but does not actually
tie the selected constructor to the type being
'literal'.

Verify the uses of the term in the Core and
Library specifications and replace with
something more precise where appropriate.

Accept with Modification

The term is useful and will
be retained, but a note
explaining the intent of
"literal type" will be added.

GB 69 20.7.11
[variant.has
h]

p1 Ge The paragraph is really trying to say two
different things, and should be split into two
paragraphs, using standard terminology.

The first sentence should become a
Requires: clause, as it dictates requirements
to callers.

The second sentence should be a Remarks:
clause, at is a normative requirement on the
implementation.

Accepted

See P0513R0

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0513r0.pdf

Comments and secretariat observations Date: 7-Oct-2016 Document: SC22 N4604, ISO/IEC CD 14882

1 2 (3) 4 5 (6) (7)

MB1

Clause No./

Subclause No./

Annex

(e.g. 3.1)

Paragraph/

Figure/Table/

Note

(e.g. Table 1)

Type

of

com-

ment2

Comment (justification for change) by the MB Proposed change by the MB Secretariat observations

on each comment submitted

1 MB = Member body (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)

2 Type of comment: ge = general te = technical ed = editorial

NOTE Columns 1, 2, 4, 5 are compulsory.

page 1 of 3
ISO electronic balloting commenting template/version 2001-10

RU 1 8.6 [dcl.init] paragraph 7 te Make empty or fully-initialized const objects default
initializable. From the user's point of view all the following
structures have their variables initialized, so the
behaviour must be consistent:

struct A0 {};

const A0 a0; // currently ill-formed

struct A1 {

 A1(){}

};

const A1 a1;

struct A2 {

 int i;

 A2(): i(1) {}

};

const A2 a2;

struct A3 {

 int i = 1;

};

const A3 a3; // currently ill-formed

This issue was reported as the DR 253 http://www.open-
std.org/jtc1/sc22/wg21/docs/cwg_active.html#253.

If a program calls for the default-initialization of an
object of a const-qualified type T, T shall be a
class type with either a constructor that initializes
all subobjects or a user-provided default
constructor.

Accept with Modification

See P0490R0

RU 2 20.15.2
[meta.type.s
ynop]

paragraph 2 te Failed prerequirement for the type trait must result in ill-
formed program. Otherwise hard detectable errors will
happen:

Add to the end of the [meta.type.synop] section:

Program is ill-formed if precondition for the type
trait is violated.

Rejected. There was no
consensus to adopt this
change at this time. However,
an issue has been opened for

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0490r0.html

Comments and secretariat observations Date: 7-Oct-2016 Document: SC22 N4604, ISO/IEC CD 14882

1 2 (3) 4 5 (6) (7)

MB1

Clause No./

Subclause No./

Annex

(e.g. 3.1)

Paragraph/

Figure/Table/

Note

(e.g. Table 1)

Type

of

com-

ment2

Comment (justification for change) by the MB Proposed change by the MB Secretariat observations

on each comment submitted

1 MB = Member body (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)

2 Type of comment: ge = general te = technical ed = editorial

NOTE Columns 1, 2, 4, 5 are compulsory.

page 2 of 3
ISO electronic balloting commenting template/version 2001-10

#include <type_traits>

struct foo;

void damage_type_trait() {

 // must be ill-formed

 std::is_constructible<foo, foo>::value;

}

struct foo{};

int main() {

 static_assert(

 // produces invalid result

 std::is_constructible<foo, foo>::value,

 "foo must be constructible from foo"

);

}

future consideration.

See LWG 2792

RU 3 23.3.7.1
[array.overvi
ew]

paragraph 3 te Force the literal type requirement for the iterator and
const_iterator in the std::array so that iterators of
std::array could be used in constexpr functions.

Add to the end of the [array.overview] section:

iterator and const_iterator shall be literal types.

Rejected. There was no
consensus to adopt this
change at this time. However,
an issue has been opened for
future consideration. See
LWG 2897

RU 4 21.2.3.1
[char.traits.s
pecialization
s.char]

21.2.3.2
[char.traits.s

 te It is confusing to see a class that is marked with
constexpr but is not usable at compile time.
std::string_view uses std::char_traits in many constexpr
methods and functions. Many std::char_traits functions
are not constexpr. At least std::char_traits::find,
std::char_traits::length and std::char_traits::compare

As proposed in P0426R0, add constexpr for
functions std::char_traits::find,
std::char_traits::length and
std::char_traits::compare in all the 21.2.3.*
[char.traits.specializations.*] sections:

static constexpr int compare(const char_type* s1,

Accepted. See P0426R1

http://www.open-std.org/jtc1/sc22/wg21/docs/lwg-active.html#2797
http://www.open-std.org/jtc1/sc22/wg21/docs/lwg-active.html#2897
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0426r1.html

Comments and secretariat observations Date: 7-Oct-2016 Document: SC22 N4604, ISO/IEC CD 14882

1 2 (3) 4 5 (6) (7)

MB1

Clause No./

Subclause No./

Annex

(e.g. 3.1)

Paragraph/

Figure/Table/

Note

(e.g. Table 1)

Type

of

com-

ment2

Comment (justification for change) by the MB Proposed change by the MB Secretariat observations

on each comment submitted

1 MB = Member body (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)

2 Type of comment: ge = general te = technical ed = editorial

NOTE Columns 1, 2, 4, 5 are compulsory.

page 3 of 3
ISO electronic balloting commenting template/version 2001-10

pecialization
s.char16_t]

21.2.3.3
[char.traits.s
pecialization
s.char32_t]

21.2.3.4
[char.traits.s
pecialization
s.wchar.t]

functions must be marked with constexpr. const char_type* s2, size_t n);

static constexpr size_t length(const char_type* s);

static constexpr const char_type* find(const
char_type* s, size_t n, const char_type& a);

RU 5 all all ge Writing comparisons for user defined classes is error
prone and requires a lot of trivial typing, so it must be
done by compiler when possible.

Fix that by continuing the work on "P0221R2:
Proposed wording for default comparisons" or at
least by accepting proposals that use user defined
operator< and operator == to generate the
remaining comparison operators.

Rejected. There was no
consensus to adopt this
change.

RU 6 all all ge The adoption of the "constexpr if-statements" changes
from document P0292R2 is a step in the right direction for
code simplification.

Preserve the functionality and think of extending it
in the future (for-constexpr statements, switch-
constexpr statements).

Accepted

Template for comments and secretariat observations Date:2017-03-24 Document: SC 22 N 5131 Project: 14882

MB/

NC1

Line

number

(e.g. 17)

Clause/

Subclause

(e.g. 3.1)

Paragraph/

Figure/

Table/

(e.g. Table 1)

Type of

comment2

Comments Proposed change Observations of the

secretariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)

2 Type of comment: ge = general te = technical ed = editorial

page 1 of 5
ISO/IEC/CEN/CENELEC electronic balloting commenting template/version 2012-03

JP 1 1.1 2 ed It is proposed that “C++17 should refer to C11
instead of C99” in P0063 and this proposal is
accepted.

So it needs to change the base C programming
language to C11 from C99.

C++ is a general purpose programming language

based on the C programming language as

described in

ISO/IEC 9899:1999 2011 Programming

languages — C

Accept with Modification.
Also replaced "C standard"
with "C standard library" in
some places for
consistency.

JP 2 3.2 6 ed The subclause , “The inline specifier”, was added
by P0836 and the description of inline function
was moved to this subclause.

So it needs to change the reference to
7.1.6[dcl.inline] from 7.1.2[dcl.fct.spec].

In addition, it needs to add the reference of `inline
variable with external linkage'.

There can be more than one definition of a class

type (Clause 9), enumeration type (7.2), inline

function with external linkage (7.1.2 7.1.6) ,

inline variable with external linkage(7.1.6),

Accepted - Editorial

JP 3 3.7 2 ed `operator new' should be replaced by `new-
expression'

The dynamic storage duration is associated with

objects

created with operator new new-expression

Accept with Modification.
An object can be created
using a placement new-
expression without having
dynamic storage duration.

JP 4 3.8 (6.5) ed &pb mismatches the comment. &*pb; // OK: pb points to valid memory Accepted

JP 5 6 4.4 1/Example ed A semicolon is required at the end. struct X { int n; }; Accepted

JP 6 5.17 2 ed "function returning T" which was modified to
"function type T" was enclosed in double quotes,
but "function type T" was not enclosed in double
quotes.

(In this sentence, “function type T” is in apposition
to “array of T” and “array of T” is enclosed in
double quotes, but “function type T” is not.)

So it needs to enclose “function type T” in double
quotes.

from “array of T” or “function type T” to “pointer

to T”.

Rejected. The proposed
change is not correct. The
double-quote notation is
used for the canonical type
names defined by the
algorithm in [dcl.meaning].
In this context, 'function
type T' means 'T, where T
is a function type'. The
suggested alternative of
"function type T" would be
meaningless.

JP 7 8.3.5 5 ed The same as the comment for 5.17/2. any parameter of type “array of T” or of “function
type T” is adjusted to be “pointer to T”.

Rejected, See JP 6

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0063r2.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0386r2.pdf

Template for comments and secretariat observations Date:2017-03-24 Document: SC 22 N 5131 Project: 14882

MB/

NC1

Line

number

(e.g. 17)

Clause/

Subclause

(e.g. 3.1)

Paragraph/

Figure/

Table/

(e.g. Table 1)

Type of

comment2

Comments Proposed change Observations of the

secretariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)

2 Type of comment: ge = general te = technical ed = editorial

page 2 of 5
ISO/IEC/CEN/CENELEC electronic balloting commenting template/version 2012-03

JP 8 8.4.1 2 ed The paragraph was modified to fix C++ standard
core issue 2145(http://www.open-
std.org/Jtc1/sc22/wg21/docs/cwg_active.html#21
45). Fixing the issue itself is good, but the new

phrase doesn’t look correct. “void declarator ;”

and “declarator ;” are enumerated, but the

former constitutes a function definition and the
latter does not.

Drop the paragraph.

Or, simply “The form of declarator is described in

8.3.5.”

Rejected. The comment is
not correct. 'declarator ;' is
a valid function declaration
when the declarator
declares a constructor,
destructor, or conversion
function. The wording is
therefore correct as written.
The proposed alternative
wording would fail to
capture the intent that the
declartor shall be well-
formed as a declarator for a
complete function-
declaration (not merely a
valid function declarator).

JP 9 8.4.3 4 ed The same as the comment for 3.2/6. A deleted function is implicitly an inline function

(7.1.27.1.6).

Accepted - Editorial

JP 10 9.2 7 ed A space is not needed after `T'. struct S {

using T = void();

T * p = 0; // OK: brace-or-equal-initializer

virtual T f = 0; // OK: pure-specifier

};

Rejected. The core
language portion of the
standard intentionally does
not have a consisent
"house style" used in
examples, in order to
emphasize that the
language itself takes no
position on questions of
style.

JP 11 9.4 1 ed `0' should be replaced by `nullptr`. local* p = 0 nullptr; // error: local not in scope Rejected. See JP 10

JP 12 10.1 7/Figure 4
— Virtual
base

ed “Figure 4 — Virtual base” is referred to from
10.1/6 but located in 10.1/7. It’s confusing for
readers.

Move figure 4 to inside 10.1/6. Accept with Modification.
Figure now referenced by
number instead of by
position.

JP 13 11.3 7 ed The same as the comment for 3.2/6. Such a function is implicitly an inline function

(7.1.27.1.6).

Accepted - Editorial

http://www.open-std.org/Jtc1/sc22/wg21/docs/cwg_active.html%232145
http://www.open-std.org/Jtc1/sc22/wg21/docs/cwg_active.html%232145
http://www.open-std.org/Jtc1/sc22/wg21/docs/cwg_active.html%232145

Template for comments and secretariat observations Date:2017-03-24 Document: SC 22 N 5131 Project: 14882

MB/

NC1

Line

number

(e.g. 17)

Clause/

Subclause

(e.g. 3.1)

Paragraph/

Figure/

Table/

(e.g. Table 1)

Type of

comment2

Comments Proposed change Observations of the

secretariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)

2 Type of comment: ge = general te = technical ed = editorial

page 3 of 5
ISO/IEC/CEN/CENELEC electronic balloting commenting template/version 2012-03

JP 14 14.1 8 ed The same as the comment for 5.17/2. A non-type template-parameter of type “array of

T” or of “function type T” is adjusted to be of

type “pointer to T”.

Rejected. See JP 6

JP 15 15.2 5 ed This deallocation function includes the class
deallocation function.

(There is the reference to 12.5[class.free] in the
language specification of C++14.)

So it needs to add the reference to
12.5[class.free].

If the object was allocated by a new-expression

(5.3.4), the matching deallocation function

(3.7.4.2, 12.5), if any, is called to free the storage

occupied by the object.

Rejected. 12.5 does not
appear to be relevant here.
The cross-reference to
5.3.4 fully describes how
the matching deallocation
function is determined. The
cross-reference to 3.7.4.2
is just for the term
"deallocation function", and
covers both the class-
specific and global cases.

JP 16 15.3 2 ed The same as the comment for 5.17/2. A handler of type “array of T” or “function type

T” is adjusted to be of type “pointer to T”.

Rejected See JP 6

JP 17 15.4 2 ed The same as the comment for 5.17/2. A type cv T denoted in a dynamic-exception-

specification

is adjusted to type T. A type “array of T”, or

“function type T” denoted in a dynamic-

exception-specification is adjusted to type

“pointer to T”.

Rejected See JP 6

JP 18 16.1 8 ed The footnote #148 is across two pages. Locate all #148 sentences in a single page. Accept with Modification.
Footnote promoted to a
note and surrounding
paragraph split for clarity.

JP 19 16.8 1 te It describes “__cplusplus function is defined to
the value 201402L”. The value means C++14, so
it should be changed in C++17

Change 201402L to something appropriate like
2017xx.

Accepted - Editorial

Template for comments and secretariat observations Date:2017-03-24 Document: SC 22 N 5131 Project: 14882

MB/

NC1

Line

number

(e.g. 17)

Clause/

Subclause

(e.g. 3.1)

Paragraph/

Figure/

Table/

(e.g. Table 1)

Type of

comment2

Comments Proposed change Observations of the

secretariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)

2 Type of comment: ge = general te = technical ed = editorial

page 4 of 5
ISO/IEC/CEN/CENELEC electronic balloting commenting template/version 2012-03

JP 20 18.6.4 te The name std::launder() seems cryptic at least for
non-English native speakers. There is no hint in
the word "launder" to show it is about the C++
object model, lifetime, and reusing storage. The
situation is likely same even if a programmer
preliminarily knows about the issues it solves.
Comments like "Here, compilers should suppose
new object at reused storage" will be wanted
each time it is used.

The following function names are better.

- reuse_existing_storage

- suppose_new_at_reused_storage

…

The changes of the label of this chapter and
sample codes are accompanied by this change.

template <class T> constexpr T* launder

reuse_existing_storage(T* p) noexcept;
Rejected. There was no
consensus to adopt this
change.

JP 21 25 ed The order of Requires, Effects and Returns

sections for each function templates are not
consistent in this clause. For some templates,
Requires comes after Effects and even after
Returns. It would be better to describe in a

consistent manner.

Reorder the sections for each algorithm templates
in the same order, as Requires, Effects and
Returns.

Accepted - Editorial

JP 22 25.3.10 2 ed j is defined but not used in (2.2) and (2.3). Some
parts of expressions can be replaced with the j.

(2.2) “!(*i == *j)”

(2.3) “pred(*i, *j) == false”

Accepted with Modification.

Algorithms with parallel
overloads are now explicitly
described in detailed
descriptions.

JP 23 25.4.1 ed std::copy_backward and some other algorithms

don’t have parallelized versions. We can know
from the list in 25.1 which algorithms have them,
but it would be better to specify in each
description explicitly.

Add “Remarks: No parallel algorithm overload is

available.” for each algorithm that doesn't have its
parallelized overload.

Accepted - Editorial

Template for comments and secretariat observations Date:2017-03-24 Document: SC 22 N 5131 Project: 14882

MB/

NC1

Line

number

(e.g. 17)

Clause/

Subclause

(e.g. 3.1)

Paragraph/

Figure/

Table/

(e.g. Table 1)

Type of

comment2

Comments Proposed change Observations of the

secretariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)

2 Type of comment: ge = general te = technical ed = editorial

page 5 of 5
ISO/IEC/CEN/CENELEC electronic balloting commenting template/version 2012-03

JP 24 25.5.10 1 ed Effects section for std::next_permutation
describes about the return value, too. But it
should be in Returns section as in

std::prev_permutation.

Replace the 3rd and 4th sentences with a new

paragraph “Returns: true if such a permutation

exists. Otherwise, it transforms the sequence into
the smallest permutation, that is, the ascendingly

sorted one, and returns false.”

Accepted - Editorial

JP 25 26.5.7 9 ed Parameter theta of polar has the type of the
template parameter. Therefore, it needs to
change the default initial value to T().

The change of the declaration of this function in
26.5.1 is accompanied by this change.

template<class T> complex<T> polar(const T&
rho, const T& theta = 0T());

Accepted with Modification

See LWG 2870

JP 26 26.8.5 1 ed There is a typo in the parameter of the second
declaration. (gterator instead of Iterator)

template <class InputIterator1, class InputIterator2,

class T,

class BinaryOperation1, class BinaryOperation2>

T inner_product(InputIterator1 first1, InputIterator1

last1,

InputgIterator2 first2, T init,

BinaryOperation1 binary_op1,

BinaryOperation2 binary_op2);

Accepted - Editorial

JP 27 27.11.1 te In C11- ISO/IEC 9899:2011(E), formatted

input/output functions (with ‘_s’ suffix) are added
as annex K.3.5.3. Those functions promote

safer, more secure programming because they
verify that output buffers are large enough for
the intended result and return a failure indicator if
they are not. Data is never written past the end of

an array. All string results are null terminated.

Those functions also benefit C++. We propose to
add them to C++17.

Add the functions defined in the subclauses of
C11 K.3.5.3.

Rejected. There was no
consensus to adopt this
change.

http://www.open-std.org/jtc1/sc22/wg21/docs/lwg-active.html#2870

Template for comments and secretariat observations Date: 2017-03-24 Document: CA comments for SC22
N5131

Project: 14882

MB/
NC1

Line
number
(e.g. 17)

Clause/
Subclause
(e.g. 3.1)

Paragraph/
Figure/
Table/

(e.g. Table 1)

Type of
comment2

Comments Proposed change Observations of the
secretariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial

page 1 of 12
ISO/IEC/CEN/CENELEC electronic balloting commenting template/version 2012-03

CA 1 all 18.10.5

18.3.2.4

18.5

18.9

20.2.1

20.2.4

20.14

all te P0270R1 went through SG1 and LWG but was
too late to make it to the straw polls.

The problems it addresses stem from referring to
C11, which came into C++17 at the last minute.

P0270R1 should have made it in with the C11
change.

Apply all of P0270R1, "Removing C dependencies
from signal handler wording", to C++17.

Accepted. See
P0270R3.

CA 2 all 27.10.8.1
[path.generi
c]

all te root-name is effectively implementation-defined.
As acknowledged by the note under root-name in
the grammar, //is an example of what a root-
name may be.

Should root-name be // for a specific

implementation, the grammar is ambiguous.

The string //a may resolve as either

root-name root-directoryopt relative-pathopt

//root-directoryopt relative-pathopt

//relative-pathopt

//filename

//name

Change under root-name in the grammar of

subclause 27.10.8.1 [path.generic]:

An implementation-defined path prefixoperating
system dependent name that identifies the

starting location for absolute paths.

Add a new paragraph before paragraph 1 of
[path.generic]:

The root-name in a pathname is the longest
sequence of characters that could possibly form a
root-name.

Accepted with
Modifications.

See P0492R2

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/p0270r3.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/p0492r2.html

Template for comments and secretariat observations Date: 2017-03-24 Document: CA comments for SC22
N5131

Project: 14882

MB/
NC1

Line
number
(e.g. 17)

Clause/
Subclause
(e.g. 3.1)

Paragraph/
Figure/
Table/

(e.g. Table 1)

Type of
comment2

Comments Proposed change Observations of the
secretariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial

page 2 of 12
ISO/IEC/CEN/CENELEC electronic balloting commenting template/version 2012-03

//a

or

root-directory relative-pathopt

directory-separator relative-pathopt

slash directory-separator relative-pathopt

/directory-separator relative-pathopt

/slash relative-pathopt

//relative-pathopt

//filename

//name

//a

CA 3 all 27.10.8

[class.p

ath]

all te The term “pathname” in 27.10.8 [class.path]

is ambiguous in some contexts.

For details refer to P0430R0 section 2.1.

Add the following specification to 27.10.8.2.1

[path.fmt.cvt]:

 Specifications for path appends, path

concatenation, path modifiers, path decomposition

and path query are in terms of the generic

pathname format. An implementation needs to

make whatever changes necessary to the

Accepted. See
P0492R2

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/p0492r2.html

Template for comments and secretariat observations Date: 2017-03-24 Document: CA comments for SC22
N5131

Project: 14882

MB/
NC1

Line
number
(e.g. 17)

Clause/
Subclause
(e.g. 3.1)

Paragraph/
Figure/
Table/

(e.g. Table 1)

Type of
comment2

Comments Proposed change Observations of the
secretariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial

page 3 of 12
ISO/IEC/CEN/CENELEC electronic balloting commenting template/version 2012-03

pathname in native pathname format to produce

the specified change in the generic pathname

format, or return query result for pathname in

terms of the generic pathname format.

CA 4 all 27.10.8.4.1
[path.constr
uct]

all te Extra flag in path constructors is needed to
distinguish whether source is in native pathname
format, or generic pathname format.

For details refer to P0430R0 section 2.2.

Refer to P0430R0 section 2.2. Accepted with
Modifications.

See P0430R2

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/p0430r2.pdf

Template for comments and secretariat observations Date: 2017-03-24 Document: CA comments for SC22
N5131

Project: 14882

MB/
NC1

Line
number
(e.g. 17)

Clause/
Subclause
(e.g. 3.1)

Paragraph/
Figure/
Table/

(e.g. Table 1)

Type of
comment2

Comments Proposed change Observations of the
secretariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial

page 4 of 12
ISO/IEC/CEN/CENELEC electronic balloting commenting template/version 2012-03

CA 5 all 27.10.8.1

[path.generi

c]

all te root-name definition is over-specified.

The description of root-name limits its use to be
the starting location for absolute paths. This is
overly restrictive and disregards established
practice where special prefixes on path names is
treated as a trigger for alternate path resolution
on certain operating systems. There are cases
where such alternative path resolution relies on
context from the environment such as the identity
of the current user; therefore, the presence of a
special prefix on a path name is not always
indicative of an absolute path.

For details refer to P0430R0 section 2.3.1.

Modify root-name definition in 27.10.8.1

[path.generic]:

root-name:

An operating system dependent name that

identifies the starting location for absolute paths

can be used to disambiguate the remainder of the

path. [Note: A root-name can be used to identify

the starting location for absolute paths; it can also

be used to invoke alternative pathname resolution.

Many operating systems define a name beginning

with two directory-separator characters as a root-

name that identifies network or other resource

locations. Some operating systems define a single

letter followed by a colon as a drive specifier – a

root-name identifying a specific device such as a

Accepted with
Modification.

See P0430R2

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/p0430r2.pdf

Template for comments and secretariat observations Date: 2017-03-24 Document: CA comments for SC22
N5131

Project: 14882

MB/
NC1

Line
number
(e.g. 17)

Clause/
Subclause
(e.g. 3.1)

Paragraph/
Figure/
Table/

(e.g. Table 1)

Type of
comment2

Comments Proposed change Observations of the
secretariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial

page 5 of 12
ISO/IEC/CEN/CENELEC electronic balloting commenting template/version 2012-03

disk drive. —end note]

CA 6 all 27.10.8.4.3

[path.appen

d]

all te
 Operator/ (and other append) semantics not useful

if argument has root-name.

 A non-POSIX operating system could design its
generic pathname for native file type to have a
root-name and use it in some creative way. For
example, if argument p has a root-name, then p’s
root-name have to be removed before appending.

Refer to P0430R0 section 2.3.2. Accepted with
Modifications.

See P0430R2

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/p0430r2.pdf

Template for comments and secretariat observations Date: 2017-03-24 Document: CA comments for SC22
N5131

Project: 14882

MB/
NC1

Line
number
(e.g. 17)

Clause/
Subclause
(e.g. 3.1)

Paragraph/
Figure/
Table/

(e.g. Table 1)

Type of
comment2

Comments Proposed change Observations of the
secretariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial

page 6 of 12
ISO/IEC/CEN/CENELEC electronic balloting commenting template/version 2012-03

For details refer to P0430R0 section 2.3.2.

CA 7 all 27.10.15.1

[fs.op.absol

ute]

all te
 Member function absolute in 27.10.4.1 is over-

specified for non-POSIX-like operating system.

For details refer to P0430R0 section 2.4.1.

Modify the specification of absolute function in

27.10.15.1 [fs.op.absolute]:

…

Returns: An absolute path (27.10.4.1) composed

according to Table 122. If status(p).type() is an

implementation-defined file type, then the returned

path is implementation-defined. Otherwise, an

absolute path (27.10.4.1) composed according to

Table 122.

...

Accepted with
Modifications. See
P0492R2

CA 8 all 27.10.13
[class.direct
ory_iterator]

27.10.15.3

all te
 Some file system operation functions are over-

specified for implementation-defined file type.

For details refer to P0430R0 section 2.4.2.

Refer to P0430R0 section 2.4.2. Accepted with
Modifications. See
P0492R2

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/p0492r2.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/p0492r2.html

Template for comments and secretariat observations Date: 2017-03-24 Document: CA comments for SC22
N5131

Project: 14882

MB/
NC1

Line
number
(e.g. 17)

Clause/
Subclause
(e.g. 3.1)

Paragraph/
Figure/
Table/

(e.g. Table 1)

Type of
comment2

Comments Proposed change Observations of the
secretariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial

page 7 of 12
ISO/IEC/CEN/CENELEC electronic balloting commenting template/version 2012-03

[fs.op.copy]

27.10.15.14

[fs.op.file_si
ze]

27.10.15.35
[fs.op.status
]

CA 9 all all all ge The present references to UCS2 in the Committee

Draft are appropriate in the interests of preventing

silent breakage of software written to older

versions of C++.

Preserve the references to UCS2 as presented in

the Committee Draft.
Accepted with
Modifications.

See P0618R0

CA 10 all all all ge The adoption of the changes proposed in WG21

document P0292R2 (constexpr if-statements) is a

step in the right direction.

Preserve the functionality as presented in the

Committee Draft.
Accepted

CA 11 all 1.8

[intro.object]
paragraph 3 te Relative to C++14, this CD introduces additional

special behaviour for unsigned char. This is
● Adopt P0257R1, “A byte type for

increased type safety”, with necessary
Accept with Modification.
See P0298R2. The

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/p0618r0.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0298r2.pdf

Template for comments and secretariat observations Date: 2017-03-24 Document: CA comments for SC22
N5131

Project: 14882

MB/
NC1

Line
number
(e.g. 17)

Clause/
Subclause
(e.g. 3.1)

Paragraph/
Figure/
Table/

(e.g. Table 1)

Type of
comment2

Comments Proposed change Observations of the
secretariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial

page 8 of 12
ISO/IEC/CEN/CENELEC electronic balloting commenting template/version 2012-03

harmful to optimizing existing code, and we would
like to avoid this unwanted outcome.

changes from WG21 review.

● To minimize scope, rename std::byte to

std::storage_byte (or std::raw_byte). This

also avoids confusion, as the proposed

std::byte does not match existing

common uses of the word ‘byte’. Using

‘byte’ as suggested in P0257R1 would go

against “standardizing existing practice”.

● Modify 1.8 [intro.object] paragraph 3 by

replacing “array of N unsigned char”

with “array of N std::storage_byte” (or

std::raw_byte). Adjust examples and

notes accordingly.

name std::byte is to be
retained

CA 12 all 1.8

[intro.object]

3.10

[basic.lval]

various te The status of the following code should be

explicitly indicated in the Standard to avoid

surprise:

 #include <new>

Include an example (and complimentary notes)

indicating that the code presented has undefined

behaviour for the reasons set out herein.

Rejected. There was no
consensus to adopt this
change at this time, however
an issue will be opened for
future consideration.

Template for comments and secretariat observations Date: 2017-03-24 Document: CA comments for SC22
N5131

Project: 14882

MB/
NC1

Line
number
(e.g. 17)

Clause/
Subclause
(e.g. 3.1)

Paragraph/
Figure/
Table/

(e.g. Table 1)

Type of
comment2

Comments Proposed change Observations of the
secretariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial

page 9 of 12
ISO/IEC/CEN/CENELEC electronic balloting commenting template/version 2012-03

 int bar() {

 alignas(int) unsigned char

space[sizeof(int)];

 int *pi = new (static_cast<void *>(space))

int;

 *pi = 42;

 return [=]() mutable { return

*std::launder(reinterpret_cast<int

*>(space)); }();

}
}

I In particular, it appears that the call to

std::launder has undefined behaviour because

the captured copy of space is not established to

provide storage for an object of type int

(subclause 1.8 [intro.object] paragraph 1).

 Furthermore, the code has undefined behaviour

also because it attempts to access the stored

value of the int object through a glvalue of an

Template for comments and secretariat observations Date: 2017-03-24 Document: CA comments for SC22
N5131

Project: 14882

MB/
NC1

Line
number
(e.g. 17)

Clause/
Subclause
(e.g. 3.1)

Paragraph/
Figure/
Table/

(e.g. Table 1)

Type of
comment2

Comments Proposed change Observations of the
secretariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial

page 10 of 12
ISO/IEC/CEN/CENELEC electronic balloting commenting template/version 2012-03

array type other than one of the ones allowed by

subclause 3.10 [basic.lval] paragraph 8.

CA 13 all all all ge As the Committee Draft has already been

shipped, the addition of further major features

(e.g., operator dot, subset of the Concepts TS,

std::exception_list, default comparison operators)

will likely destabilize the document and reduce

consensus.

WG21 is requested to commit to the status quo of

the CD except where there is overwhelming

consensus in support of specific changes. Where

there is a lack of overwhelming support for general

categories of changes, WG21 is requested to

commit to the status quo of the CD.

Accepted

CA 14 all 20.11.2.2 4 te The removal of the "debug only" restriction for

use_count() and unique() in shared_ptr

introduced a bug: in order for unique() to produce

a useful and reliable value, it needs a

synchronize clause to ensure that prior accesses

through another reference are visible to the

successful caller of unique(). Many current

implementations use a relaxed load, and do not

provide this guarantee, since it's not stated in the

Standard. For debug/hint usage that was OK.

Without it the specification is unclear and

A solution could make unique() use

memory_order_acquire, and specifying that

reference count decrement operations

synchronize with unique(). This won’t provide

sequential consistency but may be useful.

We could also specify use_count() as only

providing an unreliable hint of the actual count, or

deprecate it.

Accepted. See
P0521R0

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0521r0.html

Template for comments and secretariat observations Date: 2017-03-24 Document: CA comments for SC22
N5131

Project: 14882

MB/
NC1

Line
number
(e.g. 17)

Clause/
Subclause
(e.g. 3.1)

Paragraph/
Figure/
Table/

(e.g. Table 1)

Type of
comment2

Comments Proposed change Observations of the
secretariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial

page 11 of 12
ISO/IEC/CEN/CENELEC electronic balloting commenting template/version 2012-03

misleading.

CA 15 all 16.8 1 te __cplusplus is defined to the value 201402L. Update to a date reflecting the expected

ratification year / month.
Accepted - Editorial

CA 16

all 20.11.2.6

29.6.5

all te The resolution to LWG2445 “‘Stronger’ memory

ordering” was lost between SG1 and LWG. The

technical issue is minor but often confuses

developers, it would be unfortunate to avoid

resolving it for C++17.

Implement a solution along the lines of p0418r1. Accept with Modification

See P0418R2

CA 17 all 25.2.4 all ge The behavior of parallel algorithms when an

exception leaves the algorithm is to call

std::terminate. This behavior does not prevent

developers from throwing exceptions, as long as

these exceptions are caught. The behavior has

desirable performance effects for parallel

algorithms.

T This behavior matches that of std::thread and

main when exceptions leave them. It can be

Preserve the functionality from p0394r4, as

adopted in the Committee Draft.
Accepted.

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/P0418r2.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0394r4.html

Template for comments and secretariat observations Date: 2017-03-24 Document: CA comments for SC22
N5131

Project: 14882

MB/
NC1

Line
number
(e.g. 17)

Clause/
Subclause
(e.g. 3.1)

Paragraph/
Figure/
Table/

(e.g. Table 1)

Type of
comment2

Comments Proposed change Observations of the
secretariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial

page 12 of 12
ISO/IEC/CEN/CENELEC electronic balloting commenting template/version 2012-03

augmented with policies or executors in future

versions of the Standard without breaking

backwards compatibility with C++17. Notably,

some form of exception list can be added to the

Standard.

I In the meantime, developers can implement their

own exception list in C++17, which would help the

committee standardize their existing practice.

CA 18 all all all ge The Committee Draft has already been shipped,

and the proposal in p0145 was heavily reviewed

in Oulu. Departure from consensus reached for

p0145 on expression evaluation order will likely

destabilize the document and reduce consensus.

I In particular, discussions about performance

impact on user code as well as general

correctness of user code in the face of expression

evaluation order affected voting on p0145.

WG21 is requested to commit to the consensus

reached for p0145 in Oulu plenary, except when

changes to expression evaluation order for C++17

would be in the details and supported with solid

technical reasoning, including performance

evaluation on multiple implementations.

Changes in the scope of the proposal should be

postponed until after C++17.

Accepted

ISO/IEC CD 14882 Comments Template Date: 2017-03-24 Document: SC22 N5130 Project: 14882

MB/

NC1

Line

number

(e.g. 17)

Clause/

Subclause

(e.g. 3.1)

Paragraph/

Figure/

Table/

(e.g. Table 1)

Type of

comment2

Comments Proposed change Observations of the

secretariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)

2 Type of comment: ge = general te = technical ed = editorial

page 1 of 4
ISO/IEC/CEN/CENELEC electronic balloting commenting template/version 2012-03

FI 1 te All open Core Issues should be resolved. As CWG sees fit. Accepted

FI 2 te All open Library Issues should be resolved. As LWG sees fit. Accepted

FI 3 8.5 te Decomposition declarations do not allow
specifying the type of the identifiers introduced.
This is inconsistent with every other mechanism
for introducing an identifier, and makes large-
scale programming harder.

Either provide a language syntax for specifying the
type of the identifiers, or provide a library facility
for enforcing the type.

Rejected. There ws no
consensus to adopt this
change,

FI 4 14.9 te Deduction guides are not integrated to the
standard library. Early attempts to do so have
revealed that implicit deduction guides easily lead
to deducing class template arguments as
references in surprising places, and that implicit
deduction guides make as-if refactorings of library
interfaces harder; such refactorings that used to
be non-detectable now become breaking
changes when implicit deduction guides can be
used. Deduction guides can’t be deleted when
the user wants to turn off certain kinds of
deduction; the proposed work-around is changing
the class template definition, which is rather hard
for code that the user doesn’t own. Explicit
deduction guides are ambiguous with implicit
ones if both match, which makes post-hoc
adaptation hard or impossible.

We should explore ways to make the semantics of
deduction guides less error-prone, and add explicit
deduction guides to the library where applicable.

Accepted

FI 5 te The proposal p0067, Elementary string
conversions was accepted for C++17 but not
incorporated due to seemingly minor problems in
the specification. Those problems have since
been fixed by a follow-up paper, and the facility
should be incorporated into C++17.

Consider the latest version of the proposal to be
incorporated into C++17.

Accept. See P0067R5

FI 6 21.4 The class template string_view was adopted into
the working draft without the corresponding user-
defined literal. Such literals have been
implemented as extensions.

Add a user-defined literal for string_view. Accept with Modification

See P0403R1

FI 7 20 te The proposal p0032 has multiple problems: 1) it
turns member function .empty() into .has_value(),

Keep the .empty() functions (and introduce them
to all the types that are supposed to have a

Rejected. There ws no
consensus to adopt this

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0067r5.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/P0403r1.html

ISO/IEC CD 14882 Comments Template Date: 2017-03-24 Document: SC22 N5130 Project: 14882

MB/

NC1

Line

number

(e.g. 17)

Clause/

Subclause

(e.g. 3.1)

Paragraph/

Figure/

Table/

(e.g. Table 1)

Type of

comment2

Comments Proposed change Observations of the

secretariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)

2 Type of comment: ge = general te = technical ed = editorial

page 2 of 4
ISO/IEC/CEN/CENELEC electronic balloting commenting template/version 2012-03

negating the logic. Refactoring e.g. existing uses
of std::experimental::any to use std::any thus
involve non-trivial refactorings that are error-
prone and can’t be done via simple search-and-
replace if there are containers in the same source
files for which .empty() is used (based on the
implementation experience of making the change
in libstdc++ and refactoring the testsuite). Whilst
any is not a container, the library is failing to go
towards a direction where there would be a
generic way to query for emptiness. 2) The use of
function references for tag types makes the
interface hard to use. The tag types do not have
value semantics like every other tag type has, the
tag types are hard to construct, and present
surprises for certain kinds of overload sets.
Furthermore, any attempts to decay the tag types
produces a really surprising effect – as opposed
to what the other tag types do, which is that the
result of decaying them is the tag type itself,
decaying these new tag types results in a pointer
to function.

homogeneous interface), and make the tag types
be regular tag types that are not references to
functions.

change.

FI 8 30.4.2.1 te The class template lock_guard was made
variadic. This is abi-breaking, and confusing
because one-argument lock_guards have a
typedef mutex_type but lock_guards with more
than one argument don’t. There’s no need to try
to shoehorn this functionality into one type.

Revert the changes to lock_guard, and introduce a
new variadic class template vlock_guard that
doesn’t have the mutex_type typedef at all.

Accepted. See P0156R2

FI 9 20, 30 te The variables of library tag types need to be inline
variables. Otherwise, using them in inline
functions in multiple translation units is an ODR
violation.

Make piecewise_construct, allocator_arg, nullopt,
(the in_place_tags after they are made regular
tags), defer_lock, try_to_lock and adopt_lock
inline.

Accepted with
Modifications

See P0607R0

FI 10 20.6 te Adopt the proposed resolution of LWG 2756 into
C++17, to provide converting constructors and
assignment operators for optional.

Adopt the latest proposed resolution of LWG
2756, which should be available by Issaquah.

Accepted

FI 11 20.8 te Adopt the proposed resolution of LWG 2744 and
2754 so that std::any can’t be made to hold non-

Adopt the proposed resolution of LWG 2744 and
2754.

Accepted

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/p0156r2.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/p0607r0.html

ISO/IEC CD 14882 Comments Template Date: 2017-03-24 Document: SC22 N5130 Project: 14882

MB/

NC1

Line

number

(e.g. 17)

Clause/

Subclause

(e.g. 3.1)

Paragraph/

Figure/

Table/

(e.g. Table 1)

Type of

comment2

Comments Proposed change Observations of the

secretariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)

2 Type of comment: ge = general te = technical ed = editorial

page 3 of 4
ISO/IEC/CEN/CENELEC electronic balloting commenting template/version 2012-03

copyable types.

FI 12 20.8 te Adopt the proposed resolution of LWG 2509,
which allows any_cast to move when it can.

Adopt the proposed resolution of LWG 2509 into
C++17.

Accepted

FI 13 20 te Adopt the proposed resolution of LWG 2729,
which makes pair and tuple constructors and
assignment operators reflect the well-formedness
of the constructors and assignment operators of
the elements.

Adopt the proposed resolution of LWG 2729. Accepted

FI 14 27.10.12.3 te LWG 2761 should be resolved and the resolution
adopted into C++17, in order to make
directory_entry comparisons non-members, so as
to allow conversions on both sides of the
comparison, which is consistent with other such
operators in the library.

Make the comparison operators of directory_entry
non-members.

Rejected. There was no
consensus to adopt this
change.

See P0492R2

FI 15 20.6 te The hash specialization of optional should be a
“poison type” if there is no valid hash for the
element type of optional.

Adopt a solution similar to LWG 2543 for
optional’s hash.

Accept. See P0513R0

FI 16 20, 23 te Relational operators for containers should sfinae;
if the underlying type is not comparable, neither
should the container be. Same applies to tuple
and pair.

Make the relational operators of containers and
utility components reflect the validity of the
underlying element types.

Rejected. There was no
consensus to adopt this
change.

FI 17 20, 23 te The relational operators of optional and variant
completely reflect the semantics of the element
types; this is inconsistent with other types in the
library, like pair, tuple and containers. If we
believe it’s important that we don’t synthesize
relational operators for wrapper types, we should
believe it’s important for other types as well.
Otherwise comparing containers of floating-point
types and tuples/pairs etc. of floating point types
will give incorrect answers.

Make the relational operators of containers and
utility components reflect the semantics of the
operators for the underlying element types.

Rejected. There was no
consensus to adopt this
change.

FI 18 20.14.15 It was thought that using default_order as the
default comparison for maps and sets was not
abi-breaking but this is apparently not the case.

Revert the change to the default comparison of
maps and sets.

Accepted

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/p0492r2.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0513r0.pdf

ISO/IEC CD 14882 Comments Template Date: 2017-03-24 Document: SC22 N5130 Project: 14882

MB/

NC1

Line

number

(e.g. 17)

Clause/

Subclause

(e.g. 3.1)

Paragraph/

Figure/

Table/

(e.g. Table 1)

Type of

comment2

Comments Proposed change Observations of the

secretariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)

2 Type of comment: ge = general te = technical ed = editorial

page 4 of 4
ISO/IEC/CEN/CENELEC electronic balloting commenting template/version 2012-03

FI 19 20.10 te The changes in the paper p0414 should be
adopted into C++17.

Adopt the changes in p0414. Accepted

See P0414R2

FI 20 8.5 te Decomposition declarations do not allow
parentheses-syntax; auto [a, b, c](expr); is not
valid, which is syntactically inconsistent with non-
decomposition declarations.

Allow using parentheses in decomposition
declarations.

Accepted See P0490R0

FI 21 14.9 te Class templates can’t be constructed with brace-
syntax when class template argument deduction
for constructors is used; templatename{a,b,c} is
not valid.

Allow using braces in such initialization. Accepted See P0490R0

FI 22 20.7 te Is it intentional that variant can “hold” a void?
Chances are that it’s useful for using variant as a
typelist, so we’re not recommending changing
that at this point, so this comment is purely to
allow discussion about this aspect.

 Accepted See P0510R0

FI 23 8.5 te Nested decomposition declarations can’t work, as
they clash with the attribute syntax.

Consider changing the syntax for decomposition
declarations, or fixing the problem some other
way.

Rejected. There was no
consensus to adopt this
change.

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0414r2.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0490r0.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0490r0.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0510r0.html

Template for comments and secretariat observations Date: 3-30-2017 Document: Project: 14882

MB/

NC1

Line

number

(e.g. 17)

Clause/

Subclause

(e.g. 3.1)

Paragraph/

Figure/

Table/

(e.g. Table 1)

Type of

comment2

Comments Proposed change Observations of the

secretariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)

2 Type of comment: ge = general te = technical ed = editorial

page 1 of 3
ISO/IEC/CEN/CENELEC electronic balloting commenting template/version 2012-03

CH 1

all

ge The active issues on the issues lists
shall be addressed before the standard
becomes final. The higher frequency of
standard revisions should not be an
excuse for more bugs.

Accept with
Modification.
Numerous issues
were addressed; the
remaining issues will
remain open for future
consideration.

CH 2

1.9
[intr.exec
ution]

te Clarify volatile Adopt a resolution discussed on the
reflector.

Accepted.
See P0612R0

CH 3A

20.6
[optional],
20.7
[variant],
20.8 [any]

te The new in_place tags prevent perfect

forwarding. They decay to function
pointers, at which point they are no
longer tags. This makes programming
with them a burden, while the intent was
to simplify it by re-using a common
name.

Re-introduce in_place_t/in_place,

in_place_type_t<T>/in_place_typ

e<T>,

in_place_index_t<I>/in_place_in

dex<I> by reverting this specific part of

p0032r2.

Accept. See P0504R0

CH 3B

20.7
[variant]

te variant allows reference types as

alternatives; optional explicitly forbids

to be instantiated for reference types.
This is inconsistent.

Consider allowing reference types for
both or none.

Accept. See P0510R0

CH 4

20.7.2
[variant.v
ariant]

te variant<int,void> should be as

usable as variant<int>

Accept. See P0510R0

CH 5

20.7.2
[variant.v
ariant]

te variant<> should not have an

index() function

Consider specifying a specialization for

variant<> like:

template<> class variant<> {

public:

 variant() = delete;

 variant(const variant&)

Accept with
Modifications.
See P0510R0

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/p0612r0.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0510r0.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0510r0.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0510r0.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0510r0.html

Template for comments and secretariat observations Date: 3-30-2017 Document: Project: 14882

MB/

NC1

Line

number

(e.g. 17)

Clause/

Subclause

(e.g. 3.1)

Paragraph/

Figure/

Table/

(e.g. Table 1)

Type of

comment2

Comments Proposed change Observations of the

secretariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)

2 Type of comment: ge = general te = technical ed = editorial

page 2 of 3
ISO/IEC/CEN/CENELEC electronic balloting commenting template/version 2012-03

 = delete;

 variant&

 operator=(variant const&)

 = delete;

};

CH 6

20.7.2
[variant.v
ariant]

te Clarify the intended behavior of

variant for alternative types that are

references.

Add a respective note. Accept with
Modifications.
See P0510R0

CH 7

20.7.2
[variant.v
ariant]

te Consider making the variant statically

!valueless_by_exception() for

cases where
is_nothrow_move_constructible_

v<T_i> for all alternative types T_i

Adopt section III of P0308R0. Accepted with
Modifications
Make variant move-
assignment more
exception safe.

See P0625R0.

CH 8

20.7.2.1
[variant.ct
or]

te Clarify variant construction. Add a note that variant<> cannot be

constructed.

Accept. See P0510R0

CH 9

21.4
[string.vie
w]

te The standard library should provide

string_view parameters instead or in

addition for functions defined with char

const * or string const & as

parameter types. Most notably in cases
where both such overloads exist or
where an internal copy is expected
anyway.
It might be doubted that the non-null

termination of string_view could be

an issue with functions that pass the

char * down to OS functions, such as

Provide the overloads for std::regex,

the exception classes, std::bitset,

std::locale and more.

Rejected
There is no consensus
to adopt this change.

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0510r0.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/p0625r0.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0510r0.html

Template for comments and secretariat observations Date: 3-30-2017 Document: Project: 14882

MB/

NC1

Line

number

(e.g. 17)

Clause/

Subclause

(e.g. 3.1)

Paragraph/

Figure/

Table/

(e.g. Table 1)

Type of

comment2

Comments Proposed change Observations of the

secretariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)

2 Type of comment: ge = general te = technical ed = editorial

page 3 of 3
ISO/IEC/CEN/CENELEC electronic balloting commenting template/version 2012-03

fstream_buf::open() etc and those

shouldn’t provide it and favour

generating a std::string temporary

instead in that case.

However, std::path demonstrates it is

usable to have string_view overloads

and there might be many places where it
can be handy, or even better.

CH 10

25.2.3
[algorithm
s.parallel.
exec]

te Parallel implementations of algorithms
may be faster if not restricted to the
complexity specifications of serial
implementations.

Add a relaxation of complexity
specifications for non-sequenced
policies.

Accepted with
Modifications.
See P0574R1

CH 11

25.2.3
[algorithm
s.parallel.
exec]

te It may be useful to copy objects to a
separate space for non-sequenced
policies.

Add explicit allowance for non-
sequenced policies to copy the objects
they work on.

Accept with
Modification,
See P0518R1

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/p0574r1.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/p0518r1.html

	NB Comments ISO/IEC CD 14882
	Responses to AENOR ES
	Responses to ANSI US
	Responses to BSI GB
	Responses to GOST RU
	Responses to JISC JP
	Responses to SCC CA
	Responses to SFS FI
	Responses to SNV CH

