N3560

Proposal for Assorted Extensions to Lambda Expressions
Document no: N3560

Faisal Vali Herb Sutter Dave Abrahams

2013-03-17

Abstract

We propose extensions to lambda expressions motivated by the general
view that lambda expressions should allow for a concise and complete
description of a callable unit of computation. In addition to containing
those features from document N3418: Proposal for Generic (Polymorphic)
Lambda Expressions that received against votes in Portland (2012), it also
contains other small extensions to lambdas. We also present our
experience implementing some of the features using Clang.

1 Introduction

The aim of this paper is to propose various extensions to lambda expressions (generic and
non-generic) to simplify and enhance their use. This proposal builds on N3559 (which
defines a generic lambda). We assume the reader is familiar with C++11 lambdas and the
content of N3559.

It is important to note that not all the authors of this paper are in favor of each and every one
of these proposed features and the purpose of this paper is to seek guidance from the EWG
regarding which features are worth pursuing further.

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2012/n3418.pdf

N3560

2 Proposals

We are proposing the following orthogonal extensions to lambdas:

Allow the use of familiar template syntax in lambda expressions (implemented)
Permit a lambda body to be an expression (implemented)

Allow auto forms in the trailing return type

Allow generic lambdas with variadic auto parameters

A~ WD

Each of these is discussed in some detail in the subsections below.

2.1 Allow the use of familiar template syntax in lambda expressions

We propose to allow a template-parameter-list enclosed in angle-brackets following the
lambda-introducer, as follows:

// LastElement demonstrates the use of a template-parameter-List.

// It accepts a std::array of any type and size, and returns its

// last element

auto LastElement = []<class T, size_t N>(const std::array<T,N>& a)
{ return N ? a[N-1] : throw "index error"; };

int three
char B

LastElement(std::array<int, 3>{{1, 2, 3}});
LastElement(std::array<char, 2>{{'A"', 'B'}});

When mixed with explicit template-parameter-lists, template parameters implied by the
use of auto as a type-specifier are appended to the list, SO []<int N>(auto (&a)[N]) iS
equivalent to []J<int N, class T>(T (&a)[N]).

Familiar template syntax and partial ordering rules apply, with no new rules or corner
cases, so C++ programmers can rely on their intuition with templates to guide them in
their use of this feature.

Since the function call operator is public, elements of the template-parameter-list can be
explicitly specified if needed:

[I1<int N>(const int(&)[N]){}).operator()<5>({1,2,3});)
This additional syntax would have the following advantages :

1 — allow for certain type constraints to be placed on each parameter so that
errors can be detected at the point of call of the lambda and not at instantiation time

2 — allow for more sophisticated relations (such as deduced as same type)
between parameter types (vs the asymmetric case [](auto a, decltype(a) b)

N3560

where only the type of 'a' is deduced)

3 — allow for simplicity (by avoiding the quirks of decltype) in using the types of
the generic parameters within the body of the lambda

4 — allow for partial ordering of generic lambda function call operator templates
when overloaded within a class that inherits from multiple closure types

5 — can be extended naturally to support the concepts-lite proposal
(without requiring a new concepts keyword)

6 — allow for forwarding lambdas (which require variadic packs)

A brief discussion and illustrative examples follow for each of the claimed advantages.

Advantage #1: Allow certain type constraints to be placed on each parameter so
that errors can be detected at the point of call of the lambda and not at instantiation
time of the lambda.

Consider this contrived example:

// A Lambda at namespace scope that returns another lambda
// that captures 'v' by reference and when passed a shared ptr
// adds it to the vector and returns the use_count of the

// shared_ptr.

// This code is merely for illustrative purposes.
// make_shared_ptr _pusher could be a function template
// assuming return type deduction per N3386

auto make_shared ptr_pusher = []<class T>(std::vector<T> &v)

{
return [&v]<class U>(shared_ptr<U> p) {

v.push_back(p);
return p.use_count();

1
};

int main() {
std::vector<shared_ptr<int>> v;
auto pusher = make_shared_ptr_pusher(v);
for (int 1 = 0; i < 10; ++1i)
pusher(make_shared_ptr(i)); // ok at point of call

}

In the above example, make_shared_ptr_pusher creates a generic lambda that is
constrained to accept only shared_ptrs; use of such a lambda with a non-shared_ptr
will result in an error at the point of call and not at the time of instantiation of the
lambda's body (thus allowing for better error messages). One can imagine various
factory functions that create constrained generic lambdas that can be used at various

N3560

different points in a program, and constraining them to accept only certain kinds of
parameter types can be useful for detecting misuse early.

Advantage #2: Allow more sophisticated relations (such as deduced as same type)
between parameter types.

As John Spicer [Spicer-ext-14260] stated on the EWG reflector (quoted with his
permission): "I think it is an important feature to be able to specify that multiple
arguments of a lambda are required to have the same deduced type. Otherwise you
will have cases that end up in the lambda with types that will result in errors
instantiating the lambda rather than the more desirable point of call of the lambda.”

One could claim that relating parameter types to each other can be done with the use
of decltype but the semantics of such a construct are different from the semantics of
a generic lambda that uses the familiar template syntax (it is required to have the
parameters maintain those relations during the deduction of the type). Consider this

example:

auto Multl = []J<class T>(T a, T b) { return a * b; };
auto Mult2 = [](auto a, decltype(a) b) { return a * b; };
int main() {

struct X {

operator int() const { return 0; }
¥
X X;

Multi(3, 4); // ok
Mult1(3, x); // Not ok.3 & x must deduce to same type (no
conversions)

Mult2(3, x); // ok. Param 1 deduced as int, and 'x' is converted

}

As John Spicer points out (in the same thread): "That is asymmetric in that it forces
the second parameter to have the same type as the first. That is better than nothing,
but I'm not sure it is good."

Advantage #3: Allow for simplicity (by avoiding the quirks of decltype) in using the
types of the generic parameters within the body of the lambda.

If one needs to name the type inside the lambda, it would be clearer to use the explicit
template syntax than decltype. Consider this example:

auto MemFunPtrl = [](auto& a) {
// deal with the quirks of decltype
using T = typename remove_reference<decltype(a)>::type;
return &T::f;

}s

// This is clearer and easier to specify

N3560

auto MemFunPtr2 = []<class T>(T& /*a*/) {
return &T::f;

}s

Advantage #4: Allow for partial ordering of generic lambda function call operator
templates when overloaded within a class that inherits from multiple closure types.

While using auto as a type-specifier is quite convenient, it does not support certain
very common parameter forms (e.g shared_ptr<T>, initializer_list<T>, T
(&)[N]) that are useful in creating partial orderings amongst overloaded generic
functions. Lambdas, being function objects and not functions, can not be overloaded
in the usual implicit way, but they can be “explicitly overloaded” using the following
simple code :

template<class F1, class F2>
struct overloaded : F1, F2

{
overloaded(F1l x1, F2 x2) : F1(x1), F2(x2) {}
using F1::operator();
using F2::operator();

};

template<class F1, class F2>
overloaded<F1, F2> overload(Fl f1, F2 f2)
{ return overloaded<F1, F2>(f1, f2); }

This technique would be especially useful for creating visitors, e.g. for
boost: :variant, which we expect to be a common use case for lambdas. Therefore,
we propose to allow a template-parameter-list enclosed in angle-brackets following
the lambda-introducer, as follows:

auto visitor

= variadic overload([]<int N>(auto (&a)[N]) { .. },
[]J<class T>(T* p) { .. },
[]<class T>(shared_ptr<T> sp){ .. },
[]<class T>(initializer list<T> il){ .. });

visitor({1, 2, 3}); // ok - calls initializer_list "overload"

Advantage #5: Can be extended naturally to support the concepts-lite proposal
(without requiring a new concepts keyword)

The explicit template syntax could naturally be extended to support the current work
being done on constraints (concepts-lite) with Generic Lambdas; although, concerns
have been raised about its verbosity. For e.g. the template syntax could be extended

http://boost.org/libs/variant
https://gist.github.com/dabrahams/3779345
http://concepts.axiomatics.org/%7Eans/
https://groups.google.com/a/isocpp.org/d/msg/concepts/J7YhOhD8-Bs/093gNnogircJ

N3560

to support the following code (which assumes the reader is familiar with the
aforementioned concepts-lite proposal):

auto find = []<Sequence S, class T> requires
Equality_comparable<T, Value_Type<S>>()
(S&& seq, const T& v) { .. };

Advantage #6: Allow for forwarding lambdas (which require variadic packs).

It is also worth noting that should generic lambdas be used to wrap either pre or post-
actions around functions calls, forwarding arguments might be necessary, and the use
of the explicit template-parameter-list would allow "perfect forwarding”. Consider:

auto add_pre_printer =
[](auto* objptr) {
return [=](auto mem_fun) {
return [=]<class ... Ts>(Ts&& ... args) {
variadic_print(args ...);
return (objptr->*mem_fun)(static_cast<Ts&&>(args)...);
}s
¥
}s

struct X {
void f(int i, char&& c, X& x) { print("X::f\n"); }
void g(X x) { print("X::g(x)\n"); }

// used by variadic_print, if it can't find an appropriate
// print specialization (i.e. print(int), print(char) etc)
const char *to_string() const { return "X"; }

}s
X X;
auto X_add_mem_fun = add_pre_printer(&x);

auto Xf = X_add_mem_fun(&X::f);
auto Xg = X_add_mem_fun(&X::g);

Xf(3, 'a', x);
Xg(x);

This prints (in our implementation):
3, a, X

X::f(3)

X

X::g(x)

N3560

We admit that supporting the full template parameter list feature has been deemed
controversial (the Portland 2012 straw-poll outcomes were: 7 SF, 5 F, 3N, 1 A, 1 SA') by
a few committee members, and therefore conclude this sub-section with some quotes
from a committee member who was not present in the room during EWG's discussion of
this feature in Portland.

Consider the recent words of John Spicer [std-ext-14263]: "'l think we need more than just
auto. I'm not sure how much more, but I think having just auto would be too limiting".

John Spicer's followup to those thoughts (in a private email, included with his
permission) supports our claim that C++ users would benefit from the full template
parameter list syntax. He also recommends a strategy (omitting the typename Or class
specifier for type template-parameters) for making the syntax more concise (which we
favor, and should perhaps be a separate paper since it could apply to function templates):

I'd like to add that on further thought, generic lambdas should probably
support the full template parameter list syntax.

Most lambdas can probably get away with auto, but for the cases that
can't saying “typename T", is not that more than just "T", and I think it
would be a mistake to prohibit nontype template parameter and template
template parameters from generic lambdas.

Of course, we could allow both "<T1, T2>" and "<typename T1,
typename T2>". If we do so, we should probably make that syntax
available for normal templates too.

It is currently the case that "typename identifier" is at type parameter and
"typename nested-name-specifier identifier" is an unnamed nontype
parameter. The same rule could be applied to cases without the
"typename” (i.e., <T1> always declares a type template parameter named
T1, never a nontype parameter of type T1 (if a type T1 is visible to normal
lookup)).

The full template parameter list syntax feature has been implemented,

lsF= Strongly Favor, F = Weakly Favor, N = Neutral, A = Weakly Against, SA = Strongly Against

http://faisalv.github.com/clang-glambda/

N3560

2.2 Permit a lambda body to be an expression

Experience has shown that many lambda bodies are short, and of the form “{ return
expression; }”. Since we share Bjarne Stroustrup's view that there is value to terseness
with lambdas?, as a further convenience, we propose allowing such a lambda body to be
written as simply “expression” with identical semantics:

for_each(begin(v), end(v), [](auto &) e += 42); // { return e += 42; }

sort(begin(v), end(v), [](auto i, auto j) j < i); // { return j < i; }

Note: this extension would also apply to non-generic lambdas.

Since the expression-body form behaves similar to the compound-statement-body form
with a single return statement containing the expression, we do not expect the return type
deduction for such lambdas, or any generic lambdas to occur within a SFINAE
(Substitution Failure Is Not An Error) context. This would be consistent with Merrill's
(N3386) return type deduction for functions proposal. If SFINAE is desired here, it
should be a separate proposal.

In addition, as a consequence of the grammar of an expression (note: we are actually
proposing that the syntactic form actually be an assignment-expression that precludes
commas, please read on for the rationale), ambiguities can arise in certain contexts:

1. In the setting of a mutable qualifier:

int x = 10;
[=](auto a) mutable a + ++x;

We note no ambiguities here. While the construct may look initially odd, we
suspect that once a reader is used to seeing this in code, it would not introduce
much complexity.

2. In the setting of a trailing-return-type or an exception-specification:

[1(auto a) -> int* a; // 1 -- ok
[J(auto a) -> int* (a); // 2 -- What to do here?
[]<bool B>(auto) noexcept (B); // 3 -- What to do here?

When parsing the trailing return type or the exception-specification, in the
setting of an expression-body the parentheses could signify a function type, a
constant-expression being passed to noexcept, or the beginning of an
expression. One could institute new rules to try and resolve these ambiguities

2n 1f you see a lambda as something that typically appears in the middle of an expression,

the amount of typing needed to define it becomes important. Thus Andrew and | tend to focus

on the ultra-terse [terse concepts-lite example]..."

https://groups.google.com/a/isocpp.org/d/msg/concepts/J7YhOhD8-Bs/093gNnogircJ

N3560

(the solution space here might overlap with the one employed with the new
expression i.e. new-type-id and new-initializer), but it would be simpler to
forbid trailing return types and exception-specifications if the expression-body
form of the lambda is being used. If this restriction is noted to be too
draconian in the future, efforts can then be taken to try and resolve this
ambiguity. We are recommending a conservative approach, and this may
prove too conservative for some developers, therefore before we invest further
resources in a solution, at this time we are simply requesting guidance from
the EWG on this matter.

3. When a lambda expression is used within the context of declaring a function
(default arguments) or calling a function or any other context in which it is
followed by a comma:

template<class T, class U> void foo(T t, U u); // 1

foo([](auto a) a, [](auto b) b); // 2

template<class R, class A>
void foo_def(R (*fpl)(A), // 3
R (*fp2)(A) = [](auto a) a,
R (*fp3)(A) = [](auto b) b);

foo_def((int (*)(int))[](auto b) b); // 4

We feel that the ambiguity of whether the comma that follows the expression
is part of the expression (i.e. a comma separated list of expressions) or the
function declarator should be resolved such that the comma is NOT part of the
expression. If a comma separated sequence of expressions is required, they
can be enclosed in parentheses. This can be specified using the syntactic form
assignment-expression in the expression-body form (instead of the syntactic
form expression which allows commas in the absence of being enclosed by
parentheses) which would give us the desired results.

4. In the setting of an attribute-specifier-seq

We note no ambiguities here.

5. In defining a lambda without a lambda declarator

int local = 10;
[&] ++local ; // ok - but we require [&]() ++local;

While we note no ambiguities here currently, we do recommend that a
lambda-declarator be required with the expression form, otherwise, should
names ever be allowed in lambda expressions, we may end up having to
confront the following ambiguity:

N3560

auto F1 = []() { return [](auto a) { return a; }; };

auto L = [] F1()(F1); // If named lambdas were ever allowed, is this
// a Lambda named F1 (with (F1) as body),
// or unnamed lambda with F1()(F1) as a body?

Therefore, the grammar we would propose (to prohibit the comma from being parsed as
the body of the lambda expression without explicit parentheses) would be along the lines:

lambda-expression:
lambda-introducer lambda-declarator,,; compound-statement
lambda-introducer lambda-declarator,,; assignment-expression

As a consequence the following constructs would behave as so:
template<class T, class U> void foo(T t, U u);

// well formed, two lambdas passed to foo
foo([](auto a) a, [](auto b) b);

// no ambiguity with lambdas as default arguments
template<class R, class A>
void foo_def(R (*fpl)(A),
R (*fp2)(A) [I(auto a) a,
R (*fp3)(A) = [](auto b) b);

// ill-formed: 'b' is a separate variable with no initializer
auto M = []J(auto a, auto b) a, b;

// ill-formed: two separate variables M and 'b' of different types
auto M = []J(auto a, auto b) a, b = 10;

// well-formed: (a, b) is the body of the lambda
auto M = [](auto a, auto b) (a, b);

// well formed

int local = 10;

auto Increment = [&] ++local; // [&] { return ++local; }
Increment(); // local is now 11

// ill-formed
[10 5 // no body
[1(++1local); // paren, expects parameter

All the ambiguities mentioned on the EWG reflector (messages 14111-14139) would be
answered by resorting to the above grammar and restrictions mentioned above.

It is worth noting that intial user experience is showing that the expression-body form has

strong appeal and can add to clarity of code. In addition, one of the authors who was
initially neutral on this feature, after having written code to test the implementation, is

10

https://gist.github.com/4347130

N3560

now strongly in favor of this feature. Since nested lambdas are not uncommon, and with
the advent of C++11, currying (transforming a function that takes multiple arguments in
such a way that it can be called as a chain of functions, each with a single argument) with
non-generic lambdas is becoming popular in C++ code, it is worth considering the
readability issue and the lispy brace-like problem that can manifest in the absence of the
expression-body form. Consider:

// curry3 is a lambda that when called with a functor (aka 'f')

// returns a lambda that if passed the first argument (aka 'a') to 'f°',
// returns a lambda that if passed the second argument (aka 'b') to 'f'
// returns a lambda that if passed the third argument (aka 'c') to 'f'
// returns the result of calling 'f' with 'a', 'b', 'c’.

auto curry3 = [](auto f)
[=](auto a)
[=] (auto b)
[=] (auto c) f(a, b, c);

auto sum

[J(auto a, auto b, auto c) a + b + c;

auto val

curry3(sum)(1)(2)(3); // val =1 + 2 + 3
Compare the above to the more verbose synonymous code:

auto curry3 = [](auto f) {
return [=](auto a) {
return [=] (auto b) {
return [=] (auto c) {
return f(a, b, c);

33

auto sum = [](auto a, auto b, auto c)
{ return a + b + c; };

auto val = curry3(sum)(1)(2)(3);
While readability is no doubt subjective, it is our opinion that the expression-body form —
if used judiciously — can enhance the clarity of code.
This feature has been implemented,

2.3 Allow auto forms in the trailing return type
Occasionally we need the return type of a lambda to be deduced as a reference. There is

no way to do this for a lambda (even under N3386). Therefore, we propose supporting
auto forms (including decltype(auto)) in the trailing return type:

auto L = [=](auto f, auto n) -> auto& { return f(n); };
auto M = [=](auto f, auto n) -> auto* { return f(n); };
auto N = [=](auto f, auto n) -> auto { return f(n); };

2.4 Allow generic lambdas with variadic auto parameters

11

http://en.wikipedia.org/wiki/Currying
http://stackoverflow.com/search?q=currying+[c%2B%2B]
http://faisalv.github.com/clang-glambda/

N3560

Both Scott Prager [std-proposals] and Nikolay Ivchenkov [c++std-ext-14216]
independently have requested that generic auto parameters support variadic syntax.

Consider the following:
auto PrinterCurrier = [](auto printer) {
return [=](auto&& ... a) {
printer(a ...);
}s
}s

2. 5 Lambda Syntax for Functions vs Named Lambdas vs use of auto in
function parameters

While there is clear interest on this topic, unfortunately we have not had enough time to
work further on this important feature. Based on some preliminary discussion on the
reflector [c++std-ext-14220 - 14232] it seems that a separate paper thoroughly discussing
the various design choices would be in the C++ community's best interest..

3 Further work

At this time we are simply seeking guidance from the EWG as to which of these features
should we continue working on.

4 Acknowledgments

We are grateful for all the help and comments provided by those who participated in
discussions on the various forums and provided us with valuable feedback, such as Richard
Smith, John Spicer, Scott Prager (just to name a few).

This proposal draws much from all the initial lambda (generic and nongeneric) proposals put
forth by Jeremiah Willcox, Doug Gregor, Jaako Jarvi, John Freeman & Lawrence Crowl

12

https://groups.google.com/a/isocpp.org/d/msg/std-proposals/Xck6f50kOjU/7dSeOIn_fuAJ

N3560

Additional References:

e [Spicer-ext-14260] J Spicer. Post on the EWG Reflector

e N3386 J Merrill. Return type deduction for normal functions

e N3418 F Vali, H Sutter, D Abrahams. Proposal for Generic Lambda Expressions

e N3559 F Vali, H Sutter, D Abrahams. Proposal for Generic Lambda Expressions (Rev 2)

Portland 2012 EWG Voting Results:

With compulsory auto 12 4 2 0 0
Without auto (auto prohibited) 3 3 5 2 5
With optional auto 1 3 4 4 5
<class T> T 5 3 1 1
omitting return 7 3 2 3 3
lambda syntax for functions 4 5 5 3 1
pointer-to-function conversion 13 3 1 0 0

	Abstract
	1 Introduction
	2 Proposals
	2.1 Allow the use of familiar template syntax in lambda expressions
	Advantage #1: Allow certain type constraints to be placed on each parameter sothat errors can be detected at the point of call of the lambda and not at instantiationtime of the lambda.
	Advantage #2: Allow more sophisticated relations (such as deduced as same type)between parameter types.
	Advantage #3: Allow for simplicity (by avoiding the quirks of decltype) in using thetypes of the generic parameters within the body of the lambda.
	Advantage #4: Allow for partial ordering of generic lambda function call operatortemplates when overloaded within a class that inherits from multiple closure types.
	Advantage #5: Can be extended naturally to support the concepts-lite proposal(without requiring a new concepts keyword)
	Advantage #6: Allow for forwarding lambdas (which require variadic packs).

	2.2 Permit a lambda body to be an expression
	1. In the setting of a mutable qualifier:
	2. In the setting of a trailing-return-type or an exception-specification:
	3. When a lambda expression is used within the context of declaring a function(default arguments) or calling a function or any other context in which it isfollowed by a comma:
	4. In the setting of an attribute-specifier-seq
	5. In defining a lambda without a lambda declarator

	2.3 Allow auto forms in the trailing return type
	2.4 Allow generic lambdas with variadic auto parameters
	2. 5 Lambda Syntax for Functions vs Named Lambdas vs use of auto infunction parameters

	3 Further work
	4 Acknowledgments
	Additional References:

