Proposal for classes with runtime size

L. Deniau and A. Naumann
CERN, Geneva, Switzerland

Date: 2014-10-01

Document number: N4188
E-mail: laurent.deniau@cern.ch

1 Introduction

C99 introduced the concept of Flexible Array Member as a possible definition
for the last field of a structure to allow data structures with runtime size.
The motivation was to formalize a common practice in C used to emulated
this missing feature. The principle was to define an array of a single element
at the end of a structure, and to dynamically allocate extra space at runtime
to store more elements while ignoring the undefined behavior.

The purpose of this proposal is to extend the concept of Flexible Array
Member to C++ classes with the same kind of motivation, focusing mainly
on the simplicity of the implementation [1]. The proposal remains intention-
ally limited to the support of Flexible Array Member, and excludes the topic
of Variable Length Array considered as more ambitious [2]. The objective is
to validate this common practice in C++ with better support from the type
system and the compiler. The author is aware that despite of its apparent
simplicity, this proposal implies significant work on compilers implementa-
tion.

2 Motivation

In many cases, if not all, the C++ type system has to be bypassed when a
class wants to handle its own dynamic memory storage efficiently using raw
allocation, placement new and reinterpret_cast<>. The motivation is to
avoid doubled dynamic allocations, one for the object of the implementation
class and one for the data storage itself. Implementations of basic containers



holding trivial POD objects in the STL use such hack for the same reason.
One can find comments like the following in the implementation of the class
basic_string distributed with GNU GCC 4.9:

[...]

This approach has the enormous advantage that a string object
requires only one allocation. All the ugliness is confined in
[...]

string::_M_rep(); and the allocation function which gets a
block of raw bytes and with room enough and constructs a _Rep
object at the front.

A class wanting to efficiently manage its own data storage will delegate the im-
plementation details to another low-level class. A possible definition of the data
members of such class would look like:

template <typename T>
struct memblock {

int refcount; // ownership

int origin; // provenance

size_t size; // used memory

size_t capacity; // allocated memory

T xdata; // pointer to storage

T _datal[1]; // extra storage beyond [1]

};

The capacity is related to the amount of memory allocated, giving the possibility
to request more memory than size and avoid excessive reallocations each time
further elements are added to data. The refcount member is used for various
purposes like sharing read-only storage and applying copy-on-write optimization.
The origin tag keep track of the provenance and the nature of the storage, and
used by the destructor. The data and _data members may or may not be present
in the definition (i.e. anonymous array) depending on the intent of the surrounding
class (e.g. basic_string). If both are present, the member data usually points to
the extra storage _data or to an external storage provided and tracked by origin.

One can observe that all these data members are only useful to support some
flexibility and various optimizations except size, which is essential to record the
number of elements currently stored and write safe code.

3 Proposal

We propose the following simple definition as an example of a templated class with
runtime size:

template <typename T>



struct A {
A(size_t n) : _n{n} {}
const size_t _n; // runtime size specifier
T _al_n]; // runtime sized array

};

where language requirements are specified in the following section.

3.1 Properties

P.1 The runtime sized array (i.e. _a) must be the last data member. For any
other aspects, it should be treated as an array, that is decltype (A<T>::_a)
is T[].

P.2 The runtime size specifier of the runtime sized array (i.e. _n) must be a
const-qualified integral type' and the first non-static data member, i.e. its
value cannot depend on any non-static member.

P.3 The sizeof operator applied to a class must return its compile-time size,
i.e. sizeof (AKT>) == offsetof (A<T>,_a).

P.4 The sizeof operator applied to an object must return its runtime size,
i.e. sizeof A<KT>() == sizeof (A<KT>) + _n * sizeof (T).

The implementation must ensure that the runtime size expression is evaluated once
and the runtime size specifier is initialized first. 1t is const-qualified to prevent any
resize of the object during its lifetime. A strong point of our proposal is that the
compiler always knows the place of _n and _a inside an object of type A<T>, and
their respective positions follow the established data members initialization order.

3.2 Limitations

The following limitations are mandatory to limit the added complexity to the
implementation for the support of the proposal. We believe that they do not
reduce the usefulness of the proposal.

L.1 Runtime sized class cannot have a runtime sized object as a data member.
L.2 Runtime sized class cannot have virtual base class.

L.3 Runtime sized class must be directly or indirectly the right-most base class
of a derived class (i.e. multiple inheritance).

L.4 Runtime sized objects cannot be elements of an array.

IThe implementation should implicitly convert the type to const size_t.



L.5 Runtime sized objects can only have dynamic storage duration.?

In the proposal extensions, we examine the added complexity required to remove
some of these limitations.

3.3 Construction

The construction of an object with runtime size is the difficult part of our proposal,
as it requires to move the evaluation of the runtime size expressions outside the
constructors right after the arguments evaluation and before the storage allocation.

The conceptual steps to construct an object of a fixed-size class BKT> are as—if:
F.1 Allocate correctly aligned sizeof (B<T>) bytes.
F.2 Call the placement new on the memory allocated.

In this sequence, the arguments of the constructor can be evaluated anywhere
before the call of the placement new in F.2.

The conceptual steps to construct an object of a runtime sized class A<T> are as—if:
R.1 Compute the values of all the constructor arguments.

R.2 Compute the value of the runtime size expression and store it in a temporary
_tmp_n.

R.3 If __tmp_n is negative, throw std: :bad_array_length (or equivalent), fol-
lowing the behavior of operator new[] described in [3] §5.3.4.

R.4 Allocate correctly aligned sizeof (A<T>) +
following P.4.

_tmp_n * sizeof(T) bytes,

R.5 Call the placement new on the allocated memory, replacing the expression for
the initialization of the runtime size specifier by the value of the temporary,
that is _n{expr} becomes _n{__tmp_n} in the initializer list.

The construction of a runtime sized object needs to calculate once the expression
involved in the initialization of its runtime size specifier in R.2, that corresponds
to the selected constructor in R.5.

If __tmp_n is zero, R.4 is equivalent to F.1, which ensures backward compati-
bility with fixed-size class. If __tmp_n is negative before its implicit conversion to
size_t, the construction throw an exception as for operator new([]. If __tmp_n
is positive, the initialization of the runtime sized array _a should work as—if it

2This limitation could be relaxed to include automatic storage duration if the C99
Variable Length Array are supported by C++ in some future.



were an array of type and size T[__tmp_n] (i.e. P.1 & R.5), with the same pointer
arithmetic and requirements as for the type T[].

If the constructors of a runtime sized class are not inlined, the implementation
is free to generate hidden static member functions to calculate the value of the
expressions involved in the initialization of the runtime size specifier, and to pass
this value as a hidden argument to the constructors.

4 Effects on existing language features

4.1 Construction and destruction

No problem is foreseen for default construction compared to non-default construc-
tion as described in 3.3, nor for the destruction. In particular, runtime size specifier
can have default in-class initializer as other non-static data members; and runtime
size array can have extra dimensions with constant sizes as specified in [3] §5.3.4-6,
that is T _a[_n] [56] would be well-formed but not T _a[5] [_n].

4.2 Copy construction and move construction

No problem is foreseen for copy construction and move construction. For the
move construction, if the runtime size specifiers do not have equal values, a std::
length_error exception should be thrown [3] §19.2.4.

4.3 Copy assignment and move assignment

No problem is foreseen except the concern reported for move construction.

4.4 auto, decltype and typeid

No problem is foreseen as soon as they fulfils P.1. The runtime size specifier of a
runtime sized class is not part of its type (i.e. it is not a template argument) and
the runtime size array has a static type (i.e. it cannot be a glvalue of polymorphic

type).

4.5 sizeof and offsetof

The operator sizeof is already treated in 3.1. No problem is foreseen for the
macro offsetof because of P.1 and L.2.

4.6 Storage duration

No problem is foreseen for dynamic storage duration. Other storage durations are
not allowed by L.5.



4.7 Exceptions and stack unwinding

No problem is foreseen because of L.5.

4.8 Single inheritance

No problem is foreseen as soon as it fulfils L.2.

4.9 Multiple inheritance

No problem is foreseen as soon as it fulfils L.3.

4.10 Virtual inheritance

No problem is foreseen as soon as it fulfils L.3.

4.11 Templates

No problem is foreseen as soon as it fulfils L.1.

5 Applications

5.1 String, Vector, etc...

Update memblock to use runtime sized array (the proposal) for the underlying
implementation class.

5.2 Emulation of multiple Flexible Array Members

The main problem comes from alignment constraints of element types. The fol-
lowing example assumes that doubles have larger alignment constraint than TA
and TB, but this can be checked at compile-time:

#include <iostream>

template <typename TA, typename TB>

struct AB {

AB(size_t na, size_t nb)

_n{n_size(na,nb)}, _na{na}, _nb{nb},
_pa{reinterpret_cast <TA*>(_a)},
_pb{reinterpret_cast<TB*>(_a+na_size(na))} {}

// ... copy & move ctors and assignment ommitted
const size_t _n, _na, _nb;
TA *_pa; // points to _a



TB *_pb; // points within _a

double _al[_n]; // runtime sized array
private:

enum { _da = std::alignment_of <double>::value,
_dpa = std::alignment_of <TA >::value,

_dpb = std::alignment_of <TB >::value 7};

static_assert (_dpa<=_da && _dpb<=_da,
"unsupported alignment constraint");

static size_t na_size(size_t na) {

return nax*sizeof (TA)/sizeof (double)+1; %}
static size_t nb_size(size_t nb) {

return nbx*sizeof (TB)/sizeof (double)+1; }
static size_t n_size(size_t na, size_t nb) {
return na_size(na)+nb_size(nb); }

};

int main() {
AB<char ,int> ab(10,20); // (10*1/8+1) +(20%4/8+1)=2+11=13

constexpr size_t AB_sizeof = sizeof (AB<char,int>);
std::cout << " _n =" << ab._n << "\n"; // _n =13
std::cout << " _na=" << ab._na << "\n"; // _na=10
std::cout << " _nb=" << ab._nb << "\n"; // _nb=20
std::cout << "ab =" << sizeof ab << "\n'"; // ab =144
std::cout << "AB =" << AB_sizeof << "\n"; // AB=40
}

6 Possible extensions to the proposal

6.1 Recursive runtime sized types

If the type T is itself a runtime sized class (e.g. A<A<int>>), meaning somehow
that L.1 and L.4 are relaxed, then the expression sizeof (T) has to be replaced
by sizeof T(), which must be evaluated (recursively) using a modified version of
P.4:

sizeof (T) + (Ln>0 && _a[0]._n>0 ? _al[0]._n*sizeof _al[0]._al[0] : 0)

The idea is that all elements of the runtime size array _a must have the same size,
hence peeking the runtime size specifier of the first element is enough.



In order to avoid recursive evaluation, we propose to store the value of sizeof
_a[0] in a hidden data member size_t __rsa_esize, standing for “runtime size
array element size”. In this case, P.4 can be evaluated in one step using:

sizeof A<T>() == sizeof (A<T>) + _n*__rsa_esize
This would also greatly simplify the pointer arithmetic of _a:

_a+i == (A<int>x*) ((char*)_a + i*__rsa_esize)

6.1.1 Construction

Unfortunately, the problem of recursive evaluation persists for the construction of
such objects as the hidden data member __rsa_esize is not yet available, and the
calculation of the size must be done outside the constructor once. But again, the
implementation can use hidden static member functions to compute recursively
once the value of the runtime size specifier of all the encapsulated runtime sized
type before construction. Hopefully, in all cases sizeof T() does not require to
create a temporary object T(), only to evaluate the expression(s) belonging to
its runtime size specifier(s). An important point is that R.4 and R.5 prevent any
change of the runtime size of the elements during the construction of the array _a
because it is computed only once and substituted in further calls to the elements
constructor.

6.1.2 Example
According to the preceding section, the following code should be well-defined:

template <typename T>
struct A_tricky {

A_tricky() : _n{rand() % 100} {}
const size_t _n;

T _al_n];

};

using AAI = A_tricky<A_tricky<int>>;
AAI *aai = new AAI [10];

The function rand() should be invoked only twice, once for all aail[]._a[l._n
sharing the same temporary __tmp_aai_a_n, and once for all aai[] . _n sharing the
same temporary __tmp_aai_n, in that order due to the runtime size expressions
dependency order.



6.2 Automatic runtime sized objects

Beside that it complicates the stack unwinding mechanism, allowing runtime sized
objects with automatic storage duration would make the computation of the ad-
dress of automatic objects rather complicated and/or slow using linear search or
parametrized stack frame. We believe that it is feasible as it should not be more
complicated than C99 Variable Length Arrays.

6.2.1 Other storage durations

Runtime sized objects with static storage duration could be allocated on the
heap during program initialisation and replaced by references in the code.

Runtime sized objects with thread storage duration would need to modify the
implementation of the Thread Local Storage mechanism. But as for static storage
duration, the implementation could rely on the heap for allocating the objects and
use references in the code.

7 Acknowledgments

We would like to thank Philippe Canal for his proof reading of this proposal, and
his suggestions for some clarification.

References

[1] B. Stroustrup, “The C++ Programming Language, 4th Edition, C++117,
Addison Wesley, 2013.

[2] J. Snyder and R. Smith, “Ezploring classes of runtime size”, doc. N4025,
2014.

[3] S. Du Toit, “Working Draft, Standard for Programming Language C++",
doc. N3797, 2013.



