
Doc. No.: N3732
Date: 2013-08-30
Authors: Arch D. Robison, Anton Potapov, Anton Malakhov
Reply To: arch.robison@intel.com

Value-Oriented Concurrent Unordered
Containers

Contents

1 Introduction 2

2 Conceptual Interface 2
2.1 find . 3
2.2 insert . 3
2.3 exchange . 4
2.4 erase . 4
2.5 reduce . 4
2.6 clear . 5
2.7 size . 5
2.8 for each . 6
2.9 is lock free . 6

3 Discussion 7
3.1 Requirements on User-Provided Objects 7
3.2 Concurrent Erasure . 7
3.3 Emplace Less Useful . 7
3.4 No Hint Arguments . 8
3.5 Extension to other Unordered Associative Containers 8
3.6 How to Return a Value? . 8
3.7 Exception Safety . 10
3.8 Redundant Construction . 11

4 Synopsis of Concrete Interface 11

5 Comparison with the Reference-Based Approach 13

6 Acknowledgments 13

N3732 2

1 Introduction

An earlier paper N3425 proposed a design for concurrent unordered asso-
ciative containers that closely adhered to STL conventions, notably by the
way its operations returned iterators that pointed into the container. Do-
ing so raised some issues with concurrent erasure, fears of easy misuse, and
generally limited the possibilities for non-blocking implementations to split-
ordered lists [1]. Feedback from SG1 was to consider not following STL so
closely and consider a value-oriented approach, such as N3533, TBB, and
PPL take for concurrent queues. This paper sketches such a design for con-
current maps with intent to elicit feedback.

Allowing concurrent operations on a hash table can improve throughput
and reduce latency compared to serializing those operations. The existing
std::unordered_map permits concurrent find operations, but not allow con-
current find, insert and erase operations. Frameworks such as Intel(R)
Threading Building Blocks (TBB) and Microsoft’s Parallel Patterns Library
(PPL) offer concurrent hash tables, namely concurrent_hash_map (TBB)
and concurrent_unordered_map (TBB and PPL). Some examples that can
exploit concurrent lookup and modification are:

• Memoization tables for parallel dynamic Programming [2].

• Software caches, such as the directory cache in Linux [3].

• Shadow memory used by run-time program analyzers.

Typically, in the first example the table grows monotonically, and thus con-
current erasure is not required. The other two cases often require concurrent
erasure.

2 Conceptual Interface

Concurrent operations on a concurrent_unordered_map should provide use-
ful atomic actions. The suggested actions are:

find Lookup a key and return the value associated with it.

insert Insert a key-value pair if its key is not already present.

N3732 3

exchange Insert a key-value pair, replacing any existing value associated
with the key.

erase Erase a key and its associated value.

reduce Insert a key-value pair, performing a reduction if the key is already
present.

Each of the actions returns the previously associated value, wrapped in
optional<mapped_type> (see N3527), which is “disengaged” if the key was
previously absent from the table.

For example, the following snippet attempts to insert a new key-value
pair, and reports if the key was already present.

if(optional<int> result = table.insert(make_pair(key,data))) {

cout << key << " already associated with " << *result << endl;

}

Actions associated with a given key synchronize with each other. Whether
stronger guarantees are worth the expense is debatable.

The following sections describe the conceptual interface in more detail.
Though the format resembles the standard’s descriptions, the wording should
be considered informal.

2.1 find

optional<mapped type> map::find(const key type& k) const;
Returns: If key k is present, object engaged with copy of mapped
value associated with the key; otherwise a disengaged object.

size type map::count(const key type& x) const;

Returns: 1 if key is present; 0 otherwise.

The name count is chosen for sake of consistency with existing associative
container requirements and std::map.

2.2 insert

template<class...Args> map::optional<mapped type> emplace(Args&&...args);

optional<mapped type> map::insert(const value type& obj);

N3732 4

template<class P> optional<mapped type> map::insert(P&& obj);

Effects: Insert object if its key is not present. May temporarily con-
struct a key-value pair that is not inserted if the key is present.

Returns: An object engaged with a copy of the mapped value previ-
ously associated with the given key, or a disengaged object if the key
was not present.

The reason for permitting a temporary key-value pair to be constructed, even
if not inserted, is to enable non-blocking implementations. These typically
work by constructing the pair, attempting to insert it atomically into the
container, and if the insertion fails (because the key is already present),
destroying the copy. A concurrent find operation never sees the copy until
(and if) it is actually inserted.

2.3 exchange

optional<mapped type> map::exchange(const value type& obj);

template<class P> optional<mapped type> map::exchange(P type&& obj);

Effects: Insert object if its key is not present, otherwise replace existing
object with obj.
Returns: Same as for insert.

2.4 erase

optional<mapped_type> erase(const Key& k);

Effects: Erase object with given key from the container, if such is
present.
Returns: Same as for insert.

2.5 reduce

template<class F> optional<mapped type> map::reduce(const value type&

obj, F f=std::plus<mapped type>());

N3732 5

Effects: Insert object if its key is not present; otherwise insert
f(old,obj.second), where old is the mapped values of the existing item.
Functor f may be invoked multiple times.

Returns: Same as for insert.
The intent, though not required, is that f is an associative and commutative
functor, so that the net result of concurrent reduce operations does not
depend on their particular evaluation order. For example, a histogram of
word counts could be generated by using words for keys, and ints for values.
Multiple threads could scan different parts of a text file and update the counts
using the default std::plus<int>(). The final counts would not depend on
the update order.

2.6 clear

void map::clear() noexcept;

Effects: Erases all objects from the map.

A point for discussion is whether clear should be safe to use concurrently
with other methods. If so, an intuitive synchronization guarantee would be
that if an insertion happens before a clear that happens before a find, the
find will not see the inserted object. Certainly the container’s destructor
should not be safe to use concurrently with any other method.

2.7 size

Because size() is a global summary of a container’s state, there is no way to
implement it in constant time that is scalable. A non-constant-time approach
is to use per-thread partial sizes, and have each thread update its piece to
record its net change to the total size. The total size can then be computed
in O(P) time if P threads participated. However, guaranteeing even this
level of support seems to yield more bane than boon for most applications,
particularly since the reported size can be immediately invalidated by con-
current modifications. Hence the conceptual interface supports a weak form
of size() that runs in O(N) time, where N is the number of items in the
table.

Furthermore, unless the table is quiescent, size() returns only an esti-
mate that is not guaranteed to be linearizable with respect to other opera-
tions. Nonetheless, an estimate can be valuable for debugging, sanity checks,

N3732 6

guiding resource usage. Furthermore, knowing the exact size in the quiescent
case can be useful in programs that have phases where the map is known to
be quiescent.

size type map::size() const noexcept;
Returns: Estimate of the number of objects in the container. The
estimate is exact if no modifications occur during the invocation.

Complexity: O(size());

bool map::empty() const noexcept;

Returns: size()!=0.

2.8 for each

Users of TBB’s concurrent_hash_map sometimes request a way to walk the
container while it is undergoing concurrent modification, and N3425 sup-
ported such a feature via a typical iterator interface. In a value-based ap-
proach, the equivalent would seem to be a method for copying the keys or
objects into another container. A minimal solution is to offer a method that
performs the walk. It could be extended to do parallel walks in the style of
N3724.

template<class Function> void map::for each(Function f) const;
Effects: Evaluates f(x) for each object x in the container. This method
is not necessarily linearizable with respect to modification operations.

An alternative would be to provide a const_iterator-like interface, though
we fear that the iterator might have to carry much state information.

2.9 is lock free

Like the standard library atomics, the interface provides a way to query
whether the implementation is lock-free. The answer presumes that any
user-provided operations are lock-free.

static bool map::is lock free() noexcept;
Returns: true if operations on the container are always lock-free, as-
suming that user-provided operations are lock-free; false otherwise.

N3732 7

3 Discussion

3.1 Requirements on User-Provided Objects

Though the interface is “value-based”, there is no avoiding reliance on user-
defined functions that see references, for example, copy constructors. The
expectation is that user-provided objects will provide the same level of thread
safety as STL, that operations be safely invoked concurrently on logically
const objects [4], that is not cause a race or a deadlock. For example, two
concurrent operations on a concurrent_unordered_value_map might copy
the same value concurrently, but would never assign to the same lvalue con-
currently.

We would like to permit lock-based implementations, but avoid surprise
deadlock in cases where user-defined code blocks. Thus implementations of
the container may not hold internal exclusive locks while calling user-defined
functions. It seems okay to allow implementations to hold internal shared
locks while calling user-defined functions.

3.2 Concurrent Erasure

The interface supports concurrent erasure. Since operations on the container
return a optional<mapped_type> instead of an iterator pointing into the
container, there is no fundamental problem with concurrently looking up and
erasing an item. Erasure can remove the item from the map immediately, but
defers destruction of it until any other threads currently copying or updating
it have finished their operation.

A Reclaimer template parameter specifies the mechanism that the con-
tainer’s internal implementation should use to deal with access/destruction
races. See the companion paper N3712 for a discussion of Reclaimers.

3.3 Emplace Less Useful

Emplace has value in serial containers because it avoids the need for copy-
construction. However, in a value-based interface, copy-construction is often

N3732 8

necessary anyway. An emplace interface is nonetheless included for sake of
uniformity.

3.4 No Hint Arguments

In a concurrent environment, the value of a hint seems limited since it is
likely to be invalidated between the time it is created and the time it is
used. It could be useful for avoiding recomputation of a hash value, though
that would require changing our return type of optional<mapped_type> to
something that could hold the hash value too. Hence none of the proposed
methods takes a hint argument.

3.5 Extension to other Unordered Associative Con-
tainers

It seems possible to have “set” and “multi” equivalents with a similar look
and feel. Doing so could give the concurrent containers the kind of common-
ality that their serial equivalents have.

An interface for a concurrent_unordered_value_set could be similar to
concurrent_unordered_value_map, with methods returning bool instead of
optional<mapped_type>.

Likewise, an interface for a concurrent_unordered_value_multiset could
return with size_type values instead of optional<mapped_type>, where the
value would be the multiplicity of a key.

An interface for concurrent_unordered_value_multimap could return
some kind of collection type instead of a optional<mapped_type>. The
collection type could quack like an optional<mapped_type> that holds an
array.

3.6 How to Return a Value?

This section presents a design choice for which feedback is sought. The issue
is how to return values. The authors have considered five alternatives, each
with strengths and weaknesses.

1. Return an optional<T>, as in the discussion so far.

N3732 9

2. Have two signatures, one that returns a optional<T> and one that re-
turns void. They would be distinguished by a dummy parameter, simi-
lar to the way the throwing and non-throwing versions of operator new

are distinguished. For example, the signatures for insertion might look
like:

void insert(const value_type& x, void_return_t);

optional<mapped_type> insert(const value_type& x);

3. Assign the return value through an extra reference parameter. The
signatures for insert would look like:

bool insert(const value_type& x);

bool insert(const value_type& x, mapped_type& old);

where the bool indicates whether the insertion succeeded, and old (if
supplied) is assigned the old value if the key was already present.

4. Return the result of applying a user-defined function to the value. The
interface might look like:

void insert(const value_type& x);

template<class F> auto insert(const value_type& x, F f) ->

decltype(f((const value_type*)()));

If a matching key was already present, the second method would return
f(&old). Otherwise it would return f((const value_type*)nullptr).

5. Return a count of how many old values were present, and apply a
functor to those old values. The interface might look like:

size_t insert(const value_type& x);

template<class F> size_t insert(const value_type& x, F f);

Functor f is applied to each value found, which is at most one for a
concurrent_unordered_map, but possibly more for the “multi” vari-
ant.

Approaches 1 and 2, which return optional<mapped_type>, are syntactically
nice and enable users to exploit shorthand such as optional<T>::value_or.
But the need for a dummy parameter seems slightly awkward, and the inter-
face requires that the values be copy-constructible.

N3732 10

Approach 3, with the reference parameter, offers another way to indicate
whether the old value is of interest. On the other hand it imposes an addi-
tional requirement: assignability, and in general the standard library avoids
returning values this way. Furthermore, extending it to the “multi” variant
incurs another complication: the reference would need to be a container of
some kind. If the container were generic, what would its signature require-
ments be?

Approach 4, with a functor, avoids the need for values to be copy-constructible.
The functor could extract the minimum necessary information from it. The
reason for passing an address, and not a reference, to f is to be able to
use nullptr to indicate a “not-present” situation. The principle draw-
back of this approach is that it adds additional complexity to an other-
wise simple signature. The complexity might be mitigated by providing a
standard functor that creates an optional<T> from a const T*, so that
the caller could write something like the following to insert an item into a
concurrent_unordered_map m and get its previous value:

optional<mapped_type> v = m.insert(key, optional_from_pointer);

Extending the functor approach to a concurrent_unordered_multimap in-
troduces the complication that the functor must operate on a sequence.

Approach 5 uses the functor in a slightly different way, so that it extends
cleanly to concurrent_unordered_multimap. But it makes simple cases
prolix. For example, to insert an item and get a copy of the old value would
require writing something like:

optional<decltype(m)::mapped_type> old;

v = m.insert(key, [&](const decltype(m)::value_type& x){old=x;});

The fundamental problem may be that any interface that supports the “multi”
case is going to be inherently more complicated,

Assuming that moves are cheap, the return-value issue is mostly a prob-
lem for methods emplace and insert. Methods exchange and erase can
simply move the old item into their return value. Method count can be used
in place of find when the value is not of interest.

3.7 Exception Safety

If an operation throws an exception, the container remains in a consistent
state. Ideally the state remains unchanged, but if the exception is thrown

N3732 11

while copying the optional<T> return result, it may happen after the con-
tainer was updated, and in a concurrent environment it is unsafe to undo the
update since other threads may have already seen the effect of the update.

3.8 Redundant Construction

The required semantics are intended to allow both blocking and non-blocking
implementations. In particular, an object may be constructed and destroyed
an arbitrary number of times, even for a single insertion.

4 Synopsis of Concrete Interface

For sake of focusing discussion, the concrete interface here omits creature
comforts such as an insert that takes a sequence.

1 namespace std {

2 template< typename Key,

3 typename T,

4 typename Hash = hash<Key>,

5 typename Pred = equal_to<Key>,

6 typename Allocator = allocator<pair<const Key, T> >,

7 typename Reclaimer = reclaimer

8 >

9 class concurrent_unordered_value_map{

10 public:

11 // types :
12 typedef Key key_type;

13 typedef std::pair<const Key, T> value_type;

14 typedef T mapped_type;

15 typedef Hash hasher;

16 typedef Pred key_equal;

17 typedef Allocator allocator_type;

18 typedef typename allocator_traits<Allocator>::pointer

pointer;

19 typedef typename allocator_traits<Allocator>::const_pointer

const_pointer;

20 typedef value_type& reference;

21 typedef const value_type& const_reference;

22 typedef implementation-defined size_type;

N3732 12

23 typedef implementation-defined difference_type;

24
25 // construct /copy/destroy :
26 concurrent_unordered_value_map();

27 concurrent_unordered_value_map(const

concurrent_unordered_value_map&);

28 concurrent_unordered_value_map& operator=(const

concurrent_unordered_value_map&) = delete;

29 ~concurrent_unordered_value_map();

30
31 // capacity :
32 bool empty() const noexcept;

33 size_type size() const noexcept;

34 size_type max_size() const noexcept;

35
36 // modifiers :
37 template<class...Args>

38 optional<mapped_type> emplace(Args&&...args);

39
40 optional<mapped_type> insert(const value_type& obj);

41 template<class P> optional<mapped_type> insert(P&& obj);

42
43 optional<mapped_type> exchange(const value_type& obj);

44 template<class P> optional<mapped_type> exchange(P&& obj);

45
46 optional<mapped_type> erase(const Key& k);

47
48 template<class F>

49 optional<mapped_type> reduce(const value_type& obj, F f=std

::plus<mapped_type>());

50
51 void clear() noexcept;

52
53 // observers :
54 optional<mapped_type> find(const key_type& k) const;

55 size_type count(const key_type& x) const;

56 template<class Function> void for_each(Function f) const;

57 static bool is_lock_free() noexcept;

58 };

59 }

N3732 13

5 Comparison with the Reference-Based Ap-

proach

The grass often looks greener on the other side. Now that this paper has
surveyed the other pasture, let’s close with a comparison to the reference-
based approach in N3425. The reference-based approach avoids three issues
completely:

• The “how to return a value” issue discussed in Section 3.6.

• Needing to define a set of allowed atomic actions.

• The need for an ad hoc for_each method. The reference-based ap-
proach can use the usual std::for_each and other algorithm tem-
plates.

On the other hand, the reference-based approach allows accidental use of
non-atomic actions on values.

As far as implementation, efficient implementation of the reference-based
interface seems limited to split-order lists. The value-based interface would
seem to allow many more approaches, such more traditional buckets, linear
probing, or hopscotch hashing.

6 Acknowledgments

Artur Laksberg’s comments on an earlier draft motivated some better ex-
planations. Alexey Kukanov pointed out how extensions to multimaps and
“How to return a value” were more tightly coupled than we first realized.

References

[1] Ori Shalev and Nir Shavit. Split-ordered lists: Lock-free extensible hash
tables. J. ACM, 53(3):379–405, May 2006.

[2] Alex Stivala, Peter J. Stuckey, Maria Garcia de la Banda, Manuel
Hermenegildo, and Anthony Wirth. Lock-free parallel dynamic program-
ming. J. Parallel Distrib. Comput., 70(8):839–848, August 2010.

N3732 14

[3] Josh Triplett, Paul E. McKenney, and Jonathan Walpole. Resizable, scal-
able, concurrent hash tables via relativistic programming. In Proceedings
of the 2011 USENIX conference on USENIX annual technical conference,
USENIXATC’11, pages 11–11, Berkeley, CA, USA, 2011. USENIX Asso-
ciation.

[4] Gotw #6a solution: Const-correctness, part 1. http://herbsutter.com/
2013/05/24/gotw-6a-const-correctness-part-1-3/. Accessed 2013-
08-23.

http://herbsutter.com/2013/05/24/gotw-6a-const-correctness-part-1-3/
http://herbsutter.com/2013/05/24/gotw-6a-const-correctness-part-1-3/

	Introduction
	Conceptual Interface
	find
	insert
	exchange
	erase
	reduce
	clear
	size
	for_each
	is_lock_free

	Discussion
	Requirements on User-Provided Objects
	Concurrent Erasure
	Emplace Less Useful
	No Hint Arguments
	Extension to other Unordered Associative Containers
	How to Return a Value?
	Exception Safety
	Redundant Construction

	Synopsis of Concrete Interface
	Comparison with the Reference-Based Approach
	Acknowledgments

