
Doc No: SC22/WG21/N2917 = PL22.16/09-0107

Date: 2009-06-19

Project: JTC1.22.32

Reply to: Herb Sutter

 Microsoft Corp.

 1 Microsoft Way

 Redmond WA USA 98052

 Email: hsutter@microsoft.com

N2880 Distilled, and a New Issue With Function Statics

This paper is an attempt to focus on two key fundamental difficulties that underlie many of
the issues mentioned in N2880.

1. The trouble with detached threads and static destruction

Any thread that can continue running during static destruction is inherently nearly useless.

Such a thread cannot reliably use global or static objects;1 therefore, it can‟t reliably call li-
brary functions, because library functions may use global or static objects; therefore, it is es-
sentially useless. In the working paper, detached threads are already effectively required to
call only code that is async-signal-safe, which is extremely restrictive and not the behavior
generally expected by programmers who detach threads.

Therefore, detached threads are inherently nearly useless, unless they are guaranteed to end
before the end of main before static destruction begins, by being joined manually or automat-
ically or employing other synchronization to achieve the same end (see also N2802).

Possible resolutions include, in rough order from most to least desirable in my opinion:

 1A: Require automatic joining. Require that the end of main automatically join with all
still-running non-main threads before static destruction begins.

Only this option guarantees safety and elimination of undefined behavior if a thread is
not joined with in time to avoid running during static destruction. It does not address
non-std::thread threads, but those are beyond our domain.

1
 This applies only after the point in its lifetime when static destruction begins, but the thread generally cannot

know when that is and so the restriction applies to the entire thread.

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2009/n2880.html
http://www.open-std.org/JTC1/SC22/WG21/docs/papers/2008/n2802.html

WG21/N2917 = PL22.16/09-0107 page 2

N2880 Distilled, and a New Issue With Function Statics

An argument against this option is that some implementers want to write std::thread
as a zero-overhead wrapper around another C-based API, such as pthreads. C-based
APIs support detaching much more readily because they are designed for a language
where shutdown is almost trivial: run atexit handlers then flush and close
streams/files. However, any objection to 1A based on overhead should quantify what
the overhead actually is, and weigh it against the consideration that not joining will
essentially result in undefined behavior.

 1B: Disallow detaching, and say that failure to join before static destruction begins is undefined
behavior. Remove thread::detach from the standard, and require that a program must
join with all non-main threads before the end of main; failure to do so is undefined be-
havior.

This closes the most obvious way of accidentally creating a too-long-running thread
that encounters undefined behavior. It leaves most of the burden on the programmer,
who must track all threads and ensure they are joined with in time in order to avoid
undefined behavior.

An argument against this option is that Boost.Thread provides thread::detach. Never-
theless, the feature has problems. Note that Boost.Thread likewise provides a
thread::~thread with detach semantics, which has also been recognized as flawed and
already changed in C++0x for similar reasons (see N2802, whose Alternative 2 was
adopted at the Summit meeting which changes the semantics from detach to termi-

nate, though I personally believe the change should be to join; at any rate, we agree
that detach is problematic).

 1C: Just say that failure to join before static destruction begins is undefined behavior. Require
that a program must join with all non-main threads before the end of main; failure to
do so is undefined behavior.

This option has all the drawbacks of 1B, and differs only in that it doesn‟t provide the
minimal guard rail of removing detach which officially becomes undefined behavior-
bait.

 1D (status quo): Just say that a program must not access a global after it has been destroyed.

That is slightly weaker than 1C in practice because it permits thread pools in global
variables, which is desirable. However, it does not address the problem that it is in
general unsafe to call libraries from detached/unjoined threads unless the user adds
explicit synchronization to be sure he‟s still running before static destruction has be-
gun.

2. The trouble with thread_local destruction and static destruction

C++ is one of the few languages with destructors, the rules for static destruction already have
a hole (see “function local statics poisoning static destructors,” below), and we‟re now trying

http://www.open-std.org/JTC1/SC22/WG21/docs/papers/2008/n2802.html

WG21/N2917 = PL22.16/09-0107 page 3

N2880 Distilled, and a New Issue With Function Statics

to work out the rules for automatic destruction for a new storage class without existing prac-
tice (for automatic ordering rules) as a guide. (Pthreads‟ destructor approach does not cor-
respond, for example because it is manual rather than automatic, and targets resurrec-
tion/retry/give-up rather than deterministic-single-destruction semantics.)

A general concern is that getting automatic destruction rules right for thread_local objects is
inherently complex, because it magnifies today‟s existing difficulties. We already have subtle
shutdown ordering rules for sequential shutdown of a single partially ordered set of glob-
al/static objects (with unsolved flaws; see “function local statics poisoning” below). We are
attempting to expand the problem to concurrent shutdown of some or all of arbitrarily many
distinct partially ordered sets of objects (each thread‟s set of thread_local objects, and the set
of global/static objects).

For perspective, consider that it‟s already hard in C++98 to ensure graceful sequential shut-
down of just a single partially ordered set of global/static objects, and at least one feature
(function local statics) introduces a safety hole in global shutdown that we‟re just getting
away with in practice because the feature is not widely used. Major issues include:

 Ordering across translation units. Expert programmers routinely resort to nifty counters
and other subtle techniques, not all of which are actually portably reliable, to get the
relative order of destruction correct for globals/statics in different translation units.

 Function local statics poisoning static destructors (already problematic, but not widely recog-
nized?). Even among expert programmers, how many realize that it‟s actually unsafe
in principle (i.e., potentially undefined behavior) for a destructor of a global or static
object to call an arbitrary library function? This is because the library function might
contain a function local static object in its implementation or transitively call another
function that does so, that object might already have been destroyed, and if so then
calling the function is undefined behavior (3.6.3/2). Theoretically, this means it‟s im-
possible to reliably call opaque library functions from the destructor of a global or stat-
ic object, which means that global/static object destructors are formally nearly useless
in C++ (see also §1); in practice, of course, they are useful and we‟re mostly getting
away with this, because function local statics are not heavily used and libraries some-
times document which functions are unsafe to call during static destruction.

Aside: Incidentally, if we want to close this hole, we could for example: (a) make
“this function is guaranteed not to (transitively) access a function local static” a
required part of its interface description and type, otherwise that function can‟t
be called reliably during static destruction; or (b) add resurrection semantics to
recreate the function local static object if it has already been destroyed (aka
Phoenix singleton).

 Standard library requires magic. We already can‟t reliably implement the standard li-
brary‟s own single-threaded static shutdown requirements in portable C++ code with-
out resorting to „magic‟ not available to programmers in general. The standard re-
quires implementations to do magic that cannot necessarily be written in portable C++

WG21/N2917 = PL22.16/09-0107 page 4

N2880 Distilled, and a New Issue With Function Statics

to guarantee that some key standard library facilities, such as memory allocation and
iostreams, are reliably usable from static destructors.

Trying to allow thread_local objects with nontrivial destructors replicates the problem N-fold
(for N threads):

 Ordering. Same issues as before, but with a combinatorial number of potential interac-
tions if programmers allow references to thread_local objects to escape. Even if all non-
main threads are joined with before the end of main, threads may perform thread_local
destruction concurrently. An important mitigating factor is that normally those objects
at least should not contain interdependencies if programmers follow the guidance to
not hand out references to thread_local objects.

 Function thread_local statics poisoning thread_local destructors. The current draft per-
mits function thread_local statics. Analogously to the global static case, destructors of
thread_local objects must not try to call a function that contains a function thread_local
static object because it might already have been destroyed. With this restriction,
thread_local destructors can‟t safely call library functions because those might (transi-
tively) use a function thread_local static. In practice, I think it‟s likely that we‟ll en-
counter this theoretical problem more often in practice than we do the global version
we‟ve been getting away with.

If we‟re going to allow function thread_local statics in C++0x, we should somehow
make “this function is guaranteed not to (transitively) access a function thread_local
static” a required part of the interface of the function, or add resurrection semantics, or
some other solution.

Program termination is inherently a mysterious time, difficult to understand and reason
about in nearly any language even without the complication of threads. Trying to automate it
by invention outside existing practice seems dangerous.

Ignoring the other difficulties, possible resolutions to the thread_local static poisoning issue
include, in rough order from most to least desirable in my opinion:

 2A (incomplete, but better than status quo): Remove the feature of function thread_local stat-
ic objects. This basically enables thread_local objects having nontrivial destructors,
which otherwise couldn‟t safely call any library function because it might (transitively)
contain function thread_local statics. It doesn‟t address any of the other complexity
concerns though.

 2B (bad, incomplete): Resurrection semantics. Make function thread_local statics not poi-
son thread_local destructors by giving them resurrection semantics: If one is accessed
after it is destroyed, it is reconstructed (presumably initializaed the same way as be-
fore).

That‟s a lot of work and invention to keep function thread_local statics, I doubt anyone
will like it, and it has little implementation experience I know of in C++ (closest would
be Alexandresu Singletons and pthreads destructors used in a resurrection style), but I

WG21/N2917 = PL22.16/09-0107 page 5

N2880 Distilled, and a New Issue With Function Statics

suppose it could work. Even so, it would only make function thread_local statics
safe(r); it doesn‟t address any of the complexity concerns.

 2C (bad, incomplete): Annotations in the type system. Make function thread_local statics
not poison thread_local destructors by making “this function is guaranteed not to
(transitively) access a function thread_local static” a required part of the interface of a
function; enforce it by permitting such functions to call only other such functions; an-
notate the whole standard library to that effect; and finally require that thread_local
static objects be of a type with a destructor that is either trivial or annotated not to in-
voke function thread_local statics.

That‟s a lot of work and invention to keep function thread_local statics, I doubt anyone
will like it, and it has no implementation experience I know of, but I suppose it could
work. Even so, it would only make function thread_local statics safe(r); it doesn‟t ad-
dress any of the complexity concerns.

See N2880 for broader possible resolutions of other issues mentioned in this section, includ-
ing the option of disallowing nontrivial destructors for thread_local statics.

3. The trouble with thread_local data and reusable threads

No matter what we do now or in the future, with or without thread pools in the standard,
thread_local variables are inherently a difficult-to-use feature on a system that reuses threads
(e.g., for efficiency), including but not limited to thread pools. As illustrated in N2880, this is
because cleanup is problematic (see §2 above) and programmers don‟t control the lifetime of
the threads or which thread a task will execute on.

I‟d like to note that, for a general developer audience, today‟s existing practice is to identify
the use of thread_local objects on reusable threads such as thread pools as inherently proble-
matic and warn programmers not to use them there.

Acknowledgments

Thanks to Lawrence Crowl and Peter Dimov for their comments on this paper, to Bill Plauger
for his help with fact-checking, and to the many cpp-threads participants for extensive illu-
minating discussion on these issues. All remaining errors and boneheaded misunderstand-
ings are, as always, my own.

