
Remove explicit from class-head

Date: 2010-02-20

Version: N3234=11-0004

Authors: Ville Voutilainen
<ville.voutilainen@gmail.com>

Abstract

Multiple National Bodies requested in their CD ballot responses that
a virtual override control attribute should be added. The attributes
were since turned into context-sensitive keywords. It seems that
turning the attributes into keywords brings forth problems with
grammatical placement of the keyword "new" and the proposed
solution is to allow "new" to appertain for functions only. That
solution creates a two-fold problem: having "explicit" in the
class-head sets in stone what "explicit" can check for, so it can't
later be made to check the lack of "new" for non-functions without
breaking existing code. This paper proposes removing "explicit"
from the class-head so that the lack of "new" and "override"
annotations is not diagnosed, so that the evolution path for such
checking is kept open until a better solution for such checking of
lack of annotations is designed.

Background
The reason for having "explicit" in the class head is to diagnose the lack of
"new" and "override" annotations, protecting against accidental hiding or
overriding, as follows:

struct B {
 virtual void f();
};

struct D explicit : B {
 void f(); // ill-formed, no override annotation
 void f(int); // ill-formed, no new annotation
};

This checking for functions arguably provides a useful facility. The problem
with having it for functions only is that types hiding types would not be

checked for hiding, thus:

struct X {/*...*/};
struct Y {/*...*/};

class B {
 typedef X value_type;
};

class D explicit : public B {
 typedef Y value_type; // well-formed if "new" can only appertain to functions
};

In this case programs may use D::value_type without any protection against
mistakes, as the hiding of value_type goes undiagnosed. The core reflector
message 18661 provides another illustrative example, repeated below:

#include <iostream>

struct B
{
 void f() { std::cout << "B::f()" << std::endl;}
};

struct D explicit : B
{
 struct foo { void operator()() { std::cout << "D::foo::operator()()"
 << std::endl; }};
 foo f;
};

struct B2
{
 static void f() { std::cout << "B2::f()" << std::endl; };
};

struct D2 explicit : B2
{
 struct f { f() { std::cout << "E::f::f()" << std::endl;} };
};

int main(void)
{
 B b;
 b.f();
 D d;
 d.f();
 B2::f();
 D2::f();
}

In this example, a data member hides a non-static member function, and a
type hides a static member function. Such hiding cases are not diagnosed if
"new" appertains to functions only, so there's no protection against such
cases, any "explicit" annotation in the class-head wouldn't help and there
would be no way to express the intent that such hiding is what was

intended.

Solution and wording
The conservative solution seems to be to remove "explicit" from class-head,
and reconsider such a facility in a later standard revision.

Change in 9 [class] paragraph 1:

class-key attribute-specifier-seqopt class-head-name class-
virt-specifier-seqopt finalopt base-clauseopt

Remove in 9 [class] paragraph 1:

class-virt-specifier-seq: class-virt-specifier class-virt-specifier-seq
class-virt-specifier

class-virt-specifier: final explicit

Change in 9 [class] paragraph 1:

A class-virt-specifier-seq shall contain at most one of each class-
virt-specifier. A class-specifier whose class-head omits the class-
head-name defines an unnamed class. [Note: an unnamed class
thus can’t be final or explicit . — end note]

Change in 9 [class] paragraph 3:

If a class is marked with the class-virt-specifier final and it
appears as a base-type-specifier in a base-clause (Clause 10), the
program is ill-formed.

Remove in 10 [class.derived]:

Strike paragraph 9 completely.

In a class definition marked with the class-virt-specifier explicit, if
a virtual member function that is neither implicitly declared nor a
destructor overrides (10.3) a member function of a base class and
it is not marked with the virt-specifier override, the program is
ill-formed. Similarly, in such a class definition...

Change in A.8 [gram.class]:

class-key attribute-specifier-seqopt class-head-name class-
virt-specifier-seqopt finalopt base-clauseopt

Remove in A.8 [gram.class]:

class-virt-specifier-seq: class-virt-specifier class-virt-specifier-seq
class-virt-specifier

class-virt-specifier: final explicit

