
Introducing Object Aliases

Document #: WG21 N3552
Date: 2013-03-12
Revises: None
Project: JTC1.22.32 Programming Language C++
Reply to: Walter E. Brown <webrown.cpp@gmail.com>

Contents

1 Introduction 1
2 Motivating examples 1
3 Working syntax and notional semantics 4
4 What’s wrong with function templates? 5
5 Conclusion 6
6 Acknowledgments 6
7 Bibliography 6
8 Revision history 7

1 Introduction

A number of years ago, [Bro05] explored a prospective language feature then known as Object
Templates. That feature died on the vine due to healthy skepticism voiced by EWG, as well as
the usual lack of cycles to develop the idea much further. However, the original underlying issue
is still present in C++11, after even many additional years of experimental effort to achieve the
desired effect via C++03 or (more recently) C++11 syntax.

Fortunately, C++11 also points the way toward a more general solution, well beyond that
envisioned over a decade ago. Accordingly, this paper incorporates and updates a significant
fraction of the earlier [Bro05] in introducing a different proposed C++ feature. Inspired by the
C++11 template alias for types, we will propose a template alias for objects, known in brief as an
object alias.

2 Motivating examples

2.1 Manifest constants
According to an oft-quoted early Fortran manual for Xerox computers:

The primary purpose of the DATA statement is to give names to constants; instead of
referring to pi as 3.141592653589793 at every appearance, the variable Pi can be given
that value with a DATA statement and used instead of the longer form of the constant.
This also simplifies modifying the program, should the value of pi change.

While humorously expressed — after all, how can π, a constant of nature, change? — programmers
have come to understand that different environments can easily require different numeric approx-
imations to π. Porting a program to a new architecture, for example, may provide an opportunity
for increased computational precision, requiring additional significant digits to achieve.

In addition, there are constants of nature whose values are subject to reconsideration from time
to time. For example, some constants’ values are determined only by analysis of experimental data.

1

mailto:webrown.cpp@gmail.com

2 N3552: Introducing Object Aliases

As experiments improve their measurements of physical phenomena, these constants’ generally-
accepted values are adjusted in the literature1 so as to reflect the improved understanding that
results from better (and more plentiful) experimental data and from improved statistical techniques.
Maintenance of software that employs such constants therefore often includes tracking these
constants’ values as their accuracy improves over time.

Thus, it has long been considered good coding practice and style to employ named constants
in lieu of literals. As above, typical rationale for this recommended practice (denoted, in some
contexts,2 as manifest constants) cites such benefits as:

• Clarity of exposition: making the code’s intent more obvious to a reader;
• Consistency of use: ensuring a common value is used throughout the code; and
• Ease of maintenance: requiring adjustment, when needed, to but a single specification of

the desired value.

Even a simple C++ function to calculate the area of a circle can profit from the application of
this technique:

1 auto area_of_circle(double radius) -> decltype(radius) {
2 return pi * radius * radius;
3 }

How could the non-local name pi have been defined? Several straightforward possibilities are
readily apparent in C++03/11 (formatting selected to emphasize similarities):

1 #define pi 3.141592653589793
2 double const pi = 3.141592653589793;
3 static double const pi = 3.141592653589793;
4 static constexpr double pi = 3.141592653589793;

However, each of these is problematic, in the same way, in the context described below.

To set the scene, let us overload our area-computing function for additional types of its radius
parameter:

1 auto area_of_circle(float radius) -> decltype(radius) {
2 return pi * radius * radius;
3 }

5 auto area_of_circle(long double radius) -> decltype(radius) {
6 return pi * radius * radius;
7 }

If, as shown, all overloads share a single instance of pi, then two of the three overloads may well
incur the cost of a cast or two, no matter which technique was used to declare and define pi.
Further, depending on the type of that single instance of pi, one or two of the overloads may yield
a result with fewer bits of accuracy than otherwise possible.

If each overload were instead provided a pi object whose type matched the type of the function’s
parameter, then no casting would be needed. This approach represents one possible trade-off
between performance and computational accuracy. However, we now require additional names
in order to refer to the pi’s of the various desired types. One possible approach to selecting
such names follows the naming convention of many of the functions in the C portion of the C++
standard library: use a canonical name (here, pi) for the double version, and attach distinct
suffixes to denote the float and long double versions:

1 For example, the Committee on Data for Science and Technology (CODATA) most recently introduced the “2010 set”
of self-consistent values of basic constants and conversion factors. These values replaced the “2006 set,” which replaced
the “2002 set,” which replaced the “1998 set,” etc.; see [CODATA] for details.

2BCPL, anyone?

N3552: Introducing Object Aliases 3

1 static float const pif = 3.14159F;
2 static double const pi = 3.1415926;
3 static long double const pil = 3.141592653589793L;

But now suppose we wish to provide a single generic computation, rather than a family of
overloaded functions. While it seems straightforward to express most of this in the form of a
function template, the desire to employ a pi whose type matches the deduced function template
parameter first suggests we write:

1 template< class T >
2 T area_of_circle(T radius) {
3 return static_cast<T>(pi) * radius * radius;
4 }

Because this approach uses a single value of pi in all its instantiations, it encounters the
performance and accuracy issues described above. If, however, we could provide specializations
of pi (e.g., pi<float>, pi<double>, etc.) to accommodate each intended template parameter T,
we could write:

1 template< class T >
2 T area_of_circle(T radius) {
3 return pi<T> * radius * radius;
4 }

2.2 Constraints
More recently, [SS12] and its successor drafts [SS13a, SS13b] have proposed (as part of a broader
effort) a new requires keyword for C++. According to [SS13a], “The requires clause is followed by
a Boolean expression that evaluates predicates.” These predicates are termed constraints in the
proposal:

A constraint is simply an unconstrained constexpr function template that takes no
function arguments and returns bool. It is — in the most literal sense — a predicate on
template arguments. This also means that the evaluation of constraints in a requires
clause is the same as constexpr evaluation.

Among others, the paper gives the following (lightly reformatted) example of a simple constraint
declaration:

1 template< typename T >
2 constexpr bool Equality_comparable();

The constraint can be called as any ordinary function template might. In the context of a requires
clause, such a call is termed the explicit form. There is also a shorthand form, in which only
the name of the constraint is used; the call is implied and is expanded by the compiler into the
corresponding explicit form.

1 template< typename T >
2 requires Equality_comparable<T>() // explicit form
3 struct equal_to;

5 template< Equality_comparable T > // shorthand form
6 struct equal_to;

Given an object alias facility as proposed herein, we could avoid the need for any call in such
contexts. Since any call to a niladic function (or function template) can be obviated via a suitable
object alias, we could have the following instead:

4 N3552: Introducing Object Aliases

1 template< typename T >
2 using auto Equality_comparable = · · · ; // see next section

4 template< typename T >
5 requires Equality_comparable<T> // explicit form
6 struct equal_to;

8 template< Equality_comparable T > // shorthand form (unchanged from above)
9 struct equal_to;

3 Working syntax and notional semantics

Given a definition such as the following:

1 template< class T = double >
2 struct pi_constant {
3 static constexpr T value = static_cast<T>(3.141592653589793L);
4 };

we envision that an object alias named pi may thereafter be defined as follows:

1 template< class T = double >
2 using auto pi = pi_constant<T>::value;

such that in subsequent usage:

• each appearance of pi or pi<> would be the semantic equivalent of pi_constant<>::value
(each implying the default template argument), and

• each appearance of pi<type> would be the semantic equivalent of pi_constant<type>::
value.

If the requirements on constexpr functions are somewhat relaxed in the future, we would
also expect the following alternative definitions to behave equivalently to those above:

1 template< class T = double >
2 constexpr T& pi_constant() {
3 static constexpr T value = static_cast<T>(3.141592653589793L);
4 return value;
5 };
6 · · ·
7 template< class T = double >
8 using auto pi = pi_constant<T>();

The advantage of this latter approach would be that it is free of order-of-initialization issues
in case one such value depends on another. In use, there is no discernable difference to the
programmer.

As a final (preferred) alternative, if the feature were to allow the direct aliasing of constant
expressions (á la manifest constants), our intent could be specified far more succinctly,3 with no
need for any function template:

1 template< class T = double >
2 using auto pi = static_cast<T>(3.141592653589793L);

3 It is unclear as of this writing whether constexpr may be a desirable or even a necessary part of the declaration.

N3552: Introducing Object Aliases 5

In brief, it seems that any call to a niladic function (or function template) can be obviated
via a suitable object alias.

4 What’s wrong with function templates?

There’s nothing wrong with function templates. Niladic/nullary function templates certainly can
mimic most object alias functionality:

1 template< class T = double >
2 T pi() { // read-only
3 static T constexpr pi(3.141592653589793L);
4 return pi;
5 }

7 cout << pi<float>(); // use

The above code demonstrates one implementation for a read-only version. A read-write variant, if
needed, would follow identical logic but would instead return a reference to a local non-const
static object:

1 template< class T = double >
2 T & adjustable_pi() { // read-write
3 static T adjustable_pi(3.141592653589793L);
4 return adjustable_pi;
5 }

7 cin >> adjustable_pi<float>(); // use

It is important, however, to explore how to use the result of such an approach. Because
instantiation of a function template produces a function, obtaining access to the function’s
embedded value would require the syntax of a function call. Thus, under current language syntax
rules and as illustrated above, parentheses are required to designate the function-call operator.

However, oft-repeated user surveys of a representative programmer community clearly, consis-
tently, and convincingly demonstrate that, in our context for our intended use, this requirement
for parentheses to perform a straightforward access to what is perceived as an ordinary constant
(read-only case) or a straightforward variable (read-write case), is at best deemed “unnatural” and
is at worst considered to be “odious.” Even though a constant can certainly be mathematically
modeled via a niladic function, many/most programmers’ mindsets evidently do not permit easy
application of such a model to their coding practices.

But it’s just syntactic sugar, right?

Certainly. However, based on the above-described surveys, it appears to be syntactic sugar that
is extremely important to users: Not only does it meet their expectations, the notation provides
considerable convenience, economy, and clarity in expressing a programming idiom (manifest
constants) that is both in common (near-ubiquitous) use and is highly recommended for its
well-known benefits.

6 N3552: Introducing Object Aliases

However, despite some fifteen years of experimentation, no one (up to and including our most
respected WG21 colleagues) has been able to make such pi<T> syntax work in C++. We believe
this problem is well worth solving, and so we believe a new core language feature is called for.

5 Conclusion

Our primary goal in writing this paper was to present use cases, both old and new, for a new
language feature that we have termed an object alias. We view this feature as a logical extension
of concepts and features already supported by contemporary C++, and believe object aliases
represents an important direction along which C++11 might be usefully enhanced.

In so doing, we have given significant weight to the consistent input we have received over
many years as we surveyed respected professional colleagues regarding the utility and significance
of the underlying notion. We also presented, as a working syntax for object aliases, the precise
manner in which these same colleagues have expected the feature to be used in their code. We
did so because we concur with their judgment that this notation provides “convenience, economy,
and clarity of expression.”

This paper was generally intended as an exploratory document. Our purpose is solely to
inaugurate and stimulate discussion exploring interest in and feasibility of object aliases. We
therefore respectfully request that our readers provide us their useful feedback in order that we
may determine how next to proceed.

6 Acknowledgments

We are grateful to the many individuals who have helped us, over many years, to refine the ideas
underlying what has emerged as the object alias. Many thanks also to the readers of early drafts
of this paper for their helpful feedback.

7 Bibliography

[Bro05] Walter E. Brown: “Toward a Proposal for Object Templates in C++0x.” ISO/IEC JTC1/SC22/
WG21 document N1785 (post-Lillehammer mailing), 2005-04-11.
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2005/n1785.pdf.

[CODATA] Peter J. Mohr, Barry N. Taylor, and David B. Newell: “The 2010 CODATA Recommended Values
of the Fundamental Physical Constants” (Web Version 6.0). Database developed by J. Baker,
M. Douma, and S. Kotochigova. National Institute of Standards and Technology, Gaithersburg,
MD 20899, 2011-07-22.
http://physics.nist.gov/constants.

[DuT12] Stefanus Du Toit: “Working Draft, Standard for Programming Language C++.” ISO/IEC JTC1/
SC22/WG21 document N3485 (post-Portland mailing), 2012-11-02.
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2012/n3485.pdf.

[SS12] Andrew Sutton and Bjarne Stroustrup: “Template Constraints.” Undated pre-publication draft
made available 2012-11.
http://wiki.edg.com/twiki/pub/Wg21portland2012/EvolutionWorkingGroup/template-
constraints.pdf (login required).

[SS13a] Andrew Sutton and Bjarne Stroustrup: “Concepts Lite: Constraining Templates with Predi-
cates.” Undated pre-publication draft posted 2013-02-08 to concepts study group reflector.
https://groups.google.com/a/isocpp.org/forum/?hl=en-US&fromgroups=#!topic/concepts/
qflNpHvvE90.

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2005/n1785.pdf
http://physics.nist.gov/constants
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2012/n3485.pdf
http://wiki.edg.com/twiki/pub/Wg21portland2012/EvolutionWorkingGroup/template-constraints.pdf
http://wiki.edg.com/twiki/pub/Wg21portland2012/EvolutionWorkingGroup/template-constraints.pdf
https://groups.google.com/a/isocpp.org/forum/?hl=en-US&fromgroups=#!topic/concepts/qflNpHvvE90
https://groups.google.com/a/isocpp.org/forum/?hl=en-US&fromgroups=#!topic/concepts/qflNpHvvE90

N3552: Introducing Object Aliases 7

[SS13b] Andrew Sutton and Bjarne Stroustrup: “Concepts Lite: Constraining Templates with Predi-
cates.” Undated pre-publication draft posted 2013-02-21 to concepts study group reflector.
https://groups.google.com/a/isocpp.org/forum/?hl=en-US&fromgroups=#!topic/concepts/
J7YhOhD8-Bs.

8 Revision history

Revision Date Changes

1.0 2013-03-12 • Published as N3552.

https://groups.google.com/a/isocpp.org/forum/?hl=en-US&fromgroups=#!topic/concepts/J7YhOhD8-Bs
https://groups.google.com/a/isocpp.org/forum/?hl=en-US&fromgroups=#!topic/concepts/J7YhOhD8-Bs

	1 Introduction
	2 Motivating examples
	3 Working syntax and notional semantics
	4 What's wrong with function templates?
	5 Conclusion
	6 Acknowledgments
	7 Bibliography
	8 Revision history

