
  Document number: N3645 
  Date: 2013-05-04 
  Project: Programming Language C++ 
  Reference: N3485 
  Reply to: Alan Talbot 
   cpp@alantalbot.com 

   Howard Hinnant 
   howard.hinnant@gmail.com 

   James Dennett 
   jdennett@google.com 

   Jonathan Wakely 
   cxx@kayari.org 

 Splicing Maps and Sets (Revision 1)  

Related Documents 

This proposal addresses the following NAD Future issues: 

839. Maps and sets missing splice operation 

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2013/n3518.html#839 

1041. Add associative/unordered container functions that allow to extract elements 

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2013/n3518.html#1041 

Motivation 

Node-based containers are excellent for creating collections of large or unmovable objects. 
Maps in particular provide a great way to create database-like tables where objects may be 
looked up by ID and used in various ways. Since the memory allocations are stable, once you 
build a map you can take references to its elements and count on them to remain valid as long 
as the map exists.  

The emplace functions were designed precisely to facilitate this pattern by eliminating the need 
for a copy or a move when creating elements in a map (or any other container). When using a 
list, map or set, we can construct objects, look them up, use them, and eventually discard them, 
all without ever having to copy or move them (or construct them more than once). This is very 
useful if the objects are expensive to copy, or have construction/destruction side effects (such 
as in the classic RAII pattern). 

But what happens when we want to take some elements from one table and move them to 
another? If we were using a list, this would be easy: we would use splice. Splice allows logical 
manipulation of the list without copying or moving the nodes—only the pointers are changed. 
But lists are not a good choice to represent tables, and there is no splice for maps. 

  

mailto:cpp@alantalbot.com
mailto:howard.hinnant@gmail.com
mailto:jdennett@google.com
mailto:cxx@kayari.org
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2013/n3518.html#839
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2013/n3518.html#1041


N3645 

2 

What about move? 

Don’t move semantics basically solve all these problems? Actually not. Move is very effective 
for small collections of objects which are indirectly large; that is, which own resources that are 
expensive to copy. But if the object itself is large, or has some limitation on construction (as in 
the RAII case), then move does not help at all. And “large” in this context may not be very big. A 
256 byte object may not seem large until you have several million of them and start comparing 
the copy times of 256 bytes to the 16 bytes or so of a pointer swap. 

But even if the mapped type itself is very small, an int for example, the heap allocations and 
deallocations required to insert a new node and erase an old one are very expensive compared 
to swapping pointers. When there are large numbers of objects to move around, this overhead 
can be enormous. 

Yet another problem is that the key type of maps is const. You can’t move out of it at all. This 
alone was enough of a problem to motivate Issue 1041. 

Can you really splice a map? 

It turns out that what we need is not actually a splice in the sense of list::splice. Because ele-
ments must be inserted into their correct positions, a splice-like operation for associative con-
tainers must remove the element from the source and insert it into the destination, both of 
which are non-trivial operations. Although these will have the same complexity as a conven-
tional insert and erase, the actual cost will typically be much less since the objects do not need 
to be copied nor the nodes reallocated. 

What is the solution? 

Alan’s original idea for solving this issue was to add splice-like members to associative contain-
ers that took the source container and iterators, and dealt with the splice action under the 
hood. This would have solved the splice problem, but offered no further advantages. 

In Issue 1041 Alisdair Meredith suggested that we have a way to move an element out of a con-
tainer with a combined move/erase operation. This solves another piece of the problem, but 
does not help if move is not helpful, and does not address the allocation issue. 

Howard then suggested that there should be a way to actually remove the node and hold it 
outside the container. It is this design that we are proposing. 

Summary 

This is an enhancement to the associative and unordered associative containers to support the 
manipulation of nodes. It is a pure addition to the Library. 

The key to the design is a new function extract which unlinks the selected node from the con-
tainer (performing the same balancing actions as erase). The extract function has the same 
overloads as the single parameter erase function: one that takes an iterator and one that takes 
a key type. They return an implementation-defined smart pointer type modeled after 
unique_ptr which holds the node while in transit. We will refer to this pointer as the node 
pointer (not to be confused with a raw pointer to the internal node type of the container). 



N3645 

3 

The node pointer allows pointer-like access to the element (the value_type) stored in the 
node. (It can be dereferenced just like an iterator.) If the node pointer is allowed to destruct 
while holding the node, the node is properly destructed using the appropriate allocator for the 
container. The node pointer contains a copy of the container’s allocator. This is necessary so 
that the node pointer can outlive the container. (It is interesting to note that the node pointer 
cannot be an iterator, since an iterator must refer to a particular container.) The container has 
a typedef for the node pointer type (node_ptr_type). 

There is also a new overload of insert that takes a node pointer and inserts the node directly, 
without copying or moving it. For the unique containers, it returns a struct which contains the 
same information as the pair<iterator, bool> returned by the value insert, and also has a 
node_ptr member which is a (typically empty) node pointer which will preserve the node in 
the event that the insertion fails. (We examined several other possibilities for this return type 
and decided that this was the best of the available options.) For the multi containers, the node 
pointer insert returns an iterator to the newly inserted node. 

There is also a merge operation which takes a non-const reference to the container type and 
attempts to insert each node in the source container. Merging a container will remove from the 
source all the elements that can be inserted successfully, and (for containers where the insert 
may fail) leave the remaining elements in the source. This is very important—none of the 
operations we propose ever lose elements. (What to do with the leftovers is left up to the 
user.) 

This design allows splicing operations of all kinds, moving elements (including map keys) out of 
the container, and a number of other useful operations and designs. 

Examples 

Moving elements from one map to another 
 

map<int, string> src, dst; 

src[1] = “one”; 

src[2] = “two”; 

dst[3] = “three”; 

 

dst.insert(src.extract(src.find(1))); // Iterator version. 

dst.insert(src.extract(2));   // Key type version. 

We have moved the contents of src into dst without any heap allocation or deallocation, and 
without constructing or destroying any objects. 

Inserting an entire set 
 

set<int> src{1, 3, 5}; 

set<int> dst{2, 4, 5}; 

 

dst.merge(src); // Merge src into dst. 

 

// src == {5} 

// dst == {1, 2, 3, 4, 5} 



N3645 

4 

This operation is worth a dedicated function because although it is possible to write efficient 
client code, it is not quite trivial to do so in the case of the unique containers. Here is what you 
have to do to get the same functionality with similar efficiency: 
 

for (auto i = src.begin(); i != src.end();) 

{ 

 auto p = dst.equal_range(*i); 

 if (p.first == p.second) 

  dst.insert(p.first, src.extract(i++)); 

 else 

  ++i; 

} 

However, this user code could lose nodes if the comparator throws during insert. The merge 
operation does not need to do the second comparison and can be made exception-safe. 

Surviving the death of the container 

The node pointer does not depend on the allocator instance in the container, so it is self-
contained and can outlive the container. This makes possible things like very efficient factories 
for elements: 
 

table_type::node_ptr_type new_record() 

{ 

 table_type table; 

 table.emplace(...); // Create a record with some parameters. 

 return table.extract(table.begin()); 

} 

 

table.insert(new_record()); 

Moving an object out of a set 

Today we can put move-only types into a set using emplace, but in general we cannot move 
them back out. The extract function lets us do that: 
 

set<move_only_type> s; 

s.emplace(...); 

move_only_type mot = move(*s.extract(s.begin())); 

Failing to find an element to remove 

What happens if we call the value version of extract and the value is not found? 
 

set<int> src{1, 3, 5}; 

set<int> dst; 

 

dst.insert(src.extract(1)); 

dst.insert(src.extract(2)); // Returns {src.end(), false, node_ptr_type()}. 

 

// src == {3, 5} 

// dst == {1} 

This is perfectly well defined. The extract failed to find 2 and returned an empty node pointer, 
which insert then trivially failed to insert. 



N3645 

5 

If extract is called on a multi container, and there is more than one element that matches the 
argument, the first matching element is removed. 

Details 

The return type of insert 

The unique containers return pair<iterator, bool> from the value type insert. The node 
pointer insert will return a struct that serves a similar purpose: 
 

struct insert_return_t { 

 iterator position; 

 bool inserted; 

 node_ptr_type node; 

}; 

This provides the iterator and bool, and a node pointer to hold the node if the insertion fails. 

The node pointer allocator 

The node pointer type will be independent of the Compare, Hash or Pred template parameters, 
but will depend on the Allocator parameter. This allows a node to be transferred from 
set<T,C1,A> to set<T,C2,A> (for example), but not from set<T,C,A1> to set<T,C,A2>. 
Even though the allocator types are the same, the container’s allocator must also test equal to 
the node pointer’s allocator or the behavior of node pointer insert is undefined. 

Exception safety 

If the container’s Compare function is nothrow (which is very common), then removing a node, 
modifying it, and inserting it is nothrow unless modifying the value throws. And if modifying the 
value does throw, it does so outside of the containers involved. 

If the Compare function does throw, insert will not yet have moved its node pointer argument, 
so the node will still be owned by the argument and will be available to the caller. 

Proposed Wording 

Add a new section to clause 20 [utilities] 

20.X Node pointer [associative.nodeptr] 

20.X.1 Class node_ptr overview [associative.nodeptr.overview] 

1 A node pointer is a smart pointer (similar to unique_ptr) that accepts ownership of a node from 
an associative container. It may be used to transfer that ownership to another container of the 
same type. 

2 It is a move-only type associated with the container's value_type and allocator_type. It is 
independent of the container's Compare template parameter (for the associative containers) 
and Hash and Pred template parameters (for the unordered associative containers). 

3 Class node_ptr is for exposition only. An implementation is permitted to provide equivalent 

functionality without providing a class with this name. 
  



N3645 

6 

class node_ptr  // Exposition only 

{ 

 typedef unspecified     container; 

public: 

   typedef container::value_type                value_type; 

   typedef container::allocator_type            allocator_type; 

   typedef value_type&                          reference; 

   typedef typename allocator_traits<allocator_type>::pointer pointer; 

 

private: 

   unspecified       container_node_type; // Exposition only 

   container_node_type*           ptr_;         // Exposition only 

   allocator_type                 alloc_;       // Exposition only 

public: 

   constexpr node_ptr() noexcept; 

   constexpr node_ptr(nullptr_t) noexcept 

       : node_ptr() { } 

 

   node_ptr(node_ptr&& np) noexcept; 

   node_ptr& operator=(node_ptr&& p) noexcept; 

   node_ptr& operator=(nullptr_t) noexcept; 

 

   ~node_ptr(); 

 

   reference operator*() const; 

   pointer operator->() const; 

 

   allocator_type get_allocator() const noexcept; 

   explicit operator bool() const noexcept; 

 

   void swap(node_ptr&); 

}; 

 

void swap(node_ptr& x, node_ptr& y); 

 

bool operator==(const node_ptr& x, nullptr_t) noexcept; 

 

bool operator!=(const node_ptr& x, nullptr_t) noexcept; 

 

bool operator==(nullptr_t, const node_ptr& y) noexcept; 

 

bool operator!=(nullptr_t, const node_ptr& y) noexcept; 

  



N3645 

7 

20.X.2 node_ptr constructors, copy, and assignment [associative.nodeptr.cons] 
 

constexpr node_ptr() noexcept; 

 

 Effects:  Constructs a node_ptr object that owns nothing. 

   Postconditions: static_cast<bool>(*this) == false. 
                   get_allocator() == allocator_type(). 

 

node_ptr(node_ptr&& np) noexcept; 

 

   Effects:  Constructs a node_ptr object initializing ptr_ with np.ptr_. 

          Move constructs alloc_ with np.alloc_. Sets np.ptr_ to nullptr. 
 

node_ptr& operator=(node_ptr&& p) noexcept; 

 

   Requires:  Either 

allocator_traits<allocator_type>::propagate_on_container_move_assignment 

   is true, or alloc_ == p.alloc_. 

 

   Effects: If ptr_ != nullptr, destroys the value_type in the 

   container_node_ptr by calling allocator_traits<allocator_type>::destroy, 

   deallocates ptr_ by calling allocator_traits<allocator_type>::deallocate and 

   then sets ptr_ to nullptr. Then assigns p.ptr_ to ptr_.  If 

   allocator_traits<allocator_type>::propagate_on_container_move_assignment is 

   true, move assigns p.alloc_ to alloc_. 

   Assigns nullptr to p.ptr_. 

 

   Returns: *this. 

 

node_ptr& operator=(nullptr_t) noexcept; 

 

   Effects:  If ptr_ != nullptr, destroys the value_type in the 

   container_node_ptr by calling allocator_traits<allocator_type>::destroy, 

   deallocates ptr_ by calling allocator_traits<allocator_type>::deallocate and 

   then sets ptr_ to nullptr. 

 

   Returns: *this. 

 

20.X.3 node_ptr destructor [associative.nodeptr.dtor] 
 

~node_ptr(); 

 

   Effects:  If ptr_ != nullptr, destroys the value_type in the 

   container_node_ptr by calling allocator_traits<allocator_type>::destroy, 

   deallocates ptr_ by calling allocator_traits<allocator_type>::deallocate. 

 

  



N3645 

8 

20.X.4 node_ptr observers [associative.nodeptr.observers] 
 

reference operator*() const; 

 

   Requires: static_cast<bool>(*this) == true. 

   Returns: A reference to the value_type in the container_node_type.  

 Throws: Nothing. 

 

pointer operator->() const; 

 

   Requires: static_cast<bool>(*this) == true. 

   Returns: A pointer to the value_type in the container_node_type. 

 Throws: Nothing. 

 

allocator_type get_allocator() const noexcept; 

 

   Returns: alloc_. 

 

explicit operator bool() const noexcept; 

 

   Returns: ptr_ != nullptr. 

 

20.X.5 node_ptr modifiers [associative.nodeptr.modifiers] 
 

void swap(node_ptr& p); 

 

   Requires:  If allocator_traits<allocator_type>::propagate_on_container_swap 

   is false, than alloc_ == p.alloc_. 

 

   Effects:  Calls swap(ptr_, p.ptr_).  If  

   allocator_traits<allocator_type>::propagate_on_container_swap is true calls 

   swap(alloc_, p.alloc_). 

 

 Throws: Nothing. 

 

20.X.6 node_ptr non-member functions [associative.nodeptr.nonmember] 
 

void swap(node_ptr& x, node_ptr& y); 

 

  Effects: Equivalent to x.swap(y). 

 

bool operator==(const node_ptr& x, nullptr_t) noexcept; 

 

   Returns: !static_cast<bool>(x). 

 

bool operator!=(const node_ptr& x, nullptr_t) noexcept; 

 

   Returns: !(x == nullptr). 

 

bool operator==(nullptr_t, const node_ptr& y) noexcept; 

 

   Returns: !static_cast<bool>(y). 

 

bool operator!=(nullptr_t, const node_ptr& y) noexcept; 

 



N3645 

9 

   Returns: !(nullptr == y). 

 

 

23.2.4 Associative containers [associative.reqmts] 

In ¶ 8: change “a denotes a value of X,” to “a and s denote values of X,”. 

Add to ¶ 9: 

The extract members shall invalidate only iterators to the removed elements; references and 

pointers to the elements remain valid. 

Add to table 102: 

Expression 
X::node_ptr 

Return type 
unspecified node_ptr class. 

Note, … 
see 20.X. 

Complexity 

Expression 
X::insert_result 

Return type 
A MoveConstructible, MoveAssignable, DefaultConstructible class type used to 

describe the results of inserting a node_ptr, including at least the following 

fields: 

  bool inserted; 

  X::iterator position; 

  X::node_ptr node; 

Note, … 
For an attempt to insert an empty node_ptr, inserted is false, position is end(), 

and node_ptr is empty. 

If insertion took place, inserted is true, position points to the inserted element, 

and node_ptr is empty. 

If insertion failed, inserted is false, node_ptr owns the node previously owned by 

np, and position points to an element with an equivalent key to *node_ptr. 

Complexity 

Expression 
a_uniq.insert(np) 

Return type 
X::insert_result   

Note, … 
Precondition: a_uniq.get_allocator() == np.get_allocator(). 



N3645 

10 

Effects: If np is empty, has no effect. Otherwise, inserts *np if and only if there 

is no element in the container with key equivalent to the key of *np. 

Postcondition: np is empty. 

Complexity 
logarithmic 

Expression 
a_eq.insert(np) 

Return type 
iterator   

Note, … 
Precondition: a_eq.get_allocator() == np.get_allocator(). 

Effects: If np is empty, has no effect and returns a_eq.end(). Otherwise, inserts 

*np and returns the iterator pointing to the newly inserted element. If a range 

containing elements equivalent to *np exists in a_eq, *np is inserted at the end of 

that range. 

Postcondition: np is empty. 

Complexity 
logarithmic 

Expression 
a.insert(p, np) 

Return type 
iterator   

Note, … 
Precondition: a.get_allocator() == np.get_allocator(). 

Effects: If np is empty, has no effect and returns a_eq.end(). Otherwise, inserts 

*np if and only if there is no element with key equivalent to the key of *np in 

containers with unique keys; always inserts *np in containers with equivalent keys. 

always returns the iterator pointing to the element with key equivalent to the key 

of *np. *np is inserted as close as possible to the position just prior to p. 

Postcondition: np is empty. 

Complexity 
logarithmic in general, but amortized constant if *np is inserted right before p. 

Expression 
a.extract(k) 

Return type 
node_ptr 

Note, … 
Removes the first element in the container with key equivalent to k. Returns a 

node_ptr owning the element if found, otherwise an empty node_ptr. 

Complexity 
log(a.size()) 



N3645 

11 

Expression 
a.extract(q) 

Return type 
node_ptr 

Note, … 
Removes the element pointed to by q. Returns a node_ptr owning the element at q. 

Complexity 
amortized constant 

Expression 
a.merge(s) 

Return type 
void 

Note, … 
Precondition: a.get_allocator() == s.get_allocator(). 

Attempts to extract each element in s and insert it into a. In containers with 

unique keys, if there is an element in a with key equivalent to the key of an 

element from s, then that element is not extracted from s. Pointers and references 

to the moved elements of s now refer to those same elements but as members of a. 

Iterators referring to the moved elements will continue to refer to their elements, 

but they now behave as iterators into a, not into s. 

Complexity  

N log(a.size() + N) (N has the value s.size()) 
  
 

23.2.5 Unordered associative containers [unord.req] 

In ¶ 11: change “a is an object of type X,” to “a and s are objects of type X,”. 

Add to ¶ 14: 

The extract members shall invalidate only iterators to the removed elements; references and 

pointers to the elements remain valid. 

Add to table 103: 

Expression 
X::node_ptr 

Return type 
unspecified node_ptr class. 

Note, … 
see 20.X. 



N3645 

12 

Complexity 

Expression 
X::insert_result 

Return type 
A MoveConstructible, MoveAssignable, DefaultConstructible class type used to 

describe the results of inserting a node_ptr, including at least the following 

fields: 

  bool inserted; 

  X::iterator position; 

  X::node_ptr node; 

Note, … 
For an attempt to insert an empty node_ptr, inserted is false, position is end(), 

and node_ptr is empty. 

If insertion took place, inserted is true, position points to the inserted element, 

and node_ptr is empty. 

If insertion failed, inserted is false, node_ptr owns the node previously owned by 

np, and position points to an element with an equivalent key to *node_ptr. 

Complexity 

Expression 
a_uniq.insert(np) 

Return type 
X::insert_result   

Note, … 
Precondition: a_uniq.get_allocator() == np.get_allocator(). 

Effects: If np is empty, has no effect. Otherwise, inserts *np if and only if there 

is no element in the container with key equivalent to the key of *np. 

Postcondition: np is empty. 

Complexity 
Average case O(1), worst case O(a_uniq.size()). 

Expression 
a_eq.insert(np) 

Return type 
X::insert_result   

Note, … 
Precondition: a_eq.get_allocator() == np.get_allocator(). 

Effects: If np is empty, has no effect and returns a_eq.end(). Otherwise, inserts 

*np and returns the iterator pointing to the newly inserted element. 

Postcondition: np is empty. 

Complexity 
Average case O(1), worst case O(a_eq.size()). 



N3645 

13 

Expression 
a.insert(q, np) 

Return type 
iterator 

Note, … 
Precondition: a.get_allocator() == np.get_allocator(). 

Effects: If np is empty, has no effect and returns a_eq.end(). Otherwise, inserts 

*np if and only if there is no element with key equivalent to the key of *np in 

containers with unique keys; always inserts *np in containers with equivalent keys. 

Always returns the iterator pointing to the element with key equivalent to the key 

of *np. The iterator q is a hint pointing to where the search should start. 

Implementations are permitted to ignore the hint. 

Postcondition: np is empty. 

Complexity 
Average case O(1), worst case O(a.size()). 

Expression 
a.extract(k) 

Return type 
node_ptr 

Note, … 
Removes an element in the container with key equivalent to k. Returns a node_ptr 

owning the element if found, otherwise an empty node_ptr. 

Complexity 
Average case O(1), worst case O(a.size()). 

Expression 
a.extract(q) 

Return type 
node_ptr 

Note, … 
Removes the element pointed to by q. Returns a node_ptr owning the element at q. 

Complexity 
Average case O(1), worst case O(a.size()). 

Expression 
a.merge(s) 

Return type 
void 

Note, … 
Precondition: a.get_allocator() == s.get_allocator(). 



N3645 

14 

Attempts to extract each element in s and insert it into a. In containers with 

unique keys, if there is an element in a with key equivalent to the key of an 

element from s, then that element is not extracted from s. Pointers and references 

to the moved elements of s now refer to those same elements but as members of a. 

Iterators referring to the moved elements and all iterators referring to a will be 

invalidated, but iterators to elements remaining in s will remain valid. 

Complexity  
Average case O(N), where N is s.size(). Worst case O(N * a.size() + N). 

 

23.4.4.1 Class template map overview [map.overview] 

Add to class map: 
 

typedef unspecified node_ptr; 

typedef unspecified insert_return; 

 

node_ptr extract(const_iterator position); 

node_ptr extract(const key_type& x); 

 

insert_return      insert(node_ptr&& np); 

iterator           insert(const_iterator hint, node_ptr&& np); 

template<class Comp> 

void merge(map<Key, T, Comp, Allocator>& source); 

template<class Comp> 

void merge(map<Key, T, Comp, Allocator>&& source); 

23.4.5.1 Class template multimap overview [multimap.overview] 

Add to class multimap: 
 

typedef unspecified node_ptr; 

 

node_ptr extract(const_iterator position); 

node_ptr extract(const key_type& x); 

 

iterator insert(node_ptr&& np); 

iterator insert(const_iterator hint, node_ptr&& np); 

template<class Comp> 

void merge(multimap<Key, T, Comp, Allocator>& source); 

template<class Comp> 

void merge(multimap<Key, T, Comp, Allocator>&& source); 

23.4.6.1 Class template set overview [set.overview] 

Add to class set: 
 

typedef unspecified node_ptr; 

typedef unspecified insert_return; 

 

node_ptr extract(const_iterator position); 

node_ptr extract(const key_type& x); 

 

insert_return      insert(node_ptr&& np); 

iterator           insert(const_iterator hint, node_ptr&& np); 

template<class Comp> 



N3645 

15 

void merge(set<Key, Comp, Allocator>& source); 

template<class Comp> 

void merge(set<Key, Comp, Allocator>&& source); 

23.4.7.1 Class template multiset overview [multiset.overview] 

Add to class multiset: 
 

typedef unspecified node_ptr; 

 

node_ptr extract(const_iterator position); 

node_ptr extract(const key_type& x); 

 

iterator insert(node_ptr&& np); 

iterator insert(const_iterator hint, node_ptr&& np); 

template<class Comp> 

void merge(multiset<Key, Comp, Allocator>& source); 

template<class Comp> 

void merge(multiset<Key, Comp, Allocator>&& source); 

23.5.4.1 Class template unordered_map overview [unord.map.overview] 

Add to class unordered_map: 
 

typedef unspecified node_ptr; 

typedef unspecified insert_return; 

 

node_ptr extract(const_iterator position); 

node_ptr extract(const key_type& x); 

 

insert_return      insert(node_ptr&& np); 

iterator           insert(const_iterator hint, node_ptr&& np); 

template<class Hsh, class Prd> 

void merge(unordered_map<Key, T, Hsh, Prd, Allocator>& source); 

template<class Hsh, class Prd> 

void merge(unordered_map<Key, T, Hsh, Prd, Allocator>&& source); 

23.5.5.1 Class template unordered_multimap overview [unord.multimap.overview] 

Add to class unordered_multimap: 
 

typedef unspecified node_ptr; 

  

node_ptr extract(const_iterator position); 

node_ptr extract(const key_type& x); 

 

iterator insert(node_ptr&& np); 

iterator insert(const_iterator hint, node_ptr&& np); 

template<class Hsh, class Prd> 

void merge(unordered_multimap<Key, T, Hsh, Prd, Allocator>& source); 

template<class Hsh, class Prd> 

void merge(unordered_multimap<Key, T, Hsh, Prd, Allocator>&& source); 

23.5.6.1 Class template unordered_set overview [unord.set.overview] 

Add to class unordered_set: 
 

typedef unspecified node_ptr; 



N3645 

16 

typedef unspecified insert_return; 

  

node_ptr extract(const_iterator position); 

node_ptr extract(const key_type& x); 

 

insert_return      insert(node_ptr&& np); 

iterator           insert(const_iterator hint, node_ptr&& np); 

template<class Hsh, class Prd> 

void merge(unordered_set<Key, Hsh, Prd, Allocator>& source); 

template<class Hsh, class Prd> 

void merge(unordered_set<Key, Hsh, Prd, Allocator>&& source); 

23.5.7.1 Class template unordered_multiset overview [unord.multiset.overview] 

Add to class unordered_multiset: 
 

typedef unspecified node_ptr; 

 

node_ptr extract(const_iterator position); 

node_ptr extract(const key_type& x); 

 

iterator insert(node_ptr&& np); 

iterator insert(const_iterator hint, node_ptr&& np); 

template<class Hsh, class Prd> 

void merge(unordered_multiset<Key, Hsh, Prd, Allocator>& source); 

template<class Hsh, class Prd> 

void merge(unordered_multiset<Key, Hsh, Prd, Allocator>&& source); 

 

Acknowledgements 

Thanks to Alisdair Meredith for long ago pointing out that this problem is more interesting than 
it first appears, and for Issue 1041. 


