Doc No: N4253

Date: 2014-11-21

Authors: Nathan Myers (nmyers12@bloomberg.net)
John Lakos (jlakos@bloomberg.net)
Alexei Zakharov (alexeiz@gmail.com)
Alexander Beels (abeels@bloomberg.net)

Language Support for Contract Validation (Revision 9)
Abstract

With enough care we can build libraries that are essentially defect-free, but even the
best library may fail catastrophically when misused. Contract validation, the practice
of checking functions' preconditions when and where they are called, helps discover
misuse in early testing, speeding development and making software more robust.
Extending support for contract validation to phases of development beyond early
testing would yield substantial further benefits.

We propose simple facilities to help library developers, application developers, and
language implementers cooperate toward our common goal of delivering efficient
programs without defects. Library developers get a common framework to express the
contracts offered by their library functions, without compromising performance or
interface simplicity. Application developers get the option to specify, without
reference to details of the libraries they use, how much run time to spend on
validation, and precisely what to do when a violation is detected. Implementations get
permission (and encouragement) to infer programmers' intentions directly from
contract assertions, and to use the inferences in all phases of translation.

We do not pretend to propose a comprehensive solution to the contract validation
problem. In particular, this proposal introduces no new syntax, nor anything
requiring new object-file support. Very deliberately, nothing here would interfere
with any future comprehensive solution, but it defines features that would be
necessary parts of any such solution.

This design derives from over a decade of production software development at
Bloomberg LP. A variant implementation is freely available today, along with copious
usage examples baked into production-grade library code, in Bloomberg’s open-
source distribution of the BDE library at https://github.com/bloomberg/bde.

N4253: Language Support for Contract Validation Page 1 of 17

mailto:abeels@bloomberg.net
mailto:nmyers12@bloomberg.net
https://github.com/bloomberg/bde

Contents

Language Support for Contract Validation (Revision 9)...........ccccoviiiiiiiiiiiiiiiininiininnenn. 1
1 Document HISTOTY......ouiuiuiiiiiiiiiiii e 3
2 INTFOAUCTION. ...ttt ettt et e et e e eaens 3
S BACKZTOUTIIA.eiiiiiiiii ettt ettt et e e e e e e enens 3
4 MOUTIVATIOTL. ..uuiii e 4
4.1 The Value of CheCKING.cuiuiuiiiiiiii et e e eenees 4
4.20verhead and Response to Failure..........coooviiiiiiiiiiiiiiiii e 4
4.3 Compiler HINTIEZ. ..c.vniniii ettt e e e eneaes 4
4.4 DeSIZN GOALS. . cuiiiiiiii et 5

I Te0) o T TP PP PP 5
6 EXISUNG PraCtiCe....c.uuiuiiniiiiiii ettt e e e e a e 5
7 Impact on the Standard........ ..o e 5
8 Summary of Proposal for Standardization.............cccceiuiiiiiiiiiiiiiiiii e 6
8.1 Validating Build MOAES........cuiuiiiniiiiiiii e et aees 6
8.2 Contract ASSEItIONS.cuiiuiiiiiiiiiiiii e 7
8.3 Violation Handling..........cceoiiiiiiiii e 7
8.4 Contract-Assertion Unit-Test FOrmsS.......cooiniiiii i 7

O EXAIMIPIES. . ettt ettt e eae 7
9.1 Check a contract precondition in safe and test, but not opt build modes.......... 7
9.2 Check a contract precondition only in safe build mode................c.cocoiiiiinan.. 7
9.3 Print a message and quit when a contract violation is detected......................... 8
9.4 Verify that a function correctly asserts its preconditions.............c.ccccveiiieiann.. 9
JEOJ D) ETe 6 115 o) o PPN 9
11 FOrmal WOTAIINIZ. .. cueuiniiiniiiii e et et ettt e e e e e e e e e enenens 10
11,1 DefINItIOMS. cceueeneiieiieii ettt et et aaes 10
11.2 Contract support [CONTIaACT].......cceiiiiiiiii e e 10
11.2.1 In general [contract.general].........cccoeiiiiiiiiiiiiiiiiii e 10
Header <experimental/contract_assert> SynopsSiS.....c.ccvvvuveuiiiiieiinininenenenenennnne. 10
11.2.2 Build-mode selection [contract. Modes].....ccovuiiiiiniiiiiiiiiiiiieiiieeanae, 11
11.2.3 Contract assertions [contract.assertions]..........ccoceeveviiiiiiiiinnnineninenan. 11
11.2.4 Contract violation information [contract.violation.info]........c.c.cceceveeeeea.... 13
11.2.5 Build-mode flag [contract.flag]...........ccoouiiiiiiiiiiiiiiii e 13
11.2.6 Contract-assertion unit-test forms [contract.tests]......cccoovvviiviiiiiiinnin. 14
11.2.7 Contract violation handler functions [contract.handler].......................... 15

12 RETEIEIICES. .. cuuiitiii ittt ettt ettt e et et e e e e eaa e e eaaes 17

N4253: Language Support for Contract Validation Page 2 of 17

1 Document History

This proposal is based on N4135, based on N4075, based on N3997, based on
N3963.

The changes since N4135 are simplification: eliminating the scoped violation handler,
and decoupling the contract assertion and contract assertion unit test forms from the
header declaring the violation handling apparatus. It retains N4135's non-
dependence on preprocessor macros, and lack of ODR problems, but delimits the
problems it is intended to address, and not to address.

2 Introduction

Any library may fail catastrophically if misused. We make our libraries as easy to use
and as hard to misuse as we can, and we catch misuse at compile time wherever we
can. Where we cannot, we are left to depend on runtime contract validation: actually
checking checkable preconditions on function entry. Contractual methods, including
runtime validation, have already delivered impressive gains in quality, cost, and
productivity, but we have found that they can do much more.

This proposal offers library developers a concise notation to express contract
preconditions that can be validated at runtime, and offers application developers
simple means to control the runtime consequences of validation, thereby extending
its benefits well beyond previous bounds, and resolving fundamental conflicts
between library performance, interface simplicity, and safety.

We propose further to empower implementations to use inferences from the new
annotations in all phases of translation, for better compile-time error detection and
smaller and faster generated code.

This proposal does not pretend to specify a complete solution to the contract
validation problem. In particular, it omits features acknowledged as practical
necessities for optimal support of static analysis tools. It does identify a minimal
subset of features immediately useful for the purposes it does address, that would
remain upward-compatible with any complete solution eventually proposed.

3 Background

std::vector<T>::push_back may be called any time, on any vector instance, with no
risk to your program state. This member function offers a wide contract: No
combination of arguments and well-defined prior state can evoke undefined behavior.
Another member, pop_back, offers a narrow contract: Its effect is defined only if its
precondition—that the vector instance not be empty—is satisfied.

A program that may violate such a precondition harbors a defect. Violations can often
be caught by runtime checking, but such checking always costs extra code space and
run time. Such costs are often small, but can be very large. Catching a violation
when it happens might be worth any expense; yet, where there is no defect, every

N4253: Language Support for Contract Validation Page 3 of 17

cycle spent on checking is wasted. This conflict is fundamental, and cannot be
resolved within a library component like std: : vector<>.

It is precisely the undefined effect of a violation that gives us latitude to avoid the
expense of checking, or detect the violation and act on it. Tools and methods to
specify requirements and to instrument functions in this way have turned out to be
powerful aids to meeting core software engineering goals.

4 Motivation

4.1 The Value of Checking

Library developers naturally prefer to check for bad usage where they can—catching
users' mistakes early prevents both bugs and spurious bug reports—but the
consequences on performance and interface design simplicity often forbid it. Whereas
library development costs can often be amortized over many downstream uses,
applications typically support only their own development, and application-level
testing is notoriously limited. Libraries instrumented to validate usage contracts
amplify the effectiveness of whatever testing is done, anywhere a defect can produce
a detectably bad library call.

4.2 Overhead and Response to Failure

Consider an interactive editor, close to release: The developer needs customers to use
the program for real work, to flush out bugs. If runtime validation is enabled in the
libraries the program uses, and upon detecting a violation the program just aborts,
then customers, who would risk losing hours of valuable work, sensibly refuse to use
it, and the developer learns nothing. Disable checking, and the program crashes
anyway, a little later—or, worse, silently corrupts the customer’s documents. Let the
program instead log the violation, save the customer's data, and restart, and the
libraries' runtime validation has helped even in preparations for release.

In different circumstances the same program, when it detects a violation, might
better freeze and wait for a debugger to be attached, or abort immediately so a test
script can start the next test. Similarly, during early development, it would best
perform every check possible; in beta testing, do only sanity checks; and in
performance tuning, avoid all checking. These are not choices that those who write
the libraries that the program depends on can reasonably be expected to address in
detail.

4.3 Compiler Hinting

Assertions' usefulness is not limited to testing. When compilers may infer
programmers' intentions and the bounds on a program's runtime state space directly
from contract-validation expressions, the benefits may be extended both backward to
more thorough compile-time error checking, and forward to smaller and faster
released code.

N4253: Language Support for Contract Validation Page 4 of 17

In particular, if a compiler can determine that a call to an inline or template function
passes values that would violate an expressed precondition, we would like it to report
that as an error. Similarly, if the standard allows a violated assertion to be
interpreted to imply that the program's runtime state is already undefined, the
compiler can skip generating code that could be reached only in such a case. Code
elision can propagate back up the call chain; any path certain to reach the elided
code can also be omitted. Eliding dead code reduces instruction-cache pressure,
speeding execution of the live code that remains.

As noted, this proposal does not pretend to a comprehensive solution for static error
checking and optimization. Instead, it offers the closest approach to such a solution
that is possible without introducing new syntax and new object-file annotations, and
without interfering with any more complete solution.

4.4 Design Goals

In short: Library authors need to easily code contract-validation checks, concisely
express their cost relative to the useful work a function does, and verify that the
checking they do is itself correct.

Program authors (i.e., of main) need to be able to choose, when building, how much
contract-validation overhead to accept, and be able to specify the precise action to
take when a violation occurs.

Implementations need the latitude to use the implications of contract-validation
assertions, while compiling, to identify errors and to guide code generation.

It is very deliberately not a goal of this design to enable features that would require
new syntax, but it carefully avoids interfering any such features that may be added
later.

5 Scope

This facility is intended for ubiquitous use across all library and application software.

6 Existing Practice

Contractual specifications with runtime enforcement are used in virtually all
computer languages. C++ developers will be familiar with <cassert>.

For more than a decade, Bloomberg’s library infrastructure has successfully
employed the strategy advocated here, across a wide range of applications and
libraries. Copious usage examples are available for public scrutiny [1].

7 Impact on the Standard

This proposal requires, for a minimal conforming implementation, no new core
language features. It introduces no new syntax. Adopting this proposal has no direct
effect on the rest of the standard, although once it is accepted, library implementers
may be asked by customers to instrument the standard library. Similarly, compiler

N4253: Language Support for Contract Validation Page 5 of 17

implementers would be invited to use contract assertions to help improve static error
detection and code generation.

We do not propose to change or integrate with logic error or <cassert>. Users may
choose to install a contract violation handler that throws logic error where they
deem appropriate.

8 Summary of Proposal for Standardization
We propose:

¢ validating build modes to give application developers control over how much
contract validation is built into their programs, and over how to treat contract
violations at compile time and at run time

e corresponding contract assertions for use in library and application code to
express preconditions, and to detect and report violations

e a common, configurable contract-violation handler to give application developers
precise control over what happens when a violation is detected

e contract-assertion unit-test forms for use in test programs to verify that contract
assertions are performing as intended

8.1 Validating Build Modes

Application developers need to control how much of a program's run time is spent on
contract validation. Build modes let them select, at compile time, which of the
contract-validation checks coded into functions are run, and which are skipped.

* Programs built in “safe” mode might spend more time checking preconditions
than doing useful work; all checks are enabled.

¢ Programs built in “test” mode skip checks that would slow them very
noticeably.

* Programs built in “opt” mode skip all but the least expensive and most critical
sanity checks.

¢ Programs built without validation have all code to perform checking omitted.

Regardless of the build mode used, the compiler is explicitly permitted to use any
guidance it can infer from contract assertions it sees to do better error checking and
code generation, even (indeed, especially) when no checking code ends up in the
compiled program.

This proposal does not prescribe how programs composed from translation units
built in different build modes behave. Implementers will meet the practical needs of
their customers just as they do now for units built with varying optimization levels,
calling conventions, and styles of debug annotations. Implicitly, a program that
violates no contract assertions and evokes no undefined behavior will run identically
regardless of the build mode (or, where supported, build modes) used.

N4253: Language Support for Contract Validation Page 6 of 17

8.2 Contract Assertions

We introduce three source code forms called contract assertions, one for each
validating build mode above. Each expresses a contract precondition, analogously to
the traditional assert macro. Library programmers will write disproportionately
costly checks using the “safe” mode contract assertion, moderately expensive checks
using the “test” assertion, and very inexpensive or critical checks using the “opt”
assertion.

Thus, besides catching misuse, contract assertions implicitly record the
programmer's assessment of their runtime cost and importance relative to the useful
work the function performs. Furthermore, the contract assertions provide to the
compiler extra information that it may use to detect more usage errors and produce
faster, more compact object code.

8.3 Violation Handling

Application developers need precise control over what happens when a library detects
a contract violation. In this proposal, the response is to call a contract violation
handler, a function the program author (i.e., of main) may provide, and which may do
anything except return to its caller. Note that details of the argument passed to the
handler may be changed to integrate with other proposals accepted.

8.4 Contract-Assertion Unit-Test Forms

Runtime contract-validation checks are code, and like all code they need to be tested.
This proposal includes contract-assertion unit-test forms that library developers may
place in their test programs to help verify that the validation checks in their libraries
perform as intended.

9 Examples

9.1 Check a contract precondition in safe and test, but not opt build modes

A strlen-like function, c¢_string_length, has a precondition that string must not be
null. The form contract assert checks the precondition when the program is built
with “test” and “safe”, but not “opt” build modes:

#include <contract assert>
#include <cstddef>

namespace 1lib {
std::size t c_string length(char const* string) // 0O(n)
{

contract_assert(string != nullptr); // 0O(1)

9.2 Check a contract precondition only in safe build mode

The function below is specified to run in O(log n) time. To validate its requirement for
a sorted table would add O(n) time, violating the specification. Partial, incremental

N4253: Language Support for Contract Validation Page 7 of 17

checking within the loop is almost as effective, and takes, cumulatively, only O(log n)
time, yet it still nearly doubles the run time. By using contract assert safe, the
heavy runtime cost is incurred only in the “safe” build mode:

#include <contract assert>
#include <algorithm>
#include <cstddef>

bool binary search(int const* table, std::size t size, int target) // O(log n)

{

contract_assert(table != nullptr) // 0O(1)
// contract_assert_safe(std::is_sorted(table, table + size)); O(n): no
while (size != 0) {

std::size t step = size / 2;
int candidate = table[step];
contract_assert_safe (table[0] <= candidate);
contract_assert_safe (candidate <= table[size - 1)); // 0(log n)
if (candidate < target) {
table += step + 1;

size -= step + 1;

} else if (target < candidate) {
size = step;

} else

return true;

}

return false;

9.3 Print a message and quit when a contract violation is detected

Here, a library function, lib: :unimplemented function, unconditionally asserts a
contract violation. This program installs a contract violation handler function that
throws its argument. When the program subsequently calls the function, the
exception is caught, and a diagnostic message emitted, before it exits normally.

#include <contract assert>
#include <iostream>

int unimplemented function()

{

}

contract_assert_opt(false); // contract forbids calling this

int main{()

{

N4253: Language Support for Contract Validation

std::set_contract violation_handler (
[] (std::contract violation info consté& info) {
std::cerr << "Detected a contract violation at ™
<< info.filename << “:” << info.line number << “.\n";
std: :abort ();
)

lib: :unimplemented function(); // boom

Page 8 of 17

9.4 Verify that a function correctly asserts its preconditions

The contract-assertion unit-test forms verify, concisely, that contract assertions
correctly detect violations:
#include <contract assert>

#include <iostream>
#include “1lib”

int main()
{
std::cout << (contract assert pass(lib::c_string length("a string")) ?
"Correctly detects no contract violation.\n" :
"Incorrectly reports a contract violation.\n")
std::cout << (contract_assert fail(lib::c_string length(nullptr)) ?
"Successfully detects a contract violation.\n" :
"Fails to detect a contract violation.\n");

}

10 Discussion

For any organization that develops most of its code in-house, many of the benefits
promised in this proposal may be had by simply copying the design; a minimal
implementation is nearly trivial. If independent library authors were to do the same,
their users would face a forest of handler mechanisms, each slightly different from
the other. With a single, common mechanism, instrumenting a library for contract
validation adds value without adding to application developers' burdens.

The benefits of a minimal implementation end there, but contract assertions can do
much more than just aid testing; they express, unambiguously, the intent of the
programmer. An implementation permitted by the standard to treat the contract
assertions as definitive can use inferences from them to improve semantic analysis,
error detection, and code generation in all build modes, particularly those in which
the check-expressions do not themselves end up in object code.

Under this proposal, a library author who wishes to expose validation expressions to
callers would code them inline (perhaps followed by delegation to a private helper
function) in a header. Additional validation might be added, removed, or changed in
private library code without requiring downstream users to recompile. Users of
libraries that are not instrumented (yet) may code validation at call sites. In an
apparently-competing proposal, contract requirements would instead be expressed
using new syntax in function declarations, making them necessarily part of the
public interface. Consider the incremental checking seen in example 9.2 above: It
illustrates a use case that the declarative approach alone would not support well.

Notably, a declarative mechanism can, without compromise, be added as a pure
extension to what is proposed here, re-using its violation-handling machinery. This
much simpler proposal could be approved, implemented and in use while details of
the more ambitious design are still being worked out, and would remain useful
thereafter.

N4253: Language Support for Contract Validation Page 9 of 17

11 Formal Wording

11.1 Definitions
Add three new definitions to clause 17.3 [definitions]:
17.3.X [defns.contract]

contract

A contract is a behavioral specification, including parameters, requirements, prior
state, and observable behavior, for a function, macro, or template.

17.3.Y [defns.contract.narrow]

narrow contract

A narrow contract is a contract that specifies behavior for, and only for, a precisely
and completely identified proper subset of all possible combinations of arguments
and prior state that are consistent with the language definition. [Note: “Consistent
with...” excludes from the set otherwise invalid programs, such as those passing
misaligned pointers or already-destroyed objects, “null references” (but not null
pointers), and all cases in which program's behavior is already undefined. — end note
] Outside said subset, the behavior is entirely unconstrained—possibly, but not
necessarily resulting in undefined behavior.

17.3.Z [defns.contract.wide]
wide contract

A wide contract is a contract that specifies well-defined behavior for all possible
combinations of arguments and prior program states permitted by the language.

11.2 Contract support [contract]

11.2.1 In general [contract.general]

The header <experimental/contract assert> declares functions and types to
manage contract violation handlers.

The following subclauses describe the contract-assertion forms, build-mode flags,
contract violation handlers, contract-assertion unit-test forms, and the names
defined in <experimental/contract assert>.

Header <experimental/contract_assert> synopsis

namespace std {
inline namespace experimental ({
inline namespace fundamentals v2 {

// l[contract.assertions] types
enum class contract assertion mode { opt, test, safe };

// [contract.violation.info] struct contract violation info

N4253: Language Support for Contract Validation Page 10 of 17

struct contract violation info;

// l[contract.handler.types] handler types
using contract violation handler = void (*) (contract violation info consté& info);

// [contract.handler.manipulation] handler manipulation
contract violation handler
set_contract violation handler (contract violation handler handler) noexcept;

contract violation handler
get contract violation_handler () noexcept;

// [contract.handler.invocation] handler invocation
[[noreturn]] void
handle_contract violation(contract violation info consté& info);

}Y} // namespaces

11.2.2 Build-mode selection [contract.modes]

At any point in a translation unit, one of four build modes described in Table 1 is in
effect. Implementations shall provide a means, as part of initiating translation on
each translation unit and outside of the program text, that any one of the build
modes listed in Table 1 may be selected, and which is in effect throughout the
translation unit.

Table 1

Build Mode Description

(none) No contract preconditions are checked

“opt” Only the least expensive contract preconditions are checked
“test” Up to moderately expensive contract conditions are checked
“safe” All expressed contract conditions are checked

Each successive build mode listed in Table 1 is said to be stronger than the
preceding build mode or modes. The final three are called validating build modes.

If a build mode was not selected at translation initiation, then an implementation-
specified choice of one of the four build modes is in effect. [Note: Implementations
are encouraged to select the “test” mode by default, by analogy to <cassert> and
NDEBUG. — end note |

11.2.3 Contract assertions [contract.assertions]

Three contract assertion forms are defined:

contract assert opt (check expression)
contract assert test(check expression)
contract assert safe(check expression)

N4253: Language Support for Contract Validation Page 11 of 17

and one alias:

contract assert (check expression)

The alias is an abbreviation for contract assert test.

Table 2
Contract Assertions Build Mode Mode Value
contract assert opt (check expression) “opt” opt
contract assert test (check expression) “test” test
contract assert safe(check expression) “gafe” safe

Each contract assertion form corresponds to a validating build mode, and to a mode
value of the enumeration contract assertion mode, as defined in Table 2. A contract
assertion is active only if its corresponding build mode, or a stronger build mode, is
in effect at the point in the translation unit where the assertion appears.

A contract assertion is a void expression, treated syntactically as identical to a
function call with one function argument designated here as check expression. The
check expression shall be an expression convertible to bool in the context where the
contract assertion appears. When a contract assertion is evaluated, its effect is
determined as follows:

— If the contract assertion is not active, then if evaluating bool (check-expression)

in the context where the contract assertion appears would yield false, or such
evaluation would not yield a value, then the effect of evaluating the contract assertion
itself is undefined. [Note: Implementations are encouraged to use the implications of
contract assertion check-expressions to help analyze, diagnose, and optimize
programs, and to report predictable side effects of evaluation as errors. — end note]

— Otherwise, if the contract assertion is active, then the effect of evaluating it is
identically that of evaluating bool (check-expression) in the context where the
contract assertion appears, except that (1) it is unspecified which, if any, side effects
[intro.execution] that would occur during said evaluation do, in fact, occur; and (2) if
said evaluation would yield false, a contract violation is detected
[contract.handler.violation], and handle contract violation is called immediately,
passing as its argument a contract violation info object initialized as specified in
Table 3. [Note: Implementations are encouraged to warn of side effects of evaluation
detectable at translation time. — end note |

— Otherwise, the contract assertion has no effect.
Table 3

Member Value

N4253: Language Support for Contract Validation Page 12 of 17

mode the mode value that corresponds to the contract assertion

expression_text 'a MBCS containing the phase 3 [lex.phases] source text of the
argument to the contract assertion, with white space treated as
described in [cpp.stringize]

filename the value that rILE would have at the position in the
translation unit where the contract assertion appears

line_number the value that 1LINE would have at the position in the
translation unit where the contract assertion appears

[Note: A constructor may avoid violating preconditions of subobject constructors by
evaluating their arguments only after enforcing its own preconditions, e.g. in a
comma expression. More elaborate validation may be delegated to the constructor of
an initial empty base class. — end note |

11.2.4 Contract violation information [contract.violation.info]

struct contract violation info
{
contract assert mode mode;
char const* expression text;
char const* filename;
unsigned long line number;
VA
bi
The argument to handle contract violation. The implementation, and future
standards, may define and initialize additional members.

11.2.5 Build-mode flag [contract.flag]

A build-mode flag is a preprocessor symbol that is defined where its corresponding
build mode, as defined in Table 4, or any stronger build mode, is in effect. The effect
of #define or #undef applied to any build-mode flag is undefined. Where a build-
mode flag is defined, its value is 1. [Note: These flags might be used to stub out a
helper function that is used only in check-expressions, or to gate unit-test cases. —
end note |

N4253: Language Support for Contract Validation Page 13 of 17

Table 4

Validating Build Mode Build-Mode Flag

“opt” contract assert build mode opt
“test” contract assert build mode test
“safe” contract assert build mode safe
11.2.6 Contract-assertion unit-test forms [contract.tests]

Two kinds of contract-assertion unit-test form are defined: contract-assert-fail, and
contract-assert-pass.

A contract-assertion unit-test form is a bool expression. It is treated syntactically as
a function call with one function argument. Regardless of the build mode in effect,
the argument shall be a valid expression in the context where the contract-assertion
unit-test form appears.

When a contract-assertion unit-test form is evaluated, then, if and only if it is active,
its argument expression is evaluated exactly once in the context where the contract-
assertion unit-test form appears, in a manner such that if a contract violation would
otherwise be detected during the evaluation, the contract violation is instead
intercepted, and an implementation-specific exception is thrown, which, if it escapes
the argument expression, is caught and absorbed. [Note: Interception of contract
violations supersedes any contract violation handler that is installed by the program
before or during evaluation of the test-expression. — end note |

There are three contract-assert-fail unit-test forms:

contract assert fail opt(test expression)
contract assert fail test(test expression)
contract assert fail safe(test expression)

and one alias:

contract assert fail(test expression)
The alias provides an abbreviation for contract assert fail test.

Each contract-assert-fail unit-test form corresponds to a validating build mode and
mode value as defined in Table 5. A contract-assert-fail unit-test form is active if and
only if its corresponding validating build mode, or a stronger build mode, is in effect.
If the contract-assertion unit-test form is not active, or if, in evaluating

test expression, (1) a contract violation is intercepted, (2) the mode member that
would have been passed to handle contract violation in consequence of detecting
this contract violation corresponds to the contract-assert-fail unit-test form's
validating build mode, and (3) the exception thrown as a consequence of the
interception escapes the argument expression, then the contract-assert-fail unit-test

N4253: Language Support for Contract Validation Page 14 of 17

form is true; otherwise, it is false. [Note: These forms do not prevent any undefined
behavior that would result from such evaluation. — end note |

Table 5
Validating
Build Mode
Contract-Assert-Fail Unit-Test Forms Mode Value
contract assert fail opt(test expression) “opt” opt
contract assert fail test(test expression) “test” test
contract assert fail safe(test expression) “safe” safe

In addition, one contract-assert-pass unit-test form is defined:

contract assert pass(test expression)

It is active in all build modes. If, in evaluating test expression, a contract violation
is intercepted, then the contract-assert-pass unit-test form is false; otherwise, true.

11.2.7 Contract violation handler functions [contract.handler]

11.2.7.1 Contract violation handler types [contract.handler.types]

using contract violation handler = void (*) (contract violation info consté& info);

The type of a contract violation handler function to be called when a contract
violation is detected.

11.2.7.2 [Modifying Clause 17] Handler functions
[handler.functions]

1 The C++ Library Fundamentals Technical Specification provides default
versions of the following handler function types (Clause 18
[language.support]):

— unexpected handler
— terminate handler

— contract_violation_ handler

2 A C++ program may install different handler functions during execution by
supplying a pointer to a function defined in the program or the library as an
argument to (respectively):

— set new handler
— set unexpected
— set terminate

— set_contract_violation_handler

N4253: Language Support for Contract Validation Page 15 of 17

3 A C++ program can get the pointer to a current handler function by calling one
of the following functions (respectively):

— get new handler
— get unexpected
— get terminate

— get_contract violation handler

11.2.7.3 Contract violation handler manipulation

[contract.handler.manipulation]
contract violation handler
set_contract violation_handler (contract violation handler handler) noexcept;

Remark: The function indicated by handler shall not return normally to the
caller, nor itself detect a contract violation. [Note: It may throw an exception.
— end note |

Effects: Establishes its argument as the current contract-violation handler.
Passing a null pointer value re-establishes the default version of the contract
violation handler.

Returns: The value passed to the most recent previous call, or the default
handler the first time that set contract violation handler is called.

contract violation handler
get contract violation_handler () noexcept;

Returns: The value passed as the argument to the most recent call to the
function set contract violation or, if that function has not yet been called,
the default contract-violation handler. [Note: If the result is null, it indicates
the default handler. — end note |

11.2.7.4 Contract violation handler invocation
[contract.handler.invocation]
[[noreturn]] void
handle contract violation(contract violation info const& info);
Remark: Called immediately by the implementation when any contract
assertion detects a contract violation. [Note: It may also be called directly by a
program. — end note |

Effects: Calls the the currently established contract-violation handler, or the
default contract-violation handler if set contract violation handler has not
yet been called.

Default behavior: The implementation’s default contract-violation handler calls
std: :abort ().

N4253: Language Support for Contract Validation Page 16 of 17

12 References

[1] The Bloomberg BDE Library open source distribution,
https://github.com/bloomberg/bde

N4253: Language Support for Contract Validation Page 17 of 17

https://github.com/bloomberg/bde

	Language Support for Contract Validation (Revision 9)
	1 Document History
	2 Introduction
	3 Background
	4 Motivation
	4.1 The Value of Checking
	4.2 Overhead and Response to Failure
	4.3 Compiler Hinting
	4.4 Design Goals

	5 Scope
	6 Existing Practice
	7 Impact on the Standard
	8 Summary of Proposal for Standardization
	8.1 Validating Build Modes
	8.2 Contract Assertions
	8.3 Violation Handling
	8.4 Contract-Assertion Unit-Test Forms

	9 Examples
	9.1 Check a contract precondition in safe and test, but not opt build modes
	9.2 Check a contract precondition only in safe build mode
	9.3 Print a message and quit when a contract violation is detected
	9.4 Verify that a function correctly asserts its preconditions

	10 Discussion
	11 Formal Wording
	11.1 Definitions
	11.2 Contract support [contract]
	11.2.1 In general [contract.general]
	Header <experimental/contract_assert> synopsis
	11.2.2 Build-mode selection [contract.modes]
	11.2.3 Contract assertions [contract.assertions]
	11.2.4 Contract violation information [contract.violation.info]
	11.2.5 Build-mode flag [contract.flag]
	11.2.6 Contract-assertion unit-test forms [contract.tests]
	11.2.7 Contract violation handler functions [contract.handler]
	11.2.7.1 Contract violation handler types [contract.handler.types]
	11.2.7.2 [Modifying Clause 17] Handler functions [handler.functions]
	11.2.7.3 Contract violation handler manipulation [contract.handler.manipulation]
	11.2.7.4 Contract violation handler invocation [contract.handler.invocation]

	12 References

