Document Number P0329R0
Date 2016-05-09

Authors Tim Shen <timshen@google.com>
Richard Smith <richard@metafoo.co.uk>
Zhihao Yuan <zy@miator.net>
Chandler Carruth <chandlerc@google.com>

Audience EWG

Designated Initialization

Introduction

This proposal introduces a new syntax based on C99 designated initializers to initialize an
aggregate:

Point p{ .x = 3.0, .y = 4.0 };
distance({ .x{}, .y{5.0} }, p); // direct-list-initialization

by specifying pairs of public data member designators followed by brace-or-equal-initializers.

Motivation

To increase readability and explicitness: With initializations designated with data member
names, the code states its intent more explicitly and avoids the possibility of bugs due to
initializers being matched against the wrong member.

Towards more flexible and sustainable aggregate initialization: Compared to
list-initialization, designated initialization allows the user to enumerate only the interesting data
members, leaving the rest default member initialized. In this way, the initialization is less
sensitive to data member changes.

To increase the interoperability between C and C++: By being compatible with C designated
initialization, C++ is more interoperable with C code, e.g. easy initialization of a C struct, and
allowing designated initialization code in a header file that may be accessed by both C and C++
compilers.

mailto:timshen@google.com
mailto:richard@metafoo.co.uk
mailto:zy@miator.net
mailto:chandlerc@google.com

To standardize and generalize the existing practices: Clang already implements a
designated initializer extension that is C-compatible. GCC implements “trivial designated
initializer”, which requires the designators to appear in the same order as declarations.

Design Decisions

The proposed C++ designated initialization is based on C99 designated initializers, with

following differences:

C99

C++ with this proposal

Example

Designators are optional

Either all designators, or
none

C only:
Aa={3, .a=4}

Initialized from left to
right. Evaluation order is

Designators must appear
in the declaration order of

struct { int a, b; };

unspecified the data members. Aa={.b=23, .a=4}
Evaluation order is left to C: .b =3, then .a =4
right. C++: Error - .a must come
first
Designators may be Designators are required C only:
duplicated to be unique Aa={.a=3, .a=41}
Supports array Does not support array C only:
designated initialization designated initialization Aa={[3]=4}
Designators can be Designators cannot be C only:
nested nested Aa={.e.a=31}
Supports C initializer Supports C++ C++ only:
brace-or-equal-initializer Aa-={.a{}}

Evaluation and Initialization Orders

Notice that there are two kinds of orders:

e The order to evaluate the initializers
e The order to perform the actual initializations

To be consistent with list-initialization, we expect the initializers to be evaluated in left-to-right
order, as written; but we also want to perform the actual initializations in data members'
declaration order, so that they can be destructed in the reverse order. When these two orders

do not match, an implementation cannot avoid creating temporaries to fill the gap between the
evaluations and initializations.

To meet these expectations for guaranteed copy elision, we require the designators to appear
as a subsequence of the data member declaration sequence, so that the evaluation order
matches the declaration order, and it is also textually left-to-right in designated initialization.

Base Class Object Initialization

The base class objects will be initialized with {}. We do not have a concrete use case for some
in-depth control of how to initialize the base class objects, and the proposed design is forward
compatible, therefore we suggest to address this issue in another proposal.

Proposed Design

Syntax

initializer:
brace-or-equal-initializer
(expression-list)
brace-or-equal-initializer:
= initializer-clause
braced-init-list
initializer-clause:
assignment-expression
braced-init-list
initializer-list:
initializer-clause ...,
initializer-list , initializer-clause ..
braced-init-list:
{ initializer-list ,; }
{ designated-initializer-list ,; }
{}
designated-initializer-list:
designated-initializer-clause
designated-initializer-list , designated-initializer-clause
designated-initializer-clause:
designator brace-or-equal-initializer
designator:
. identifier

‘opt

Technical Specification

If T is a non-array aggregate type, a designated initialization of an object with type T may be
performed, with following requirements:

The identifier in a designator should be the name of a non-static data member of T.
Each non-static data member should be designated for at most once.
Two data members that are part of the same union, for any possible unionin Tor T
itself, should not be both designated.

e All designators must appear as a subsequence of the data member declarations.

Notice that the last requirement only takes place for initialization. In other cases, e.g. overload
resolution, the designators are still considered unordered. Thus, in overload resolution, a
candidate is viable if it satisfies the above requirements except the last one.

A braced-init-list with designators as a function argument causes the parameter to be
considered a non-deduced context.

Example:
struct A {
int a, b;
s
struct B {
int b, a;
s
struct C {
int a, c;
s

void Foo(A);
void Foo(B);
void Bar(B);
void Bar(C);

int main() {

Foo({ .a =3, .b =4 1%}); // Ambiguous: Foo(A) or Foo(B)?
Bar({ .a =3, .b =4 1}); // Error: Resolve to Bar(B), but
// designators are in the wrong order.
Bar({ .a =3, .c =4 }); // Resolves to void Bar(C).
Bar({ .a = 3 }); // Ambiguous: Bar(B) or Bar(C)?

Initialization is formed in following rules:

Base class objects are initialized with {}.
For each designated data member, initialize it with the brace-or-equal-initializer that
comes after the corresponding designator.

e For each non-static direct data member that is not specified by the above step, initialize
it with its default member initializer, if present, otherwise {}.

e Allinitializations are performed in declaration order.

Example:

struct B {
int base b;
s
struct A :
int a;
int b = 3;
union {
union {
int uo;
int ul;

B {

s
int u2;
s
union {
int
int

ug;
us;
}s

union C {

int
int
} o
union D
int
int

cl;
c2 =17;

{
di;
d2;

} d;

int e;

string f;
}s5

The designated initialization code:

{.a=42, .ul=6, .d{ .d2=21, .f{"a"}, }

has the following steps:

Initialize base B object with {}.

Initialize a with = 42;

Initialize b with = 3;

Initialize u1 with = 6;

Initialize the anonymous union { int u4; int u5; } with {}, which means initialize u4 with {};
Initialize ¢ with {};

Initialize d with { .d2 =2 };

Initialize e with {};

Initialize f with {"a"}.

©oNO s DN~

Future Issues

e Do we allow the constructor initializer syntax, like { .name('x', 4) } ?
e Do we allow a designation list to appear in a list-initializer as a suffix, e.g. A { 1, 2,
=3, .d=413}?

References

1. GCC Designated Initializers: https://gcc.gnu.org/onlinedocs/gcc/Designated-Inits.html
2. Clang implementation:
https://github.com/llvm-mirror/clang/blob/master/include/clang/AST/Expr.h#L3935

https://gcc.gnu.org/onlinedocs/gcc/Designated-Inits.html
https://github.com/llvm-mirror/clang/blob/master/include/clang/AST/Expr.h#L3935

