
Proposing Standard Library Support for the C++ Detection Idiom,
v2

Document #: WG21 N4502
Date: 2015-05-03
Revises: N4436
Project: JTC1.22.32 Programming Language C++
Reply to: Walter E. Brown <webrown.cpp@gmail.com>

Contents

1 Introduction . . . . . . . . . . . . . 1
2 The void_t alias . . . . . . . . . . . 2
3 The detection idiom . . . . . . . . 2
4 Validity of the idiom . . . . . . . . 3
5 A detection toolkit . . . . . . . . . 4
6 Implementing the toolkit . . . . . 5

7 Proposal . . . . . . . . . . . . . . . . 7
8 Examples . . . . . . . . . . . . . . . 7
9 Proposed wording . . . . . . . . . . 8
10 Acknowledgments . . . . . . . . . . 10
11 Bibliography . . . . . . . . . . . . . 10
12 Document history . . . . . . . . . . 11

Abstract

This paper describes a coding pattern, termed the C++ detection idiom, powered by the void_t
metafunction recently accepted into the C++17 standard library. A fully-implemented toolkit of
interfaces to this idiom is then presented and proposed for future standardization.

Detection is, or ought to be, an exact science. . . .
— SIR ARTHUR IGNATIUS CONAN DOYLE

1 Introduction

At the 2014 Urbana meeting, WG21 adopted [N3911], thereby adding to the C++17 standard
library an alias template named void_t. Originating as an implementation detail in each of two
otherwise-independent earlier papers ([N3843] and [N3909]), it rapidly became clear that this
near-trivial void_t trait made possible a straightforward application of SFINAE in a pattern that
we term the C++ detection idiom. Further, recent evidence1 suggests that the use of this idiom
provides small but measurable improvements in compilation performance, when compared to
traditional approaches.

In experimenting with void_t in the context of this detection idiom, we have discovered a
means of encapsulating and parameterizing the idiom so as to simplify its application. Moreover,
we have found that such encapsulation forms the basis of a small toolkit that dramatically
simplifies implementation of a large class of metafunctions such as those in the standard library.

Copyright c© 2015 by Walter E. Brown. All rights reserved.
1 “I’ve run a few tests and using [void_t] in our _GLIBCXX_HAS_NESTED_TYPE macro reduces the front-end’s memory

footprint and compile-time compared to the old implementation. . . ” [Jonathan Wakely, libstdc++@gcc.gnu.org, 2014-
11-11].

1

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/n4436.pdf
mailto:webrown.cpp@gmail.com


2 N4502: Proposing Standard Library Support for the C++ Detection Idiom, v2

We begin with a summary of the design, utility, and implementation of void_t, then describe
the detection idiom. Subsequent sections will describe a fully-implemented toolkit of interfaces to
the idiom, and will propose this toolkit for incorporation into a future TS or IS.

2 The void_t alias

The std::void_t alias template behaves as a metafunction that maps any given sequence of types
to a single type, namely to void. Although a trivial transformation, it has nonetheless proven
exceedingly useful, for it makes an arbitrary number of well-formed types into one completely
predicable type.

Our preferred implementation (and specification) of void_t is the following near-trivial defini-
tion:2

1 template< class... >
2 using
3 void_t = void;

Given a template argument list consisting of any number3 of well-formed types, the alias will thus
always name void. However, if even a single template argument is ill-formed, the entire alias will
itself be ill-formed.

As demonstrated in our earlier papers, this behavior becomes usefully detectable, and hence
exploitable, in any SFINAE context.

3 The detection idiom

As an idiomatic application of void_t, we previously presented the following trait-like metafunction
that determines whether a type T has a type member named T::type:

1 // primary template handles types that have no nested ::type member:
2 template< class, class = void_t<> >
3 struct
4 has_type_member : false_type { };

6 // specialization recognizes types that do have a nested ::type member:
7 template< class T >
8 struct
9 has_type_member<T, void_t<typename T::type>>

10 : true_type { };

The code features exactly two cases, each straightforward:

a) When there is a type member named type: the specialization is well-formed (albeit with a
funny spelling of void as its second argument) and will be selected,4 producing a true_type
result;

b) When there is no such type member: the specialization will be nonviable (due to SFINAE) and
the primary template will be selected instead, yielding false_type as the result.

2 This definition relies on the resolution of CWG issue 1558 (“The treatment of unused arguments in an alias template
specialization is not specified by the current wording of 14.5.7 [temp.alias]”) adopted at the Urbana meeting. An alternate
formulation of void_t is available for compilers whose semantics are inconsistent with this resolution; see [N3911].

3We have to date stilll not found any significant use for the degenerate case of a zero-length template argument list.
However, we also see no harm in it, especially as forbidding this case would have slightly complicated void_t’s design.

4See §4 for a discussion of this point.



N4502: Proposing Standard Library Support for the C++ Detection Idiom, v2 3

Each case thus obtains the appropriate result. As we noted in our void_t paper, “Compared to
traditional code that computes such a result, this version seems considerably simpler, and has no
special cases (e.g., to avoid forming any pointer-to-reference type).”

We term this code pattern the C++ detection idiom because it is capable of recognizing the
validity of essentially any C++ expression. For example, the following transformation of the above
code (differing only in name and in the highlighted code) detects whether a type supports a
pre-increment operator:

1 // primary template handles types that do not support pre-increment:
2 template< class, class = void_t<> >
3 struct
4 has_pre_increment_member : false_type { };

6 // specialization recognizes types that do support pre-increment:
7 template< class T >
8 struct
9 has_pre_increment_member<T, void_t<decltype( ++declval<T&>() )>>

10 : true_type { };

Note particulary the role of std::declval in forming an archetypal expression to be detected,
and the use of decltype to inspect this expression in an unevaluated context.

With careful attention to the form of the archetypal expression, it is possible to detect whether
an operator is supported via a member function or via a non-member function. Consider the
following three expressions:

(a) &declval<T&>(),

(b) declval<T&>().operator&(), and

(c) operator&(declval<T&>()).

When used as the operand to decltype, we can detect, respectively,

(a) whether a type supports the address-of operator,

(b) whether a type supports that operator via a member function, and

(c) whether a type supports that operator via a free function.

Such granularity has proven useful. For example, we have been able to ensure that an instance
of a type can have its address taken. (Such a requirement is part of the Semiregular concept
described in [N3351].) Moreover, we can further guarantee via the detection idiom that the type
supports the operation without providing any operator& overload, thus ensuring that only the
built-in operator is available.

4 Validity of the idiom

In a core reflector thread (subject: “Class SFINAE?”), John Spicer commented on the coding
technique underlying the detection idiom. He wrote, “This is not overloading of class declarations,
it is just partial specialization. The question is whether SFINAE applies . . . in [the] deduction
process used in partial specialization. I believe it does in all implementations, and is important
functionality” [c++std-core-26537, 2014-12-08].

However, later in that same thread, Richard Smith observed “that we’re missing the core
wording for template argument deduction for partial specializations. 14.5.5.1/2 says ‘go look
in 14.8.2’, and then 14.8.2 doesn’t say what to do; the particular issue here is that the 14.8.2
words that support SFINAE only talk about a function type and its template parameters, but we
more generally seem to be missing a subclause of 14.8.2 that describes this form of deduction for



4 N4502: Proposing Standard Library Support for the C++ Detection Idiom, v2

matching partial specializations against a template argument list” [c++std-core-26539, 2014-12-
08]. It is our understanding that Smith’s observation re missing wording forms the basis of a new
CWG issue, 2054. Once formally resolved, there should be no doubt as to the idiom’s validity.
Until then, we rely on Spicer’s comment as sufficient validation for our usage.

5 A detection toolkit

Since we first devised void_t and recognized the detection idiom, we have been quite extensively
experimenting with it. For the most part, we have been reimplementing a large cross-section of the
standard library (including, for example, all of headers <type_traits>, <cmath>, <iterator>,
<string>, <algorithm>, and <random>). We have observed that the use of the detection idiom
has wide-ranging applicability leading to significant reduction in code complexity and attendant
increase in code comprehensibility.

Initially, we performed manual transformations of the archetypal expressions in the idiom.
This led to significant code duplication, as the rest of the idiom’s code (other than the resulting
trait’s name) is boilerplate. We subsequently discovered a means of encapsulating the detection
idiom as a self-contained metafunction that is parameterized on the archetypal expression via a
technique that, in this context, we refer to as a metafunction callback.

Our initial version was formulated as follows:

1 // primary template handles all types not supporting the operation:
2 template< class, template<class> class, class = void_t< > >
3 struct
4 detect : false_type { };

6 // specialization recognizes/validates only types supporting the archetype:
7 template< class T, template<class> class Op >
8 struct
9 detect< T, Op, void_t<Op<T>> > : true_type { };

To use this detect metafunction, we supply it with another metafunction (i.e., a meta-callback)
that fills the role of the archetypal expression. For example, here is an implementation of the
is_assignable type trait:

1 // archetypal expression for assignment operation:
2 template< class T >
3 using
4 assign_t = decltype( declval<T&>() = declval<T const &>() )

6 // trait corresponding to that archetype:
7 template< class T >
8 using
9 is_assignable = detect<void, assign_t, T>;

Such application of the detect metafunction dramatically decreased the amount of boilerplate
code to be written in adapting the detection idiom to new circumstances. Although the resulting
code was significantly more comprehensible than the original, we disliked the above detect
interface because the void argument in the metafunction call is an implementation detail that
shouldn’t leak out to client code. Accordingly, we designed a different interface, shown below in
§6.2 under the name is_detected. In addition, we found use cases for three variations on the
basic theme:

1. The first variation is to seek a specified nested type, and yield an alias to that type if it is
detected, and to produce an alias to a specified default type if the desired nested type is not



N4502: Proposing Standard Library Support for the C++ Detection Idiom, v2 5

detected. This variation is useful in implementing such specifications as “Alloc::pointer if
such a type exists; otherwise, value_type*” [allocator.traits.types]/1. We name this variant
detected_or.

2. The second variation is to detect an archetype iff it also produced a designated result type.
This is useful to ensure that only canonical operations are recognized. For example, the
current specification of the is_assignable trait is silent with respect to the resulting type,
although a canonical assignment operator must result in a reference type. We name this
variant is_detected_exact.

3. The third variation is to detect an archetype iff it also produced a result type convertible to a
specified type. This is useful in recognizing, for example, relational operations (whose result
types must be convertible to bool). We name this last variant is_detected_convertible.

It is our experience that these four interfaces to the detection idiom satisfy the overwhelming
majority of our applications of the idiom. We will therefore consider these as the components
of our detection idiom toolkit. The next section will first present a common infrastructure that
supports the entire toolkit, and will then provide a complete implementation of all proposed
variations.

6 Implementing the toolkit

6.1 The detector infrastructure
We have devised the following detector template as a common infrastructure to support the
four desired components of our detection idiom toolkit: (a) is_detected, (b) detected_or,
(c) is_detected_exact, and (d) is_detected_convertible.

1 // primary template handles all types not supporting the archetypal Op:
2 template< class Default
3 , class // always void; supplied externally
4 , template<class...> class Op
5 , class... Args
6 >
7 struct
8 detector
9 {

10 using value_t = false_type;
11 using type = Default;
12 };

14 // the specialization recognizes and handles only types supporting Op:
15 template< class Default
16 , template<class...> class Op
17 , class... Args
18 >
19 struct
20 detector<Default, void_t<Op<Args...>>, Op, Args...>
21 {
22 using value_t = true_type;
23 using type = Op<Args...>;
24 };

Now we can implement each of our four desired interfaces as aliases to this infrastructure.



6 N4502: Proposing Standard Library Support for the C++ Detection Idiom, v2

6.2 The is_detected interface
First we have is_detected and its associates is_detected_v and detected_t:5

1 template< template<class...> class Op, class... Args >
2 using
3 is_detected = typename detector<void, void, Op, Args...>::value_t;

5 template< template<class...> class Op, class... Args >
6 constexpr bool
7 is_detected_v = is_detected<Op, Args...>::value;

9 template< template<class...> class Op, class... Args >
10 using
11 detected_t = typename detector<void, void, Op, Args...>::type;

6.3 The detected_or interface
Next we show detected_or and the associated detected_or_t:

1 template< class Default, template<class...> class Op, class... Args >
2 using
3 detected_or = detector<Default, void, Op, Args...>;

5 template< class Default, template<class...> class Op, class... Args >
6 using
7 detected_or_t = typename detected_or<Default, Op, Args...>::type;

6.4 The is_detected_exact interface
Next are is_detected_exact and associate is_detected_exact_v:

1 template< class Expected, template<class...> class Op, class... Args >
2 using
3 is_detected_exact = is_same< Expected, detected_t<Op, Args...> >;

5 template< class Expected, template<class...> class Op, class... Args >
6 constexpr bool
7 is_detected_exact_v = is_detected_exact< Expected, Op, Args...>::value;

6.5 The is_detected_convertible interface
Finally, we have is_detected_convertible and the associated is_detected_convertible_v:

1 template< class To, template<class...> class Op, class... Args >
2 using
3 is_detected_convertible = is_convertible< detected_t<Op, Args...>, To >;

5 template< class To, template<class...> class Op, class... Args >
6 constexpr bool
7 is_detected_convertible_v
8 = is_detected_convertible<To, Op, Args...>::value;

6.6 The nonesuch utility type
We also recommend the following nearly-useless type, nonesuch6:

5But see also §6.6 for a recommended tweak to this definition.
6This type was inspired by, and patterned after, the internal type __nat (which we believe is an acronym for “not a

type”) found in libc++.



N4502: Proposing Standard Library Support for the C++ Detection Idiom, v2 7

1 struct
2 nonesuch
3 {
4 nonesuch( ) = delete;
5 ~nonesuch( ) = delete;
6 nonesuch( nonesuch const& ) = delete;
7 void
8 operator = ( nonesuch const& ) = delete;
9 };

Given this type, we have found it expedient to make one small adjustment in our earlier definition
of is_detected (and, for consistency, in detected_t as well): We prefer to specify nonesuch as
the (default) result when the provided archetype is not detected. These changes, shown below,
avoid the possibility of a spurious result in is_detected_exact (in the case where the expected
result type is void but the archetypal operation is not detected: we ought not yield void in such
a case).

1 template< template<class...> class Op, class... Args >
2 using
3 is_detected = typename detector<nonesuch, void, Op, Args...>::value_t;

5 template< template<class...> class Op, class... Args >
6 using
7 detected_t = typename detector<nonesuch, void, Op, Args...>::type;

7 Proposal

Using the above-described interfaces to the detection idiom, we have produced a library of concept-
like functions consistent with those described in Section 3 of [N3351]. We therefore believe that
the detection toolkit detailed in §6 above is a library solution that is fully compatibile with the
semantics of function concepts and variable concepts as set forth in Clause [dcl.spec.concept] of
[N4377].

We respectfully recommend that the Concepts Study Group, the Library Evolution Working
Group, and the Evolution Working Group jointly study the relationship of the proposed toolkit to
the Concepts Lite proposal [N4377] and come to a unified recommendation as to these proposals’
future direction. Until then, we propose this detection toolkit for WG21 standardization.

8 Examples

Here are two versions of a trait to detect copy-assignability. The first version is a direct analog of
the standard library trait, while the second additionally insists on the canonical reference result
type:

1 // archetypal alias for a copy assignment operation:
2 template< class T >
3 using
4 copy_assign_t = decltype( declval<T&>() = declval<T const &>() );

6 template< class T >
7 using
8 is_copy_assignable = is_detected< T, copy_assign_t >;

10 template< class T >



8 N4502: Proposing Standard Library Support for the C++ Detection Idiom, v2

11 using
12 is_canonical_copy_assignable = is_detected_exact< T&, T, copy_assign_t >;

The following example illustrates the idiom’s applicability to discriminate a member function
from a free function:

1 // archetypal alias for the result type of a valid member operator &:
2 template< class T >
3 using
4 addrof_mbr_t = decltype( declval<T const&>() . operator &() );

6 template< class T >
7 using
8 has_addressof = is_detected< T, addrof_mbr_t >;

The last example demonstrates a possible implementation of a part of pointer_traits, namely
that the difference_type member be an alias for ptrdiff_t unless the given type has its own
difference_type member:

1 // archetypal alias for a valid type member:
2 template< class T >
3 using
4 diff_t = typename T::difference_type;

6 template< class Ptr >
7 using
8 difference_type = detected_or_t< ptrdiff_t, diff_t, Ptr >;

9 Proposed wording7

9.1 Synopsis

Append the following specifications to [meta.type.synop] (20.10.2), above paragraph 1. (Note that,
although WG21 adopted void_t for the C++17 working paper, a TS may not by ISO rules refer
to a feature in a document that it has not yet officially published. As it is an integral part of
the detection idiom being proposed here, we therefore specify void_t here, in the experimental
namespace, as well.)

namespace std {
namespace experimental {
inline namespace fundamentals_v2 {

...
// 20.10.8, detection idiom:
template <class...> using void_t = void;

struct nonesuch {
nonesuch() = delete;
~nonesuch() = delete;
nonesuch(nonesuch const&) = delete;

7All proposed additions (there are no proposed deletions) are relative to the pre-Lenexa Working Draft [N4431]. Edito-
rial notes are displayed against a gray background.



N4502: Proposing Standard Library Support for the C++ Detection Idiom, v2 9

void operator=(nonesuch const&) = delete;
};

template <template<class...> class Op, class... Args>
using is_detected = see below;

template <template<class...> class Op, class... Args>
constexpr bool is_detected_v = is_detected<Op, Args...>::value;

template <template<class...> class Op, class... Args>
using detected_t = see below;

template <class Default, template<class...> class Op, class... Args>
using detected_or = see below;

template <class Default, template<class...> class Op, class... Args>
using detected_or_t = typename detected_or<Default, Op, Args...>::type;

template <class Expected, template<class...> class Op, class... Args>
using is_detected_exact = is_same<Expected, detected_t<Op, Args...>>;

template <class Expected, template<class...> class Op, class... Args>
constexpr bool is_detected_exact_v

= is_detected_exact<Expected, Op, Args...>::value;

template <class To, template<class...> class Op, class... Args>
using is_detected_convertible = is_convertible<detected_t<Op, Args...>, To>;

template <class To, template<class...> class Op, class... Args>
constexpr bool is_detected_convertible_v

= is_detected_convertible<To, Op, Args...>::value;

} } } // namespaces

9.2 New subclause

Insert the following as a new subclause after, and at the level of, [meta.trans].

20.10.8 Detection idiom [meta.detect]

template <class Default, class AlwaysVoid,
template<class...> class Op, class... Args>

struct DETECTOR { // exposition only
using value_t = false_type;
using type = Default;

};

template <class Default, template<class...> class Op, class... Args>
struct DETECTOR<Default, void_t<Op<Args...>>, Op, Args...> { // exposition only

using value_t = true_type;
using type = Op<Args...>;

};



10 N4502: Proposing Standard Library Support for the C++ Detection Idiom, v2

template <template<class...> class Op, class... Args>
using is_detected = typename DETECTOR<nonesuch, void, Op, Args...>::value_t;

template <template<class...> class Op, class... Args>
using detected_t = typename DETECTOR<nonesuch, void, Op, Args...>::type;

template <class Default, template<class...> class Op, class... Args>
using detected_or = DETECTOR<Default, void, Op, Args...>;

1 [Example:

// archetypal helper alias for a copy assignment operation:
template <class T>
using copy_assign_t = decltype(declval<T&>() = declval<T const &>());

// plausible implementation for the is_assignable type trait:
template <class T>
using is_copy_assignable = is_detected<T, copy_assign_t>;

// plausible implementation for an augmented is_assignable type trait
// that also checks the return type:
template <class T>
using is_canonical_copy_assignable = is_detected_exact<T&, T, copy_assign_t>;

— end example]

2 [Example:

// archetypal helper alias for a particular type member:
template <class T>
using diff_t = typename T::difference_type;

// alias the type member, if it exists, otherwise alias ptrdiff_t:
template <class Ptr>
using difference_type = detected_or_t<ptrdiff_t, diff_t, Ptr>;

— end example]

9.3 Feature-testing

For the purposes of SG10, we recommend a feature-testing macro named
__cpp_lib_experimental_detect.

10 Acknowledgments

Many thanks, for their thoughtful comments, to the readers of early drafts of this paper.

11 Bibliography

[N3351] B. Stroustrup and A. Sutton (eds.): “A Concept Design for the STL.” ISO/IEC JTC1/SC22/
WG21 document N3351 (post-Issaquah mailing), 2012-01-13. http://www.open-std.org/jtc1/
sc22/wg21/docs/papers/2012/n3351.pdf.

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2012/n3351.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2012/n3351.pdf


N4502: Proposing Standard Library Support for the C++ Detection Idiom, v2 11

[N3843] Walter E. Brown: “A SFINAE-Friendly std::common_type.” ISO/IEC JTC1/SC22/WG21 doc-
ument N3843 (pre-Issaquah mailing), 2014-01-01. http://www.open-std.org/jtc1/sc22/wg21/
docs/papers/2014/n3843.pdf.

[N3844] Walter E. Brown: “A SFINAE-Friendly std::iterator_traits.” ISO/IEC JTC1/SC22/WG21 doc-
ument N3844 (pre-Issaquah mailing), 2014-01-01. http://www.open-std.org/jtc1/sc22/wg21/
docs/papers/2014/n3844.pdf.

[N3909] Walter E. Brown: “A SFINAE-Friendly std::iterator_traits, v2.” ISO/IEC JTC1/SC22/WG21
document N3909 (post-Issaquah mailing), 2014-02-10. http://www.open-std.org/jtc1/sc22/
wg21/docs/papers/2014/n3909.pdf. A revision of [N3844].

[N3911] Walter E. Brown: “TransformationTrait Alias void_t.” ISO/IEC JTC1/SC22/WG21 document
N3911 (post-Issaquah mailing), 2014-02-23. http://www.open-std.org/jtc1/sc22/wg21/docs/
papers/2014/n3911.pdf.

[N4377] Andrew Sutton: “Programming Languages—C++ Extensions for Concepts.” ISO/IEC JTC1/SC22/
WG21 document N4377 (mid-Urbana/Lenexa mailing), 2015-02-09. http://www.open-std.org/
jtc1/sc22/wg21/docs/papers/2015/n4377.pdf.

[N4431] Richard Smith: “Working Draft, Standard for Programming Language C++” ISO/IEC JTC1/SC22/
WG21 document N4431 (pre-Lenexa mailing), 2015-04-10. http://www.open-std.org/jtc1/sc22/
wg21/docs/papers/2015/n4431.pdf.

12 Document history

Version Date Changes

1 2015-04-09 • Published as N4436.
2 2015-05-03 • Fixed a few small typos and thinkos. • Referred to new CWG issue

by number. • Improved toolkit’s presentation. • Added §8 (examples)
and §9 (proposed wording) sections. • Published as N4502.

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2014/n3843.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2014/n3843.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2014/n3844.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2014/n3844.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2014/n3909.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2014/n3909.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2014/n3911.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2014/n3911.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/n4377.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/n4377.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/n4431.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/n4431.pdf

	Title
	Contents
	Abstract
	1 Introduction
	2 The void_t alias
	3 The detection idiom
	4 Validity of the idiom
	5 A detection toolkit
	6 Implementing the toolkit
	7 Proposal
	8 Examples
	9 Proposed wording
	10 Acknowledgments
	11 Bibliography
	12 Document history

