
Document No: SC22/WG21 N2837
INCITS / PL22.16 09-0027

Date: 2009-01-30
Project: Programming Language C++

Reference: WG21 N2800: C++0X CD1
Reply to: Barry Hedquist

PL22.16 IR
beh@peren.com

C++0X, CD 1, National Body Comments

Attached is a complete set of National Body Comments submitted to JTC1 SC22 in response to
the SC22 Letter Ballot for Committee Draft 1 of the revision of ISO/IEC 14882, aka C++0X.

Comments that were submitted without numbering were numbered manually in the exact order
of the NB's official ballot response. The comments were then organized per the hierarchy of the
balloted document, SC22 N4411 (WG21 N2800). No editing of any kind was done on any of the
comments.

C++0X, CD 1, NB Comments Date: 21 Feb 2009 Document: SC22 N4411, ISO/IEC CD 14882

1 2 3 4 5 6 7

MB1

Clause No./
Subclause No./

Annex
(e.g. 3.1)

Paragraph/
Figure/Table/

Note
(e.g. Table 1)

Type
of

com-
ment2

Comment (justification for change) by the MB Proposed change by the MB Disposition

1 MB = Member body (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial
NOTE Columns 1, 2, 4, 5 are compulsory.

page 1� of 139�
ISO electronic balloting commenting template/version 2001-10

FR
1

General
Comment

 ge Interactions between several new features appear
obscure, and very few examples are offered to guide
understanding of the formal text on interaction between
these new additions.
We worry about the complexity of the programming
model so created.

US
1

1-16 ge/te The active issues identified in WG21 N2803, C++
Standard Core Language Active Issues, must be
addressed and appropriate action taken.

http://www.open-
std.org/jtc1/sc22/wg21/docs/cwg_active.html

Appropriate action would include making changes
to the CD, identifying an issue as not requiring a
change to the CD, or deferring the issue to a later
point in time.

CA-
1

 Ge There are quite a number of defects for the current CD
recorded in SC22/WG21-N2803 and N2806

Consider these comments and update ISO/IEC
CD 14882 accordingly

DE-
1

1 through 16 ge/te DE-1 Consider addressing a significant part of the
unresolved core language issues presented in WG21
document N2791 "C++ Standard Core Language Active
Issues, Revision 59", available at http://www.open-
std.org/jtc1/sc22/wg21/docs/papers/2008/n2791.html .

CH
2

all te The issues on the issues lists shall be addressed before
the standard becomes final.

US
3

all ed Latin abbreviations are presented incorrectly. Italicize all Latin abbreviations, append commas
after each occurrence of i.e. and e.g., and remove
extraneous space after each such abbreviation.

FR
3

1 [intro.scope] 2 ed C++ is split at the end of line.

US
4

1.1 2 ed There is a bad line break in "C++".

C++0X, CD 1, NB Comments Date: 21 Feb 2009 Document: SC22 N4411, ISO/IEC CD 14882

1 2 3 4 5 6 7

MB1

Clause No./
Subclause No./

Annex
(e.g. 3.1)

Paragraph/
Figure/Table/

Note
(e.g. Table 1)

Type
of

com-
ment2

Comment (justification for change) by the MB Proposed change by the MB Disposition

1 MB = Member body (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial
NOTE Columns 1, 2, 4, 5 are compulsory.

page 2� of 139�
ISO electronic balloting commenting template/version 2001-10

UK 1 1.1 2 Ed List of additional facilities over C has been extended with

this standard, so should be mentioned in the introductory
material.

Add the following to the list in 1.1p2: atomic
operations concurrency alignment control user-
defined literals attributes

FR
4

1.2 [intro.refs] 1 ed Is the lack of reference to ISO/CEI 9899/AC3:2007
voluntary?

UK 2 1.2 1 Ed We recommend taking the latest update to each listed
standard, yet the C standard is quite deliberately held
back to the 1990 version without comment.+

... not sure ...

UK 3 1.3.1 Ed The definition of an argument does not seem to cover
many assumed use cases, and we believe that is not
intentional.

Revise the definition of argument to answer
question such as: Are lambda-captures
arguments? Are type names in a throw-spec
arguments? 'Argument' to casts, typeid, alignof,
alignas, decltype and sizeof? why in x[arg] : arg is
not an agrument, but the value forwarded to
operator[]() is ? Does not apply to operators as
call-points not bounded by parenthises ? Similar
for copy initialization and conversion? what are
Deduced template 'arguments'? what are 'default
arguments'? can attributes have arguments? what
about concepts, requires clauses and
concept_map instantiations? What about user-
defined literals where parens are not used?

UK 4 1.3.3 Te This definition is essentially worthless, as it says nothing
about what distinguished a diagnostic message from
other output messages provided by the implementation

... add something about the diagnostic message
being a message issues by the implementation
when translating a program that violates the rules
of the standard. ...

FR
5

1.3.4
[defns.dynami
c.type]

 te "The dynamic type of an rvalue expression is its static
type." Is this true with rvalue references?

US
5

1.3.5 te The wording is unclear as to whether it is the input or the
implementation "that is not a well-formed program".

Reword to clarify that it is the input that is here
considered not well-formed.

C++0X, CD 1, NB Comments Date: 21 Feb 2009 Document: SC22 N4411, ISO/IEC CD 14882

1 2 3 4 5 6 7

MB1

Clause No./
Subclause No./

Annex
(e.g. 3.1)

Paragraph/
Figure/Table/

Note
(e.g. Table 1)

Type
of

com-
ment2

Comment (justification for change) by the MB Proposed change by the MB Disposition

1 MB = Member body (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial
NOTE Columns 1, 2, 4, 5 are compulsory.

page 3� of 139�
ISO electronic balloting commenting template/version 2001-10

FR
6

1.3.6
[defns.impl.de
fined]

 ed There is a page break between the title and the
paragraph.

FR
7

1.3.13
[defns.undefin
ed]

 ed [intro.execution]/5 explicitly allows non causal undefined
behaviour,

Adding it to the note outlying possible undefined
behaviours.

US
6

1.3.14 ge Unspecified behavior does not clearly state whether or
not undefined behavior is permitted. (The standard says
that "usually, the range of possible behaviors is
delineated", but what happens if the range is not
delineated? Is a crash, or worse, allowed?)

Clearly state whether or not Unspecified behavior
includes undefined behavior.

FR
8

1.4
[intro.complia
nce]

8 ed The paragraph as its stands seems to require that
violations of the ODR (which make a program ill-formed)
are required to be diagnosed if the program also uses an
extension which defines some cases of ODR.

UK 5 1.5 Ge Missing checklist of implementation defined behaviour
(see ISO/IEC TR 10176, 4.1.1p6)

Provide a new annex with the missing checklist

UK 6 1.5 Ge Missing annex describing potential incompatibility to
previous edition of the standard (see ISO/IEC TR 10176,
4.1.1p9)

Provide a new annex with the missing
documentation. See n2733(08-0243) for a starting
point

US
7

1.5 2 ed There is no mention of Clause 17. Include Clause 17 among the list of Clauses that
specify the Standard Library.

US
8

1.5 2 te The paragraph omits to mention concepts and concept
maps among its list of entities defined in the Standard
Library.

Mention concepts and concept maps among the
list of entities.

US
9

1.6 1 ed The syntax description does not account for lines that
wrap.

US
10

1.7 3 ed The term thread is used before defined. Reference 1.10 [intro.multithread].

C++0X, CD 1, NB Comments Date: 21 Feb 2009 Document: SC22 N4411, ISO/IEC CD 14882

1 2 3 4 5 6 7

MB1

Clause No./
Subclause No./

Annex
(e.g. 3.1)

Paragraph/
Figure/Table/

Note
(e.g. Table 1)

Type
of

com-
ment2

Comment (justification for change) by the MB Proposed change by the MB Disposition

1 MB = Member body (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial
NOTE Columns 1, 2, 4, 5 are compulsory.

page 4� of 139�
ISO electronic balloting commenting template/version 2001-10

US
11

1.7 ¶ 3 last sent. ed The phrase “threads of execution” should be
accompanied by a reference to [intro.multithread].

Insert the recommended reference.

US
12

1.7 ¶ 3 first sent. te A memory location is not an object as the sentence
claims.

Clarify that a memory location “holds” an object
rather than that it “is” an object.

US
13

1.7 ¶ 3 last sent. te It is unclear what is meant by memory locations that are
"separate": are they distinct? non-overlapping? how
much "separation" is needed?

Provide either a better definition of “separate” or
reword (this and subsequent paragraphs) to avoid
this term.

US
14

1.7 ¶ 4 te The phrase "no matter what the sizes of the intervening
bit-fields happen to be" contradicts the claim of
separation "by a zero-length bit-field declaration".

Delete the “no matter…” phrase, or resolve the
contradiction in a different way.

US
15

1.7 ¶ 5 te A struct does not “contain” memory locations. Reword so that a struct is “held in” one or more
memory locations.

US
16

1.9 The discussion of observable behavior in 1.9 is not
consistent with the addition of threads to the language.
Volatile reads and writes and other observable actions no
longer occur in a single "sequence”.

Remove/replace various occurrences of
"sequence" in 1.9.

UK 8 1.9 5 Te With parallel execution there is no longer the idea of a
single execution sequence for a program. Instead, a
program may be considered a set of exectution
sequences.

Update first sentance as: A conforming
implementation executing a well-formed program
shall produce the same observable behavior as
one of the possible SETS OF execution
sequences of the corresponding instance of the
abstract machine CONFORMING TO THE
MEMORY MODEL (1.10) with the same program
and the same input.

UK 7 1.9 6 Te Does the term 'sequence' imply all reads/writes through
volatile memory much be serialized, and cannot occur in
parallel on truly parallel hardware? Allow for multiple
concurrent sequences where each sequence is
constrained by this observable behaviour rule, and
multiple sequences are constrained by the memory
model and happens-before relationships defined in 1.10

Replace 'sequence' with 'sequences'.

C++0X, CD 1, NB Comments Date: 21 Feb 2009 Document: SC22 N4411, ISO/IEC CD 14882

1 2 3 4 5 6 7

MB1

Clause No./
Subclause No./

Annex
(e.g. 3.1)

Paragraph/
Figure/Table/

Note
(e.g. Table 1)

Type
of

com-
ment2

Comment (justification for change) by the MB Proposed change by the MB Disposition

1 MB = Member body (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial
NOTE Columns 1, 2, 4, 5 are compulsory.

page 5� of 139�
ISO electronic balloting commenting template/version 2001-10

FR
9

1.9
[intro.executio
n]

16 ed This example use int *v while the other examples seems
to use notation like int* v.

US
17

1.10 1 Ge This definition of “thread” is poor, and assumes the user
already knows what multi-threaded means (probably
true!). In particular, it does not deal adequately with the
concept that all threads share the same address space.

Replace first sentence of para 1 as follows:

 Under a hosted implementation, a C++ program
can have more than one thread of execution
(a.k.a. thread) running concurrently. Each thread
is a single flow of control within a program.
Anything whose address may be determined by a
thread, including but not limited to static objects,
storage obtained via new or by any dynamic
allocator, directly addressable storage obtained
through implementation-defined functions, and
automatic variables, are accessible to all threads
in the same program.

UK 9 2.1 2, 4 Te Undefined behaviour is a drastic way to silently ignore
minor issues. The cases in this paragraph could be easily
defined. In this case opt for conditionally supported
behaviour, which mandates a diagnostic if the compiler is
not prepared to handle the syntax consistently.

Replace undefined behaviour with conditionally
supported behavior. Conditional behaviour may be
implementation defined, although suggest there is
a reasonable default in each case. For creating a
universal-character name, splice text to create a
universal-character. In the case of a file ending
without a newline, treat as if the newline was
implictly added, with an empty line to follow if the
last character was a back-slash.

UK
10

2.1 3 Te Implementation defined seems unnecessarily
burdensome for negligible gain. I am yet to see code that
depended on whether non-empty sequences of
whitespace were concatenated. Better left unspecified.

How the compiler treats non-empty sequences of
whitespace should be left unspecified, rather than
implementation-defined.

C++0X, CD 1, NB Comments Date: 21 Feb 2009 Document: SC22 N4411, ISO/IEC CD 14882

1 2 3 4 5 6 7

MB1

Clause No./
Subclause No./

Annex
(e.g. 3.1)

Paragraph/
Figure/Table/

Note
(e.g. Table 1)

Type
of

com-
ment2

Comment (justification for change) by the MB Proposed change by the MB Disposition

1 MB = Member body (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial
NOTE Columns 1, 2, 4, 5 are compulsory.

page 6� of 139�
ISO electronic balloting commenting template/version 2001-10

FR
10

2.1
[lex.phases]/5
and 2.2
[lex.charset]/3

 te [defns.multibyte] "the extended character set."
[lex.charset]/3 cited below implies that there is an
extended character set per locale.
[lex.phases]/5 "Each [...] universal-character-name [...] is
converted to the corresponding member of the execution
character set"
[lex.charset]/3 "The values of the members of the
execution character sets are implementation defined, and
any additional members are locale-specific."

Together they seem to imply that what is locale-specific is
if a value is valid or not for the current locale, not the
representation of a given universal character.

This is not the behaviour of at least some compilers I've
access to which are allowing different codes for the same
abstract character in different locale. During phase 5,
they are using an implementation defined char set.

UK
11

2.3 Te Trigraphs are a complicated solution to an old problem,
that cause more problems than they solve in the modern
environment. Unexpected trigraphs in string literals and
occasionally in comments can be very confusing for the
non-expert.

Deprecate the whole of 2.3 and move it to
appendix D.

UK
12

2.4, 2.8 2 Te This undefined behaviour in token concatenation is
worrying and we believe hard to justify. An
implementation should either support this in a defined
way, or issue a diagnosic. Documenting existing practice
should not break existing implementations, although
unconditionally requiring a diagnostic would lead to more
portable programs.

Replace undefined behaviour with conditionally
supported behaviour with implementation defined
semantics.

US
18

2.4 ¶ 2 ed The paragraph begins with an empty line. Delete the empty line.

C++0X, CD 1, NB Comments Date: 21 Feb 2009 Document: SC22 N4411, ISO/IEC CD 14882

1 2 3 4 5 6 7

MB1

Clause No./
Subclause No./

Annex
(e.g. 3.1)

Paragraph/
Figure/Table/

Note
(e.g. Table 1)

Type
of

com-
ment2

Comment (justification for change) by the MB Proposed change by the MB Disposition

1 MB = Member body (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial
NOTE Columns 1, 2, 4, 5 are compulsory.

page 7� of 139�
ISO electronic balloting commenting template/version 2001-10

FR
11

2.4
[lex.pptokens]

3 ed There are spurious empty lines.

FR
12

2.5
[lex.digraph]
and 2.11
[lex.key]/2

 te The alternative representations are reserved as such
even in attribute. Is that what is wanted?

FI 2 2.5 Table 2 te Add eq, for spelling out == in order to distinguish it from
the assignment operator.

See eq-keyword.doc, eq-keyword.ppt

UK
13

2.9 2 Ed This text is confusing in isolation, as it implies pp-
numbers do not have a value in translation phase 4 when
evaluating #if preprocessor expressions.

Add a note with a cross-refernce to 16.1 that a pp-
number may briefly acquire a value during
translation phase 4 while evaluating #if
expressions.

UK
14

2.11 table 3 Ed The table is nearly sorted, but not quite. It was sorted in
previous versions of the standard.

Sort the table.

JP
1

2.11 Table 3 ed Keywords in the table are listed disorderly. Also, a part of
a frame of the table is not drawn.

Sort it in alphabetical order. Complete the table
frame.

US
19

2.13.1 Table 5,
rows “l or L”
and “ll or LL”

te The final entry in the last column (“unsigned long int”) is
incorrect.

Replace the incorrect entries by “unsigned long
long int”.

US
20

2.13.1, 2.13.3 te Long strings of digits in literals are a continuing problem
in the production and maintenance of programs.

Adopt the 1983 technology of Ada and use
underscores to separate digits. http://www.open-
std.org/JTC1/SC22/WG21/docs/papers/2007/n228
1.html

UK
15

2.13.2 2 Te Inconsistency between definition of a multicharacter literal
and a wide character literal containing multiple c-chars.

Define the term multicharacter wide literal for a
wchar_t literal containing multiple elements, and
specify its type is integer (or wider)

UK
16

2.13.2 3 Ed Not immediately clear why the question mark needs
escaping. A note would help.

Add a note explaining that the ? character may
need escaping to avoid accidentally creating a
trigraph.

C++0X, CD 1, NB Comments Date: 21 Feb 2009 Document: SC22 N4411, ISO/IEC CD 14882

1 2 3 4 5 6 7

MB1

Clause No./
Subclause No./

Annex
(e.g. 3.1)

Paragraph/
Figure/Table/

Note
(e.g. Table 1)

Type
of

com-
ment2

Comment (justification for change) by the MB Proposed change by the MB Disposition

1 MB = Member body (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial
NOTE Columns 1, 2, 4, 5 are compulsory.

page 8� of 139�
ISO electronic balloting commenting template/version 2001-10

JP
2

2.13.4 1st
paragraph,
2nd line

ed Typo, R"..." should be R"[...]" Correct typo.

JP
3

2.13.4 2nd
paragraph

te We think that the explanation of d-char-sequence is not
enough.

Add the following.
(1) Add the following to the explanation of

d-char-sequence, more easily to
understand.

...prefix is a raw string literal.
The d-char-sequence is used as
delimiter.
The terminating d-char-sequence of ...

(2) Add the following note that there are
square brackets in r-char-sequence.

[Note:
char foo[] = R”delimiter[[a-z]
specifies a range which matches
any lowercase letter from "a" to
"z".]delimiter”;

the expression statement behaves
exactly the same as

char foo[]="[a-z] specifies a range
which matches any lowercase
letter from \"a\" to \"z\".";

- end note]

C++0X, CD 1, NB Comments Date: 21 Feb 2009 Document: SC22 N4411, ISO/IEC CD 14882

1 2 3 4 5 6 7

MB1

Clause No./
Subclause No./

Annex
(e.g. 3.1)

Paragraph/
Figure/Table/

Note
(e.g. Table 1)

Type
of

com-
ment2

Comment (justification for change) by the MB Proposed change by the MB Disposition

1 MB = Member body (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial
NOTE Columns 1, 2, 4, 5 are compulsory.

page 9� of 139�
ISO electronic balloting commenting template/version 2001-10

JP
4

2.13.4 3rd
paragraph,
1st line of
example

ed Typo. Lack of a necessary backslash in the first line of
the example as follows:

const char *p = R"[a
b
c]";

should be

const char *p = R"[a\
b
c]";

Correct typo.

US
21

2.13.4 ¶ 3 ed The paragraph, marked as a Note, contains an
embedded example not marked as such.

Denote the code (and perhaps also its
commentary) as an Example.

US
22

2.13.4 ¶ 3 te The code does not have the effect predicted by its
accompanying narrative.

Append a backslash to the first line of the code.

JP
5

2.13.4 11th
paragraph,
Table 7

te It is not explicit how to combine raw-string and non-raw-
string.

Add rules containing raw-string in the table 7.

FR
13

2.13.4
[lex.string]

3 ed Shouldn't the assert be
assert(std::strcmp(p, "a\nb\nc") == 0);

UK
17

2.13.4 10 Te It would be preferred for attempts to modify string literals
to be diagnosable errors. This is not possible due to the
deprecated implicit conversion to pointer to null-
terminated character sequence of non-const characters.
If this deprecated conversion were remove (see other
comments) then string literals are always accessed
through const types, and the compiler can enforce the no
modification rule. The only exception would be using
const_cast to cast away constness, but this is already
covered under the const_cast rules so needs no further
detail here.

(asssuming deprecated conversion to non-const
array is removed or can be turned off) Strike the
sentence on undefined behaviour.

C++0X, CD 1, NB Comments Date: 21 Feb 2009 Document: SC22 N4411, ISO/IEC CD 14882

1 2 3 4 5 6 7

MB1

Clause No./
Subclause No./

Annex
(e.g. 3.1)

Paragraph/
Figure/Table/

Note
(e.g. Table 1)

Type
of

com-
ment2

Comment (justification for change) by the MB Proposed change by the MB Disposition

1 MB = Member body (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial
NOTE Columns 1, 2, 4, 5 are compulsory.

page 10� of 139�
ISO electronic balloting commenting template/version 2001-10

UK
18

2.13.4 Te The addition of static_assert (7p4) to the language raises
the need to concatenate string representations of integral
constant expressions (typically from a sizeof or alignof
expression) with narrow string literals to provide an
informative error message. There is no need to support
arbitrary constant expressions and especially not floating
point values or formatting flags. Likewise, the need is
purely to support static_assert so only narrow string literal
support is required, although generalizing to other literal
types would be useful.

Define a syntax to support string-ization of integral
constant expressions in a form eligible for string
literal concatenation, 2.13.4p6. Suggested syntax:
I" integral-constant-expression ". There is no raw
variant, although it could combine with type
specifier in the same way that the R prefix does,
supporting u8I, uI, UI and LI.

UK
19

2.13.4 Ed The grammar for string literal is becoming unwieldy and
could easily be refactored into the type optional specifier
and the string contents.

Refactor string-literal grammar as: (note - current
Drupal view loses formatting which is vital to
clearly read the grammar) string-literal: string-
literal-type-specifierOPT string-literal-body string-
literal-type-specifier: one of u8 u U L string-literal-
body: " s-char-sequenceOPT " R raw-string

FR
14

3 [basic] 7 ed "In general it is necessary to determine whether a name
denotes one of these entities before parsing the program
that contains it."

Would prefer
"... before continuing to parse the program that
contains it."
or even
"... to complete the parsing of the program that
contains it."
as some names denotes entities declared after the
first occurrence.

FR
15

3 [basic] 8 ed /operator-function-id/, /conversion-function-id/, /template-
id/ are followed by a space and then a "s" while usually
such production names aren't followed by a space when
put in plural (see /identifier/).

UK
 20

3 Ge Chapter 3 ("Basic concepts") provides common
definitions used in the rest of the document. Now that we
have concepts as a primary feature, the title of this
chapter can be confusing as it does not refer to the
language feature but to definitions used in the document.

Change the title to "Basic definitions".

C++0X, CD 1, NB Comments Date: 21 Feb 2009 Document: SC22 N4411, ISO/IEC CD 14882

1 2 3 4 5 6 7

MB1

Clause No./
Subclause No./

Annex
(e.g. 3.1)

Paragraph/
Figure/Table/

Note
(e.g. Table 1)

Type
of

com-
ment2

Comment (justification for change) by the MB Proposed change by the MB Disposition

1 MB = Member body (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial
NOTE Columns 1, 2, 4, 5 are compulsory.

page 11� of 139�
ISO electronic balloting commenting template/version 2001-10

UK
21

3 2 Ed Concepts is now the name of a specific feature of the
language, the term now risks confusion and ambiguity
when used in the more general sense.

Rename the chapter Basic ???. THe note in p2
specifically needs similar rewording

UK
22

3 6 Te References are frequently considered variables, but this
definition only applies to objects.

Add "or reference" after both uses of "object"

UK
23

3.1 2 Ed alias-declarations are not definitions and should be added
to the list

Add alias-declaration after typedef declaration.

UK
24

3.1 2 Te The current words suggest the declaration of a static
integral constant data member of a class cannot be a
definition. Trying to fix this wording in-place will be
verbose and risk raising more confusion than it solves, so
suggest a footnote to call out the special case

Add a footnote attached to the static data
membmer rule: *static data member delcarations
of intergral type may also be definitions if a
constant integral expression is provided for an
initializer.

UK
25

3.1 3 Ed Example is misleading as implicitly defined default
constructor uses default initialization, not value
initialization, for non-static data members. In the case of
std::String this makes no difference, but it makes a big
difference for fundamental types and pointers.

Remove the : s() from the illustrated default
constructor: struct C { std::string s; C() { } C(const
C& x): s(x.s) { } C& operator=(const C& x) { s =
x.s; return *this; } ~C() { } };

UK
26

3.2 1 Te THe one definition rule should cover references, and
unless the term 'variable' is extended to cover references
the list in this paragraph is incomplete.

Either include references in the definition of
'variable' (see earlier comment) or add reference
to the list in this paragraph.

UK
27

3.2 4 Ed A class type must be complete when catching exceptions,
even by reference or pointer. See 15.3.

Add "when used in an exception-handler (15.3)" to
the list.

FR
16

3.3
[Declarative
regions and
scopes.]

 te The scope of function parameters is defined, but what is
the scope of template parameters?

UK
28

3.3.1 3 Te Class templates are not classes, so we should include
this case.

ammend "class" to "class or class template"

C++0X, CD 1, NB Comments Date: 21 Feb 2009 Document: SC22 N4411, ISO/IEC CD 14882

1 2 3 4 5 6 7

MB1

Clause No./
Subclause No./

Annex
(e.g. 3.1)

Paragraph/
Figure/Table/

Note
(e.g. Table 1)

Type
of

com-
ment2

Comment (justification for change) by the MB Proposed change by the MB Disposition

1 MB = Member body (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial
NOTE Columns 1, 2, 4, 5 are compulsory.

page 12� of 139�
ISO electronic balloting commenting template/version 2001-10

UK
 29

3.3.10 3 Te operators and conversion functions do not have names,
yet are susceptible to 'name hiding' within a class -
indeed we rely on this for the implicitly declared copy-
assignment operator.

Add the additional phrase "The declaration of an
operator or conversion function in a derived class
(Clause 10) hides the declaration of an operator or
conversion function of a base class of the same
operator or type;"

FR
17

3.5 [Program
and linkage]

 te This section does not specify whether concept names
have linkage.
Do they or not? If concept names do not have linkage,
then a note is appropriate, and that would be a bit
surprising and curious. What is the rationale?

UK
 30

3.5 2 Te This paragraph implies concepts have no linkage (do they
need it?) and that the entities behind names without
linkage cannot be used in other scopes. This maybe a
bigger problem for concept maps?

Add a note to clarify that concepts don't need
linkage.

UK
 31

3.5 4 Te What is the linkage of names declared inside a
namespace, in turn declared inside an anonymous
namespace? It is not clear why such a namespace has
no linkage, and there is no language suggesting its
memmbers should lose linkage with it, which we assume
is the intended consequence.

Clarify rules for namespaces inside nested
namespaces, or remove the restriction.

US
23

3.5 6 ed Bad paragraph break.

FR
18

3.5 [basic.link] 6 ed The paragraph number is not aligned with the text.

FR
19

3.6 [Start and
termination]

 te This section completely ignores the real world and
practical case of dynamically linked or loaded libraries. In
current computing environments, they are ubiquitous and
they cannot be ignored in
practical C++ programs. The Standard
should address this aspect.

C++0X, CD 1, NB Comments Date: 21 Feb 2009 Document: SC22 N4411, ISO/IEC CD 14882

1 2 3 4 5 6 7

MB1

Clause No./
Subclause No./

Annex
(e.g. 3.1)

Paragraph/
Figure/Table/

Note
(e.g. Table 1)

Type
of

com-
ment2

Comment (justification for change) by the MB Proposed change by the MB Disposition

1 MB = Member body (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial
NOTE Columns 1, 2, 4, 5 are compulsory.

page 13� of 139�
ISO electronic balloting commenting template/version 2001-10

UK
 32

3.6.1 3 Te Do we really want to allow: constexpr int main() { return 0;
} as a valid program?

Add constexpr to the list of ill-formed things to
annotate main

US
24

3.6.1 4 te std::quick_exit is not referenced. Reference std::quick_exit as well as std::exit in
saying that automatic objects are not destroyed. It
should not do so in saying that calling
std::quick_exit is undefined from within destructors
for static or thread duration objects.

US
25

3.6.3 ¶ 2 last sent. ed The parenthesized phrase, introduced via “i.e.” is in the
nature of an example.

Change “i.e.” to “e.g.”

JP
6

3.7.4.1 4th
paragraph,
4th line

ed Typo.
Lack of a comma right after “(3.7.2)” in the sentence while
there are commas after any other recitations like “(3.7.1)”.
It is just a unification matter.

[Note: in particular, a global allocation function is not
called to allocate storage for objects with static storage
duration (3.7.1), for objects or references with thread
storage duration (3.7.2) for objects of type std::type_info
(5.2.8), or for the copy of an object thrown by a throw
expression (15.1). -end note]

should be

[Note: in particular, a global allocation function is not
called to allocate storage for objects with static storage
duration (3.7.1), for objects or references with thread
storage duration (3.7.2), for objects of type std::type_info
(5.2.8), or for the copy of an object thrown by a throw
expression (15.1). -end note]

Correct typo.

C++0X, CD 1, NB Comments Date: 21 Feb 2009 Document: SC22 N4411, ISO/IEC CD 14882

1 2 3 4 5 6 7

MB1

Clause No./
Subclause No./

Annex
(e.g. 3.1)

Paragraph/
Figure/Table/

Note
(e.g. Table 1)

Type
of

com-
ment2

Comment (justification for change) by the MB Proposed change by the MB Disposition

1 MB = Member body (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial
NOTE Columns 1, 2, 4, 5 are compulsory.

page 14� of 139�
ISO electronic balloting commenting template/version 2001-10

DE-
3

3.7.4.3 te DE-3 It is unclear whether the following code has well-
defined behavior; none of the bullets in the second
paragraph seem to apply.

int& i = *new int(5);
delete &i;

Clarify that &i is considered a safely-derived
pointer value.

US
26

3.8 1 and 5 te Use of object fields during destruction is excessively and
erroneously constrained.

See the attached document "Issues with the C++
Standard" under Chapter 3 "Use of objects,
especially from other threads, during destruction".

US
27

3.9 ¶ 9 first sent. ed There is a superfluous/extraneous “and”. Delete “and” from the phrase “and std::nullptr_t”.

FR
20

3.9 [Types] te The phrase 'effective type' is defined and used in a way
that is incompatible with C99. Such a deliberate
incompatible choice of terminology is both unfortunate
and confusing, given past practice of the committee to
maintain greater compatibility with C99. We strongly
suggest that the phrase 'effective type' not be used in
such an incompatible way.

JP
7

3.9.2 3rd
paragraph,
13th line

ed over-aligned type was added as new notion. So it is
preferable to add the link after that.

Add (3.11) after over-aligned type as the link.
 [Note: pointers to over-aligned types(3.11) have
no special representation, but their range of valid
values is restricted by the extended alignment
requirement. This International Standard specifies
only two ways of obtaining such a pointer: taking
the address of a valid object with an over-aligned
type(3.11), and using one of the runtime pointer
alignment functions. An implementation may
provide other means of obtaining a valid pointer
value for an over-aligned type(3.11).—end note]

C++0X, CD 1, NB Comments Date: 21 Feb 2009 Document: SC22 N4411, ISO/IEC CD 14882

1 2 3 4 5 6 7

MB1

Clause No./
Subclause No./

Annex
(e.g. 3.1)

Paragraph/
Figure/Table/

Note
(e.g. Table 1)

Type
of

com-
ment2

Comment (justification for change) by the MB Proposed change by the MB Disposition

1 MB = Member body (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial
NOTE Columns 1, 2, 4, 5 are compulsory.

page 15� of 139�
ISO electronic balloting commenting template/version 2001-10

US
28

3.9.3 ¶ 5 first sent. ed The closing braces of the first two sets are preceded by
extraneous space.

Delete the extra spaces.

DE
4

4.2 p2 te DE-4 The deprecated conversion from string literals to
pointer to non-const character types should be limited to
those conversions and types of string literals that were
already present in ISO/IEC 14882:2003, or the
deprecated conversions should be removed entirely.

Consider applying the proposed resolution
presented in core issue 693 in WG21 document
N2714 “C++ Standard Core Language Active
Issues, Revision 58“, available at http://www.open-
std.org/jtc1/sc22/wg21/docs/papers/2008/n2714.ht
ml ; or remove only the conversions to "pointer to
char16_t", "pointer to char32_t" in 4.2 paragraph 2
and 15.1 paragraph 3.

CH
1

4.9 and 5.2.9 te With respect to the target type, pointer to members
should behave like normal pointers (least surprise
principle).

The standard should allow implicit conversions
from ``pointer to member of T of type cv D'' to
``pointer to member of T of type cv B'', where D is
of class type and B is a public base of D, It should
allow explicit conversion the other way around.

DE-
5

4.11, 5.3.1,
5.5

 te DE-5 Ref-qualification has not been integrated with
pointer-to-members.

Review implicit conversions (4.11), forming
pointer-to-members (5.3.1), and dereferencing
pointer-to-members (5.5) for type-safety concerns
in the presence of ref-qualifiers on the member.

UK
 33

4.13 1 Te We have: "No two signed integer types shall have the
same rank ..." "the rank of char shall equal the rank of
signed char" Can we therefore deduce that char may not
be signed?

Replace the first sentence with "No two signed
integer types shall have the same rank, even if
they have the same representation, except that
signed char shall have the same rank as char
even if char is signed (3.9.1/1)."

UK
 34

4.13 1 Ed 6th bullet, "the rank of char" - first letter should be
capitalised for consistency with the other bullets

The rank of char

C++0X, CD 1, NB Comments Date: 21 Feb 2009 Document: SC22 N4411, ISO/IEC CD 14882

1 2 3 4 5 6 7

MB1

Clause No./
Subclause No./

Annex
(e.g. 3.1)

Paragraph/
Figure/Table/

Note
(e.g. Table 1)

Type
of

com-
ment2

Comment (justification for change) by the MB Proposed change by the MB Disposition

1 MB = Member body (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial
NOTE Columns 1, 2, 4, 5 are compulsory.

page 16� of 139�
ISO electronic balloting commenting template/version 2001-10

UK
 36

5.1 1 Ed Primary expressions are literals, names, names qualified
by the scope resolution operator ::, and lambda
expressions. The immediately following grammar flatly
contradicts this - this and (e) are also lambda
expressions.

Delete this paragraph.

UK
 37

5.1 11 Ed Member function templates are not member functions, so
should also be listed in the 3rd bullet

Add member function templates to the 3rd bullet

UK
 38

5.1 3 Te this might be useful in a few more places than it is
permitted, specifically in decltype expressions within a
class. Two examples that would be ill-formed at class
scope without changes: typedef decltype(*this)
this_type; decltype([this]{ return this->memfun(); })
my_lambda;

... words to follow ...

JP
8

5.1 7th
paragraph,
Syntax rules

te In the current syntax definition, a scope operator(::)
cannot be applied to decltype, but it should be. It would
be useful in the case to obtain member type(nested-type)
from an instance as follows:
vector<int> v;
decltype(v)::value_type i = 0; // int i = 0;

Add “decltype (expression) :: “ to nested-name-
specifier syntax like below.

nested-name-specifier:

type-name ::
namespace-name ::
nested-name-specifier identifier ::
nested-name-specifier templateopt simple-

template-id ::
nested-name-specifieropt concept-id ::
decltype (expression) ::

JP
9

5.1.1 te It would be preferable that “&&” could be specified in a
lambda expression to declare move capture.

Here is an example from N2709.

template<typename F>
std::unique_future<typename std::result_of<F()>::type>
spawn_task(F f){
typedef typename std::result_of<F()>::type result_type;

Add move capture in a lambda expression.

C++0X, CD 1, NB Comments Date: 21 Feb 2009 Document: SC22 N4411, ISO/IEC CD 14882

1 2 3 4 5 6 7

MB1

Clause No./
Subclause No./

Annex
(e.g. 3.1)

Paragraph/
Figure/Table/

Note
(e.g. Table 1)

Type
of

com-
ment2

Comment (justification for change) by the MB Proposed change by the MB Disposition

1 MB = Member body (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial
NOTE Columns 1, 2, 4, 5 are compulsory.

page 17� of 139�
ISO electronic balloting commenting template/version 2001-10

struct local_task {
std::promise<result_type> promise;
F func;
local_task(local_task const& other)=delete;
local_task(F func_):
func(func_)
{}

local_task(local_task&& other):
promise(std::move(other.promise)),
f(std::move(other.f))
{}

void operator() {
try
{
promise.set_value(f());
}
catch(...)
{
promise.set_exception(std::current_exception());
}
}
};

local_task task(std::move(f));

std::unique_future<result_type>
res(task.promise.get_future());
std::thread(std::move(task));
return res;
}

This can be rewritten simply as follows if move capture
can be used in a lambda expression.

C++0X, CD 1, NB Comments Date: 21 Feb 2009 Document: SC22 N4411, ISO/IEC CD 14882

1 2 3 4 5 6 7

MB1

Clause No./
Subclause No./

Annex
(e.g. 3.1)

Paragraph/
Figure/Table/

Note
(e.g. Table 1)

Type
of

com-
ment2

Comment (justification for change) by the MB Proposed change by the MB Disposition

1 MB = Member body (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial
NOTE Columns 1, 2, 4, 5 are compulsory.

page 18� of 139�
ISO electronic balloting commenting template/version 2001-10

template<typename F>
std::unique_future<typename std::result_of<F()>::type>
spawn_task(F f){
typedef typename std::result_of<F()>::type result_type;

std::promise<result_type> promise;
std::unique_future<result_type>
res(promise.get_future());
std::thread([&&promise, &&f]() {
try
{
promise.set_value(f());
}
catch(...)
{
promise.set_exception(std::current_exception());
}
});
return res;
}

JP
10

5.1.1 te In the current syntax definition, a returned type of a
function object cannot be obtained by using result_of
from an unnamed function object generated by a lambda
expression because it doesn’t have result type.

template <class F>
void foo(F f)
{
typedef std::result_of<F()>::type result; // error
}
foo([]{});

If “Callable” or “Predicate” concept is specified, a returned
type can be obtained from a function object without
result_type. But it is preferable to be able to obtain it with
template.

Add result_type to the syntax of an unnamed
function object generated by a lambda expression.

C++0X, CD 1, NB Comments Date: 21 Feb 2009 Document: SC22 N4411, ISO/IEC CD 14882

1 2 3 4 5 6 7

MB1

Clause No./
Subclause No./

Annex
(e.g. 3.1)

Paragraph/
Figure/Table/

Note
(e.g. Table 1)

Type
of

com-
ment2

Comment (justification for change) by the MB Proposed change by the MB Disposition

1 MB = Member body (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial
NOTE Columns 1, 2, 4, 5 are compulsory.

page 19� of 139�
ISO electronic balloting commenting template/version 2001-10

US
29

5.1.1 te The standard does not state whether or not direct
recursion of lambdas is possible.

US
30

5.1.1 te The standard does not clarify the meaning of this in
lambdas. Does it mean this lambda, or this class within
which the lambda is nested?

US
31

5.1.1 te The current wording does not specify how context
capturing and name resolution take place when the inner
lambda refers to the outer lambda's locals variables and
parameters.

UK
 45

5.1.1 para 2 Te Lambda is a language feature with an apparent
dependency on <functional>. This increases dependency
of language on library, and is inconsistent with the
definition of freestanding in 17.6.2.4.

Change the text "a closure object behaves as a
function object" to "a closure object is a built-in
object which behaves as a function object"; and
after "context.", insert " A closure object may be
used without any need for <functional>." This
makes clear what may already be implied, namely
that lambdas can be used in freestanding
implementations and don't increase dependency
of language on library. (Marked as technical
comment anyway because this clarity is
technically important).

US
32

5.1.1 3 ed The final italic "this" in the paragraph should be a teletype
"this".

UK
 39

5.1.1 11 Te This paragraph lists all the special member functions for
the class representing a lambda. But it omits the
destructor, which is awkward.

Add "F has an implicitly-declared destructor".

UK
 40

5.1.1 12 Te If one or more names in the effective capture set are
preceded by &, the effect of invoking a closure object or a
copy after the innermost block scope of the context of the
lambda expression has been exited is undefined. That is
too restrictive. The behaviour should be undefined iff the
lifetime of any of the variables referenced has ended.

If one or more names in the effective capture set
are preceded by &, the effect of invoking a closure
object or a copy after the lifetime of any of the
variables referenced has ended is undefined.

C++0X, CD 1, NB Comments Date: 21 Feb 2009 Document: SC22 N4411, ISO/IEC CD 14882

1 2 3 4 5 6 7

MB1

Clause No./
Subclause No./

Annex
(e.g. 3.1)

Paragraph/
Figure/Table/

Note
(e.g. Table 1)

Type
of

com-
ment2

Comment (justification for change) by the MB Proposed change by the MB Disposition

1 MB = Member body (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial
NOTE Columns 1, 2, 4, 5 are compulsory.

page 20� of 139�
ISO electronic balloting commenting template/version 2001-10

This should be safe and legal; currently it has undefined
behaviour: int i; reference_closure<void ()> f; if (blah) { f =
[&i]() { }; } if (f) f();

UK
 41

5.1.1 12 Te For argument dependant lookup (3.4.2) the associated
namespaces for a class include its bases, and associated
namespaces of its bases. Requiring the result of a
lambda expression *to dervide from*
std::reference_closure means that ADL will look in
namespace std when the lambda capture is entirely by
reference, which might have surprising results. Also,
relying on the idea of implicitly slicing objects is
uncomfortable.

Replace inheritance with implicit conversion.

UK
 42

5.1.1 Te A lambda with an empty capture list has identical
semantics to a regular function type. By requiring this
mapping we get an efficient lambda type with a known
API that is also compatible with existing operating system
and C library functions.

Add a new paragraph: "A lambda expression with
an empty capture set shall be convertible to
pointer to function type R(P), where R is the return
type and P is the parameter-type-list of the lambda
expression." Additionally it might be good to (a)
allow conversion to function reference (b) allow
extern "C" function pointer types

UK
 43

5.1.1 12 Te The note spells out the intent that objects from lambda-
expressions with an effective capture list of references
should be implemented as a pair of pointers. However,
nothing in the rest of 5.1.1 lifts the requirement of to
declare a reference member for each captured name,
and a non-normative note is not enough to relax that.

... provvide exceptions in the right places ...

UK
 44

5.1.1 12 Te There is a strong similarity between a [&]{} lambda
capturing a stack frame, and a [this]{} lambda binding a
member function to a class instance. The
reference_closure requirement should be extended to the
second case, although we need some syntax to create
such an object that is distinct from the existing pointer-to-
member syntax. This would be a cleaner alternative to
the new std::mem_fn library component.

Extend reference_closure requirement to cover
[this] lambdas. Consider a simple syntax for
creating such bound expressions.

C++0X, CD 1, NB Comments Date: 21 Feb 2009 Document: SC22 N4411, ISO/IEC CD 14882

1 2 3 4 5 6 7

MB1

Clause No./
Subclause No./

Annex
(e.g. 3.1)

Paragraph/
Figure/Table/

Note
(e.g. Table 1)

Type
of

com-
ment2

Comment (justification for change) by the MB Proposed change by the MB Disposition

1 MB = Member body (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial
NOTE Columns 1, 2, 4, 5 are compulsory.

page 21� of 139�
ISO electronic balloting commenting template/version 2001-10

UK
 46

5.1.1 para 12 Te The requirement that a lambda meeting appropriate
conditions be an object derived from reference_closure
makes lambda the language feature dependent on
<functional>, which increases dependency of the
language on the library and bloats the definition of
freestanding C++.

Replace text "is publicly derived from" with "shall
be implemented in a manner indistinguishable
from". This places an ABI constraint on reference
closures such that compiler and library
implementer have to do compatible things. But it
cuts the dependency of lambda syntax on
<functional>.

DE-
6

5.1.1, 20.7.18 te DE-6 Some uses of lambda expressions refer to
specializations of the unconstrained class template
std::reference_closure (5.1.1). If the lambda expression
appears in a constrained context and the return type or a
parameter type for the lambda depend on a template
parameter (see 14.10), such a use is ill-formed.

In 20.7.18, for the class template
std::reference_closure, require Returnable for R
and VariableType for each of the ArgTypes.

DE-
7

5.1.1 p10 ed DE-7 The note at the end of paragraph 10 appears to be
garbled.

Remove "or references" in the note.

DE-
8

5.1.1 p10 te DE-8 The construction of the function call operator
signature is missing specifications for the ref-qualifier and
the attribute-specifier.

Add bullets that say that the ref-qualifier and the
attribute-specifier are absent.

US
33

5.1.1 11 Ge There is no definition of “move constructor” or “move
operation”

Since this is the first place the terms are used, a
definition should either be added here, or a cross
reference to one.

DE-
9

5.1.1 te DE-9 There is not a single example of a lambda-
expression in the standard. See also core issue 720 in
WG21 document N2791 "C++ Standard Core Language
Active Issues, Revision 59", available at http://www.open-
std.org/jtc1/sc22/wg21/docs/papers/2008/n2791.html .

Add a few well-chosen examples.

UK
 52

5.2 3 Ed This paragraph seens out of place, assignment
expressions are covered in 5.17

Move p3 to subsection 5.17

UK
 53

5.2.1 Te The definition in p1 makes no allowance for overloaded
operator[] that treats the expression as a simple function
call, and does not support the interchangability of
arguments. Howver p2 relies on this definition when

Insert a new p2 describing the changed semantics
for overloaded operator[]. This should be a note to
avoid introducing normative text that could
potentially conflict with the later definiton of these

C++0X, CD 1, NB Comments Date: 21 Feb 2009 Document: SC22 N4411, ISO/IEC CD 14882

1 2 3 4 5 6 7

MB1

Clause No./
Subclause No./

Annex
(e.g. 3.1)

Paragraph/
Figure/Table/

Note
(e.g. Table 1)

Type
of

com-
ment2

Comment (justification for change) by the MB Proposed change by the MB Disposition

1 MB = Member body (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial
NOTE Columns 1, 2, 4, 5 are compulsory.

page 22� of 139�
ISO electronic balloting commenting template/version 2001-10

describing the use of brace-init-lists inside []. semantics.
UK
 59

5.2.2 7 Te When there is no parameter for a given argument, the
argument is passed in such a way that the receiving
function can obtain the value of the argument by invoking
va_arg. That shouldn't apply to parameter packs.
template <class ... Types> void f(Types ... pack); f(1, 2,
3);

Clarify that this sentence only applies where the
ellipsis is used.

UK
 60

5.2.5 3 Ed In the remainder of 5.2.5, cq represents either const or
the absence of const vq represents either volatile or the
absence of volatile.

Add "and" before vq

UK
61

5.2.5 p1 Ed Together with footnote 60 there may be confusion that
the postfix expression is always evaluated - even when
part of an unevaluated operand. We believe the standard
does not require this, and a comment in the existing note
would be a useful clarification.

Clarify in footnote 60 that this will not happen if the
whole expression is an unevaluated operand.

UK
 62

5.2.5 4 Te In the final bullet, what does 'not an lvalue' mean? Does it
imply rvalue, or are there other possible meanings?
Should clauses that trigger on rvalues pick up on this?

Replace 'not an lvalue' with 'is an rvalue'.

DE-
10

5.2.5 te DE-10 If E1.E2 is referring to a non-static member
function, the potential ref-qualification on E2 should be
taken into account.

Adjust the presentation of the types involved as
appropriate.

UK
63

5.2.6 2 Ed Paragraph 2 is missing its number. Add one.

UK
 64

5.2.7 3 Ed A new name R is introduced for use in paragraphs 3 and
4. But R is the same as T.

Replace R with T and replace "the required result
type (which, for convenience, will be called R in
this description)" with "T".

UK
 65

5.2.7 8 Te In the first two bullets we have "the result is a pointer (an
lvalue referring) to". But para 2 makes clear that a
dynamic_cast of an rvalue references produces a rvalue.
(Can an lvalue refer to anything anyway?)

Replace "an lvalue referring to" with "reference",
twice.

UK
 66

5.2.8 1 Te typeid may return "an implementation-defined class
derived from std :: type_info". The derivation must be
public.

an implementation-defined class publicly derived
from std :: type_info

C++0X, CD 1, NB Comments Date: 21 Feb 2009 Document: SC22 N4411, ISO/IEC CD 14882

1 2 3 4 5 6 7

MB1

Clause No./
Subclause No./

Annex
(e.g. 3.1)

Paragraph/
Figure/Table/

Note
(e.g. Table 1)

Type
of

com-
ment2

Comment (justification for change) by the MB Proposed change by the MB Disposition

1 MB = Member body (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial
NOTE Columns 1, 2, 4, 5 are compulsory.

page 23� of 139�
ISO electronic balloting commenting template/version 2001-10

UK
 67

5.2.9 1, 2, 3 Te Paragraph 1 specifies when the result of static_cast is an
lvalue; repeating it is unnecessary.

In para 2, delete "It is an lvalue if the type cast to
is an lvalue reference; otherwise, it is an rvalue."
and "The result is an rvalue.". In para 3, delete
"The result is an lvalue if T is an lvalue reference
type (8.3.2), and an rvalue otherwise."

UK
 54

5.2.10 3, 6 Te Para 3: "The mapping performed by reinterpret_cast is
implementation-defined.". Para 6: "... the result of such a
pointer conversion is unspecified." Which is it?

In para 6, replace unspecified with
implementation-defined. Alternatively, delete
paragraph 3, since individual cases are labelled
appropriately.

UK
 55

5.2.10 2 Ed dynamic_cast and reinterpret_cast crossreference 5.2.11
without creating an extra note. The second half of the
note is unrelated to the crossrefernce, and would serve
as well in normative text.

Strike the note about definition of casting away
constness, preserve the cross-reference. The
second sentance on reintrepret_cast to its own
type should move out of the note into the
normative text.

UK
 56

5.2.10 5 Ed The notion of safely derived pointers means this
conversion may not be as safe in the revised standard as
the original. It would be good to call attention to the
changed semantics with a note.

Add: [Note: the result of such a conversion will not
be a safely-derived pointer value (3.7.4.3) -- end
note]

UK
57

5.2.10 8 Ed Conditionally supported behaviour gives a wide range or
permission, so clarify relationship between safely-derived
object pointers and function pointers in a note.

Add: [Note: In such cases, the implementation
shall also define whether a safely-derived object
pointer cast to a function pointer can be safely
cast back -- end note]

UK
 58

5.2.11 9 Te Casting from an lvalue of type T1 to an lvalue of type T2
using a reference cast casts away constness if a cast
from an rvalue of type “pointer to T1” to the type “pointer
to T2” casts away constness. That doesn't cover rvalue
references.

Replace lvalue with "lvalue or rvalue" twice.

US
34

5.3 1 ed The list of unary operator should be in teletype font.

UK
 68

5.3.1 2-9 Te All the unary operands other than * return rvalues - but
this is not stated.

Add a paragraph 1a "The following unary
operators all produce results that are rvalues."

C++0X, CD 1, NB Comments Date: 21 Feb 2009 Document: SC22 N4411, ISO/IEC CD 14882

1 2 3 4 5 6 7

MB1

Clause No./
Subclause No./

Annex
(e.g. 3.1)

Paragraph/
Figure/Table/

Note
(e.g. Table 1)

Type
of

com-
ment2

Comment (justification for change) by the MB Proposed change by the MB Disposition

1 MB = Member body (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial
NOTE Columns 1, 2, 4, 5 are compulsory.

page 24� of 139�
ISO electronic balloting commenting template/version 2001-10

UK
 69

5.3.1 2 Te If we cannot bind references/take address of functions in
concept_maps, does that mean we cannot use generic
bind in constrained templates? Launch threads with
expressions found via concept map lookup? Hit problems
creating std::function objects? Does the problem only
occur if we use qualified lookup to explicitly name a
concept map? Does it only kick in if we rely on the implicit
function implementation provided by a concept_map, so
some types will work and others won't for the same
algorithm?!

... unknown ...

UK
 70

5.3.3 1 Te The sizeof operator shall not be applied to ... an
enumeration type before all its enumerators have been
declared We should allow enum E : int; sizeof(E).

Change "an enumeration type" to "an enumeration
type whose underlying type is not fixed".

UK
 71

5.3.4 2 Te The type of an allocated object wih the type specifier auto
is determined by the rules of copy initialization, but the
initialization applied will be direct initialization. This would
affect classes which declare their copy constructor
explicit, for instance. For consistency, use the same form
of initiailization for the deduction as the new expression.

Replace T x = e; with T x(e);

UK
 72

5.3.4 7 Te The library headers have been carefully structured to limit
the dependencies between core language and specific
headers. The exception thrown should be catchable by a
handler for a type lised in <exception> header in cluase
18. This might be accomplished by moving length_error
into the <exception> header, but its dependency on
logic_error with its std::string constructors suggest this is
not a good idea. Prefer to pick an existing exception
instead.

Throw std::bad_alloc instead of std::length_error.

UK
 73

5.3.4 6 Ed A class type with conversion operator can only be used if
the conversion type is constexpr and the class is a literal
type. Adding the single word 'literal' before class type will
clarify this.

Add 'literal' before 'class type'

C++0X, CD 1, NB Comments Date: 21 Feb 2009 Document: SC22 N4411, ISO/IEC CD 14882

1 2 3 4 5 6 7

MB1

Clause No./
Subclause No./

Annex
(e.g. 3.1)

Paragraph/
Figure/Table/

Note
(e.g. Table 1)

Type
of

com-
ment2

Comment (justification for change) by the MB Proposed change by the MB Disposition

1 MB = Member body (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial
NOTE Columns 1, 2, 4, 5 are compulsory.

page 25� of 139�
ISO electronic balloting commenting template/version 2001-10

UK
 74

5.3.4 8 Ed operators, like constructors and destructors, do not have
names. However, in certain circumstances they can be
treated as if they had a name, but usually the stanadard
is very clear not to actually describe their name as a
distinct property.

Change "the allocation function’s name is operator
new" to "the allocation function is named operator
new" and similarly for operator delete.

UK
 35

5.3.4 9 Ed Missing period in middle of paragraph between "in the
scope of T" and "If this lookup fails"

Add a period between "in the scope of T" and "If
this lookup fails"

UK
 75

5.3.5 8 Ed A paragraph strarting with [Note... is easily skipped when
reading, missing the normative text at the end.

Swap order of the note and normative text.

FR
21

5.3.6 [Alignof te Should not the type of alignof-expression be of type
std::max_align_t?

US
35

5.8 2 and 3 ed There is curious spacing in the expressions "E1 <<E2"
and "E1 >>E2". This is a formatting change since
previous versions of the Standard.

UK
 47

5.14 / 5.15 2 Ed Why are the descriptions of order of evaluation of
expressions and side effects different between && and ||
operators. The interaction with the memory model should
be identical, so identical words should be used to avoid
accidential inconsistencies in interpretation.

Pick one form of wording as 'the best' and apply it
in both places.

UK
 48

5.18 1 Ed The defining feature of the comma operator is the
guaranteed sequencing of two expressions. This
guarantee is lost when presented with an overloaded
operator, and this change is subtle enough to call
attention to it.

Add: [Note: There are no guarantees on the order
of value computation for an overloaded comma
operator -- end note]

UK
 49

5.19 2 Te Is an implementation permitted to reject this? constexpr
int f() { return f(); } int a[f()]; AFAICT it is well-formed; f()
seems to satisfy all the rules to make it a constant
expression. I would hate compilation to become a
potentially non-terminating experience.

Add an escape clause to allow the implementation
to reject excessively deep nesting of constexpr
function evaluations. (This can possibly be a note,
since it is arguable that this point is handled by the
general rule on resource limits in 1.4/2. A
sufficiently smart compiler could use tail recursion
above, meaning that it would never run out of

C++0X, CD 1, NB Comments Date: 21 Feb 2009 Document: SC22 N4411, ISO/IEC CD 14882

1 2 3 4 5 6 7

MB1

Clause No./
Subclause No./

Annex
(e.g. 3.1)

Paragraph/
Figure/Table/

Note
(e.g. Table 1)

Type
of

com-
ment2

Comment (justification for change) by the MB Proposed change by the MB Disposition

1 MB = Member body (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial
NOTE Columns 1, 2, 4, 5 are compulsory.

page 26� of 139�
ISO electronic balloting commenting template/version 2001-10

memory given this program though.)

UK
50

5.19 2 Te The following should be valid: enum E { foo = 4}; const E
c = foo; int a[c]; But currently it is not - c is not an lvalue
of effective integral type (4th bullet). (See also 7.1.6.1/2)

Change "effective integral type" to "effective
integral or enumeration type" in the 4th bullet, 1st
sub-bullet.

UK
 51

5.19 2 Te typeid expressions can never be constant, whether or not
the operand is a polymorphic class type. The result of the
expression is a reference, and the typeinfo class that the
reference refers to is polymorphic, with a virtual
destructor - it can never be a literal type.

Strike the words "whose operand is of a
polymorphic class type" on the bullet for typeid
expressions.

UK
 76

6.3 Ed Do we really need two different terms that say the same
thing?

Pick either 'block' or 'compound statement' as the
preferred term and use it consistently throughout
the standard.

FR
22

6.4.2 [The
switch
statement]

 te The constant-expression in

case constant-expression

should be allowed to be of any constant expression of
literal type for which a constexpr comparison operator
(operator< and operator==) is in scope. Now that
constant expressions of other integral types are
evaluated at compile time, the restriction for case-labels
is at best artificial.

UK
 77

6.5 5 Ed The terms i/o operation, synchronize operation and
atomic operation have very specific meanings within the
standard. The paragraph would be much easier to
understand with the terms crossreferenced.

Profide a cross-reference for the terms: i/o
operation, synchronize operation and atomic
operation

JP
11

6.5.4 1st
paragraph,
5th line

ed There is no _RangeT type in the equivalent code to
“range-base for” statement. It existed in N2049.

Add a typedef for _RangeT in the example as
follows:

{
 typedef decltype(expression) _RangeT;

C++0X, CD 1, NB Comments Date: 21 Feb 2009 Document: SC22 N4411, ISO/IEC CD 14882

1 2 3 4 5 6 7

MB1

Clause No./
Subclause No./

Annex
(e.g. 3.1)

Paragraph/
Figure/Table/

Note
(e.g. Table 1)

Type
of

com-
ment2

Comment (justification for change) by the MB Proposed change by the MB Disposition

1 MB = Member body (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial
NOTE Columns 1, 2, 4, 5 are compulsory.

page 27� of 139�
ISO electronic balloting commenting template/version 2001-10

 auto && __range = (expression);
 for (auto __begin = std::Range<_RangeT>::
begin(__range),
 __end = std::Range<_RangeT>::
end(__range);
 __begin != __end;
 ++__begin)
 {
 for-range-declaration = *__begin;
 statement
 }
}

UK
 78

6.5.4 2 Te Including the header <iterator_concepts> is far too
unwieldy to enable an important and (expected to be)
frequently used syntax.

Merge <iterator_concepts> into <concepts> and
change 6.5.4p2 to refer to <concepts>, or make
the Range concept fundamental along with the
other support concepts in 14.9.4 and strike any
reference to including a header.

UK
 79

6.5.4 Te The definition of for (for-range-declaration : expression)
statement is expanded in terms which require a Range
concept, and the program is ill-formed if
<iterator_concepts> isn't included. For users, iterating
through old-fashioned arrays, this is a sledge-hammer to
crack a nut and compares poorly with other languages.
It's also not possible to implement this without adversely
impacting the freestanding definition in 17.6.2.4.

When expression is an array a of length N whose
length is known at compile time, expand range-for
as 'for (... p=a, p!=a+N, p++) ...' without requiring
the Range concept or <iterator_concepts>. Also,
when expression is an initializer_list, expand
range-for similarly without requiring
<iterator_concepts>.

DE-
11

6.9 p1 te DE-11 A sentence in paragraph 1 reads: "Outside of a
constrained context, the late-checked block has no
effect." This, at face value, specifies that the compound-
statement of such a late-checked block is never
executed, which appears to be unintended.

State that such a late-checked block has the same
meaning as if the late_check keyword were
absent.

UK
 80

7 1 Ed Many of the sections and major subsections open with a
sentence summarising the content. I'm not sure this is

Strike the first sentence.

C++0X, CD 1, NB Comments Date: 21 Feb 2009 Document: SC22 N4411, ISO/IEC CD 14882

1 2 3 4 5 6 7

MB1

Clause No./
Subclause No./

Annex
(e.g. 3.1)

Paragraph/
Figure/Table/

Note
(e.g. Table 1)

Type
of

com-
ment2

Comment (justification for change) by the MB Proposed change by the MB Disposition

1 MB = Member body (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial
NOTE Columns 1, 2, 4, 5 are compulsory.

page 28� of 139�
ISO electronic balloting commenting template/version 2001-10

necessary; this isn't a tutorial. The problem with these
summaries is that because they omit much of the detail,
they tend to be inaccurate. This may not matter, but I feel
the document would be improved by omitting them.
There's a prime example here: "Declarations specify how
names are to be interpreted." Not true for static_assert,
an asm declaration nor an anonymous bit field.

UK
 81

7 4 Te String literal concatenation happens in phase 6, before
parsing, so it is legal and useful to use it for the string
literal in a static_assert. It would be useful to add a note
mentioning this.

Add a note: Multiple adjacent string literals may be
used instead of a single /string-literal/; see
[lex.phases].

UK
 82

7 2 Te Paragraph 2 talks about declarations that can have
nested declarations within them. It doesn't mention
scoped enumerations - but according to 7.2/11, "Each
scoped enumerator is declared in the scope of the
enumeration."

Add "scoped enumeration" to the list in the second
sentence.

UK
 83

7.1 2 Te The longest sequence of decl-specifiers that could
possibly be a type name is taken as the decl-specifier-
seq of a declaration. But many sequences of decl-
specifiers cannot possibly be a type name - eg the
sequence "friend int", or "typedef int".

Not sure. I understand the rule, just not how to say
it.

UK
 84

7.1 1 Te The grammar includes alignment-specifier as a
production for decl-specifier, but there is no production for
alignment-specifier. I suspect this is a holdover from
before alignment was handled as an attribute.

Delete the production (including the duplicate in
A6)

FI 3 7.1 [dcl.spec.aut
o]

te While it’s considered too late for this standard revision,
consider loosening the restrictions for auto specifier and
making it more a mirror of a deduced template function
parameter.

See restricted-auto.ppt

UK 7.1.1 1 Ed ... the init-declarator-list of the declaration shall not be Replace "global" with "namespace scope".

C++0X, CD 1, NB Comments Date: 21 Feb 2009 Document: SC22 N4411, ISO/IEC CD 14882

1 2 3 4 5 6 7

MB1

Clause No./
Subclause No./

Annex
(e.g. 3.1)

Paragraph/
Figure/Table/

Note
(e.g. Table 1)

Type
of

com-
ment2

Comment (justification for change) by the MB Proposed change by the MB Disposition

1 MB = Member body (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial
NOTE Columns 1, 2, 4, 5 are compulsory.

page 29� of 139�
ISO electronic balloting commenting template/version 2001-10

 85 empty (except for global anonymous unions, which shall
be declared static). Global here means "declared at
namespace scope". (cf 9.5/3 "Anonymous unions
declared in a named namespace or in the global
namespace shall be declared static.").

UK
 86

7.1.1 2,3 Te The register keyword serves very little function, offering
no more than a hint that a note says is typically ignored. It
should be deprecated in this version of the standard,
freeing the reserved name up for use in a future standard,
much like auto has been re-used this time around for
being similarly useless.

Deprecate current usage of the register keyword.

UK
 87

7.1.1 1, 4, 5 Te Why require two keywords, where one on its own
becomes ill-formed? thread_local should imply 'static' in
this case, and the combination of keywords should be
banned rather than required. This would also eliminate
the one of two exceptions documented in 7.1.1p1.

Drop requirement to combine static keyword with
thread_local at block-scope inside a function
definition.

US
36

7.1.1 4 te The permission to use thread_local static data members
is missing.

Add the static members as a permitted use.

FR
23

7.1.5
[constexpr]

 te 'constexpr' functions should be allowed to take const
reference parameters, as long as their uses are in a
context where a constant expression may be required.
For example, the following should be allowed

template<typename T, int N>
int size(const T(&)[N]) { return N; }

int a[] = { 41,42,43,44 };
enum { v = size(a) };

JP
12

7.1.5 te It should be allowed to define constexpr recursively.
There is an explanation in N2235, Generalized Constant
Expressions—Revision 5, as follows.

Allow constexpr recursion.

C++0X, CD 1, NB Comments Date: 21 Feb 2009 Document: SC22 N4411, ISO/IEC CD 14882

1 2 3 4 5 6 7

MB1

Clause No./
Subclause No./

Annex
(e.g. 3.1)

Paragraph/
Figure/Table/

Note
(e.g. Table 1)

Type
of

com-
ment2

Comment (justification for change) by the MB Proposed change by the MB Disposition

1 MB = Member body (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial
NOTE Columns 1, 2, 4, 5 are compulsory.

page 30� of 139�
ISO electronic balloting commenting template/version 2001-10

We (still) prohibit recursion in all its form in
constant expressions. That is not strictly
necessary because an implementation limit on
recursion depth in constant expression evaluation
would save us from the possibility of the compiler
recursing forever. However, until we see a
convincing use case for recursion, we don’t
propose to allow it.

Then, here are the use cases where allowing recursion
for constexpr is very useful.

Range of problem to be handled with constexpr would
become extended. For example, user defined type (e.g.
Complex type) could be placed in ROM area. But with
current specification, a function defined with constexpr
cannot be called recursively. As a side effect is not
allowed in compile-time, it cannot be implemented to
repeat anything without recursion. Although it could be
implemented without recursion like func0, func1, func2 in
an example below, it is not elegant solution.

constexpr double func0(double x) { /* ... */}
constexpr double func1(double x) { /* call for func0 */ }
constexpr double func2(double x) { /* call for func1 */ }
/* ... */

- Compile-time and runtime
As constexpr can be also evaluated both in compile-time
and runtime, we need to discuss about both cases.

Runtime evaluation is just to execute it. If you eliminate
constexpr keyword, it is executable as of now. Any
modern compiler may optimize tail recursion easily.

Compile-time evaluation is the same thing as template

C++0X, CD 1, NB Comments Date: 21 Feb 2009 Document: SC22 N4411, ISO/IEC CD 14882

1 2 3 4 5 6 7

MB1

Clause No./
Subclause No./

Annex
(e.g. 3.1)

Paragraph/
Figure/Table/

Note
(e.g. Table 1)

Type
of

com-
ment2

Comment (justification for change) by the MB Proposed change by the MB Disposition

1 MB = Member body (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial
NOTE Columns 1, 2, 4, 5 are compulsory.

page 31� of 139�
ISO electronic balloting commenting template/version 2001-10

recursion. It is necessary to support floating point
operation, but it is already possible to calculate it in
compile-time, so it’s ok.

- Sample
Here is an example to calculate a square root using
constexpr recursively.

/*constexpr*/ double SqrtHelper(double x, double a, int n)
{
return n == 0 ? a : SqrtHelper(x, (x / a + a) / 2.0, n - 1);
}

/*constexpr*/ double Sqrt(double x)
{
return SqrtHelper(x, x, 20);
}

/*constexpr*/ double root2 = Sqrt(2.0); // 1.41421...

US
37

7.1.6.1 1 ed There is a "Note: 3.9.3 describes how cv-qualifiers affect
object and function types." So far as I can see, 3.9.3 CV-
qualifiers only describes cv-qualifiers for objects, cv-
qualifiers for (member) functions being described in 8.3.5
Functions.

UK
 89

7.1.6.1 2 Te The two normative sentences in this paragraph appear to
duplicate text elsewhere - but they aren't exact
duplicates, which introduces uncertainty. 1. "An object
declared in namespace scope with a const-qualified type
has internal linkage unless it is explicitly declared extern
or unless it was previously declared to have external
linkage.". This nearly repeats 7.1.1/7: "Objects declared
const and not explicitly declared extern have internal
linkage." The former seems to allow more wiggle room -
can an object be "previously declared to have external

Make the normative text in this section into one or
more notes, with cross references, and correct the
referenced text if necessary.

C++0X, CD 1, NB Comments Date: 21 Feb 2009 Document: SC22 N4411, ISO/IEC CD 14882

1 2 3 4 5 6 7

MB1

Clause No./
Subclause No./

Annex
(e.g. 3.1)

Paragraph/
Figure/Table/

Note
(e.g. Table 1)

Type
of

com-
ment2

Comment (justification for change) by the MB Proposed change by the MB Disposition

1 MB = Member body (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial
NOTE Columns 1, 2, 4, 5 are compulsory.

page 32� of 139�
ISO electronic balloting commenting template/version 2001-10

linkage" without having been "explicitly declared extern"?
2. "A variable of non-volatile const-qualified integral or
enumeration type initialized by an integral constant
expression can be used in integral constant expressions
(5.19)." This nearly duplicates 5.19/2, bullet 4, 1st sub-
bullet - "[... an integaral constant expression can use] an
lvalue of effective integral type that refers to a non-volatile
const variable or static data member initialized with
constant expressions". The latter does not allow for
lvalues of enumeration type (neither scoped not
unscoped enumerations are integral types - 3.9.1/7, and
note 44). This seems to be a flaw in 5.19/2.

UK
 90

7.1.6.2 para 1 and
table 9

Ed The grammar in paragraph one makes "nested-name-
specifier template simple-template-id" a simple-type-
specifier, but unlike all the others it is omitted from table
9.

Add a row to table 9 mentioning simple-template-
id and punting to clause 14 (cf
decltype(expression)).

UK
 91

7.1.6.2 4 Te 5.1/5 says "[A] parenthesized expression can be used in
exactly the same contexts as those where the enclosed
expression can be used, and with the same meaning,
except as otherwise indicated." When the first bullet point
of this paragraph, describing the type denoted by
decltype(e), says "if e is an id-expression ... decltype(e) is
the type of the entity named by e", 5.1/5 is not excluded,
which would imply that decltype((e)) was also the type of
e. But the intention appears that it should be caught by
the third bullet and treated as an lvalue expression, so
decltype((e)) should be a reference to the type of e.
Conversely, the second bullet point says "(parentheses
around e are ignored)", which is redundant because of
5.1/5.

Insert "unparenthised" in the first bullet point - "if e
is an *unparenthised* id-expression ...". In the
second bullet point, move "(parentheses around e
are ignored)" into a note.

UK
 92

7.1.6.3 2 Ed The note correctly indicates that, if T is a template type
parameter, then "friend class T;" is ill-formed. It might be
worth pointing out at the same time that the alternative
"friend T;" is now allowed - see 11.4/3.

Either strike the note or add reference to 11.4/3
and/or mention of "friend T;".

C++0X, CD 1, NB Comments Date: 21 Feb 2009 Document: SC22 N4411, ISO/IEC CD 14882

1 2 3 4 5 6 7

MB1

Clause No./
Subclause No./

Annex
(e.g. 3.1)

Paragraph/
Figure/Table/

Note
(e.g. Table 1)

Type
of

com-
ment2

Comment (justification for change) by the MB Proposed change by the MB Disposition

1 MB = Member body (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial
NOTE Columns 1, 2, 4, 5 are compulsory.

page 33� of 139�
ISO electronic balloting commenting template/version 2001-10

UK
 93

7.1.6.3 Grammar
before para
1

Ed In the third production, "enum ::opt nested-name-
specifieropt identifier", enum should not be in italics; its
referring to the enum keyword.

Change to keyword font

UK
 94

7.1.6.4 1 Ed The auto type-specifier signifies that the type of an object
being declared shall be deduced from its initializer or
specified explicitly at the end of a function declarator. A
function declarator does not declare an object.

The auto type-specifier signifies that the type of an
object being declared shall be deduced from its
initializer or that the return type of a function is
specified explicitly at the end of a function
declarator.

UK
 95

7.1.6.4 4 Te (See also c++std-core-13583) This paragraph allows auto
"in the type-specifier-seq in a new-type-id (5.3.4)" (and
nowhere else not listed). Specifically, it isn't allowed in a
type-id in a new-expression. That allows "new auto (42)",
but not "new (auto)(42)". However, 5.3.4/2 suggests the
latter should be allowed "If the auto type-specifier
appears in the type-specifier-seq of a new-type-id or type-
id of a new-expression ...". The inconsistency should be
resolved, ideally in favour of allowing both forms.

Change "in a new-type-id" to "in a new-type-id or
type-id in a new-expression".

FR
24

7.1.6.4 [auto
specifier]

 te Now that 'auto' is finally used in its most obvious sense to
state `deduce the type of this variable from initializer', it
should also be allowed in template parameter
declarations, as in

template<auto n> struct X { /* … */ };

X<903> x;

X<&Widget::callback> y;

instead of the current, often verbose and cumbersome

template<typename T, T n> struct X { /* … */ };

X<int,903> x;

C++0X, CD 1, NB Comments Date: 21 Feb 2009 Document: SC22 N4411, ISO/IEC CD 14882

1 2 3 4 5 6 7

MB1

Clause No./
Subclause No./

Annex
(e.g. 3.1)

Paragraph/
Figure/Table/

Note
(e.g. Table 1)

Type
of

com-
ment2

Comment (justification for change) by the MB Proposed change by the MB Disposition

1 MB = Member body (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial
NOTE Columns 1, 2, 4, 5 are compulsory.

page 34� of 139�
ISO electronic balloting commenting template/version 2001-10

X<void (Widget::*)(),&Widget::callback> y;

We understand that 'auto' is used in 14.1/18 in a different
way (for constrained template), but that usable appears
very strange syntax, unnatural and does not fit well with
the usage in this section.

US
38

7.2 1 ed The discussion of attribute specifiers should be a
separate paragraph.

US
39

7.2 2 te The paragraph says in part "An opaque-enum-declaration
declaring an unscoped enumeration shall not omit the
enum-base." This statement implies that the base may be
omitted for scoped enumerations, which is somewhat
inconsistent with paragraph 3 and somewhat consistent
with paragraph 5.

As this implication leaves no representation, it
should be either affirmed here or the statement
should be expanded. Perhaps a note is warranted.

JP
13

7.2 paragraph 3 ed In the description for an unscoped enumeration, enum-
base in redeclaration must be the same underlying type
as in the 1st declaration, but it is not described explicitly,
while it is referred that all enum-bases in redeclarations
must specify the same underlying type.

Replace the description, "same underlying type",
with "same as underlying type of (previous)
declaration."

UK
 96

7.2 7 Te enum E { }; What are the values of E? It has neither a
smallest nor largest enumerator, so paragraph 7 doesn't
help. (Paragraph 6 indicates that the underlying type is as
if E had a single enumerator with value 0, but that does
not define the values of E.)

Add a second sentence to paragraph 7 (before
"Otherwise"): "If the enumerator-list is empty, 0 is
the only value of the enumeration."

UK
 97

7.2 9 Ed Missing punctuation after "blue" in: "The possible values
of an object of type color are red, yellow, green, blue
these values can be converted ..."

Add a semicolon: "The possible values of an
object of type color are red, yellow, green, blue;
these values can be converted ..."

UK
 98

7.2 5 Te It would be useful to be able to determine the underlying
type of an arbitrary enumeration type. This would allow
safe casting to an integral type (especially needed for
scoped enums, which do not promote), and would allow

Add a TransformationTrait to 20.5.6 that returns
the underlying type of an enumeration type.

C++0X, CD 1, NB Comments Date: 21 Feb 2009 Document: SC22 N4411, ISO/IEC CD 14882

1 2 3 4 5 6 7

MB1

Clause No./
Subclause No./

Annex
(e.g. 3.1)

Paragraph/
Figure/Table/

Note
(e.g. Table 1)

Type
of

com-
ment2

Comment (justification for change) by the MB Proposed change by the MB Disposition

1 MB = Member body (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial
NOTE Columns 1, 2, 4, 5 are compulsory.

page 35� of 139�
ISO electronic balloting commenting template/version 2001-10

use of numeric_limits. In general it makes generic
programming with enumerations easier.

UK
 99

7.2 3 Te It is unclear whether an enumeration type is complete
after an opaque-enum-declaration. This paragraph only
says so in a note, and the general rule in 3.9/5
("Incompletely-defined object types ... are incomplete
types") is unclear in this situation.

Move "an enumeration declared by an opaque-
enum-declaration ... is a complete type" from the
note to normative text.

JP
14

7.3.1 te The description of the behavior when a member that was
defined with same name in other namespace was
referred.
- It seems that the behavior of the following case is

not defined. So we think that it is necessary to
define that.

namespace Q {
inline namespace V {
int g;
}
int g;
}
Q::g =1;// ill-fromed, Q::V::g =1;, or Q::g = 1;?

- Add that the following case is ill-formed to more
easily to understand.
namespace Q {
inline namespace V1{
int g;
}
inline namespace V2{
int g;
}
}

Q::g =1;//ill-formed

Add the description of the behavior when a
member that was defined with same name in
other namespace was referred.

UK
 100

7.3.3 10 and 13 Ed Para 10 says "A using-declaration is a declaration and
can therefore be used repeatedly where (and only where)
multiple declarations are allowed." Para 13 says "Since a

Delete para 10, moving its example into para 13.

C++0X, CD 1, NB Comments Date: 21 Feb 2009 Document: SC22 N4411, ISO/IEC CD 14882

1 2 3 4 5 6 7

MB1

Clause No./
Subclause No./

Annex
(e.g. 3.1)

Paragraph/
Figure/Table/

Note
(e.g. Table 1)

Type
of

com-
ment2

Comment (justification for change) by the MB Proposed change by the MB Disposition

1 MB = Member body (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial
NOTE Columns 1, 2, 4, 5 are compulsory.

page 36� of 139�
ISO electronic balloting commenting template/version 2001-10

using-declaration is a declaration, the restrictions on
declarations of the same name in the same declarative
region (3.3) also apply to using-declarations." These
appear to be saying exactly the same thing.

UK
 101

7.3.3 20 Te If a using-declaration uses the keyword typename and
specifies a dependent name (14.6.2), the name
introduced by the using-declaration is treated as a
typedef-name (7.1.3). That doesn't specify at all what the
effect of using typename with a non-dependent name is.
Is it allowed? What about outside any template? What if
the name isn't a type? (14.6/4 doesn't cover this, I think.)

Allow typename for non-dependent names iff they
refer to a type.

DE-
12

7.3.3 p15 te DE-12 Overriding and hiding of member functions named
in using-declarations should consider ref-qualifiers,
because they are part of the function type.

FR
25

7.3.3 [The
using
declaration]

Paragraph
21

te The syntax for concept map alias is unnecessarily both
confused and verbose.

We strongly suggest simplifications, e.g.
 using N1::C<int>;
that fits well with existing constructs. The
syntactic complexity is too high for a new feature
presumably designed to support sound
programming.

UK
 102

7.3.4 6 Ed This paragraph says "If name lookup finds a declaration
for a name in two different namespaces, and the
declarations do not declare the same entity and do not
declare functions, the use of the name is ill-formed." But
the example uses declaration of functions, so is not
covered by this paragraph.

Move the example to paragraph 7, and/or replace
it with an appropriate example.

US
40

7.6 te The list of attributes is missing an attribute to indicate that
a function with a throw() (throws nothing) clause need not
have the unexpected() catch clause generated. This
attribute was a motivating example for the attribute
syntax, and its omission is surprising.

Add the attribute.

C++0X, CD 1, NB Comments Date: 21 Feb 2009 Document: SC22 N4411, ISO/IEC CD 14882

1 2 3 4 5 6 7

MB1

Clause No./
Subclause No./

Annex
(e.g. 3.1)

Paragraph/
Figure/Table/

Note
(e.g. Table 1)

Type
of

com-
ment2

Comment (justification for change) by the MB Proposed change by the MB Disposition

1 MB = Member body (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial
NOTE Columns 1, 2, 4, 5 are compulsory.

page 37� of 139�
ISO electronic balloting commenting template/version 2001-10

US
41

7.6 te A common problem is unintentionally declaring a new
virtual member function instead of overriding a base
virtual member function.

An attribute stating intent to override would enable
better diagnostics.

FR
26

7.6
[Attributes]

 ed Are they part of object types or not? The section does
not appear to indicate that clearly.

FI 1 7.6 te Add override-attribute for functions in order to avoid
mistakes when overriding functions.

See override-attribute.doc, override-attribute.ppt

FR
27

7.6.1 te This section specifies that no name lookup is performed
on any identifier contained in an attribute-token. This in
particular implies that, for example, it is impossible to
define a template class parameterized by its alignment.
That restriction is unacceptable.
The original alignment proposal made that useful
construct possible.
Furthermore paragraph 7.6.1/2 appears contradictory
with the rest of that section -- since no name lookup is
performed, how a 'type-id'is determined?

UK
 103

7.6.1 Te Attributes should support pack expansion. For example,
this would be extremely useful with the align attribute,
directly supporting the (removed) functionality of
aligned_union. NOte that aligned_union was removed as
varaiant-unions were considered a complete replacement
- however this is not true for variadic templates. Adding
this support to attributes would remove the remaining
need, and support similar attributes in the future.

Add: attribute... to the grammar for attribute-list
Add to list in 14.5.3p4: "In an attribute-list(7.6.1);
the pattern is an attribute."

UK
 104

7.6.1 1 Ed It is helpful for each subclause to contain a short
paragraph introducing its intent an purpose. 7.6 has such
a paragraph, but it is nested under a more specific
subsection.

7.6.1p1 should move up one level to become
7.6p1. There grammar should remain under 7.6.1

UK
 105

7.6.1 1 Te Allowing only one level of namespaces in attributes
seems unnecessarily limiting.

To: attribute-scoped-token: attribute-namespace ::
identifier add attribute-namespace :: attribute-
scoped-token

C++0X, CD 1, NB Comments Date: 21 Feb 2009 Document: SC22 N4411, ISO/IEC CD 14882

1 2 3 4 5 6 7

MB1

Clause No./
Subclause No./

Annex
(e.g. 3.1)

Paragraph/
Figure/Table/

Note
(e.g. Table 1)

Type
of

com-
ment2

Comment (justification for change) by the MB Proposed change by the MB Disposition

1 MB = Member body (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial
NOTE Columns 1, 2, 4, 5 are compulsory.

page 38� of 139�
ISO electronic balloting commenting template/version 2001-10

UK
 106

7.6.2 1 Ed Extensive use of alignment and related terms without
cross reference.

Add cross-reference to 3.11.

JP
15

7.6.2 ed An abbreviation of 7.6.2 should be “[decl.attr.align]”
instead of “[dcl.align]”.
Section name “[dcl.align]” is not consistent with others,
because others in 7.6 are the form of “dcl.attr.*”. In
N2761, the section name of 7.1.7 had been changed from
“[dcl.align]” to “[dcl.attr.align]”, but in N2800 it was
reverted to “[dcl.align]” along with a change of section
number, 7.1.7 to 7.6.2.

Change "[dcl.align]" of 7.6.2 to "[decl.attr.align]".

UK
 107

7.6.3 Ed While undefined behaviour might be the best we can
guarantee, it would be helpful to encourage
implementations to diagnose function definitions that
might execute a return.

Adda a [Note : implementations are encouraged to
issue a diagnostic where the definition of a
function marked [[noreturn]] might execute a
return statement -- end note]

UK
 108

7.6.4 2 Te It is unclear why no diagnostic is required for an easily
detectable violation. It is even more surprising that the
associated footnote mandates behaviour for an ill-formed
program.

Strike "no diagnostic required" and the associated
footnote.

US
42

7.6.4 te The meaning of the [[final]] attribute applied to classes is
inconsistent with other languages and not desirable in its
own right.

Modify the semantics of [[final]] applied to
classes. See the attached paper "Issues with the
C++ Standard" under Chapter 7 "Meaning of
[[final]] attribute applied to classes".

UK
 109

7.6.5 4 Ed The example code refers in comments to "Compilation
unit" A and B. The term should be "Translation unit" (2/1)

Replace "Compilation" with "Translation" in two
places

UK
 110

7.6.5 4 Te The code in the example (compilation unit A) has:
"foo_head[i].load(memory_order_consume)". foo_head[i]
is of type foo *, so it does not have a load member.

Change the type of foo_head to atomic<foo *>[].

US 8 te With the introduction of late-specified return types for Some simplification is needed.

C++0X, CD 1, NB Comments Date: 21 Feb 2009 Document: SC22 N4411, ISO/IEC CD 14882

1 2 3 4 5 6 7

MB1

Clause No./
Subclause No./

Annex
(e.g. 3.1)

Paragraph/
Figure/Table/

Note
(e.g. Table 1)

Type
of

com-
ment2

Comment (justification for change) by the MB Proposed change by the MB Disposition

1 MB = Member body (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial
NOTE Columns 1, 2, 4, 5 are compulsory.

page 39� of 139�
ISO electronic balloting commenting template/version 2001-10

43 functions and lambda expressions, we now have three
different syntaxes for declaring functions. The -> late
declaration is used in two. The auto keyword is used in
one, but also used differently in variable definitions.

UK
 111

8.3.5 13 Ed Example missing closing bracket in template<typename...
T> void f(T (* ...t)(int, int);

Add closing bracket like this:
template<typename... T> void f(T (* ...t)(int, int));

US
44

8.3.5 13 ed In the Example, "template void f(T (* ...t)(int, int);" is
missing a close parenthesis.

It presumably should read: "template void f(T (*
...t))(int, int);".

US
45

8.3.5 13 te At present, function parameter packs can only occur at
the end of a parameter-declaration-list. This restriction
unnecessarily prohibits uses of function parameter packs
in cases where template argument deduction isn’t
needed, e.g.,

template<class... T> struct X { };
template<class... T1, class... T2>
struct X<pair<T1, T2>...> {
void f(T1..., T2...);
};

More importantly, this restriction is inconsistent with the
way pack expansions are handled. For example, this
template is well-formed (but X<T..., int> is a non-deduced
context):

template<class... T> void f(X<T..., int>);

Therefore, the restriction that limits function parameter
packs to the end of the parameter-declaration-list should
be removed. Instead, function parameter packs not at the
end of the parameter-declaration-list should be
considered non-deduced contexts.

In 8.3.5p13, remove the sentence “A function
parameter pack, if present, shall occur at the end
of the parameter-declaration-list.”

In 14.8.2.1p1, replace the phrase “For a function
parameter pack” with “For a function parameter
pack that occurs at the end of a parameter-
declaration-list”.

Replace the note text “A function parameter pack
can only occur at the end of a parameter-
declaration-list (8.3.5).” with “A function parameter
pack that does not occur at the end of a
parameter-declaration-list is a non-deduced
context.”

In 14.8.2.5p5, add a new bullet: “A function
parameter pack that does not occur at the end of
its parameter-declaration-list.”

In 14.8.2.5p10, replace “If the parameter-
declaration corresponding to Pi is a function
parameter pack” with “If the parameter-declaration
corresponding to Pi is a function parameter pack
and Pi occurs at the end of the parameter-
declaration-list”.

C++0X, CD 1, NB Comments Date: 21 Feb 2009 Document: SC22 N4411, ISO/IEC CD 14882

1 2 3 4 5 6 7

MB1

Clause No./
Subclause No./

Annex
(e.g. 3.1)

Paragraph/
Figure/Table/

Note
(e.g. Table 1)

Type
of

com-
ment2

Comment (justification for change) by the MB Proposed change by the MB Disposition

1 MB = Member body (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial
NOTE Columns 1, 2, 4, 5 are compulsory.

page 40� of 139�
ISO electronic balloting commenting template/version 2001-10

Replace the note text “A function parameter pack
can only occur at the end of a parameter-
declaration-list (8.3.5).” with “A function parameter
pack that does not occur at the end of a
parameter-declaration-list is a non-deduced
context.”

DE-
13

8.4 p2 te DE-13 The second paragraph, quoting the grammar for
the declarator of a function declaration, is not considering
late-specified return types and attributes.

Properly quote the grammar from 8.3.5.

JP
16

8.5 15th
paragraph,
1st line

ed Typo, duplicated "in"
"The initialization that occurs in in the forms"

Remove one.

US
46

8.5.3 te The ability for an rvalue reference to bind to an lvalue
opens a type-safety hole that becomes very dangerous
with concepts. For example, consider vector’s push_back
operation:
requires MoveConstructible<T> void push_back(T&&);
requires CopyConstructible<T> void push_back(const
T&);

For a copy-constructible T (which is also move-
constructible), push_back does the right thing. However,
if T is something that is move-constructible (e.g.,
unique_ptr<int>), the second overload is removed from
considered (it is effectively SFINAE’d away), so only the
first overload remains. Therefore, one could accidentally
call push_back with an lvalue of type T, and push_back
would silently move from the lvalue. The same problem
occurs without concepts (albeit less frequently).

Prohibit rvalue references from binding to lvalues.

Unfortunately this change will break some current
use cases of rvalue reference including the use of
rvalue streams, and of the forward function itself.
To resolve this we may want to consider three
types of references:

The current reference.
A non-const reference that only binds to rvalues.
A non-const reference that will bind to both lvalues

and rvalues.

Still another solution would be to adopt the
“deleted function” solution for all functions. This
solution is described in comment for 12.1, 12.4,
12.8, but restricted to special functions in that
comment. (See US NN).

US
49

8.5.4 6 ed In the Example, the comments could be improved. See the attached paper "Issues with the C++
Standard" under "Editorial Issues" and "8.5.4/6".

C++0X, CD 1, NB Comments Date: 21 Feb 2009 Document: SC22 N4411, ISO/IEC CD 14882

1 2 3 4 5 6 7

MB1

Clause No./
Subclause No./

Annex
(e.g. 3.1)

Paragraph/
Figure/Table/

Note
(e.g. Table 1)

Type
of

com-
ment2

Comment (justification for change) by the MB Proposed change by the MB Disposition

1 MB = Member body (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial
NOTE Columns 1, 2, 4, 5 are compulsory.

page 41� of 139�
ISO electronic balloting commenting template/version 2001-10

UK
 112

9 4-9 Ge We now have concepts that should (or should not?) map
to the terms described in Clause 9 - these should be at
least referenced.

Add appropriate forward references to 14.9.4

UK
 113

9.4.2 3 Ed Mis-applied edit from the paper n2756 The term 'constant-initializer' should have been
struck out when replaced by brace-or-equal-
initializer. There are two occurrences in this
paragraph

US
50

12.1, 12.4,
12.8

 te Implicitly-declared default constructors, destructors, copy
constructors, and copy assignment operators are deleted
when their definitions would be ill-formed. However,
unlike with overloading and template argument deduction,
access control is performed as part of the check for
making one of these special function deleted. This
inconsistency should be removed.

This change would sacrifice some backward compatibility
in favor of consistency. With the current wording,
checking that the following class ‘A’ is CopyConstructible
would proceed without error (it is not CopyConstructible):
class A { A(const A&); };
With the proposed change, testing whether A is
CopyConstructible would produce a diagnostic. To fix the
problem, the user would have to use a deleted function:
class A { A(const A&) = delete; };

In 12.1p5, remove the phrase “ or inaccessible
from the implicitly-declared default constructor”.

In 12.4p3, remove the phrase “or a destructor that
is inaccessible from the implicitly-declared
destructor,” and the phrase “or a destructor that is
inaccessible from the implicitly-declared
destructor”.

In 12.8p5, remove the phrase “ or inaccessible
from the implicitly-declared copy constructor” from
the two places it occurs.

In 12.8p10, remove the phrase “or inaccessible
from the implicitly-declared copy assignment
operator” from the two places it occurs.

FR
28

12.6.1
[Explicit
initialization]

 te This section, in particular the example with `g' appears
contradictory with the syntax for uniform initialization.

US
51

12.6.2 2 ed The discussion of delegating constructors should be in its
own paragraph.

UK
 114

12.6.2 1 Te Despite all the attempts to unify initialization syntax, it is
still not possible to copy-initialize base classes or non-
static data members, which means the explicit keyword
cannot have a bearing during evaluation of a constructor.

Ammend the grammar for mem-initializer: mem-
initializer-id =OPT braced-init-list Extend p3 to
allow for Copy Initialization if the optional = is
present: 3 The expression-list or braced-init-list in

C++0X, CD 1, NB Comments Date: 21 Feb 2009 Document: SC22 N4411, ISO/IEC CD 14882

1 2 3 4 5 6 7

MB1

Clause No./
Subclause No./

Annex
(e.g. 3.1)

Paragraph/
Figure/Table/

Note
(e.g. Table 1)

Type
of

com-
ment2

Comment (justification for change) by the MB Proposed change by the MB Disposition

1 MB = Member body (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial
NOTE Columns 1, 2, 4, 5 are compulsory.

page 42� of 139�
ISO electronic balloting commenting template/version 2001-10

A minimal addition to the grammar, allowing an optional =
between the mem-initializer-id and braced-init-list would
allow the user to choose between copy and direct
initialization

a mem-initializer is used to initialize the base class
or non-static data member subobject denoted by
the mem-initializer-id according to the initialization
rules of 8.5 for direct-initialization, OR COPY-
INITIALIZATION IF THE OPTIONAL = IS
PRESENT BETWEEN THE MEM-INITIALIZER-ID
and the BRACED-INIT-LIST. [Example:...

US
52

13.5.8 ¶ 5 ed A word is misspelled. Change “shal” to “shall”.

UK
 115

14 6-11 Ge Exported templates were a great idea that is generally
understood to have failed. In the decade since the
standard was adopted, only one implementation has
appeared. No current vendors appear interested in
creating another. We tentatively suggest this makes the
feature ripe for deprecation. Our main concern with
deprecation is that it might turn out that exported
constrained templates become an important compile-time
optimization, as the constraints would be checked once in
the exported definition and not in each translation unit
consuming the exported declarations.

Consider deprecating exported templates, but no
action yet. Examine interaction with constrained
templates, and see if other more appropriate
mechanism will support compile-time optimization.

UK
 116

14 6-11 Te Is it possible to export a concept map template? The
current wording suggests it is possible, but it is not
entirely clear what it would mean.

Either prohibit exporting concept map templates,
or more directly address what it means to export a
concept map.

UK
 117

14 2 Ge It would be nice to allow template alias within a function
scope, and possibly a scoped concept map. As these
affect name lookup and resolution, rather than defining
new callable code, they are not seen to present the same
problems that prevented class and function templates in
the past.

Allow template aliases to be declared inside a
function scope, and consider scoped concept
maps.

UK
 118

14 6-11 Ed Exported templates are a complicated feature with
surprisingly little text. To make this important text more
visible, split it off into its own subclause [temp.export]

Create a new subclause [temp.export] containing
14p6-11. Move 14p12 ahead of this subclause.

C++0X, CD 1, NB Comments Date: 21 Feb 2009 Document: SC22 N4411, ISO/IEC CD 14882

1 2 3 4 5 6 7

MB1

Clause No./
Subclause No./

Annex
(e.g. 3.1)

Paragraph/
Figure/Table/

Note
(e.g. Table 1)

Type
of

com-
ment2

Comment (justification for change) by the MB Proposed change by the MB Disposition

1 MB = Member body (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial
NOTE Columns 1, 2, 4, 5 are compulsory.

page 43� of 139�
ISO electronic balloting commenting template/version 2001-10

UK
 119

14 4 Te Does a concept map have linkage? Reading this
paragraph and 3.5 suggests a concept map template has
external linkage, but not a 'regular' concept map. Believe
this is an oversight that the linkage words were not
updated to provide an exception, rather than linkage of
concept maps is intended.

Add an exception that concept map templates
have no linkage, or add concept maps to the list of
entities with linkage in 3.5

UK
 120

14.1 9 Ed As this is the first time the phrase “parameter pack”
appears in Ch 14 I would like to see the section 8.3.5
referenced here (as well as in 14.1p17).

Insert “(8.3.5)” after “parameter pack”

UK
 121

14.1 18 Ed The example (that follows the normative text) has no
begin example marker

Prefix the example code with "[Example:"

FR
29

14.3
[Template
arguments]

 te Constant expressions of any literal type should be
allowed as template arguments.

US
53

14.5.1 5 te If the requirements of a constrained member that is a
copy constructor, copy assignment operator, or destructor
are not satisfied, then that user-declared special function
will not exist. It appears that, in this case, the special
function will then be implicitly defined, which is likely to
either (a) fail to compile or (b) produce a function with the
wrong semantics. For example:
template<ObjectType T> class vector {
 T* first, last, end;
public:
 requires CopyConstructible<T> vector(const vector&);
};

If instantiated with a type that is not CopyConstructible,
vector will get an implicitly-defined copy constructor that
performs a copy of the pointers.

Add to 14.5.1p5:
 If the constrained member is a copy constructor
(12.8), destructor (12.4), or copy assignment
operator and its template requirements are not
satisfied, then a copy constructor, destructor, or
copy assignment operator, respectively, with the
same signature as the constrained member (after
substituting the class template’s template
arguments for its template parameters) will be
declared as a deleted function (8.4).

UK
 122

14.5.3 4 Te Variadic templates should be supported in axioms. There
are axioms in the library that rely on this feature, such as
the FrontEmplacement axiom in

Add clarification in p2 that function parameter
packs can be used to declare axioms, much like
p1 clarifies they can be used to declare concepts

C++0X, CD 1, NB Comments Date: 21 Feb 2009 Document: SC22 N4411, ISO/IEC CD 14882

1 2 3 4 5 6 7

MB1

Clause No./
Subclause No./

Annex
(e.g. 3.1)

Paragraph/
Figure/Table/

Note
(e.g. Table 1)

Type
of

com-
ment2

Comment (justification for change) by the MB Proposed change by the MB Disposition

1 MB = Member body (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial
NOTE Columns 1, 2, 4, 5 are compulsory.

page 44� of 139�
ISO electronic balloting commenting template/version 2001-10

FrontEmplacementContainer (23.1.6.1p10)

as well as templates.

FR
30

14.5.7
[Template
aliases]

 te When are two template alias names equivalent?

E.g. given
template<template<class> class> struct X { };

template<typename,typename> struct Y { };

template<typename T>
using Z1 = Y<int,T>;

template<typename T>
using Z2 = Y<int,T>;

Are the types X<Z1> and X<Z2> equivalent?
We would suggest yes (since Z1<T> and Z2<T> are the
same for all T), but we do not see any wording to that
effect.

JP
17

14.7.2 2nd
paragraph,
15th line

ed Typo.
if that namespace is inline, any namespace from its
enclosing namespace set.

should be

if that namespace is inline, any namespace forming its
enclosing namespace set.

Replace "from" with "forming"

DE-
14

14.7.3 p1 te DE-14 The bulleted list neither addresses "member
function template of a class" nor "member class template
of a class".

Add the respective bullets.

JP
18

14.7.3 2nd
paragraph,
2nd line

ed Typo,
any namespace from its enclosing namespace set

should be

Replace "from" with "forming"

C++0X, CD 1, NB Comments Date: 21 Feb 2009 Document: SC22 N4411, ISO/IEC CD 14882

1 2 3 4 5 6 7

MB1

Clause No./
Subclause No./

Annex
(e.g. 3.1)

Paragraph/
Figure/Table/

Note
(e.g. Table 1)

Type
of

com-
ment2

Comment (justification for change) by the MB Proposed change by the MB Disposition

1 MB = Member body (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial
NOTE Columns 1, 2, 4, 5 are compulsory.

page 45� of 139�
ISO electronic balloting commenting template/version 2001-10

any namespace forming its enclosing namespace set

JP
19

14.8.2 6th
paragraph,
1st line

ed Typo, duplicated "is"
"At certain points in the template argument deduction
process it is is necessary"

 Remove one

US
54

14.9
[concept],

14.10
[temp.constrai
ned]

 ge Concepts is of course the largest new feature in C++0x
(in terms of new text inserted into the wording), and
already we have found some significant defects with it.
So far nothing devastating has been found, but more time
is needed to shake more bugs out.

I propose no specific change here.

US
55

14.9.1 ¶ 6 ed The paragraph number is in the wrong place, causing a
grammar rule to be indented more than its fellows.

Move the paragraph number so as to follow the
grammar rules, thus numbering the single
sentence, “The body of a concept … .”

US
56

14.9.1 ¶ 6 ed The sentence contains two references to 14.9.1.3
[concept.req].

Change the second such reference (at the end of
the sentence) to 14.9.1.4 [concept.axiom].

US
57

14.9.1.4 ¶ 3 ed A word is misplaced, changing the intended meaning. Change “only find … if” to “find … only if”.

US
58

14.9.1.4 ¶ 3 ed The listed phrases are not grammatically parallel. Insert “in” before “one” so as to obtain “... in the
concept, in one of its less refined concepts, or in
an associated requirement.”

US
59

14.9.1.4 te Axioms are under-specified and provide little benefit to
programmers, so they should be removed from the
working paper. The optimizations permitted by axioms
(see 14.9.1.4p4-5) are not compulsory (and, therefore,
programmers cannot rely on them) and the semantics
expressed by axioms cannot be verified by any
implementation. The resulting specification has lead to
great confusion (see the reflector thread “Are floating
point types Regular?” starting with c++std-lib-22717).
Given the level of confusion and the inability to verify the
correctness of axioms, it is likely that many axioms

Remove clause 14.9.1.4 [concept.axiom]
In 2.11p1, remove “axiom” from the list of
keywords.

In 14.5.8p7, remove “, or if the resulting concept
map fails to satisfy the axioms of the
corresponding concept”

In 14.9.1p6, remove axiom-definition from the list
of grammar productions for concept-member-
specifier. Remove “, and axioms” from the final

C++0X, CD 1, NB Comments Date: 21 Feb 2009 Document: SC22 N4411, ISO/IEC CD 14882

1 2 3 4 5 6 7

MB1

Clause No./
Subclause No./

Annex
(e.g. 3.1)

Paragraph/
Figure/Table/

Note
(e.g. Table 1)

Type
of

com-
ment2

Comment (justification for change) by the MB Proposed change by the MB Disposition

1 MB = Member body (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial
NOTE Columns 1, 2, 4, 5 are compulsory.

page 46� of 139�
ISO electronic balloting commenting template/version 2001-10

written by programmers (including those specified in the
candidate draft) will be incorrect.

sentence, and instead “and” prior to “associated
requirements” in the final sentence.

Remove paragraph 14 of clause 14.9.2.

In 14.10.1p6, remove the sentence, “When the
concept-instance-alias-def appears in the optional
requires-clause of an axiom-definition (14.9.1.4),
the potential scope of the identifier begins at its
point of declaration and terminates at the end of
the axiom-definition.”

In clauses 20.2.5, 20.2.8, 23.1.6.1, 23.1.6.2, and
24.1.4, remove the axiom-definitions and replace
them with paragraphs (denoted Requires,
Postconditions, or Effects, as appropriate) that
express the intended semantics of the concepts
from which the axiom-definitions were removed.

In 24.1.4p2, replace the word “axiom” with
“condition.”

FR
31

14.9.1.4
[Axioms]

 te This section states that an axiom-definition defines a new
semantics axiom but is unusually vague as to what those
semantics might be.

The use of the '==' and '!=' with completely new
semantics, unrelated to anything we have seen before in
C++ is both unwise and confusing, especially if the types
involved in the expressions happen to have operator==
and operator!= defined.
We strongly suggest use of different tokens, e.g. , and
opposed to this obscure usage/overload.
The description is very vague. How many times is an
implementation permitted to replace one expression by
another one when they have side effects?

C++0X, CD 1, NB Comments Date: 21 Feb 2009 Document: SC22 N4411, ISO/IEC CD 14882

1 2 3 4 5 6 7

MB1

Clause No./
Subclause No./

Annex
(e.g. 3.1)

Paragraph/
Figure/Table/

Note
(e.g. Table 1)

Type
of

com-
ment2

Comment (justification for change) by the MB Proposed change by the MB Disposition

1 MB = Member body (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial
NOTE Columns 1, 2, 4, 5 are compulsory.

page 47� of 139�
ISO electronic balloting commenting template/version 2001-10

DE-
15

14.9.1.4 te DE-15 There is no implementation experience for axioms.
Use of axioms is an area of active scientific research. It is
likely that syntax changes will become necessary to make
good use of axioms; having the syntax space already
crowded is unhelpful. Axioms ought to be useful in
concepts applicable to floating-point types (such as
EqualityComparable), but IEEE floating-point types have
special values such as NaN violating the axioms.

Remove section 14.9.1.4 and any reference to
axioms in the rest of the proposed standard other
than the keyword reservation in section 2.11.

UK
 123

14.9.1.4 Te auto concepts and axioms are incompatible. An axiom
defines the semantics of an operaton or set of operations
that describes the run time behaviour. A concept
describes purely syntactic requirements at compile time.
Where an auto concept will match anything that meets
the syntax requirements, there is no way to know if the
axioms will be met or not, and no way to opt out via some
kind of negative concept map.

Add a paragraph making axioms ill-formed inside
an auto concept.

UK
 124

14.9.1.4 6 Ed Spelling mistake, double-e in were. weere -> were

UK
 125

14.9.1.4 2 Te The implicit equality comparison operator available to
axioms has no semantic. It is not clear what expressing
the condition if(a == b) { conditional-axiom } would mean
if a and b are not truly EqualityComparable. We suspect
the intent of the 'implicit defefinition' is to support
declaring the equivalence of statements, a context where
the operator will not actually be evaluated.

Define the semantics of the implicitly declared
comparison operators, or restrict their usage to
declaring equivalence between statements.

UK
 126

14.9.4 41 Ed This paragraph contains the only definition of the
underlying_type member - but it's a note, so not
normative.

Move the second sentence to the Requires clause
in paragraph 42.

UK
 127

14.9.4 Ed Provide a diagram clearly showing refinement
relationship between the different support concepts.
Several were created during development of this clause
and they were very helpful.

Provide the diagram.

C++0X, CD 1, NB Comments Date: 21 Feb 2009 Document: SC22 N4411, ISO/IEC CD 14882

1 2 3 4 5 6 7

MB1

Clause No./
Subclause No./

Annex
(e.g. 3.1)

Paragraph/
Figure/Table/

Note
(e.g. Table 1)

Type
of

com-
ment2

Comment (justification for change) by the MB Proposed change by the MB Disposition

1 MB = Member body (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial
NOTE Columns 1, 2, 4, 5 are compulsory.

page 48� of 139�
ISO electronic balloting commenting template/version 2001-10

UK
 128

14.9.4 4 Ed It is surprising for many people that non-copyable move-
only types can be used with a return statement, and so
Returnable does not always imply CopyConstructible.

A non-normative note: [Note: 'move only' types
that are constructible from rvalue references may
be Returnable, but not CopyConstructible(20.1.8) -
end note]

JP
20

14.9.4 2nd
paragraph

te Trivially copyable type was added in “3.9 Types”, so we
think that it is necessary to add concept to trivially
copyable type like “TriviallyCopyableType”.

Add TriviallyCopyableType that is trivially
copyable type as concept.

UK
 129

14.10.1,
20.1.2

 Te It should be possible to support boolean constant
expressions as requirements without resorting to defining
the True concept in the library. Boolean expressions are
very likely to be constraints when deadline with non-type
template parameters and variadic templates, and
constraints in these cases should feel just as natural as
constraints on the type system.

Remove the True concept and library subclause
20.1.2. Provide support in 14.10.1 for boolean
constant expressions as constraints. This may
involve overloading the true keyword to
disambiguate but ideally would not.

US
60

14.10.1 1 te The use of && as the separator for a list of requirements
has shown itself to be a serious teachability problem. The
mental model behind ‘&&’ treats concepts as simple
predicates, which ignores the role of concepts in type-
checking templates. The more programmers read into the
‘&&’ (and especially try to fake || with && and !), the
harder it is for them to understand the role of concept
maps. Simply changing the separator to ‘,’ would
eliminate a significant source of confusion.

Replace
 requirement-list:
 requirement-list ... [opt] && requirement
 requirement ... [opt]

with

 requirement-list
 requirement-list ...[opt] , requirement
 requirement ... [opt]

In 14.5.4p6, replace the first sentence with:
 The instantiation of an expansion produces a
comma-separated list E1, E2, ..., EN, where N is
the number of elements in the pack expansion
parameters.

C++0X, CD 1, NB Comments Date: 21 Feb 2009 Document: SC22 N4411, ISO/IEC CD 14882

1 2 3 4 5 6 7

MB1

Clause No./
Subclause No./

Annex
(e.g. 3.1)

Paragraph/
Figure/Table/

Note
(e.g. Table 1)

Type
of

com-
ment2

Comment (justification for change) by the MB Proposed change by the MB Disposition

1 MB = Member body (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial
NOTE Columns 1, 2, 4, 5 are compulsory.

page 49� of 139�
ISO electronic balloting commenting template/version 2001-10

UK
 130

15.1 4 Te With the new crrent_exception API it is possible to
capture a reference to an exception that will outlive its
last active handler. That is in conflict with the sentance
"When the last remaining active handler for the exception
exits by any means other than throw; the temporary
object is destroyed and the implementation may
deallocate the memory for the temporary object;"

Update sentence to allow for exceptions held in
excpetion_ptr objects.

UK
 131

15.3 3 Te A handler catching its parameter by rvalue-reference is
syntactically valid, but will never be activated.

Disallow handlers catching by rvalue-reference.

UK
 132

15.3 16 Te There are obscure cases whrere a copy constructor is not
usually the best match to copy-initialize an object, e.g. A
converting constructor template taking arguments by non-
const reference. A footnote explaining such cases would
be helpful, or the sentance could be rewritten using copy-
initialization instead of directly calling a copy constructor.

Rewite using copy-initialization rather than directly
invoking the copy constructor

UK
 133

15.4 2 Te Template aliases have the same semantics as a typedef
so should also be disallowed

add "or alias-declaration" after "shall not appear in
a typedef declaration".

UK
 134

15.4 6 Ed The sentance "An exception-specification can also
include the class std::bad_exception (18.7.2.1)." is
redundant.

Either strike the quoted sentance, or add a note
explaining why it is worth calling special attention
to this class.

UK
 135

15.4 8 Te Unclear if std::unexpected is called before or after the
function arguments have been destroyed

Clarify the sequence of calling unexpected with
respect to interesting objects, such as function
arguments or partially constructed bases and
members when called from a constructor or
destructor

UK
 136

15.4 Ge Exception specifications have proven close to worthless
in practice, while adding a measurable overhead to
programs. The feature should be deprecated. The one
exception to the rule is the empty throw specification
which could serve a legitimate optimizing role if the
requirement to call the runtime unexpected mechanism
was relaxed in this case.

Move 15.4 and the parts of 15.5 that refer to it to
Appendix D. Replace 15.4 with a simpler
specification for empty throw specifications, where
the std::unexpected call is conditionally supported
allowing vendors to choose between optimizing
and providing runtime checks. Ideally require
vendors to provide a mode where the runtime

C++0X, CD 1, NB Comments Date: 21 Feb 2009 Document: SC22 N4411, ISO/IEC CD 14882

1 2 3 4 5 6 7

MB1

Clause No./
Subclause No./

Annex
(e.g. 3.1)

Paragraph/
Figure/Table/

Note
(e.g. Table 1)

Type
of

com-
ment2

Comment (justification for change) by the MB Proposed change by the MB Disposition

1 MB = Member body (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial
NOTE Columns 1, 2, 4, 5 are compulsory.

page 50� of 139�
ISO electronic balloting commenting template/version 2001-10

checks are always disabled.
UK
 137

15.5 Ed There is no mention of the current_exception API which
can extend the lifetime of an exception object. There
should at least be a forward reference to the library
clause 18.7.5

Add another paragraph outlining 18.7.5 and the
ability of an exception_ptr to extend the lifetime of
an exception object

UK
 138

15.5.1 1 Ed The third bullet is redundant with the first, as it is a subset
of the same conditions.

Merge the third bullet into the first bullet as a note
or example.

UK
 139

15.5.1 1 Te According to the first bullet it is perfectly alright for a
library function to exit by throwing an exception during
stack unwinding, This is clearly not true.

Strike the word 'user' from the first bullet point.

UK
 140

15.5.2 2 Ed The detailed specification can fool people into thinking an
exception will automatically be translated into
bad_exception, where the default behaviour of
std::unexcepted is to immediately call std::terminate();

Add a note highlighting the default behaviour of
std::unexpected if the user does not supply a
hander-function

UK
 141

15.6 Ed This whole subclause is redundant due to 15.1p5 and
15.3p17

Strike 15.6

UK
 142

16.3.5 3 Ed This paragraph opens with "[Note" but has no
corresponding "end note]"

Add "end note]"

UK
 143

16.3.5 7 Ed Example uses #define t(x,y.z) x ## y ## z Change "x,y.z" to "x,y,z"

US
2

17-30 ge/te The active issues identified in WG21 N2806, C++
Standard Library Active Issues, must be addressed and
appropriate action taken.

http://www.open-std.org/jtc1/sc22/wg21/docs/lwg-
active.html

Appropriate action would include making changes
to the CD, identifying an issue as not requiring a
change to the CD, or deferring the issue to a later
point in time.

FR
2

General
Comment

Library ge The adoption of the library `constexpr' proposal was not
reflected in the draft, despite formal WG21 committee
vote.

FR 2 General Comment

C++0X, CD 1, NB Comments Date: 21 Feb 2009 Document: SC22 N4411, ISO/IEC CD 14882

1 2 3 4 5 6 7

MB1

Clause No./
Subclause No./

Annex
(e.g. 3.1)

Paragraph/
Figure/Table/

Note
(e.g. Table 1)

Type
of

com-
ment2

Comment (justification for change) by the MB Proposed change by the MB Disposition

1 MB = Member body (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial
NOTE Columns 1, 2, 4, 5 are compulsory.

page 51� of 139�
ISO electronic balloting commenting template/version 2001-10

US
61

17 onward te The concepts core language feature is applied to only
some of the Standard Library clauses, and even then not
always consistently.

Review all clauses of the Standard Library, and
consistently apply concept technology wherever
possible and appropriate. The proposed wording
in WG21 N2781 exemplifies the necessary level of
detail.

CA-
2

17 Library Ge “Concepts” are a significant new addition to the language,
but are not exploited uniformly in the library as
documented in CD 14882.

Fix the standard library so that “Concepts” are
used appropriately in the library.

US
62

17-30 ge Provide concepts and requirements clauses for all
standard library templates

US
63

17-30

 te The behavior of the library in the presence of threads is
incompletely specified.

For example, if thread 1 assigns to X, then writes data to
file f, which is read by thread 2, and then accesses
variable X, is thread 2 guaranteed to be able to see the
value assigned to X by thread 1? In other words, does the
write of the data "happen before" the read?

Another example: does simultaneous access using
operator at() to different characters in the same non-const
string really introduce a data race?

DE-
2

17 through 30 te DE-2 Marking a constructor with "explicit" has semantics
even for a constructor with zero or several parameters:
Such a constructor cannot be used with list-initialization in
a copy-initialization context, see 13.3.1.7. The standard
library apparently has not been reviewed for marking non-
single-parameter constructors as "explicit".

Consider marking zero-parameter and multi-
parameter constructors "explicit" in classes that
have at least one constructor marked "explicit"
and that do not have an initializer-list constructor.

JP
21

17 Library
21.2, 21.4,
27.2, 27.6,
27.7, 27.8.1,

 te Support of char16_t/char32_t is insufficient. The
basic_xxx classes of <iostream>, <fstream>, <regex>,
etc. does not have typedefs for char16_t/char32_t.
Functions such as stoi, to_string in ‘21.4 Numeric
Conversion’ does not support char16_t/char32_t types.

Add commented lines corresponding to char16_t,
char32_t.

21.2 paragraph1

C++0X, CD 1, NB Comments Date: 21 Feb 2009 Document: SC22 N4411, ISO/IEC CD 14882

1 2 3 4 5 6 7

MB1

Clause No./
Subclause No./

Annex
(e.g. 3.1)

Paragraph/
Figure/Table/

Note
(e.g. Table 1)

Type
of

com-
ment2

Comment (justification for change) by the MB Proposed change by the MB Disposition

1 MB = Member body (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial
NOTE Columns 1, 2, 4, 5 are compulsory.

page 52� of 139�
ISO electronic balloting commenting template/version 2001-10

28.4 namespace std {
 ...

 // 21.4: numeric conversions
 ...

 int stoi(const u16string& str, size_t *idx = 0, int
base = 10);
 long stol(const u16string& str, size_t *idx = 0, int
base = 10);
 unsigned long stoul(const u16string& str, size_t
*idx = 0, int base = 10);
 long long stoll(const u16string& str, size_t *idx =
0, int base = 10);
 unsigned long long stoull(const u16string& str,
size_t *idx = 0, int base = 10);
 float stof(const u16string& str, size_t *idx = 0);
 double stod(const u16string& str, size_t *idx = 0);
 long double stold(const u16string& str, size_t *idx
= 0);
 u16string to_u16string(long long val);
 u16string to_u16string(unsigned long long val);
 u16string to_u16string(long double val);

 int stoi(const u32string& str, size_t *idx = 0, int
base = 10);
 long stol(const u32string& str, size_t *idx = 0, int
base = 10);
 unsigned long stoul(const u32string& str, size_t
*idx = 0, int base = 10);
 long long stoll(const u32string& str, size_t *idx =
0, int base = 10);
 unsigned long long stoull(const u32string& str,
size_t *idx = 0, int base = 10);
 float stof(const u32string& str, size_t *idx = 0);
 double stod(const u32string& str, size_t *idx = 0);
 long double stold(const u32string& str, size_t *idx

C++0X, CD 1, NB Comments Date: 21 Feb 2009 Document: SC22 N4411, ISO/IEC CD 14882

1 2 3 4 5 6 7

MB1

Clause No./
Subclause No./

Annex
(e.g. 3.1)

Paragraph/
Figure/Table/

Note
(e.g. Table 1)

Type
of

com-
ment2

Comment (justification for change) by the MB Proposed change by the MB Disposition

1 MB = Member body (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial
NOTE Columns 1, 2, 4, 5 are compulsory.

page 53� of 139�
ISO electronic balloting commenting template/version 2001-10

= 0);
 u32string to_u32string(long long val);
 u32string to_u32string(unsigned long long val);
 u32string to_u32string(long double val);
}

27.2

namespace std {
 ...
 typedef basic_ios<char> ios;
 typedef basic_ios<wchar_t> wios;
 typedef basic_ios<char16_t> u16ios;
 typedef basic_ios<char32_t> u32ios;

 ...
 typedef basic_ifstream<wchar_t> wifstream;
 typedef basic_ofstream<wchar_t> wofstream;
 typedef basic_fstream<wchar_t> wfstream;

 typedef basic_streambuf<char16_t>
u16streambuf;
 typedef basic_istream<char16_t> u16istream;
 typedef basic_ostream<char16_t> u16ostream;
 typedef basic_iostream<char16_t> u16iostream;

 typedef basic_stringbuf<char16_t>
u16stringbuf;
 typedef basic_istringstream<char16_t>
u16istringstream;
 typedef basic_ostringstream<char16_t>
u16ostringstream;
 typedef basic_stringstream<char16_t>
u16stringstream;
 typedef basic_filebuf<char16_t> u16filebuf;

 typedef basic_ifstream<char16_t> u16ifstream;

C++0X, CD 1, NB Comments Date: 21 Feb 2009 Document: SC22 N4411, ISO/IEC CD 14882

1 2 3 4 5 6 7

MB1

Clause No./
Subclause No./

Annex
(e.g. 3.1)

Paragraph/
Figure/Table/

Note
(e.g. Table 1)

Type
of

com-
ment2

Comment (justification for change) by the MB Proposed change by the MB Disposition

1 MB = Member body (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial
NOTE Columns 1, 2, 4, 5 are compulsory.

page 54� of 139�
ISO electronic balloting commenting template/version 2001-10

 typedef basic_ofstream<char16_t> u16ofstream;
 typedef basic_fstream<char16_t> u16fstream;

 typedef basic_streambuf<char32_t>
u32streambuf;
 typedef basic_istream<char32_t> u32istream;
 typedef basic_ostream<char32_t> u32ostream;
 typedef basic_iostream<char32_t> u32iostream;

 typedef basic_stringbuf<char32_t>
u32stringbuf;
 typedef basic_istringstream<char32_t>
u32istringstream;
 typedef basic_ostringstream<char32_t>
u32ostringstream;
 typedef basic_stringstream<char32_t>
u32stringstream;
 typedef basic_filebuf<char32_t> u32filebuf;

 typedef basic_ifstream<char32_t> u32ifstream;
 typedef basic_ofstream<char32_t> u32ofstream;
 typedef basic_fstream<char32_t> u32fstream;

 ...
 template <class state> class fpos;
 typedef fpos<char_traits<char>::state_type>
streampos;
 typedef fpos<char_traits<wchar_t>::state_type>
wstreampos;
 typedef fpos<char_traits<char16_t>::state_type>
u16streampos;
 typedef fpos<char_traits<char32_t>::state_type>
u32streampos;
}

27.6

C++0X, CD 1, NB Comments Date: 21 Feb 2009 Document: SC22 N4411, ISO/IEC CD 14882

1 2 3 4 5 6 7

MB1

Clause No./
Subclause No./

Annex
(e.g. 3.1)

Paragraph/
Figure/Table/

Note
(e.g. Table 1)

Type
of

com-
ment2

Comment (justification for change) by the MB Proposed change by the MB Disposition

1 MB = Member body (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial
NOTE Columns 1, 2, 4, 5 are compulsory.

page 55� of 139�
ISO electronic balloting commenting template/version 2001-10

namespace std {
 template <class charT, class traits =
char_traits<charT> >
 class basic_istream;
 typedef basic_istream<char> istream;
 typedef basic_istream<wchar_t> wistream;
 typedef basic_istream<char16_t> u16istream;
 typedef basic_istream<char32_t> u32istream;

 template <class charT, class traits =
char_traits<charT> >
 class basic_iostream;
 typedef basic_iostream<char> iostream;
 typedef basic_iostream<wchar_t> wiostream;
 typedef basic_iostream<char16_t> u16iostream;
 typedef basic_iostream<char32_t> u32iostream;
}

namespace std {
 template <class charT, class traits =
char_traits<charT> >
 class basic_ostream;
 typedef basic_ostream<char> ostream;
 typedef basic_ostream<wchar_t> wostream;
 typedef basic_ostream<char16_t> u16ostream;
 typedef basic_ostream<char32_t> u32ostream;
}

27.7 paragraph 1

namespace std {
 template <class charT, class traits =
char_traits<charT>,
 class Allocator = allocator<charT> >
 class basic_stringbuf;

 typedef basic_stringbuf<char> stringbuf;

C++0X, CD 1, NB Comments Date: 21 Feb 2009 Document: SC22 N4411, ISO/IEC CD 14882

1 2 3 4 5 6 7

MB1

Clause No./
Subclause No./

Annex
(e.g. 3.1)

Paragraph/
Figure/Table/

Note
(e.g. Table 1)

Type
of

com-
ment2

Comment (justification for change) by the MB Proposed change by the MB Disposition

1 MB = Member body (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial
NOTE Columns 1, 2, 4, 5 are compulsory.

page 56� of 139�
ISO electronic balloting commenting template/version 2001-10

 typedef basic_stringbuf<wchar_t> wstringbuf;
 typedef basic_stringbuf<char16_t> u16stringbuf;
 typedef basic_stringbuf<char32_t> u32stringbuf;

 template <class charT, class traits =
char_traits<charT>,
 class Allocator = allocator<charT> >
 class basic_istringstream;

 typedef basic_istringstream<char>
istringstream;
 typedef basic_istringstream<wchar_t>
wistringstream;
 typedef basic_istringstream<char16_t>
u16istringstream;
 typedef basic_istringstream<char32_t>
u32istringstream;

 template <class charT, class traits =
char_traits<charT>,
 class Allocator = allocator<charT> >
 class basic_ostringstream;

 typedef basic_ostringstream<char>
ostringstream;
 typedef basic_ostringstream<wchar_t>
wostringstream;
 typedef basic_ostringstream<char16_t>
u16ostringstream;
 typedef basic_ostringstream<char32_t>
u32ostringstream;

 template <class charT, class traits =
char_traits<charT>,
 class Allocator = allocator<charT> >
 class basic_stringstream;

C++0X, CD 1, NB Comments Date: 21 Feb 2009 Document: SC22 N4411, ISO/IEC CD 14882

1 2 3 4 5 6 7

MB1

Clause No./
Subclause No./

Annex
(e.g. 3.1)

Paragraph/
Figure/Table/

Note
(e.g. Table 1)

Type
of

com-
ment2

Comment (justification for change) by the MB Proposed change by the MB Disposition

1 MB = Member body (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial
NOTE Columns 1, 2, 4, 5 are compulsory.

page 57� of 139�
ISO electronic balloting commenting template/version 2001-10

 typedef basic_stringstream<char>
stringstream;
 typedef basic_stringstream<wchar_t>
wstringstream;
 typedef basic_stringstream<char16_t>
u16stringstream;
 typedef basic_stringstream<char32_t>
u32stringstream;
}

27.8.1 paragraph 1

namespace std {
 template <class charT, class traits =
char_traits<charT> >
 class basic_filebuf;
 typedef basic_filebuf<char> filebuf;
 typedef basic_filebuf<wchar_t> wfilebuf;
 typedef basic_filebuf<char16_t> u16filebuf;
 typedef basic_filebuf<char32_t> u32filebuf;

 template <class charT, class traits =
char_traits<charT> >
 class basic_ifstream;
 typedef basic_ifstream<char> ifstream;
 typedef basic_ifstream<wchar_t> wifstream;
 typedef basic_ifstream<char16_t> u16ifstream;
 typedef basic_ifstream<char32_t> u32ifstream;

 template <class charT, class traits =
char_traits<charT> >
 class basic_ofstream;
 typedef basic_ofstream<char> ofstream;
 typedef basic_ofstream<wchar_t> wofstream;
 typedef basic_ofstream<char16_t> u16ofstream;
 typedef basic_ofstream<char32_t> u32ofstream;

C++0X, CD 1, NB Comments Date: 21 Feb 2009 Document: SC22 N4411, ISO/IEC CD 14882

1 2 3 4 5 6 7

MB1

Clause No./
Subclause No./

Annex
(e.g. 3.1)

Paragraph/
Figure/Table/

Note
(e.g. Table 1)

Type
of

com-
ment2

Comment (justification for change) by the MB Proposed change by the MB Disposition

1 MB = Member body (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial
NOTE Columns 1, 2, 4, 5 are compulsory.

page 58� of 139�
ISO electronic balloting commenting template/version 2001-10

 template <class charT, class traits =
char_traits<charT> >
 class basic_fstream;
 typedef basic_fstream<char> fstream;
 typedef basic_fstream<wchar_t> wfstream;
 typedef basic_fstream<char16_t> u16fstream;
 typedef basic_fstream<char32_t> u32fstream;
}

28.4

namespace std {
 ...
 typedef basic_regex<char> regex;
 typedef basic_regex<wchar_t> wregex;
 typedef basic_regex<char16_t> u16regex;
 typedef basic_regex<char32_t> u32regex;

 ...
 typedef sub_match<const char*>
csub_match;
 typedef sub_match<const wchar_t*>
wcsub_match;
 typedef sub_match<const char16_t*>
u16csub_match;
 typedef sub_match<const char32_t*>
u16csub_match;
 typedef sub_match<string::const_iterator>
ssub_match;
 typedef sub_match<wstring::const_iterator>
wssub_match;
 typedef sub_match<u16string::const_iterator>
u16ssub_match;
 typedef sub_match<u32string::const_iterator>
u32ssub_match;

 ...

C++0X, CD 1, NB Comments Date: 21 Feb 2009 Document: SC22 N4411, ISO/IEC CD 14882

1 2 3 4 5 6 7

MB1

Clause No./
Subclause No./

Annex
(e.g. 3.1)

Paragraph/
Figure/Table/

Note
(e.g. Table 1)

Type
of

com-
ment2

Comment (justification for change) by the MB Proposed change by the MB Disposition

1 MB = Member body (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial
NOTE Columns 1, 2, 4, 5 are compulsory.

page 59� of 139�
ISO electronic balloting commenting template/version 2001-10

 typedef match_results<const char*>
cmatch;
 typedef match_results<const wchar_t*>
wcmatch;
 typedef match_results<const char16_t*>
u16cmatch;
 typedef match_results<const char32_t*>
u32cmatch;
 typedef match_results<string::const_iterator>
smatch;
 typedef match_results<wstring::const_iterator>
wsmatch;
 typedef match_results<u16string::const_iterator>
u16smatch;
 typedef match_results<u32string::const_iterator>
u32smatch;

 ...
 typedef regex_iterator<const char*>
cregex_iterator;
 typedef regex_iterator<const wchar_t*>
wcregex_iterator;
 typedef regex_iterator<const cha16r_t*>
u16cregex_iterator;
 typedef regex_iterator<const char32_t*>
u32cregex_iterator;
 typedef regex_iterator<string::const_iterator>
sregex_iterator;
 typedef regex_iterator<wstring::const_iterator>
wsregex_iterator;
 typedef regex_iterator<u16string::const_iterator>
u16sregex_iterator;
 typedef regex_iterator<u32string::const_iterator>
u32sregex_iterator;

 ...
 typedef regex_token_iterator<const char*>

C++0X, CD 1, NB Comments Date: 21 Feb 2009 Document: SC22 N4411, ISO/IEC CD 14882

1 2 3 4 5 6 7

MB1

Clause No./
Subclause No./

Annex
(e.g. 3.1)

Paragraph/
Figure/Table/

Note
(e.g. Table 1)

Type
of

com-
ment2

Comment (justification for change) by the MB Proposed change by the MB Disposition

1 MB = Member body (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial
NOTE Columns 1, 2, 4, 5 are compulsory.

page 60� of 139�
ISO electronic balloting commenting template/version 2001-10

cregex_token_iterator;
 typedef regex_token_iterator<const wchar_t*>
wcregex_token_iterator;
 typedef regex_token_iterator<const char16_t*>
u16cregex_token_iterator;
 typedef regex_token_iterator<const char32_t*>
u32cregex_token_iterator;
 typedef
regex_token_iterator<string::const_iterator>
sregex_token_iterator;
 typedef
regex_token_iterator<wstring::const_iterator>
wsregex_token_iterator;
 typedef
regex_token_iterator<u16string::const_iterator>
u16sregex_token_iterator;
 typedef
regex_token_iterator<u32string::const_iterator>
u32sregex_token_iterator;
}

UK
 144

17.1 2 Ed List of contents of library should be extened to cover new
clauses

Add "regular expressions, atomic operations and
threads"

UK
 145

17.1 6 Ed Summary of numeric facilities should mention random
numbers

Add random number framework to the list of
library facilities

UK
 146

17.1 Ed Add a summary paragraph for regular expressions Add a summary paragraph for regular expressions

UK
 147

17.1 Ed Add a summary paragraph for threads Add a summary paragraph for threads

UK
 148

17.2 Table 12 Ed Table 12 is mentioned in and relates to section 17.2, but
has been pushed down to appear directly after the title of
section 17.3 which is rather unfortunate/confusing for the
reader.

Make sure tables are rendered in the section to
which they relate.

UK
 149

17.3 Ed For consistency with narrow-oriented and wide-oriented
streams, we should add terms for streams of Unicode

Define Utf16-oriented stream classes and Uft32-
oriented stream classes for streams of

C++0X, CD 1, NB Comments Date: 21 Feb 2009 Document: SC22 N4411, ISO/IEC CD 14882

1 2 3 4 5 6 7

MB1

Clause No./
Subclause No./

Annex
(e.g. 3.1)

Paragraph/
Figure/Table/

Note
(e.g. Table 1)

Type
of

com-
ment2

Comment (justification for change) by the MB Proposed change by the MB Disposition

1 MB = Member body (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial
NOTE Columns 1, 2, 4, 5 are compulsory.

page 61� of 139�
ISO electronic balloting commenting template/version 2001-10

character sequences

char16_t/char32_t values.

UK
 150

17.3 Ed The addition of move semantics to the language means
that many library APIs leave an object in a safely-
destructible state, where no other operations can safely
be performed unless it is assigned a new value. Library
presentation would be simplified and made more precise
if we introduce a term for this state. By analogy with
singular iterators suggest the term 'singular object' or 'the
object is in a singular state'.

Define 'singular state' such that an object with a
singular state can only be assigned to or safely
destroyed. Assiging a new value typically removes
the singular state. Note that objects with a singular
state may not be safely copied, so you cannot put
an object into a singular state by copying another
object in a singular state. Use this new term in the
postcondition of all library APIs that move from an
rvalue reference. It might also be used to simplify
the definition of singular iterator to an iterator
value with a singular state.

UK
 151

17.3.1 Ed Missing crossreference to 17.3.17
[defns.repositional.stream]

Add cross-reference in the existing empty
brackets

UK
 152

17.3.12 Te Object state is using a definition of object (instance of a
class) from outside the standard, rather than the 'region
of storage' definiton in 1.8p1

Clarify terms and usage

UK
 153

17.3.17 Te If a repositional stream can only seek to a position
previously encountered, then an arbitrary-positional-
stream cannot satisfy this definition, as cross-referenced
in 17.3.17

Strike the word 'only'. A note might be added to
reinforce the intent

UK
 154

17.3.20 Ed Missing definition of a stable partition algorithm Add definition from 25.2.12p7

UK
 155

17.3.3 Ed Add clause 28 to list that use this definition of character Add clause 28 to list that use this definition of
character

UK
 156

17.3.4 Ed Add regular expressions to set of templates using
character container type

Add regular expressions to set of templates using
character container type

UK
 157

17.5.2.2 3 Ed Add concepts to the ordered list of presentation

Add concepts into the sequence

C++0X, CD 1, NB Comments Date: 21 Feb 2009 Document: SC22 N4411, ISO/IEC CD 14882

1 2 3 4 5 6 7

MB1

Clause No./
Subclause No./

Annex
(e.g. 3.1)

Paragraph/
Figure/Table/

Note
(e.g. Table 1)

Type
of

com-
ment2

Comment (justification for change) by the MB Proposed change by the MB Disposition

1 MB = Member body (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial
NOTE Columns 1, 2, 4, 5 are compulsory.

page 62� of 139�
ISO electronic balloting commenting template/version 2001-10

UK
 158

17.5.2.2 3 Ed templates are neither classes nor functions Replace 'classes' and 'functions' with 'classes and
class templates' and 'functions and function
templates'

UK
 159

17.5.2.4 Footnote
152

Ed This informative footnote was relevant in 1998, not 2008.
The term 'existing vendors' may imply something different
now

Strike the footnote, or replace 'existing' with
'original' or similar

UK
 160

17.5.2.4 3 Ed requires is now a keyword with a specific meaning related
to concepts, and its use in library specifcation may be
confusing. Generally the Requires clause is used to make
requirements on the caller, not the library, so typically
providing runtime pre-conditions. Suggest a new name to
refflect that. Note that Clause 30 already seems to be
written to this convention.

Replace 'Requires' with 'Preconditions'

UK
 161

17.5.2.4 4 Ed This paragraph is redundant as the definition of the term
'handler function' is already provided in 17.3. Are we in
danger of proving two definitions of the same terms?
Which is the 'controlling' definition?

Strike 17.5.2.4p4

UK
 162

17.5.2.4 3 Ed Clause 30 makes use of a 'Synchronization' semantic
element, that frequently appears either between Effects:
and Postconditions:, or between Returns: and Throws:

Add 'Synchronization' to the list either between
Effects: and Postconditions:, or between Returns:
and Throws:.

UK
 163

17.5.2.4 3 Te Many functions are defined as "Effects: Equivalent to
a...", which seems to also define the preconditions,
effects, etc. But this is not made clear.

Introduce an explicit "Equivalent to", which defines
all of the properties of the function.

UK
 164

17.5.3.2.1 1 Ed This phrasing predates concepts. While this kind of
description is still used, the examples provided are now
all concepts, and should be replaced with appropriate
examples

Use better names for the examples. Ideally totally
replace the need by constraining all templates in
library, so that real concepts are all that is needed.
Note if retained that CopyConstructible is mis-
spelled.

UK
 165

17.5.3.2.2,
17.5.3.2.3

 Te constraints on bitmask and enumation types were
supposed to be tightened up as part of the motivation for

Adopt wording in line with the motivation
described in N2235

C++0X, CD 1, NB Comments Date: 21 Feb 2009 Document: SC22 N4411, ISO/IEC CD 14882

1 2 3 4 5 6 7

MB1

Clause No./
Subclause No./

Annex
(e.g. 3.1)

Paragraph/
Figure/Table/

Note
(e.g. Table 1)

Type
of

com-
ment2

Comment (justification for change) by the MB Proposed change by the MB Disposition

1 MB = Member body (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial
NOTE Columns 1, 2, 4, 5 are compulsory.

page 63� of 139�
ISO electronic balloting commenting template/version 2001-10

the constexpr feature - see paper n2235 for deails

UK
 166

17.5.3.2.4.1,
17.5.3.3

 Ed List of library clauses should go up to 30, not 27 Replace initial refernce to ch27 with ch30

UK
 167

17.5.3.4
Private
members

 Ed Comment marker in wrong place. Change: // streambuf* sb; exposition only to
streambuf* sb; // exposition only To reflect actual
usage.

UK
 168

17.6.2.2 2 Te We should make it clear (either by note or normatively)
that namespace std may contain inline namespaces, and
that entities specified to be defined in std may in fact be
defined in one of these inline namespaces. (If we're going
to use them for versioning, eg when TR2 comes along,
we're going to need that.)

Replace "namespace std or namespaces nested
within namespace std" with "namespace std or
namespaces nested within namespace std or
inline namespaces nested directly or indirectly
within namespace std"

UK
 169

17.6.2.2 Te This phrasing contradicts later freedom to implement the
C standard library portions in the global namespace as
well as std. (17.6.2.3p4)

Resolve conflict in either place

UK
 170

17.6.2.3 Te One of goals of C++0x is to make language easier to
teach and for 'incidental' programmers. The fine-grained
headers of the C++ library are valuable in large scale
systems for managing dependencies and optimising build
times, but overcomplicated for simple development and
tutorials. Add additional headers to support the whole
library through a single include statement.

Add a new header <std> that has the effect of
including everything in tables 13 and 14, except
<iosfwd> and <cassert>. Add an additional header
<fwd> that adds all declarations from <std> but no
definitions.

UK
 171

17.6.2.4 3 Ed Does freestanding implementation require a full
implementation of all listed headers? The reference to
abort, at_exit and exit is confusing. Is a conforming
implementation allow to deliver partial forms of these
headers? If so which ones? Are empty versions of
everything but <cstdlib> conforming?

Either strike the references to abort, at_exit and
exit, or clarify which headers only require partial
support.

UK
 172

17.6.2.4 3 Te No reference to new functions quick_exit and
at_quick_exit

Add reference to quick_exit and at_quick_exit

C++0X, CD 1, NB Comments Date: 21 Feb 2009 Document: SC22 N4411, ISO/IEC CD 14882

1 2 3 4 5 6 7

MB1

Clause No./
Subclause No./

Annex
(e.g. 3.1)

Paragraph/
Figure/Table/

Note
(e.g. Table 1)

Type
of

com-
ment2

Comment (justification for change) by the MB Proposed change by the MB Disposition

1 MB = Member body (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial
NOTE Columns 1, 2, 4, 5 are compulsory.

page 64� of 139�
ISO electronic balloting commenting template/version 2001-10

UK
 173

17.6.2.4 table 15 Te <initializer_list> is missing from headers required in
freestanding implementations.

Add 18.8, initializer lists, <initializer_list>, to the
end of the table.

JP
23

17.6.2.4 2nd
paragraph,
Table 15

te There is a freestanding implementation including
<type_traits>, <array>, <ratio>, lately added to Table 13,
C++ library headers.
Programmers think them useful and hope that these
headers are also added to Table 15, C++ headers for
freestanding implementations, that shows the set of
headers which a freestanding implementation shall
include at least.

Add <type_traits>, <array>, <ration> to Table 15.

UK
 174

17.6.3.2 3 Ed The phrasing is mildly ambiguous when using the word 'it'
to refer back to the header - an unfotunate reading might
confuse it with the translate unit, which is the subject of
the surrounding clause.

Replace 'the first reference to any of the entities
declared in that header by the translation unit' with
'the first reference to any of the entities that
header declares in the translation unit'

UK
 175

17.6.4.2.1 2 Te Local types can now be used to instantiate templates, but
don't have external linkage

Remove the reference to external linkage

UK
 176

17.6.4.3.3 Footnote
175

Ed Reference to namespace ::std should be 17.6.4.2 Change referfence from 17.6.4.3 to 17.6.4.2

UK
 177

17.6.4.3.4 3 Ed Sentence is redundant as double underscores are
reserved in all contexts by 17.6.4.3.3

Strike the sentence

UK
 178

17.6.4.8 2 Ed The last sentence of the third bullet "Operations on such
types can report a failure by throwing an exception unless
otherwise specified" is redundant as behaviour is already
undefined.

Strike the sentence

UK
 179

17.6.4.8 2 Te According to the 4th bullet there is a problem if "if any
replacement function or handler function or destructor
operation throws an exception". There should be no
problem throwing exceptions so long as they are caught
within the function.

Replace the word 'throws' with 'propogates'

C++0X, CD 1, NB Comments Date: 21 Feb 2009 Document: SC22 N4411, ISO/IEC CD 14882

1 2 3 4 5 6 7

MB1

Clause No./
Subclause No./

Annex
(e.g. 3.1)

Paragraph/
Figure/Table/

Note
(e.g. Table 1)

Type
of

com-
ment2

Comment (justification for change) by the MB Proposed change by the MB Disposition

1 MB = Member body (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial
NOTE Columns 1, 2, 4, 5 are compulsory.

page 65� of 139�
ISO electronic balloting commenting template/version 2001-10

JP
22

17.6.5.7 4th
paragraph,
1st line

ed The statement below describes relation among two or
more threads using words “between threads”:
[Note: This means, for example, that implementations
can’t use a static object for internal purposes without
synchronization because it could cause a data race even
in programs that do not explicitly share objects between
threads. —end note]
In such case, “among” is preferred instead of “between”.

Change "between threads" to "among threads".
There are same cases in 17.6.1 paragraph 2,
17.6.5.7 paragraph 6, 30.1 paragraph 1, 30.3.1
paragraph 1 also.

UK
 180

17.6.5.10 1, 4 Te It should not be possible to strengthen the exception
specification for virtual functions as this could break user
code. Note this is not a problem in practice as there are
no virtual functions with exception specifications in the
current library, other than empty throw specifications
which it is not possible to strengthen.

Add restriction that exception specification of
virtual functions cannot be tightened.

UK
 181

17.6.5.10 Footnote
186

Te This footnote is wrong. C library functions do not have
any exception specification, but might be treated as if
they had an empty throw specification

Clarify that this note does not mean the functions
are genuinely declared with the specification, but
are treated as-if.

UK
 182

17.6.5.10 Footnote
188

Te It is very helpful to assume all exceptions thrown by the
standard library derive from std::exception. The
'encouragement' of this note should be made normative.

Make this footnote normative

UK
 184

18 -> 30 Ed The new alias-declaration syntax is generally easier to
read than a typedef declaration. This is especially true for
complex types like function pointers.

Replace all typedef declarations in the standard
library with alias-declarations, except in the
standard C library.

JP
24

18 2nd
paragraph,
Table 16

ed Subclauses are listed in Table 16 as:
"18.6 Type identification …"
"18.8 Initializer lists …"
"18.7 Exception handling …".

Sort them in the increasing order
"18.6 Type identification …"
"18.7 Exception handling …".
"18.8 Initializer lists …"

JP
25

18.1 6th
paragraph ,

ed max_align_t is described in 18.1, so add 3.11 Alignment
as the reference.

Add "3.11, Alignment" to SEE ALSO.

C++0X, CD 1, NB Comments Date: 21 Feb 2009 Document: SC22 N4411, ISO/IEC CD 14882

1 2 3 4 5 6 7

MB1

Clause No./
Subclause No./

Annex
(e.g. 3.1)

Paragraph/
Figure/Table/

Note
(e.g. Table 1)

Type
of

com-
ment2

Comment (justification for change) by the MB Proposed change by the MB Disposition

1 MB = Member body (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial
NOTE Columns 1, 2, 4, 5 are compulsory.

page 66� of 139�
ISO electronic balloting commenting template/version 2001-10

last line,
SEE ALSO

FR
32

18.2.1
[Numeric
limits]

 te The definition of numeric_limits<> as requiring a regular
type is both conceptually wrong and operationally
illogical. As we pointed before, this mistake needs to be
corrected. For example, the template can be left
unconstrained. In fact this reflects a much more general
problem with concept_maps/axioms and their
interpretations. It appears that the current text heavily
leans toward experimental academic type theory.

We suggest that a more pragmatic approach, in
the spirit of C and C++, be taken so that calls to
constrained function templates are interpreted as
assertions on *values*, not necessarily semantics
assertions on the carrier type.

DE-
16

18.2.1 te DE-16 The class template numeric_limits should not
specify the Regular concept requirement for its template
parameter, because it contains functions returning NaN
values for floating-point types; these values violate the
semantics of EqualityComparable. See also library issue
902 in WG21 document N2794 "C++ Standard Library
Active Issues List (Revision R60)", available at
http://www.open-
std.org/jtc1/sc22/wg21/docs/papers/2008/n2794.html .

Specify a concept requirement with fewer
constraints as appropriate, for example
SemiRegular.

JP
26

18.2.1.1 te numeric_limits does not use concept. Correct as follows.

 template<class T> class numeric_limits<const T>;
 template<class T> class numeric_limits<volatile
T>;
 template<class T> class numeric_limits<const
volatile T>;

should be

 template<Regular T> class numeric_limits<const
T>;
 template<Regular T> class
numeric_limits<volatile T>;

C++0X, CD 1, NB Comments Date: 21 Feb 2009 Document: SC22 N4411, ISO/IEC CD 14882

1 2 3 4 5 6 7

MB1

Clause No./
Subclause No./

Annex
(e.g. 3.1)

Paragraph/
Figure/Table/

Note
(e.g. Table 1)

Type
of

com-
ment2

Comment (justification for change) by the MB Proposed change by the MB Disposition

1 MB = Member body (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial
NOTE Columns 1, 2, 4, 5 are compulsory.

page 67� of 139�
ISO electronic balloting commenting template/version 2001-10

 template<Regular T> class numeric_limits<const
volatile T>;

DE-
17

18.2.6 te DE-17 The class type_index should be removed; it
provides no additional functionality beyond providing
appropriate concept maps.

Specify concept maps for "const type_info *" as
required by the ordered and unordered containers
and remove the class type_index.

UK
 185

18.3.1 2 Ed There is no header <stdint>, it should either be <stdint.h>
or <cstdint>

Replace <stdint> with <cstdint>

DE-
18

18.4 te DE-18 The proposed C++ standard makes a
considerable number of existing programs that have well-
defined behavior according to ISO/IEC 14882:2003 have
undefined behavior without a diagnostic hint to the
programmer at all. This applies to the presence of
threads and to pointer safety (the latter was introduced to
support garbage collection). In order to avoid requiring a
full code review for user code, facilities should be present
that allow the compile-time detection of the advanced
features of the proposed C++ standard. It is expected that
C++ implementations will provide a means (for example,
a command-line switch) to turn off either or both of
threads and garbage collection support, turning
potentially undefined programs into well-defined ones.
Note: This issue is contributing significantly to Germany's
overall “no” vote.

Consider applying the changes proposed in WG21
document N2693 "Requirements on programs and
backwards compatibility", available at
http://www.open-
std.org/jtc1/sc22/wg21/docs/papers/2008/n2693.ht
ml .

UK
 186

18.4 Footnote
221

Ed What is the purpose of this comment? The standard
stream objects (cin, cerr etc.) have a peculiar lifetime that
extends beyond the program. They may never be
destroyed so will not be responsible for flushing buffers at
the stated time.

Remove the footnote

UK
 187

18.4 9 Te The term "thread safe" is not defined nor used in this
context anywhere else in the standard.

Clarify the intended meaing of "thread safe"

C++0X, CD 1, NB Comments Date: 21 Feb 2009 Document: SC22 N4411, ISO/IEC CD 14882

1 2 3 4 5 6 7

MB1

Clause No./
Subclause No./

Annex
(e.g. 3.1)

Paragraph/
Figure/Table/

Note
(e.g. Table 1)

Type
of

com-
ment2

Comment (justification for change) by the MB Proposed change by the MB Disposition

1 MB = Member body (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial
NOTE Columns 1, 2, 4, 5 are compulsory.

page 68� of 139�
ISO electronic balloting commenting template/version 2001-10

UK
 188

18.4 12 Te The function _Exit does not appear to be defined in this
standard. Should it be added to the table of functions
included-by-reference to the C standard?

Depends on where _Exit comes from

UK
 189

18.4, 18.7 Te The addition of the [[noreturn]] attribute to the language
will be an important aid for static analysis tools.

The following functions should be declared in C++
with the [[noreturn]] attribute: abort exit quick_exit
terminate unexpected rethrow_exception
throw_with_nested

JP
27

18.4, 18.9,
18.7.2.2,
18.7.3.1

 te There are Standard library functions that never return to
the caller. They are explained so in the Standard but not
declared explicitly.

Consider to add the attribute [[noreturn]] to such
functions,

 15.5.2 unexpected
 18.4: abort(), exit(), quick_exit,
 18.7.2.2: unexpected_handler,
 18.7.3.1: terminate_handler,
 18.7.6 rethrow_nested
 18.7.6 throw_with_nested
 18.9: longjmp.

UK
 190

18.5.1 various Te It is not entirely clear how the current specification acts in
the presence of a garbage collected implementation.

All deallocation functions taking a pointer
parameter should have a Precondition : ptr is a
safely-derived pointer value.

UK
 191

18.5.1.1 4 Ed According to the second bullet, behaviour becomes
undefined (for lack of a specification) if the user has not
yet called set_new_handler.

Rephrase the second bullet in terms of a new
handler being installed, and update any definition
of handler function necessary to be sure the term
'installed' is defined.

UK
 192

18.5.1.2 Te The declared signature is not compatible with the current
requirement to throw std::length_error. It is too late to
weaken the exception specification, so the only other
change is to preserve new (improved) behaviour is to
throw std::bad_alloc, or something derived from
std::bad_alloc.

Fix 5.3.4p7 by required std::bad_alloc rather than
std::length_error

C++0X, CD 1, NB Comments Date: 21 Feb 2009 Document: SC22 N4411, ISO/IEC CD 14882

1 2 3 4 5 6 7

MB1

Clause No./
Subclause No./

Annex
(e.g. 3.1)

Paragraph/
Figure/Table/

Note
(e.g. Table 1)

Type
of

com-
ment2

Comment (justification for change) by the MB Proposed change by the MB Disposition

1 MB = Member body (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial
NOTE Columns 1, 2, 4, 5 are compulsory.

page 69� of 139�
ISO electronic balloting commenting template/version 2001-10

UK
 193

18.5.2.2 2 Te quick_exit has been added as a new valid way to
terminate a program in a well defined way

Change 3rd bullet: call either abort(), exit() or
quick_exit();

UK
 194

18.6 Te The inclusion of type_index and hash<type_index> in
<typeinfo> brings dependencies into <typeinfo> which are
inconsistent with the definition of freestanding C++ in
17.6.2.4.

Move type_index and hash<type_index> out of
<typeinfo> and into a new header, <typeindex>.

JP
28

18.6, 18.7,
19.1

 te Errors reported by Exception classes are of types char or
std::string only. For example, std::exception is declared
with char, std::string types, therefore types
wchar_t/wstring, char16_t/u16string, or
char32_t/u32string can not be used.

Consider other types.

JP
29

18.7.6 te throw_with_nested does not use concept. Correct as follows.
template<class T> void throw_with_nested(T&& t);
// [[noreturn]]

should be

template<CopyConstructible T> void
throw_with_nested(T&& t); // [[noreturn]]

JP
30

18.7.6 te To handle nested exceptions strictly, error information of
tree structure will be required though, the
nested_exception does not support tree structure. It is
insufficient as error handling.

Consider nested_exception to support tree
structure.

JP
31

18.7.6 te It is difficult to understand in which case
nested_exception is applied.

Consider to add a sample program which rethrows
exception.

UK
 195

18.8 Te The class definition of std::initializer_list contains
concept-maps to Range which should be out of the class,
and in <iterator_concepts> instead. Otherwise, it's not
possible to use initializer_lists in a freestanding C++

Delete the two concept maps from
std::initializer_list.

C++0X, CD 1, NB Comments Date: 21 Feb 2009 Document: SC22 N4411, ISO/IEC CD 14882

1 2 3 4 5 6 7

MB1

Clause No./
Subclause No./

Annex
(e.g. 3.1)

Paragraph/
Figure/Table/

Note
(e.g. Table 1)

Type
of

com-
ment2

Comment (justification for change) by the MB Proposed change by the MB Disposition

1 MB = Member body (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial
NOTE Columns 1, 2, 4, 5 are compulsory.

page 70� of 139�
ISO electronic balloting commenting template/version 2001-10

implementation.

UK
 196

18.8.3 Te Concept maps for initializer_list to Range should not be in
language support headers, but instead in iterator
concepts.

Remove section 18.8.3 and put it in 24.1.8.1
instead, so that the concept_maps from
initializer_list to Range are specified under Range
instead of under initializer lists; also, so that
they're implemented in <iterator_concepts>
instead of <initializer_list>.

UK
 197

19 Te All the exception classes in this clause take a std::string
argument by const reference. They should all be
overloaded to accept std::string by rvalue rerefence for an
efficient move as well.

Provide a constructor for every exception class in
clause 19 accepting a std::string by rvalue
reference, with the semantics that the passed
string may be moved.

JP
32

19.1 te Messages returned by the member function what() of
standard exception classes seem difficult to judge.
For example, following messages are returned by what()
of std::bad_alloc of existing implementations:

Compiler: Message returned by what()

Borland C++ 5.6.4: no named exception thrown
Visual C++ 8.0: bad allocation
Code Warrior 8.0: exception
g++ 3.4.4: St9exception

It is difficult to recognize what exception was thrown
when using those compilers except Visual C++.

Consider to add footnote that recommends what()
returns message easy to recognize what
exception was thrown.

US
64

19.3 1 Ge “ See also: ISO C 7.1.4, 7.2, Amendment 1 4.3.” It is
unclear why this cross reference is here. Amendment 1
was to C89, not C99.

Delete this cross reference. If necessary, expand
the main text to include the relevant referenced
text

US
65

20 te Scoped allocators and allocator propagation traits add a
small amount of utility at the cost of a great deal of

Sketch of proposed resolution: Eliminate scoped
allocators, replace allocator propagation traits with

C++0X, CD 1, NB Comments Date: 21 Feb 2009 Document: SC22 N4411, ISO/IEC CD 14882

1 2 3 4 5 6 7

MB1

Clause No./
Subclause No./

Annex
(e.g. 3.1)

Paragraph/
Figure/Table/

Note
(e.g. Table 1)

Type
of

com-
ment2

Comment (justification for change) by the MB Proposed change by the MB Disposition

1 MB = Member body (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial
NOTE Columns 1, 2, 4, 5 are compulsory.

page 71� of 139�
ISO electronic balloting commenting template/version 2001-10

machinery. The machinery is user visible, and it extends
to library components that don't have any obvious
connection to allocators, including basic concepts and
simple components like pair and tuple.

a simple uniform rule (e.g. always propagate on
copy and move), remove all mention of allocators
from components that don't explicitly allocate
memory (e.g. pair), and adjust container interfaces
to reflect this simplification.
Components that I propose eliminating include
HasAllocatorType?, is_scoped_allocator,
allocator_propagation_map,
scoped_allocator_adaptor, and
ConstructibleAsElement?.

UK
 198

20 Ed The organization of clause 20 could be improved to better
group related items, making the standard easier to
navigate.

20.6.7, 20.6.8, 20.6.9 and 20.6.10 should be
grouped under a section called "operator
wrappers" or similar. The goal of all 4 subsections
combined is to provide a functor for every operator
in the language. 20.6.17 class template hash
should numerically appear immediately after the
operator wrappers, as they are functors that are
used in similar ways 20.6.11, 20.6.12, 20.6.13,
20.6.14, 20.6.15 are strongly related to 20.6.3,
and to an extent 20.6.2. These should all come
under a subheading of "function adapters" 20.7.1,
20.7.3, 20.7.4, 20.7.5, 20.7.6, 20.7.7 and 20.7.10
should all be grouped as subclauses under [20.7.2
Allocators] [20.7.12 unique_ptr] should be a sub-
section of [20.7.13 smart pointers] [20.7.13 smart
pointers] is important enough to have a high level
bullet after [20.7 memory], suggest renumbering
as [20.8 smart pointers] [20.7.13.7 Pointer safety]
is nothing to do with smart pointers and should
become its own subclause [20.7.14 Pointer safety]
[20.9 date and time functions] should be moved
under [20.8 time utilities] and retitled [20.8.6 C
Library] (as per memory management/C Library)
[20.6.18 reference_closure] is fundamentally a
language support feature and should move to
clause 18, see separate comment [20.6.5

C++0X, CD 1, NB Comments Date: 21 Feb 2009 Document: SC22 N4411, ISO/IEC CD 14882

1 2 3 4 5 6 7

MB1

Clause No./
Subclause No./

Annex
(e.g. 3.1)

Paragraph/
Figure/Table/

Note
(e.g. Table 1)

Type
of

com-
ment2

Comment (justification for change) by the MB Proposed change by the MB Disposition

1 MB = Member body (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial
NOTE Columns 1, 2, 4, 5 are compulsory.

page 72� of 139�
ISO electronic balloting commenting template/version 2001-10

reference_wrapper] should be simplified and
moved into [2.2 utility components], see separate
comment [20.6.4 result_of] should be reorganised
as a type trait - see separate comment Tuples and
pairs are closely related so merge tuple and pair
into the same subclause - see more general
comment on this

UK
 199

20.1.1, 20.1.2 2 Te The requirement that programs do not supply
concept_maps should probably be users do not supply
their own concept_map specializations. THe program will
almost certainly supply concept_maps - the standard
itself supplies a specialization for RvalueOf? references.
Note that the term _program_ is defined in 3.5p1 and
makes no account of the standard library being treated
differently to user written code.

Replace the term 'program' with 'user'.

UK
 200

20.1.4 Te All standard library use expects Predicates to be
CopyConstructible, and this should be recognised easily
without reatedly stating on every use-case.

Either require CopyConstructible<F> as part of
Predicate, or create a refined concept,
StdPredicate, used throughout the library that
requires CopyConstructible as well as Callable.
Consider making (Std)Predicate SemiRegular.

UK
 201

20.1.5 Te The Consistency axiom for LessThanComparable will not
compile.

Add a requires clause to the Consistency axiomL
requires HasLessEquals<T> &&
HasGreaterEquals<T>, or split the Consistency
axiom into two so that 'basic' consistency can be
asserted regardless of the <=/>= requirement.

JP
33

20.1.5 te LessThanComparable and EqualityComparable don't
correspond to NaN.

Apply concept_map to these concepts at
FloatingPointType

US
66

20.1.10 te Application of the "Regular" concept to floating-point
types appears to be controversial (see long discussion on
std-lib reflector).

State that the “Regular” concept does not apply to
floating-point types.

C++0X, CD 1, NB Comments Date: 21 Feb 2009 Document: SC22 N4411, ISO/IEC CD 14882

1 2 3 4 5 6 7

MB1

Clause No./
Subclause No./

Annex
(e.g. 3.1)

Paragraph/
Figure/Table/

Note
(e.g. Table 1)

Type
of

com-
ment2

Comment (justification for change) by the MB Proposed change by the MB Disposition

1 MB = Member body (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial
NOTE Columns 1, 2, 4, 5 are compulsory.

page 73� of 139�
ISO electronic balloting commenting template/version 2001-10

JP
34

20.2 1st
paragraph,
4th line

ed Though N2672 pointed at adding
"#include<initializer_list>", it isn't reflected.

add followings
#include <initializer_list> // for concept_map

US
67

20.2.1 ¶ 5 first sent. ed Some connective words are missing. Insert “corresponding to” before “an lvalue
reference type.”

JP
35

20.2.3 6th
paragraph,
1st line

ed Typo,
"stdforward" should be "std::forward"

Correct typo.

UK
 202

20.2.4 Ed The references to pair in the tuple-like access to pair
functions qualify pair with std::pair even though they are
in a namespace std block.

Remove the std:: qualification from these
references to pair.

US
68

20.2.12 IntegralLike te/ed The code defining the context is syntactically incorrect. Insert a comma in two places: at the end of the
third line of refinements, and at the end of the
fourth line of refinements.

UK
 203

20.3.2 1-4 Ed The ratio_xyz types have a misplaced '}'. For example:
template <class R1, class R2> struct ratio_add { typedef
see below} type; ;

Move the '}' to after the typedef: template <class
R1, class R2> struct ratio_add { typedef see below
type; };

JP
36

20.4.2.1 19th
paragraph,
6th line

ed Typo.
"it it" should be "it is"

Correct typo.

UK
 204

20.5 Table 41 Te It is not possible to create a variant union based on a
parameter pack expansion, e.g. to implement a classic
discriminated union template.

Restore aligned_union template that was removed
by LWG issue 856.

US
69

20.5 ed This section, dealing with tuple<>, should be in the same
section as the similar utility pair<>.

Restructure Clause 20 so as to bring these similar
components together.

UK
 205

20.5.3 Te integral_constant objects should be usable in integral-
constant-expressions. The addition to the language of
literal types and the enhanced rules for constant
expressions make this possible.

Add a constexpr conversion operator to class
tempalate integral_constant: constexpr operator
value_type() { return value; }

C++0X, CD 1, NB Comments Date: 21 Feb 2009 Document: SC22 N4411, ISO/IEC CD 14882

1 2 3 4 5 6 7

MB1

Clause No./
Subclause No./

Annex
(e.g. 3.1)

Paragraph/
Figure/Table/

Note
(e.g. Table 1)

Type
of

com-
ment2

Comment (justification for change) by the MB Proposed change by the MB Disposition

1 MB = Member body (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial
NOTE Columns 1, 2, 4, 5 are compulsory.

page 74� of 139�
ISO electronic balloting commenting template/version 2001-10

UK
 206

20.5.5 para 4 Te Currently the std says: "In order to instantiate the
template is_convertible<From, To>, the following code
shall be well formed:" But the code shown is the
requirement for the result of is_convertible to be a
true_type, not a precondition on whether the template can
be instantiated.

Change: "In order to instantiate the template
is_convertible<From, To>, the following code shall
be well formed:" To: "The template
is_convertible<From, To> inherits either directly or
indirectly from true_type if the following code is
well formed:"

UK
 207

20.5.6.1 Table 36 Ed suffix "::type" is missing from the some of the examples. Change: Example:remove_const<const volatile
int>::type evaluates to volatile int, whereas
remove_const<const int*> is const int*. —end
example To: Example:remove_const<const
volatile int>::type evaluates to volatile int, whereas
remove_const<const int*>::type is const int*. —
end example And change:
Example:remove_volatile<const volatile int>::type
evaluates to const int, whereas
remove_volatile<volatile int*> is volatile int*. —end
example To: Example:remove_volatile<const
volatile int>::type evaluates to const int, whereas
remove_volatile<volatile int*>::type is volatile int*.
—end example And change:
Example:remove_cv<const volatile int>::type
evaluates to int, whereas remove_cv<const
volatile int*> is const volatile int*. —end example
To: Example:remove_cv<const volatile int>::type
evaluates to int, whereas remove_cv<const
volatile int*>::type is const volatile int*. —end
example

JP
37

20.5.7 Table 41 ed Typo.
There isn't a period at the end of enable_if's

comments.

If B is true, the member typedef type shall equal T;
otherwise, there shall be no member typedef type

Add ”.”

C++0X, CD 1, NB Comments Date: 21 Feb 2009 Document: SC22 N4411, ISO/IEC CD 14882

1 2 3 4 5 6 7

MB1

Clause No./
Subclause No./

Annex
(e.g. 3.1)

Paragraph/
Figure/Table/

Note
(e.g. Table 1)

Type
of

com-
ment2

Comment (justification for change) by the MB Proposed change by the MB Disposition

1 MB = Member body (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial
NOTE Columns 1, 2, 4, 5 are compulsory.

page 75� of 139�
ISO electronic balloting commenting template/version 2001-10

should be

If B is true, the member typedef type shall equal T;
otherwise, there shall be no member typedef type.

US
70

20.6 te Specifications now expressed via narrative text are more
accurately and clearly expressed via executable code.

Wherever concepts are available that directly
match this section’s type traits, express the traits
in terms of the concepts instead of via narrative
text. Where the type traits do not quite match the
corresponding concepts, bring the two into
alignment so as to avoid two nearly-identical
notions.

US
71

20.6.7 Table 51,
last row,
column 3

ed The grammar is incorrect. Change “conversion are” to “conversion is”.

JP
38

20.6.12.1.3 te add the move requirement for bind's return type.

For example, assume following th1 and th2,

void f(vector<int> v) { }

vector<int> v{ ... };
thread th1([v]{ f(v); });
thread th2(bind(f, v));

When function object are set to thread, v is moved to
th1's lambda expression in a Move Constructor of lambda
expression becuase th1's lambda expression has a Move
Constructor. But bind of th2's return type doesn't have the
requirement of Move, so it may not moved but copied.
Add the requirement of move to get rid of this useless
copy.
And also, add the MoveConstructible as well as
CopyConstructible.

Add the following requirements.
"it has a public move constructor that performs a
member-wise move."
Add the MoveConstructible.

C++0X, CD 1, NB Comments Date: 21 Feb 2009 Document: SC22 N4411, ISO/IEC CD 14882

1 2 3 4 5 6 7

MB1

Clause No./
Subclause No./

Annex
(e.g. 3.1)

Paragraph/
Figure/Table/

Note
(e.g. Table 1)

Type
of

com-
ment2

Comment (justification for change) by the MB Proposed change by the MB Disposition

1 MB = Member body (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial
NOTE Columns 1, 2, 4, 5 are compulsory.

page 76� of 139�
ISO electronic balloting commenting template/version 2001-10

JP
39

20.6.16.2 te There are no requires corresponding to F of std::function. Correct as follows.
template<class F, Allocator A>
function(allocator_arg_t, const A&, F);
template<class F, Allocator A>
function(allocator_arg_t, const A&, F&&);

should be

template<class F, Allocator A>
 requires CopyConstructible<F> && Callable<F,
ArgTypes...>
 && Convertible<Callable<F,
ArgTypes...>::result_type, R>
 function(allocator_arg_t, const A&, F);
template<class F, Allocator A>
 requires CopyConstructible<F> && Callable<F,
ArgTypes...>
 && Convertible<Callable<F,
ArgTypes...>::result_type, R>
 function(allocator_arg_t, const A&, F&&);

JP
40

20.6.16.2 ed Thougn it's "Allocator Aloc" at other places, it's "Allocator
A" only std::function constructor template parameter.

Correct as follows.
template<class F, Allocator A>
function(allocator_arg_t, const A&, F);
template<class F, Allocator A>
function(allocator_arg_t, const A&, F&&);

should be

template<class F, Allocator Alloc>
function(allocator_arg_t, const Alloc &, F);
template<class F, Allocator Alloc>
function(allocator_arg_t, const Alloc &, F&&);

C++0X, CD 1, NB Comments Date: 21 Feb 2009 Document: SC22 N4411, ISO/IEC CD 14882

1 2 3 4 5 6 7

MB1

Clause No./
Subclause No./

Annex
(e.g. 3.1)

Paragraph/
Figure/Table/

Note
(e.g. Table 1)

Type
of

com-
ment2

Comment (justification for change) by the MB Proposed change by the MB Disposition

1 MB = Member body (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial
NOTE Columns 1, 2, 4, 5 are compulsory.

page 77� of 139�
ISO electronic balloting commenting template/version 2001-10

JP
41

20.6.16.2 te There are no requires corresponding to R and Args of
UsesAllocator.

Correct as follows.
template <class R, class... Args>
concept_map UsesAllocator<function<R(Args...)>,
Alloc> {
 typedef Alloc allocator_type;
}

should be

template <Returnable R, CopyConstructible...
Args>
concept_map UsesAllocator<function<R(Args...)>,
Alloc> {
 typedef Alloc allocator_type;
}

JP
42

20.6.16.2 ed The requires are wrong.

R require Returnable, and ArgTypes requires
CopyConstructible by a definition of function, then it's a
mistake to designate followings by MoveConstructible.

Correct as follows.

template <MoveConstructible R,
MoveConstructible... ArgTypes>
bool operator==(const function<R(ArgTypes...)>&,
nullptr_t);
template <MoveConstructible R,
MoveConstructible... ArgTypes>
bool operator==(nullptr_t, const
function<R(ArgTypes...)>&);
template <MoveConstructible R,
MoveConstructible... ArgTypes>
bool operator!=(const function<R(ArgTypes...)>&,
nullptr_t);
template <MoveConstructible R,
MoveConstructible... ArgTypes>
bool operator!=(nullptr_t, const
function<R(ArgTypes...)>&);
template <MoveConstructible R,
MoveConstructible... ArgTypes>
void swap(function<R(ArgTypes...)>&,
function<R(ArgTypes...)>&);

C++0X, CD 1, NB Comments Date: 21 Feb 2009 Document: SC22 N4411, ISO/IEC CD 14882

1 2 3 4 5 6 7

MB1

Clause No./
Subclause No./

Annex
(e.g. 3.1)

Paragraph/
Figure/Table/

Note
(e.g. Table 1)

Type
of

com-
ment2

Comment (justification for change) by the MB Proposed change by the MB Disposition

1 MB = Member body (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial
NOTE Columns 1, 2, 4, 5 are compulsory.

page 78� of 139�
ISO electronic balloting commenting template/version 2001-10

should be

template <Returnable R, CopyConstructible...
ArgTypes>
bool operator==(const function<R(ArgTypes...)>&,
nullptr_t);
template <Returnable R, CopyConstructible...
ArgTypes>
bool operator==(nullptr_t, const
function<R(ArgTypes...)>&);
template <Returnable R, CopyConstructible...
ArgTypes>
bool operator!=(const function<R(ArgTypes...)>&,
nullptr_t);
template <Returnable R, CopyConstructible...
ArgTypes>
bool operator!=(nullptr_t, const
function<R(ArgTypes...)>&);
template <Returnable R, CopyConstructible...
ArgTypes>
void swap(function<R(ArgTypes...)>&,
function<R(ArgTypes...)>&);

UK
 208

20.6.17 1 Te std::hash should be implemented for much more of the
standard library. In particular for pair, tuple and all the
standard containers.

.

UK
 209

20.7 Te Smart pointers cannot be used in constrained templates Provide constraints for smart pointers

UK
 213

20.7.6 Te std::allocator should be constrained to simplify its use on
constrained contexts. This library component models
allocation from free store via the new operator so choose
constraints to match. The Allocator concept allows for a
wider variety of allocators that users may choose to

The primary allocator template should be
constrained to require ObjectType<T> and
FreeStoreAllocatable<T>. Further operations to be
constrained as required.

C++0X, CD 1, NB Comments Date: 21 Feb 2009 Document: SC22 N4411, ISO/IEC CD 14882

1 2 3 4 5 6 7

MB1

Clause No./
Subclause No./

Annex
(e.g. 3.1)

Paragraph/
Figure/Table/

Note
(e.g. Table 1)

Type
of

com-
ment2

Comment (justification for change) by the MB Proposed change by the MB Disposition

1 MB = Member body (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial
NOTE Columns 1, 2, 4, 5 are compulsory.

page 79� of 139�
ISO electronic balloting commenting template/version 2001-10

supply if their allocation model does not require operator
new, without impacting the requirements of this template.

UK
 214

20.7.8 Te raw_storage_iterator needs constraining as an iterator
adaptor to be safely used in constrained templates

Constrain the raw_storage_iterator template

UK
 210

20.7.11 Te Specialized algorithms for memory managenment need
requirements to be easily usable in constrained templates

Provide constraints for all algorithms in 20.7.11

DE-
20

20.7.12 ed DE-20 The section heading and the first sentence use the
term "template function", which is undefined.

Replace "template function" by "function
template".

US
72

20.7.12 te bind should support move-only functors and bound
arguments.

DE-
21

20.7.12.1.3 te DE-21 The specification for bind claims twice that "the
values and types for the bound arguments v1, v2, ..., vN
are determined as specified below". No such specification
appears to exist.

Add the missing specification in the same section,
or add a cross-reference indicating the section
where the specification appears.

UK
 211

20.7.12.2.3 11 Te The nullptr_t type was introduced to resolve the null
pointer literal problem. It should be used for the
assignemnt operator, as with the constructor and
elsewhere through the library.

Change signature here and in the synopsis to:
unique_ptr& operator=(nullptr_t); Strike the
sentance an note before the Effects clause.

UK
 212

20.7.13.7 Te The pointer-safety API is nothing to do with smart
pointers, so does not belong in 20.7.13. In fact it is a set
of language support features are really belongs in clause
18, with the contents declared in a header that deals with
language-support of memory management.

Move this specification to 18.5. Move the
declarations into the header <new>.

DE-
22

20.7.16.2 te DE-22 The conditions for deriving from
std::unary_function and std::binary_function are unclear:
The condition would also be satisfied if ArgTypes were
std::vector<T1>, because it (arguably) "contains" T1.

Consider stating the conditions in normative prose
instead of in comments in the class definition. Use
"consists of" instead of "contains". Consider using
"if and only if" instead of "iff".

US 20.7.18 te The std::reference_closure template is redundant with Remove 20.7.18 [func.referenceclosure].

C++0X, CD 1, NB Comments Date: 21 Feb 2009 Document: SC22 N4411, ISO/IEC CD 14882

1 2 3 4 5 6 7

MB1

Clause No./
Subclause No./

Annex
(e.g. 3.1)

Paragraph/
Figure/Table/

Note
(e.g. Table 1)

Type
of

com-
ment2

Comment (justification for change) by the MB Proposed change by the MB Disposition

1 MB = Member body (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial
NOTE Columns 1, 2, 4, 5 are compulsory.

page 80� of 139�
ISO electronic balloting commenting template/version 2001-10

73 std::function and should be removed.

std::reference_closure is a premature optimization that
provides a limited subset of the functionality of
std::function intended to improve performance in a narrow
use case. However, the “parallel application performance”
benchmark used to motivate the inclusion of
std::reference_closure was flawed in several ways:
(3) it failed to enable a common optimization in

std::function (implemented by all vendors), exacting
a large and unrealistic penalty for copying
std::function instances, and

(4) it failed to account for parallel scheduler overhead or
realistically-sized work units, both of which would
dominate the costs measured by the benchmark in
any realistic application.

Remove 5.1.1 paragraph 12.

US
74

20.8 te Scoped allocators represent a poor trade-off for
standardization, since (1) scoped-allocator--aware
containers can be implemented outside the C++ standard
library but used with its algorithms, (2) scoped allocators
only benefit a tiny proportion of the C++ community (since
few C++ programmers even use today’s allocators), and
(3) all C++ users, especially the vast majority of the C++
community that won’t ever use scoped allocators are
forced to cope with the interface complexity introduced
by scoped allocators. In essence, the larger community
will suffer to support a very small subset of the
community who can already implement their own data
structures outside of the standard library. Therefore,
scoped allocators should be removed from the working
paper.
Some evidence of the complexity introduced by scoped
allocators:
20.3.3, 20.5: large increase in the number of pair and
tuple constructors
23: confusing “AllocatableElement” requirements

Remove support for scoped allocators from the
working paper. This includes at least the following
changes:

Remove 20.8.3 [allocator.element.concepts]

Remove 20.8.7 [allocator.adaptor]

Remove 20.8.10 [construct.element]

In Clause 23: replace requirements naming the
AllocatableElement concept with requirements
naming CopyConstructible, MoveConstructible,
DefaultConstructible, or Constructible, as
appropriate.

C++0X, CD 1, NB Comments Date: 21 Feb 2009 Document: SC22 N4411, ISO/IEC CD 14882

1 2 3 4 5 6 7

MB1

Clause No./
Subclause No./

Annex
(e.g. 3.1)

Paragraph/
Figure/Table/

Note
(e.g. Table 1)

Type
of

com-
ment2

Comment (justification for change) by the MB Proposed change by the MB Disposition

1 MB = Member body (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial
NOTE Columns 1, 2, 4, 5 are compulsory.

page 81� of 139�
ISO electronic balloting commenting template/version 2001-10

throughout.

US
74

20.8.2.2 (a) synopsis
(b) after ¶ 14

te/ed A concept name is twice misspelled. Change “Hasconstructor” to “HasConstructor”
(twice).

US
75

20.8.2.2 te Allocator concepts are incomplete See paper:
http://www.halpernwightsoftware.com/WG21/n281
0_allocator_defects.pdf

JP
43

20.8.3 ed Typo.
"alloc" should be "Alloc"

Correct as follows.

auto concept UsesAllocator<typename T,
typename Alloc> {
 requires Allocator<alloc>;
 typename allocator_type = T::allocator_type;

 should be

auto concept UsesAllocator<typename T,
typename Alloc> {
 requires Allocator<Alloc>;
 typename allocator_type = T::allocator_type;

UK
 215

20.8.3.3 6,8 Ed Extra pair of {}, presumably some formatting code gone
awry : duration& operator-{-}();

Remove the {} or fix formatting

US
77

20.8.4 te Allocator-specific move and copy behavior for containers
(N2525) complicates a little-used and already-
complicated portion of the standard library (allocators),
and breaks the conceptual model of move-constructor
and move-assignment operations on standard containers
being efficient operations. The extensions for allocator-
specific move and copy behavior should be removed from
the working paper.
With the introduction of rvalue references, we are

Remove 20.8.4.

Remove 20.8.5.

Remove all references to the facilities in 20.8.4
and 20.8.5 from clause 23.

C++0X, CD 1, NB Comments Date: 21 Feb 2009 Document: SC22 N4411, ISO/IEC CD 14882

1 2 3 4 5 6 7

MB1

Clause No./
Subclause No./

Annex
(e.g. 3.1)

Paragraph/
Figure/Table/

Note
(e.g. Table 1)

Type
of

com-
ment2

Comment (justification for change) by the MB Proposed change by the MB Disposition

1 MB = Member body (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial
NOTE Columns 1, 2, 4, 5 are compulsory.

page 82� of 139�
ISO electronic balloting commenting template/version 2001-10

teaching programmers that moving from a standard
container (e.g., a vector<string>) is an efficient, constant-
time operation. The introduction of N2525 removed that
guarantee; depending on the behavior of four different
traits (20.8.4), the complexity of copy and move
operations can be constant or linear time. This level of
customization greatly increases the complexity of
standard containers, and benefits only a tiny fraction of
the C++ community.

US
78

20.8.12,
20.8.13.2

 te There is presently no way to convert directly from a
shared_ptr to a unique_ptr.

Add an interface that performs the conversion.
See the attached, Issues with the C++ Standard"
paper under Chapter 20, "Conversion from
shared_ptr to unique_ptr".

US
79

20.8.12.2.1 te [unique.ptr.single.ctor]/5 no longer requires for D not to
be a pointer type. This restriction needs to be put back
in. Otherwise we have a run time failure that could have
been caught at compile time:

unique_ptr<int, void(*)(void*)> p(malloc(sizeof(int))); //
should not compile

unique_ptr<int, void(*)(void*)> p(malloc(sizeof(int)), free);
 // ok

JP
44

20.8.13.6 te The 1st parameter p and 2nd parameter v is now
shared_ptr<T> *.
It should be shared_ptr<T>&, or if these are
shared_ptr<T>* then add the "p shall not be a null
pointer" at the requires.

Change shared_ptr<T>& or add the "p shall not be
a null pionter" at the requires.

JP
45

20.9 te Rep, Period, Clock and Duration don't correspond to
concept.
template <class Rep, class Period = ratio<1>> class
duration;
template <class Clock, class Duration = typename

Make concept for Rep, Period, Clock and
Duration, and fix 20.9 and wait_until and wait_for's
template parameter at 30.

C++0X, CD 1, NB Comments Date: 21 Feb 2009 Document: SC22 N4411, ISO/IEC CD 14882

1 2 3 4 5 6 7

MB1

Clause No./
Subclause No./

Annex
(e.g. 3.1)

Paragraph/
Figure/Table/

Note
(e.g. Table 1)

Type
of

com-
ment2

Comment (justification for change) by the MB Proposed change by the MB Disposition

1 MB = Member body (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial
NOTE Columns 1, 2, 4, 5 are compulsory.

page 83� of 139�
ISO electronic balloting commenting template/version 2001-10

Clock::duration> class time_point;

US
80

20.9.2.1 Heading ed The section heading does not describe the contents. Change the heading “is_floating_point” to
“treat_as_floating_point”. Optionally adjust the
section’s label similarly.

US
81

20.9.3 te chrono::duration is missing the modulous operator for
both member and non-member arithmetic. This operator
is useful for finding the position of a duration within a
bounded time frame. Having it be built in to duration is
safer than requiring the client to extract and operate
directly on the duration’s representation as the latter will
not enforce the correct units of the operation.

Ex:

milliseconds ms(...);
microseconds us(...);

ms % us; // microseconds
us % ms; // microseconds
ms % 5; // milliseconds
5 % ms; // does not compile

Add:

template <class Rep, class Period = ratio<1>>
class duration {
public:
...
 duration& operator%(const rep&);
 duration& operator%(const duration&);
..
};

template <class Rep1, class Period,
 class Rep2>
 duration<typename common_type<
 Rep1, Rep2>::type, Period>
 operator%(const duration<Rep1, Period>& d,
const Rep2& s);

template <class Rep1, class Period1,
 class Rep2, class Period2>
 typename common_type<duration<Rep1,
Period1>, duration<Rep2, Period2>>::type
 operator%(const duration<Rep1, Period1>& lhs,
const duration<Rep2, Period2>& rhs);

US
82

20.9.5.3 after ¶ 1 ed The code synopsis has a minor alignment error. Align “rep” with the other symbols defined in this
synopsis.

UK
 216

21 Te All the containers use concepts for their iterator usage,
exect for basic_string. This needs fixing.

Use concepts for iterator template parameters
throughout the chapter.

C++0X, CD 1, NB Comments Date: 21 Feb 2009 Document: SC22 N4411, ISO/IEC CD 14882

1 2 3 4 5 6 7

MB1

Clause No./
Subclause No./

Annex
(e.g. 3.1)

Paragraph/
Figure/Table/

Note
(e.g. Table 1)

Type
of

com-
ment2

Comment (justification for change) by the MB Proposed change by the MB Disposition

1 MB = Member body (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial
NOTE Columns 1, 2, 4, 5 are compulsory.

page 84� of 139�
ISO electronic balloting commenting template/version 2001-10

JP
46

21.2, 21.3 te The basic_string does not use concept. The "class Alloc" is changed to "Allocator Alloc".
 The "class InputIterator" is changed to
"InputIterator Iter".

// 21.3, basic_string:
template<class charT, class traits =
char_traits<charT>,
 Allocator Alloc = allocator<charT> >
class basic_string;

template<class charT, class traits, Allocator Alloc>
 basic_string<charT,traits,Alloc>
 operator+(const
basic_string<charT,traits,Alloc>& lhs,
 const basic_string<charT,traits,Alloc>&
rhs);

template<class charT, class traits, Allocator Alloc>
 basic_string<charT,traits,Alloc>&&
 operator+(basic_string<charT,traits,Alloc>&&
lhs,
 const basic_string<charT,traits,Alloc>&
rhs);

template<class charT, class traits, Allocator Alloc>
 basic_string<charT,traits,Alloc>&&
 operator+(const
basic_string<charT,traits,Alloc>& lhs,
 basic_string<charT,traits,Alloc>&& rhs);

template<class charT, class traits, Allocator Alloc>
 basic_string<charT,traits,Alloc>&&
 operator+(basic_string<charT,traits,Alloc>&&
lhs,
 basic_string<charT,traits,Alloc>&& rhs);

template<class charT, class traits, Allocator Alloc>

C++0X, CD 1, NB Comments Date: 21 Feb 2009 Document: SC22 N4411, ISO/IEC CD 14882

1 2 3 4 5 6 7

MB1

Clause No./
Subclause No./

Annex
(e.g. 3.1)

Paragraph/
Figure/Table/

Note
(e.g. Table 1)

Type
of

com-
ment2

Comment (justification for change) by the MB Proposed change by the MB Disposition

1 MB = Member body (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial
NOTE Columns 1, 2, 4, 5 are compulsory.

page 85� of 139�
ISO electronic balloting commenting template/version 2001-10

 basic_string<charT,traits,Alloc>
 operator+(const charT* lhs,
 const basic_string<charT,traits,Alloc>&
rhs);

template<class charT, class traits, Allocator Alloc>
 basic_string<charT,traits,Alloc>&&
 operator+(const charT* lhs,
 basic_string<charT,traits,Alloc>&& rhs);

template<class charT, class traits, Allocator Alloc>
 basic_string<charT,traits,Alloc>
 operator+(charT lhs, const
basic_string<charT,traits,Alloc>& rhs);

template<class charT, class traits, Allocator Alloc>
 basic_string<charT,traits,Alloc>&&
 operator+(charT lhs,
basic_string<charT,traits,Alloc>&& rhs);

template<class charT, class traits, Allocator Alloc>
 basic_string<charT,traits,Alloc>
 operator+(const
basic_string<charT,traits,Alloc>& lhs,
 const charT* rhs);

template<class charT, class traits, Allocator Alloc>
 basic_string<charT,traits,Alloc>&&
 operator+(basic_string<charT,traits,Alloc>&&
lhs,
 const charT* rhs);

template<class charT, class traits, Allocator Alloc>
 basic_string<charT,traits,Alloc>
 operator+(const
basic_string<charT,traits,Alloc>& lhs, charT rhs);

C++0X, CD 1, NB Comments Date: 21 Feb 2009 Document: SC22 N4411, ISO/IEC CD 14882

1 2 3 4 5 6 7

MB1

Clause No./
Subclause No./

Annex
(e.g. 3.1)

Paragraph/
Figure/Table/

Note
(e.g. Table 1)

Type
of

com-
ment2

Comment (justification for change) by the MB Proposed change by the MB Disposition

1 MB = Member body (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial
NOTE Columns 1, 2, 4, 5 are compulsory.

page 86� of 139�
ISO electronic balloting commenting template/version 2001-10

template<class charT, class traits, Allocator Alloc>
 basic_string<charT,traits,Alloc>&&
 operator+(basic_string<charT,traits,Alloc>&&
lhs, charT rhs);

template<class charT, class traits, Allocator Alloc>
 bool operator==(const
basic_string<charT,traits,Alloc>& lhs,
 const basic_string<charT,traits,Alloc>&
rhs);

template<class charT, class traits, Allocator Alloc>
 bool operator==(const charT* lhs,
 const basic_string<charT,traits,Alloc>&
rhs);

template<class charT, class traits, Allocator Alloc>
 bool operator==(const
basic_string<charT,traits,Alloc>& lhs,
 const charT* rhs);

template<class charT, class traits, Allocator Alloc>
 bool operator!=(const
basic_string<charT,traits,Alloc>& lhs,
 const basic_string<charT,traits,Alloc>&
rhs);

template<class charT, class traits, Allocator Alloc>
 bool operator!=(const charT* lhs,
 const basic_string<charT,traits,Alloc>&
rhs);

template<class charT, class traits, Allocator Alloc>
 bool operator!=(const
basic_string<charT,traits,Alloc>& lhs,
 const charT* rhs);

C++0X, CD 1, NB Comments Date: 21 Feb 2009 Document: SC22 N4411, ISO/IEC CD 14882

1 2 3 4 5 6 7

MB1

Clause No./
Subclause No./

Annex
(e.g. 3.1)

Paragraph/
Figure/Table/

Note
(e.g. Table 1)

Type
of

com-
ment2

Comment (justification for change) by the MB Proposed change by the MB Disposition

1 MB = Member body (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial
NOTE Columns 1, 2, 4, 5 are compulsory.

page 87� of 139�
ISO electronic balloting commenting template/version 2001-10

template<class charT, class traits, Allocator Alloc>
 bool operator< (const
basic_string<charT,traits,Alloc>& lhs,
 const basic_string<charT,traits,Alloc>&
rhs);

template<class charT, class traits, Allocator Alloc>
 bool operator< (const
basic_string<charT,traits,Alloc>& lhs,
 const charT* rhs);

template<class charT, class traits, Allocator Alloc>
 bool operator< (const charT* lhs,
 const basic_string<charT,traits,Alloc>&
rhs);

template<class charT, class traits, Allocator Alloc>
 bool operator> (const
basic_string<charT,traits,Alloc>& lhs,
 const basic_string<charT,traits,Alloc>&
rhs);

template<class charT, class traits, Allocator Alloc>
 bool operator> (const
basic_string<charT,traits,Alloc>& lhs,
 const charT* rhs);

template<class charT, class traits, Allocator Alloc>
 bool operator> (const charT* lhs,
 const basic_string<charT,traits,Alloc>&
rhs);

template<class charT, class traits, Allocator Alloc>
 bool operator<=(const
basic_string<charT,traits,Alloc>& lhs,
 const basic_string<charT,traits,Alloc>&
rhs);

C++0X, CD 1, NB Comments Date: 21 Feb 2009 Document: SC22 N4411, ISO/IEC CD 14882

1 2 3 4 5 6 7

MB1

Clause No./
Subclause No./

Annex
(e.g. 3.1)

Paragraph/
Figure/Table/

Note
(e.g. Table 1)

Type
of

com-
ment2

Comment (justification for change) by the MB Proposed change by the MB Disposition

1 MB = Member body (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial
NOTE Columns 1, 2, 4, 5 are compulsory.

page 88� of 139�
ISO electronic balloting commenting template/version 2001-10

template<class charT, class traits, Allocator Alloc>
 bool operator<=(const
basic_string<charT,traits,Alloc>& lhs,
 const charT* rhs);

template<class charT, class traits, Allocator Alloc>
 bool operator<=(const charT* lhs,
 const basic_string<charT,traits,Alloc>&
rhs);

template<class charT, class traits, Allocator Alloc>
 bool operator>=(const
basic_string<charT,traits,Alloc>& lhs,
 const basic_string<charT,traits,Alloc>&
rhs);

template<class charT, class traits, Allocator Alloc>
 bool operator>=(const
basic_string<charT,traits,Alloc>& lhs,
 const charT* rhs);

template<class charT, class traits, Allocator Alloc>
 bool operator>=(const charT* lhs,
 const basic_string<charT,traits,Alloc>&
rhs);

// 21.3.8.8: swap
template<class charT, class traits, Allocator Alloc>
 void swap(basic_string<charT,traits,Alloc>& lhs,
 basic_string<charT,traits,Alloc>& rhs);

template<class charT, class traits, Allocator Alloc>
 void swap(basic_string<charT,traits,Alloc>&&
lhs,
 basic_string<charT,traits,Alloc>& rhs);

C++0X, CD 1, NB Comments Date: 21 Feb 2009 Document: SC22 N4411, ISO/IEC CD 14882

1 2 3 4 5 6 7

MB1

Clause No./
Subclause No./

Annex
(e.g. 3.1)

Paragraph/
Figure/Table/

Note
(e.g. Table 1)

Type
of

com-
ment2

Comment (justification for change) by the MB Proposed change by the MB Disposition

1 MB = Member body (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial
NOTE Columns 1, 2, 4, 5 are compulsory.

page 89� of 139�
ISO electronic balloting commenting template/version 2001-10

template<class charT, class traits, Allocator Alloc>
 void swap(basic_string<charT,traits,Alloc>& lhs,
 basic_string<charT,traits,Alloc>&& rhs);

// 21.3.8.9: inserters and extractors
template<class charT, class traits, Allocator Alloc>
 basic_istream<charT,traits>&
 operator>>(basic_istream<charT,traits>&& is,
 basic_string<charT,traits,Alloc>& str);

template<class charT, class traits, Allocator Alloc>
 basic_ostream<charT, traits>&
 operator<<(basic_ostream<charT, traits>&& os,
 const basic_string<charT,traits,Alloc>&
str);

template<class charT, class traits, Allocator Alloc>
 basic_istream<charT,traits>&
 getline(basic_istream<charT,traits>&& is,
 basic_string<charT,traits,Alloc>& str,
 charT delim);

template<class charT, class traits, Allocator Alloc>
 basic_istream<charT,traits>&
 getline(basic_istream<charT,traits>&& is,
 basic_string<charT,traits,Alloc>& str);

// 21.3 Class template basic_string
namespace std {
 template<class charT, class traits =
char_traits<charT>,
 Allocator Alloc = allocator<charT> >
 class basic_string {
public:
 // types:
 typedef traits traits_type;

C++0X, CD 1, NB Comments Date: 21 Feb 2009 Document: SC22 N4411, ISO/IEC CD 14882

1 2 3 4 5 6 7

MB1

Clause No./
Subclause No./

Annex
(e.g. 3.1)

Paragraph/
Figure/Table/

Note
(e.g. Table 1)

Type
of

com-
ment2

Comment (justification for change) by the MB Proposed change by the MB Disposition

1 MB = Member body (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial
NOTE Columns 1, 2, 4, 5 are compulsory.

page 90� of 139�
ISO electronic balloting commenting template/version 2001-10

 typedef typename traits::char_type
value_type;
 typedef Alloc allocator_type;
 typedef typename Alloc::size_type
size_type;
 typedef typename Alloc::difference_type
difference_type;
 typedef typename Alloc::reference
reference;
 typedef typename Alloc::const_reference
const_reference;
 typedef typename Alloc::pointer pointer;
 typedef typename Alloc::const_pointer
const_pointer;
 typedef implementation-defined iterator;
// See 23.1
 typedef implementation-defined
const_iterator; // See 23.1
 typedef std::reverse_iterator<iterator>
reverse_iterator;
 typedef std::reverse_iterator<const_iterator>
const_reverse_iterator;
 static const size_type npos = -1;

 // 21.3.2 construct/copy/destroy:
 explicit basic_string(const Alloc& a = Alloc());
 basic_string(const basic_string& str);
 basic_string(basic_string&& str);
 basic_string(const basic_string& str, size_type
pos, size_type n = npos,
 const Alloc& a = Alloc());
 basic_string(const charT* s,
 size_type n, const Alloc& a = Alloc());
 basic_string(const charT* s, const Alloc& a =
Alloc());
 basic_string(size_type n, charT c, const Alloc& a
= Alloc());

C++0X, CD 1, NB Comments Date: 21 Feb 2009 Document: SC22 N4411, ISO/IEC CD 14882

1 2 3 4 5 6 7

MB1

Clause No./
Subclause No./

Annex
(e.g. 3.1)

Paragraph/
Figure/Table/

Note
(e.g. Table 1)

Type
of

com-
ment2

Comment (justification for change) by the MB Proposed change by the MB Disposition

1 MB = Member body (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial
NOTE Columns 1, 2, 4, 5 are compulsory.

page 91� of 139�
ISO electronic balloting commenting template/version 2001-10

 template<InputIterator Iter>
 basic_string(Iter begin, Iter end,
 const Alloc& a = Alloc());
 basic_string(initializer_list<charT>, const Alloc&
= Alloc());
 basic_string(const basic_string&, const Alloc&);
 basic_string(basic_string&&, const Alloc&);
 ~basic_string();
 basic_string& operator=(const basic_string& str);
 basic_string& operator=(basic_string&& str);
 basic_string& operator=(const charT* s);
 basic_string& operator=(charT c);
 basic_string& operator=(initializer_list<charT>);

 // 21.3.3 iterators:
 ...

 // 21.3.4 capacity:
 ...

 // 21.3.5 element access:
 ...

 // 21.3.6 modifiers:
 ...

 basic_string& append(const basic_string& str);
 basic_string& append(const basic_string& str,
size_type pos,
 size_type n);
 basic_string& append(const charT* s, size_type
n);
 basic_string& append(const charT* s);
 basic_string& append(size_type n, charT c);
 template<InputIterator Iter>
 basic_string& append(Iter first, Iter last);
 basic_string& append(initializer_list<charT>);

C++0X, CD 1, NB Comments Date: 21 Feb 2009 Document: SC22 N4411, ISO/IEC CD 14882

1 2 3 4 5 6 7

MB1

Clause No./
Subclause No./

Annex
(e.g. 3.1)

Paragraph/
Figure/Table/

Note
(e.g. Table 1)

Type
of

com-
ment2

Comment (justification for change) by the MB Proposed change by the MB Disposition

1 MB = Member body (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial
NOTE Columns 1, 2, 4, 5 are compulsory.

page 92� of 139�
ISO electronic balloting commenting template/version 2001-10

 void push_back(charT c);

 basic_string& assign(const basic_string& str);
 basic_string& assign(basic_string&& str);
 basic_string& assign(const basic_string& str,
size_type pos,
 size_type n);
 basic_string& assign(const charT* s, size_type
n);
 basic_string& assign(const charT* s);
 basic_string& assign(size_type n, charT c);
 template<InputIterator Iter>
 basic_string& assign(Iter first, Iter last);
 basic_string& assign(initializer_list<charT>);

 basic_string& insert(size_type pos1, const
basic_string& str);
 basic_string& insert(size_type pos1, const
basic_string& str,
 size_type pos2, size_type n);
 basic_string& insert(size_type pos, const charT*
s, size_type n);
 basic_string& insert(size_type pos, const charT*
s);
 basic_string& insert(size_type pos, size_type n,
charT c);
 iterator insert(const_iterator p, charT c);
 void insert(const_iterator p, size_type n, charT
c);
 template<InputIterator Iter>
 void insert(const_iterator p, Iter first, Iter last);
 void insert(const_iterator p,
initializer_list<charT>);

 ...
 basic_string& replace(size_type pos1, size_type
n1,

C++0X, CD 1, NB Comments Date: 21 Feb 2009 Document: SC22 N4411, ISO/IEC CD 14882

1 2 3 4 5 6 7

MB1

Clause No./
Subclause No./

Annex
(e.g. 3.1)

Paragraph/
Figure/Table/

Note
(e.g. Table 1)

Type
of

com-
ment2

Comment (justification for change) by the MB Proposed change by the MB Disposition

1 MB = Member body (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial
NOTE Columns 1, 2, 4, 5 are compulsory.

page 93� of 139�
ISO electronic balloting commenting template/version 2001-10

 const basic_string& str);
 basic_string& replace(size_type pos1, size_type
n1,
 const basic_string& str,
 size_type pos2, size_type n2);
 basic_string& replace(size_type pos, size_type
n1, const charT* s,
 size_type n2);
 basic_string& replace(size_type pos, size_type
n1, const charT* s);
 basic_string& replace(size_type pos, size_type
n1, size_type n2,
 charT c);
 basic_string& replace(iterator i1, iterator i2,
 const basic_string& str);
 basic_string& replace(iterator i1, iterator i2, const
charT* s,
 size_type n);
 basic_string& replace(iterator i1, iterator i2, const
charT* s);
 basic_string& replace(iterator i1, iterator i2,
 size_type n, charT c);
 template<InputIterator Iter>
 basic_string& replace(iterator i1, iterator i2,
 Iter j1, Iter j2);
 basic_string& replace(iterator, iterator,
initializer_list<charT>);

 ...

 // 21.3.7 string operations:
 ...

 template <class charT, class traits, Allocator
Alloc>
 struct constructible_with_allocator_suffix<
 basic_string<charT, traits, Alloc> > : true_type {

C++0X, CD 1, NB Comments Date: 21 Feb 2009 Document: SC22 N4411, ISO/IEC CD 14882

1 2 3 4 5 6 7

MB1

Clause No./
Subclause No./

Annex
(e.g. 3.1)

Paragraph/
Figure/Table/

Note
(e.g. Table 1)

Type
of

com-
ment2

Comment (justification for change) by the MB Proposed change by the MB Disposition

1 MB = Member body (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial
NOTE Columns 1, 2, 4, 5 are compulsory.

page 94� of 139�
ISO electronic balloting commenting template/version 2001-10

};

JP
47

21.3 ed Typo. Missing ”>”
template <class charT, class traits, Allocator Alloc

should be

template <class charT, class traits, Allocator Alloc>

Correct typo.

JP
48

21.3 te char_traits does not use concept.
For example, create CharTraits concept and change as
follows:

template<class charT, CharTraits traits =
char_traits<charT>,
class Allocator = allocator<charT> >
class basic_string {

Add a concept for char_traits.

UK
 217

21.3 Ed basic_string refers to constructible_with_allocator_suffix,
which I thought was removed?

Remove the lines: template <class charT, class
traits, class Alloc struct
constructible_with_allocator_suffix<
basic_string<charT, traits, Alloc> > : true_type { };

UK
 218

21.3.1 3 Te The identity "&*(s.begin() + n) == &*s.begin() + n" relies
on operator& doing the "right thing", which (AFAICS)
there is no requirement for. See my comment under
clauses "23.2.1, 23.2.6" (p1 in both cases) - this is the
same issue, but I've created a separate comment for
basic_string because it is in a different chapter.

See my recommendations for "23.2.1, 23.2.6".

UK
 219

21.3.6.6
[string.replace
]

11 Ed Effects refers to "whose first begin() - i1 elements"
However i1 is greater than begin()...

Effects refers to "whose first i1 - begin() elements"

UK
 220

21.3.8.9 Te The operator<< for basic_string takes the output stream
by r-value reference. This is different from the same

Use the same reference type for the all the library
types. This should be the r-value reference. There

C++0X, CD 1, NB Comments Date: 21 Feb 2009 Document: SC22 N4411, ISO/IEC CD 14882

1 2 3 4 5 6 7

MB1

Clause No./
Subclause No./

Annex
(e.g. 3.1)

Paragraph/
Figure/Table/

Note
(e.g. Table 1)

Type
of

com-
ment2

Comment (justification for change) by the MB Proposed change by the MB Disposition

1 MB = Member body (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial
NOTE Columns 1, 2, 4, 5 are compulsory.

page 95� of 139�
ISO electronic balloting commenting template/version 2001-10

operator for error_code (19.4.2.6), bitset (20.2.6.3),
shared_ptr (20.7.13.2.8), complex (26.3.6) and
sub_match (28.4)

are other places in the standard where TR1, and
new classes, did not receive an 'R-value' update.

FR
33

22.1.1 [locale] 3 ed ios_base::iostate err = 0;

iostate is a bitmask type and so could be an enumeration.
Probably using
goodbit is the solution.

JP
49

22.1.3.2.2 te codecvt does not use concept. For example, create
CodeConvert concept and change as follows.
template<CodeConvert Codecvt, class Elem = wchar_t>
class wstring_convert {

Add a concept for codecvt.

JP
50

22.1.3.2.2 te Add custom allocator parameter to wstring_convert, since
we cannot allocate memory for strings from a custom
allocator.

Correct as follows.
template<class Codecvt, class Elem = wchar_t>
class wstring_convert {
public:
 typedef std::basic_string<char> byte_string;
 typedef std::basic_string<Elem> wide_string;

should be

template<class Codecvt, class Elem = wchar_t,
 Allocator WideAllocator = allocator<Elem>,
 Allocator ByteAllocator = allocator<char>>
class wstring_convert {
public:
 typedef std::basic_string<char,
char_traits<char>, ByteAllocator> byte_string;
 typedef std::basic_string<Elem,
char_traits<Elem>, WideAllocator> wide_string;

FI 4 22.2.1.4.1

22.2.1.4.2

 ed to_end and to_limit are both used. Only one is needed. Change to_limit to to_end.

C++0X, CD 1, NB Comments Date: 21 Feb 2009 Document: SC22 N4411, ISO/IEC CD 14882

1 2 3 4 5 6 7

MB1

Clause No./
Subclause No./

Annex
(e.g. 3.1)

Paragraph/
Figure/Table/

Note
(e.g. Table 1)

Type
of

com-
ment2

Comment (justification for change) by the MB Proposed change by the MB Disposition

1 MB = Member body (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial
NOTE Columns 1, 2, 4, 5 are compulsory.

page 96� of 139�
ISO electronic balloting commenting template/version 2001-10

FI 5 22.2.1.4.2 #3 ed [Note: As a result of operations on state, it can return ok
or partial and set next == from and to_next != to. —end
note]

"next" should be "from_next."

Also, the sentence applies to all the examples, including
do_in and do_out.

Reasoning: When reading one element of multibyte
source data such as UTF-8, it is possible that from_next
is incremented, to_next is unaltered, state is altered and
return value is partial.
When reading one element of wide character data, the
output can be several multibyte characters, so it is
possible that from_next is unaltered, to_next is advanced,
state is altered and return value is partial.

[Note: As a result of operations on state, do_in
and do_out can return
ok or partial and set from_next == from and/or
to_next != to. —end
note]

FI 6 22.2.1.5

See also
22.2.1.4
(1,2,3)

 te codecvt_byname is only specified to work with locale
names. There is no built-in means to find a codecvt with a
character set's name. A locale and a character set are
not the same. If the user has data which is encoded in a
certain character set and she wants to create a codecvt
which can convert from that character set to another one,
she must iterate through locales to find one, or use
external means (iconv, ICU's uconv). Specifying a locale
with the character set is not a suitable solution, since
there is no built-in mapping from character sets to
locales. It is only possible to inquire the character set
once the locale is known.

There should be a built-in means to find a codecvt
with a pair of character set names.

FI 7 22.2.1.4 1,2,3 ed The word "codeset" is used, whereas the word "character
set" is used elsewhere in the text. The words are
intended to convey the same concept, so only one should
be used (or always both together).

Change "codeset" to "character set."

C++0X, CD 1, NB Comments Date: 21 Feb 2009 Document: SC22 N4411, ISO/IEC CD 14882

1 2 3 4 5 6 7

MB1

Clause No./
Subclause No./

Annex
(e.g. 3.1)

Paragraph/
Figure/Table/

Note
(e.g. Table 1)

Type
of

com-
ment2

Comment (justification for change) by the MB Proposed change by the MB Disposition

1 MB = Member body (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial
NOTE Columns 1, 2, 4, 5 are compulsory.

page 97� of 139�
ISO electronic balloting commenting template/version 2001-10

JP
51

22.2.5.1.1 7th
paragraph,
1st line

ed A parameter `end’ should be `fmtend’.
get() function had two `end’ parameters at N2321.
iter_type get (iter_type s, iter_type end, ios_base& f,
ios_base::iostate& err, tm* t, const char_type* fmt, const
char_type *end) const;
The function prototype of get() has been corrected at
N2800, but a Requires statement still refers `end’
parameter.

Correct as follows.
 Requires: [fmt,end) shall be a valid range.

 should be

 Requires: [fmt,fmtend) shall be a valid range.

JP
52

22.2.5.1,
22.2.5.2,
22.2.6.1

 te InputIterator does not use concept. Correct as follows.

22.2.5.1

template <class charT, class InputIterator =
istreambuf_iterator<charT> >
class time_get : public locale::facet, public
time_base {
public:
 typedef charT char_type;
 typedef InputIterator iter_type;

 should be

template <class charT, InputIterator InputIter =
istreambuf_iterator<charT> >
class time_get : public locale::facet, public
time_base {
public:
 typedef charT char_type;
 typedef InputIter iter_type;

22.2.5.2

template <class charT, class InputIterator =
istreambuf_iterator<charT> >

C++0X, CD 1, NB Comments Date: 21 Feb 2009 Document: SC22 N4411, ISO/IEC CD 14882

1 2 3 4 5 6 7

MB1

Clause No./
Subclause No./

Annex
(e.g. 3.1)

Paragraph/
Figure/Table/

Note
(e.g. Table 1)

Type
of

com-
ment2

Comment (justification for change) by the MB Proposed change by the MB Disposition

1 MB = Member body (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial
NOTE Columns 1, 2, 4, 5 are compulsory.

page 98� of 139�
ISO electronic balloting commenting template/version 2001-10

class time_get_byname : public time_get<charT,
InputIterator> {
public:
typedef time_base::dateorder dateorder;
typedef InputIterator iter_type;

 should be

template <class charT, InputIterator InputIter =
istreambuf_iterator<charT> >
class time_get_byname : public time_get<charT,
InputIter> {
public:
typedef time_base::dateorder dateorder;
typedef InputIter iter_type;

22.2.6.1

template <class charT,
 class InputIterator =
istreambuf_iterator<charT> >
class money_get : public locale::facet {
public:
 typedef charT char_type;
 typedef InputIterator iter_type;

 should be

template <class charT,
 InputIterator InputIter =
istreambuf_iterator<charT> >
class money_get : public locale::facet {
public:
 typedef charT char_type;
 typedef InputIter iter_type;

C++0X, CD 1, NB Comments Date: 21 Feb 2009 Document: SC22 N4411, ISO/IEC CD 14882

1 2 3 4 5 6 7

MB1

Clause No./
Subclause No./

Annex
(e.g. 3.1)

Paragraph/
Figure/Table/

Note
(e.g. Table 1)

Type
of

com-
ment2

Comment (justification for change) by the MB Proposed change by the MB Disposition

1 MB = Member body (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial
NOTE Columns 1, 2, 4, 5 are compulsory.

page 99� of 139�
ISO electronic balloting commenting template/version 2001-10

JP
53

22.2.5.3 ,
22.2.5.4

 te OutputIterator does not use concept. Correct as follows.

22.2.5.3

template <class charT, class OutputIterator =
ostreambuf_iterator<charT> >
class time_put : public locale::facet {
public:
 typedef charT char_type;
 typedef OutputIterator iter_type;

 should be

template <class charT, OutputIterator OutputIter =
ostreambuf_iterator<charT> >
class time_put : public locale::facet {
public:
 typedef charT char_type;
 typedef OutputIter iter_type;

22.2.5.4

template <class charT, class OutputIterator =
ostreambuf_iterator<charT> >
class time_put_byname : public time_put<charT,
OutputIterator>
{
public:
 typedef charT char_type;
 typedef OutputIterator iter_type;

 should be

template <class charT, OutputIterator OutputIter =
ostreambuf_iterator<charT> >
class time_put_byname : public time_put<charT,

C++0X, CD 1, NB Comments Date: 21 Feb 2009 Document: SC22 N4411, ISO/IEC CD 14882

1 2 3 4 5 6 7

MB1

Clause No./
Subclause No./

Annex
(e.g. 3.1)

Paragraph/
Figure/Table/

Note
(e.g. Table 1)

Type
of

com-
ment2

Comment (justification for change) by the MB Proposed change by the MB Disposition

1 MB = Member body (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial
NOTE Columns 1, 2, 4, 5 are compulsory.

page 100� of 139�
ISO electronic balloting commenting template/version 2001-10

OutputIter>
{
public:
 typedef charT char_type;
 typedef OutputIter iter_type;

JP
54

23 2nd
paragraph,
Table 79

ed There is not <forward_list> in Table 79. Add <forward_list> between <deque> and <list>.

UK
 221

23 Table 79 Ed The table is missing the new <forward_list> header. Add <forward_list> to the table for sequence
containers. Alternative (technical) solution might
be to merge <forward_list> into <list>.

UK
 222

23 Te It is not clear what purpose the Requirement tables serve
in the Containers clause. Are they the definition of a
library Container? Or simply a conventient shorthand to
factor common semantics into a single place, simplifying
the description of each subsequent container? This
becomes an issue for 'containers' like array, which does
not meet the default-construct-to-empty requirement, or
forward_list which does not support the size operation.
Are these components no longer containers? Does that
mean the remaining requirements don't apply? Or are
these contradictions that need fixing, despite being a
clear design decision?

Clarify all the tables in 23.1 are there as a
convenience for documentation, rather than a
strict set of requirements. Containers should be
allowed to relax specific requirements if they call
attention to them in their documentation. The
introductory text for array should be expanded to
mention a default constructed array is not empty,
and forward_list introduction should mention it
does not provide the required size operation as it
cannot be implemented efficiently.

JP
55

23.1.1 3rd
paragraph,
4th line

ed It seems that “the MinimalAllocator concep” is the typo of
“the MinimalAllocator concept”.

Change to … models the MinimalAllocator
concept.

UK
 223

23.1.1 3 Te The library does not define the MinimalAllocator or
ScopedAllocator concepts, these were part of an earlier
Allocators proposal that was rejected.

Remove the references to MinimalAllocator and
ScopedAllocator, or add definitions for these
concepts to clause 20.7.

UK
 224

23.1.1 8 Te This paragraph implicitly requires all containers in clause
23 to support allocators, which std::array does not.

Add an 'unless otherwise specified' rider
somewhere in p8, or move the whole array
container from clause 23 [containers] to clause 20

C++0X, CD 1, NB Comments Date: 21 Feb 2009 Document: SC22 N4411, ISO/IEC CD 14882

1 2 3 4 5 6 7

MB1

Clause No./
Subclause No./

Annex
(e.g. 3.1)

Paragraph/
Figure/Table/

Note
(e.g. Table 1)

Type
of

com-
ment2

Comment (justification for change) by the MB Proposed change by the MB Disposition

1 MB = Member body (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial
NOTE Columns 1, 2, 4, 5 are compulsory.

page 101� of 139�
ISO electronic balloting commenting template/version 2001-10

[utilies] to accompany bitset, pair and tuple.

UK
 225

23.1.1 Table 81 Ed Inconsistent words used to say the same thing. Table 80
describes iterator/const_iterator typedef as returning an
"iterator type whose value type is T". Table 81 expresses
the same idea as an "iterator type pointing to T". Express
identical ideas with the same words to avoid accidentally
introducing subtlety and confusion

Change return types for
X::(const)_reverse_iterator to say "iterator type
whose value type is (const) T".

UK
 226

23.1.1 10 Te <array> must be added to this list. In particular it doesn't
satisfy: - no swap() function invalidates any references,
pointers, or iterators referring to the elements of the
containers being swapped. and probably doesn't satisfy:
— no swap() function throws an exception.

If <array> remains a container, this will have to
also reference array, which will then have to say
which of these points it satisfies.

UK
 227

23.1.1 Table 80 Ed The post-condition for a = rv uses the word “construction”
when it means “assignment”

Replace the word “construction” with the word
“assignment”

UK
 228

23.1.1 3 Ed Line 4 contains a spelling mistake in the fragment
"MinimalAllocator concep."

Replace "concep" with "concept"

UK
 229

23.1.1 3 Ed The fragment "A container may directly call constructors"
is not technically correct as constructors are not callable.

Replace "A container may directly call
constructors and destructors for its stored objects"
with something similar to "A container may directly
construct its stored objects and call destructors for
its stored objects"

UK
 230

23.1.2 1 Te “implementations shall consider the following functions to
be const” - what does this mean? I don't understand what
it means by implementations considering the functions to
be const – surely they are either declared const or not?

Clarify what is meant and what requirements an
implementation must satisfy.

JP
56

23.1.3 12th
paragraph,
Table 84

ed `array’ is unstated in Table 84 - Optional sequence
container operations.

Add `array’ to Container field for the following
Expression.

a.front()
a.back()
a[n]

C++0X, CD 1, NB Comments Date: 21 Feb 2009 Document: SC22 N4411, ISO/IEC CD 14882

1 2 3 4 5 6 7

MB1

Clause No./
Subclause No./

Annex
(e.g. 3.1)

Paragraph/
Figure/Table/

Note
(e.g. Table 1)

Type
of

com-
ment2

Comment (justification for change) by the MB Proposed change by the MB Disposition

1 MB = Member body (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial
NOTE Columns 1, 2, 4, 5 are compulsory.

page 102� of 139�
ISO electronic balloting commenting template/version 2001-10

a.at(n)
UK
 231

23.1.3 9-11 Te These paragraphs are redundant now that Concepts
define what it means to be an Iterator and guide overload
resolution accordingly.

Strike 23.1.3p9-11. Make sure std::basic_string
has constraints similar to std::vector to meet this
old guarantee.

UK
 232

23.1.3 Table 84 Te match_results may follow the requirements but is not
listed a general purpose library container.

Remove reference to match_results against a[n]
operation

UK
 233

23.1.3 Table 84 Te Add references to the new containers. Add reference to array to the rows for: a.front(), a.
back(), a[n] a.at(n). Add reference to forward_list
to the rows for: a.front(), a.emplace_front(args),
a.push_front(t), a.push_front(rv), a.pop_front().
Add reference to basic_string to the row for:
a.at(n).

UK
 234

23.1.3 Table 84 Te Ther reference to iterator in semantics for back should
also allow for const_iterator when called on a const-
qualified container. This would be ugly to specify in the 03
standard, but is quite easy with the addition of auto in this
new standard.

Replace iterator with auto in semantics for back: {
auto tmp = a.end(); --tmp; return *tmp; }

UK
 235

23.1.3 1 Ed “The library provides three basic kinds of sequence
containers: vector, list, and deque” - text appears to be
out of date re addition of array and forward_list

Change the text to read: “The library provides five
basic kinds of sequence containers: array, deque,
forward_list, list and vector”.

UK
 236

23.1.3 2 Ed [I've moved (1) into a separate comment because I
believe it is editorial in the simple sense, whereas (2) and
(3) are not so straight forward] (2) “vector is the type of
sequence container that should be used by default” -- As
I understand it vector was considered first port of call
because the things it has in common with the native array
make programmers (especially those new to the
container library) feel like they are on familiar territory.
However, we now have the array container, so I think this
should be recommended as the first port of call. (3) This
paragraph is actually giving guidance on the use of the
containers and should not be normative text

Remove this paragraph

C++0X, CD 1, NB Comments Date: 21 Feb 2009 Document: SC22 N4411, ISO/IEC CD 14882

1 2 3 4 5 6 7

MB1

Clause No./
Subclause No./

Annex
(e.g. 3.1)

Paragraph/
Figure/Table/

Note
(e.g. Table 1)

Type
of

com-
ment2

Comment (justification for change) by the MB Proposed change by the MB Disposition

1 MB = Member body (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial
NOTE Columns 1, 2, 4, 5 are compulsory.

page 103� of 139�
ISO electronic balloting commenting template/version 2001-10

UK
 237

23.1.3 2 Ed vector, list, and deque offer the programmer different
complexity trade-offs and should be used accordingly -
this ignores array and forward_list

Modify the text to read: "array, deque, forward_list,
list and vector offer the programmer different
complexity trade-offs and should be used
accordingly"

UK
 238

23.1.4 6 Te Leaving it unspecified whether or not iterator and
const_iterator are the same type is dangerous, as user
code may or may not violate the One Definition Rule by
providing overloads for both types. It is probably too late
to specify a single behaviour, but implementors should
document what to expect. Observing that problems can
be avoided by users restricting themselves to using
const_iterator, add a note to that effect.

Change 'unspecified' to 'implementation defined'.
Add "[Note: As itererator and const_iterator have
identical semantics in this case, and iterator is
convertible to const_iterator, users can avoid
violating the One Definition Rule by always using
const_iterator in their function parameter lists --
end note]

UK
 239

23.1.4 85 Te It is not possible to take a move-only key out of an
unordered container, such as (multi)set or (multi)map, or
the new hashed containers.

Add below a.erase(q), a.extract(q), with the
following notation: a.extract(q), Return type
pair<key, iterator> Extracts the element pointed to
by q and erases it from the set. Returns a pair
containing the value pointed to by q and an
iterator pointing to the element immediately
following q prior to the element being erased. If no
such element exists,returns a.end().

UK
 240

23.1.6.1 12 Te The axiom EmplacePushEquivalence should be asserting
the stronger contract that emplace and insert return the
same iterator value, not just iterators that dereference to
the same value. This is a similar statement that is easier
to express and should be equivalent - the idea that insert
and emplace might return iterator values that do not
compare equal but point to the same element should fail
somewhere in the iterator concepts. Also, this axiom
should be renamed to reflect its connection with insert,
rather than push_front/push_back,

Remove the * to deference the returned iterator
either side of the == in the
EmplacePushEquivalence axiom, rename the
axiom EmplacementInsertionEquivalence :
requires InsertionContainer<C> &&
Constructible<value_type, Args...> axiom
EmplacementInsertionEquivalence(C c,
const_iterator position, Args... args) { emplace(c,
position, args...) == insert(c, position,
value_type(args...)); }

JP
57

23.1.6.3 1st
paragraph,

ed Typo, duplicated "to"
"to to model insertion container concepts."

Remove one.

C++0X, CD 1, NB Comments Date: 21 Feb 2009 Document: SC22 N4411, ISO/IEC CD 14882

1 2 3 4 5 6 7

MB1

Clause No./
Subclause No./

Annex
(e.g. 3.1)

Paragraph/
Figure/Table/

Note
(e.g. Table 1)

Type
of

com-
ment2

Comment (justification for change) by the MB Proposed change by the MB Disposition

1 MB = Member body (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial
NOTE Columns 1, 2, 4, 5 are compulsory.

page 104� of 139�
ISO electronic balloting commenting template/version 2001-10

4th line

UK
 241

23.2.1 Te std::array does not have an allocator, so need to
document an exception to the requirements of 23.1.1p3

add exception to 23.1.1p3

UK
 242

23.2.1 3 Ed std:: qualification no longer needed for reverse_iterator. remove std:: qualification from
std::reverse_iterator<iterator> and
std::reverse_iterator<const_iterator>

UK
 243

23.2.1 3 Te Most containers, and types in general have 3 swaps:
swap(T&, T&) swap(T&&, T&) swap(T&, T&&) But array
only has swap(T&, T&).

add the other two swaps.

UK
 244

23.2.1, 23.2.6 1 Te The validity of the expression &a[n] == &a[0] + n is
contingent on operator& doing the “right thing” (as
captured by the CopyConstructible requirements in table
30 in C++2003). However this constraint has been lost in
the Concepts of C++0x. This applies to vector and array
(it actually applies to string also, but that's a different
chapter, so I'll file a separate comment there and cross-
reference).

Define a ContiguousStrorage and apply it to
vector,array and string. The Concept (supplied by
Alisdair M) looks like this: Concept< typename C >
ContiguousStrorage { requires Container<C>;
typename value_type = C::value_type; value_type
* data(C); axiom Contiguous { C c; true =
equal_ranges(data(c), data(c) + size(c),
begin(c)); } };

UK
 245

23.2.3 2 Te The predicate types used in special member function of
forward_list should be CopyConstructible, as per the
algorithms of the same name. Note: an alternate solution
would be to require these callable concepts to be
CopyConstructible in clause 20, which would simplify the
library specification in general. See earlier comment for
details, that would render this one redundant.

Add CopyConstructible requirement to the
following signatures: template <Predicate<auto,
T> Pred> requires CopyConstructible<Pred> void
remove_if(Pred pred); template
<EquivalenceRelation<auto, T> BinaryPredicate>
requires CopyConstructible<BinaryPredicate> void
unique(BinaryPredicate binary_pred); template
<StrictWeakOrder<auto, T> Compare> requires
CopyConstructible<Compare> void
merge(forward_list<T,Alloc>&& x, Compare
comp); template <StrictWeakOrder<auto, T>
Compare> requires CopyConstructible<Compare>
void sort(Compare comp);

C++0X, CD 1, NB Comments Date: 21 Feb 2009 Document: SC22 N4411, ISO/IEC CD 14882

1 2 3 4 5 6 7

MB1

Clause No./
Subclause No./

Annex
(e.g. 3.1)

Paragraph/
Figure/Table/

Note
(e.g. Table 1)

Type
of

com-
ment2

Comment (justification for change) by the MB Proposed change by the MB Disposition

1 MB = Member body (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial
NOTE Columns 1, 2, 4, 5 are compulsory.

page 105� of 139�
ISO electronic balloting commenting template/version 2001-10

JP
58

23.2.3.2 1st line
before 1st
paragraph

ed Unnecessary "{" exists before a word iterator like
"{iterator before_begin()".

Remove "{"

JP
59

23.2.4.4 ed Types of the third and forth parameter of splice() are
iterator at 23.2.4.4, though types of them are
const_iterator at 23.2.4. (They are both const_iterator on
N2350)

Correct as follows.
void splice(const_iterator position,
list<T,Allocator>&& x, iterator i);
void splice(const_iterator position,
list<T,Allocator>&& x,
 iterator first, iterator last);

 should be

void splice(const_iterator position,
list<T,Allocator>&& x, const_iterator i);
void splice(const_iterator position,
list<T,Allocator>&& x,
 const_iterator first, const_iterator last);

US
83

23.2.6.2 7 ed "shrink_to_fint" should be "shrink_to_fit".

UK
 246

23.3.2.2 Ed The content of this sub-clause is purely trying to describe
in words the effect of the requires clauses on these
operations, now that we have Concepts. As such, the
desctiption is more confusing than the signature itself.
The semantic for these functions is adequately covered in
the requirements tables in 23.1.4.

Strike 23.3.2.2 entirely. (but do NOT strike these
signatures from the class template definition!)

UK
 247

24.1 Ge Iterator concepts are not extensive enough to merit a
whole new header, and should be merged into
<concpts>. This is particularly important for supporting
the new for loop syntax which requires access to the
Range concept. The required header to enable this
syntax shoud have a simple name, like <concepts>,
rather than something awkward to type like

Move the concepts of <iterator_concepts> into the
<concepts> header. We take no position on
moving the text from Clause 24 to Clause 20
though.

C++0X, CD 1, NB Comments Date: 21 Feb 2009 Document: SC22 N4411, ISO/IEC CD 14882

1 2 3 4 5 6 7

MB1

Clause No./
Subclause No./

Annex
(e.g. 3.1)

Paragraph/
Figure/Table/

Note
(e.g. Table 1)

Type
of

com-
ment2

Comment (justification for change) by the MB Proposed change by the MB Disposition

1 MB = Member body (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial
NOTE Columns 1, 2, 4, 5 are compulsory.

page 106� of 139�
ISO electronic balloting commenting template/version 2001-10

<iterator_concepts>.

UK
 248

24.1 6 Ed The text "so for any iterator type there is an iterator value
that points past the last element of a corresponding
container" is slightly misleading. Iterators can refer into
generalised ranges and sequences, not just containers. A
broader term than 'container' should be used.

Replace the reference to container with a more
appropriate concept

UK
 250

24.1.1 Te A default implementation should be supplied for the post-
increment operator to simplify implementation of iterators
by users.

Copy the Effects clause into the concept
description as the default implementation.
Assumes a default value for postincrement_result

UK
 251

24.1.1 3 Te The post-increment operator is dangerous for a general
InputIterator. The multi-pass guarantees that make it
meaningful are defined as part of the ForwardIterator
refinement. Any change will affect only constrained
templates that have not yet been written, so should not
break existing user iterators which remain free to add
these operations. This change will also affect the
generalised OutputIterator, although there is no percieved
need for the post-increment operator in this case either.

Move declaration of postincrement operator and
postincrement_result type from Interator concept
to the ForwardIterator concept

UK
 252

24.1.2 3 Ed istream_iterator is not a class, but a class template Change 'class' to 'class template' in the note.

UK
 253

24.1.3 1 Ed First sentance does not make gramatical sense, Seems
to be missing the words 'if it' by comparison with similar
sentance in other subsections

Add the words 'if it' : "X satisfies the requirements
of an output iterator IF IT meets the syntactic and
semantic requirements"

UK
 254

24.1.3 5 Te This postcondition for pre-increment operator should be
written as an axiom

Move the postcondition into the concept definition
as an axiom

UK
 255

24.1.4 4 Te This postcondition for pre-increment operator should be
written as an axiom

Move the postcondition into the concept definition
as an axiom

UK
 256

24.1.5 3, 4, 5 Te The relationship between pre- and post- decrement
should be expressed as an axiom.

Move the text specification of pre/post-conditions
and behaviour into an axiom within the
BidirectionalIterator concept

C++0X, CD 1, NB Comments Date: 21 Feb 2009 Document: SC22 N4411, ISO/IEC CD 14882

1 2 3 4 5 6 7

MB1

Clause No./
Subclause No./

Annex
(e.g. 3.1)

Paragraph/
Figure/Table/

Note
(e.g. Table 1)

Type
of

com-
ment2

Comment (justification for change) by the MB Proposed change by the MB Disposition

1 MB = Member body (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial
NOTE Columns 1, 2, 4, 5 are compulsory.

page 107� of 139�
ISO electronic balloting commenting template/version 2001-10

UK
 257

24.1.5 Te There is a reasonable default for postdecrement_result
type, which is X. X is required to be regular, therefore
CopyConstructible and a valid ResultType. Together with
the next comment this simplifies user defined iterator
implentations

Add the default : typename postincrement_result =
X;

UK
 258

24.1.5 Te A default implementation should be supplied for the post-
decrement operator to simplify implementation of iterators
by users.

Copy the Effects clause into the concept
description as the default implementation.
Assumes a default value for postincrement_result

UK
 259

24.1.5 Te postdecrement_result is effectively returning a copy of the
original iterator value, so should have similar constraints,
rather than just HasDereference. If Concepts do not
support this circularity of definition suggest that concepts
feature may want a little more work

Add the requirement: requires Iterator<
postdecrement_result >;

UK
 260

24.1.5 6 Te The effects clause for post-decrement iterator should be
available as an axiom and a default implementation,
where the compiler can make better use of it.

Move the Effects clause into the
BidirectionalIterator concept definition as an
axiom, and as the default implementation for the
operation.

UK
 249

24.1.6 2 Te The semantic for operator+= should also be provided as
a default implementation to simplify implementation of
user-defined iterators

Copy the text from the effects clause into the
RandomAccessIterator concept as the default
implementaiton.

UK
 261

24.1.6 Te To simplify user defined random access iterator types,
the subscript_reference type should default to reference

typename subscript_reference = reference;

UK
 262

24.1.6 3, 4 Te Effects and post-conditions for operator+ are more useful
if expressed as axioms, and supplied as default
implementations.

Move the effects and Postcondition definitions into
the RandomAccessIterator concept and copy the
code in the specification as the default
implementation of these operations.

UK
 263

24.1.6 5 Te This requirement on operator-= would be better
expressed as a default implementation in the concept,
with a matching axiom

Move the specification for operator-= from the
returns clause into an axiom and default
implementation within the RandomAccessIterator

C++0X, CD 1, NB Comments Date: 21 Feb 2009 Document: SC22 N4411, ISO/IEC CD 14882

1 2 3 4 5 6 7

MB1

Clause No./
Subclause No./

Annex
(e.g. 3.1)

Paragraph/
Figure/Table/

Note
(e.g. Table 1)

Type
of

com-
ment2

Comment (justification for change) by the MB Proposed change by the MB Disposition

1 MB = Member body (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial
NOTE Columns 1, 2, 4, 5 are compulsory.

page 108� of 139�
ISO electronic balloting commenting template/version 2001-10

concept

UK
 264

24.1.6 6 Te Effects clauses are better expressed as axioms where
possible.

Move code in operator- effects clause into
RandomAccessIterator concept as both a default
implementation and an axiom

UK
 265

24.1.6 8 Te This effects clause is nonesense. It looks more like an
axiom stating equivalence, and certainly an effects clause
cannot change the state of two arguments passed by
const reference

Strike the Effects clause

UK
 266

24.1.6 9 Te This sentance should be provided as a default definition,
along with a matching axiom

Move the Returns clause into the spefication for
RandomAccessIterator operator- as a default
implementation. Move the Effects clause as the
matching axiom.

UK
 267

24.1.6 24.1.6 Te The code in the Requires clause for
RandomAccessIterator operator[] would be better
expressed as an axiom.

Rewrite the Requires clause as an axiom in the
RandomAccessIterator concept

UK
 268

24.1.6 12 Ed This note is potentialy confusing as __far enters the
syntax as a clear language extension, but the note treats
it as a regular part of the grammar. It might be better
expressed using attributes in the current wording.

Clean up the note to either avoid using language
extension, or spell out this is a constraint to
support extensions.

JP
60

24.1.8 1st
paragraph

te Capability of an iterator is too much restricted by concept.

Concept of std::Range is defined as:

concept Range<typename T> {
InputIterator iterator;
iterator begin(T&);
iterator end(T&);
}

So the following code generates an error.

Add InputRange, OutputRange, ForwardRange,
BidirectionalRange and RandomAccessRange.

C++0X, CD 1, NB Comments Date: 21 Feb 2009 Document: SC22 N4411, ISO/IEC CD 14882

1 2 3 4 5 6 7

MB1

Clause No./
Subclause No./

Annex
(e.g. 3.1)

Paragraph/
Figure/Table/

Note
(e.g. Table 1)

Type
of

com-
ment2

Comment (justification for change) by the MB Proposed change by the MB Disposition

1 MB = Member body (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial
NOTE Columns 1, 2, 4, 5 are compulsory.

page 109� of 139�
ISO electronic balloting commenting template/version 2001-10

template <std::Range Rng>
void sort(Rng& r)
{
// error! Rng::iterator does not satisfy requirements of a

random
// access iterator.

std::sort(begin(r), end(r));
}

std::vector<int> v; // vector::iterator is a random access
iterator.
sort(v);

This is because the concept of an iterator of std::Range is
InputIterator. For this reason, a random access iterator
loses its capability when passed to a std::Range
parameter.

To be able to work the above code, we need to write as
follows:

template <std::Range T>
requires std::RandomAccessIterator<T::iterator> &&
std::ShuffleIterator<T::iterator> &&
std::LessThanComparable<T::iterator::value_type>
void sort(T& r)
{
sort(begin(r), end(r));
}

std::vector<int> v;
sort(v);

It needs quiet a few amount of codes like this only to
recover random access capability from InputIterator
concept.

C++0X, CD 1, NB Comments Date: 21 Feb 2009 Document: SC22 N4411, ISO/IEC CD 14882

1 2 3 4 5 6 7

MB1

Clause No./
Subclause No./

Annex
(e.g. 3.1)

Paragraph/
Figure/Table/

Note
(e.g. Table 1)

Type
of

com-
ment2

Comment (justification for change) by the MB Proposed change by the MB Disposition

1 MB = Member body (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial
NOTE Columns 1, 2, 4, 5 are compulsory.

page 110� of 139�
ISO electronic balloting commenting template/version 2001-10

We can write the following valid code with Boost.Range,
which is implemented with using C++03 SFINAE.

template <class Range>
void sort(Range& r)
{
std::sort(boost::begin(r), boost::end(r));
}

std::vector<int> v;
sort(v); // OK

One of the motivation to introduce concepts are
supporting template programming techniques by
language directly to eliminate hacky techniques such as
tag-dispatch, SFINAE and Type Traints. But SFINAE will
be kept using because it needs quite a few amount of
codes without using SFAINAE.

UK
 269

24.3 3 Ed 'decrements for negative n' seems to imply a negative
number of decrement operations, which is odd.

Need simple, clearer wording

UK
 270

24.3 4 Te The reachability constraint in p5 means that a negavite
result, implying decrements operations in p4, is not
possible

Split the two overloads into separate descriptions,
where reachability is permitted to be in either
direction for RandomAccessIterator

UK
 271

24.3 6,7 Te next/prev return an incremented iterator without changing
the value of the original iterator. However, even this may
invalidate an InputIterator. A ForwardIterator is required
to guarantee the 'multipass' property.

Replace InputIterator constraint with
FOrwardIterator in next and prev function
templates.

UK
 272

24.4 Te reverse_iterator and move_iterator use different
formulations for their comparison operations.
move_iterator merely requires the minimal set of
operations, < and ==, from its underlying iterator and
synthesizes all oprations from these two. reverse_iterator

Rephrase the reverse_iterator comparison
operations using only operators < and ==, as per
the move_iterator specification.

C++0X, CD 1, NB Comments Date: 21 Feb 2009 Document: SC22 N4411, ISO/IEC CD 14882

1 2 3 4 5 6 7

MB1

Clause No./
Subclause No./

Annex
(e.g. 3.1)

Paragraph/
Figure/Table/

Note
(e.g. Table 1)

Type
of

com-
ment2

Comment (justification for change) by the MB Proposed change by the MB Disposition

1 MB = Member body (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial
NOTE Columns 1, 2, 4, 5 are compulsory.

page 111� of 139�
ISO electronic balloting commenting template/version 2001-10

relies on the undelying iterator to support all comparision
operations directly. In practice, move_iterator can only be
implemented this way as it must support iterator types
that are merely InputIterators, and so SemiRegular and
not Regular. However, reserse_iterator has an existing
specification and any change of semantic could change
behaviour of conforming programs today - although an
iterator that yields different results for (a > b) than (b < a)
may fall foul of some semantic consistency requirements,
even if the syntax is met.

UK
 274

24.4, 24.5 Ed The subclauses for standard iterator adaptors could be
better organised. There are essentially 3 kinds of iterator
wrappers provided, stream iterators adapt streams and
get their own subsection. insert iterators adapt
containers, and get their own subsection but it is inserted
into the middle of 24.4 Predifined iterators.
reverse_iterator and move_iterator adpat other iterators,
but their presentation is split by insert iterators

Promote 24.4.2 [insert.iterators] up one level to
24.6. Emphasize that insert iterators adapt
containers Retarget 24.4 [predef.iterators] as
iterator adapters for iterator templates that wrap
other iterators.

UK
 275

24.4.1.1 Te The constructor template taking a single Iterator
argument will be selected for Copy Initialization instead of
the non-template constructor taking a single Iterator
argument selected by Direct Initialization.

The reverse_iterator template constructor taking a
single Iterator argument should be explicit.

UK
 276

24.4.1.1 Ed It is odd to have a mix of declaration stlyes for operator+
overloads. Prefer if either all are member functions, or all
are 'free' functions.

Make the member operators taking a
difference_type argument non-member operators

UK
 277

24.4.1.2.1 1 Te The default constructor default-initializes current, rather
than value-initializes. This means that when Iterator
corresponds to a trivial type, the current member is left
un-initialized, even when the user explictly requests value
intialization! At this point, it is not safe to perform any
operations on the reverse_iterator other than assign it a
new value or destroy it. Note that this does correspond to
the basic definition of a singular iterator.

i/ Specify value initialization rather than default
intialization or ii/ specify = default; rather than spell
out the semantic. This will at least allow users to
select value initialization and copy the iterator
value. or iii/ Add a note to the description
emphasizing the singular nature of a value-
initialized reserve iterator.

C++0X, CD 1, NB Comments Date: 21 Feb 2009 Document: SC22 N4411, ISO/IEC CD 14882

1 2 3 4 5 6 7

MB1

Clause No./
Subclause No./

Annex
(e.g. 3.1)

Paragraph/
Figure/Table/

Note
(e.g. Table 1)

Type
of

com-
ment2

Comment (justification for change) by the MB Proposed change by the MB Disposition

1 MB = Member body (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial
NOTE Columns 1, 2, 4, 5 are compulsory.

page 112� of 139�
ISO electronic balloting commenting template/version 2001-10

UK
 278

24.4.1.2.1 3 Te There is an inconsistency between the constructor taking
an iterator and the constructor template taking a
reverse_iterator where one passes by value, and the
other by const reference. The by-value form is preferred
as it allows for efficient moving when copy elision fails to
kick in.

Change the const reverse_iterator<U> &
parameter to pass-by-value

UK
 279

24.4.1.2.12,
24.4.3.2.12

 Te The reason the return type became unspecified is LWG
issue 386. This reasoning no longer applies as there are
at least two ways to get the right return type with the new
language facilities added since the previous standard.

Specify the return type using either decltype or the
Iter concept map

UK
 280

24.4.1.2.4 Ed The presence of the second iterator value is surprising for
many readers who underestimate the size of a
reverse_iterator object. Adding the exposition only
member that is required by the semantic will reduce
confusion.

Add reverse_iterator expsoition only member tmp
as a comment to class declaration, as a private
member

UK
 281

24.4.1.2.5 Te The current specification for return value will always be a
true pointer type, but reverse_iterator supports proxy
iterators where the pointer type may be some kind of
'smart pointer'

Replace the existing returns specification with a
copy of the operator* specification that returns
this->tmp.operator->

UK
 282

24.4.2.1,
24.4.2.2.2,
24.4.2.3,
24.4.2.4.2,
24.4.2.5,
24.4.2.6.2

n/a Te Insert iterators of move-only types will move from lvalues Add an additional constrained overload for
operator= that requires
!CopyConstructible<Cont::value_type> and mark it
=delete.

UK
 283

24.4.2.5,
24.4.2.6.4

 Te postincrement operator overloads traditionally return by
value - insert_iterator is declared as return by reference.
The change is harmless in this case, but either
front/back_insert_iterator should take the matching
change for consistency, or this function should return-by-
value

change operator++(int) overload to return by
value, not reference. Affects both class summary
and operator definition in p

JP 24.4.3.2.1 2nd ed Typo. Add "i"

C++0X, CD 1, NB Comments Date: 21 Feb 2009 Document: SC22 N4411, ISO/IEC CD 14882

1 2 3 4 5 6 7

MB1

Clause No./
Subclause No./

Annex
(e.g. 3.1)

Paragraph/
Figure/Table/

Note
(e.g. Table 1)

Type
of

com-
ment2

Comment (justification for change) by the MB Proposed change by the MB Disposition

1 MB = Member body (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial
NOTE Columns 1, 2, 4, 5 are compulsory.

page 113� of 139�
ISO electronic balloting commenting template/version 2001-10

61 paragraph,
1st line

"intializing" should be "initializing"

UK
 284

24.5 Te The stream iterators need constraining with
concepts/requrires clauses.

Provide constraints

UK
 285

24.5.1 1,2 Ed Much of the content of p1 and the whole of p2 is a
redundant redefinition of InputIterator. It should be
simplified

Strike p2. Simplify p1 and add a cross-reference
to the definition of InputIterator concept.

UK
 286

24.5.1 3 Ed To the casual reader it is not clear if it is intended to be
able to assign to istream_iterator objects. Specifying the
copy constructor but relying on the implicit copy-assign
operator is confusing.

Either provide a similar definition to the copy-
assign operator as for the copy constructor, or
strike the copy constructor

UK
 287

24.5.1.1 2 Te It is not clear what the intial state of an istream_iterator
should be. Is _value_ initialized by reading the stream, or
default/value initialized? If it is initialized by reading the
stream, what happens if the initialization is deferred until
first dereference, when ideally the iterator value should
have been that of an end-of-stream iterator which is not
safely dereferencable?

Specify _value_ is initialized by reading the
stream, or the iterator takes on the end-of-stream
value if the stream is empty

UK
 288

24.5.1.1 3 Ed The provided specification is vacuous, offering no useful
information.

Either strike the specification of the copy
constructor, or simply replace it with an = default
definition.

UK
 289

24.5.1.2 6 Ed It is very hard to pick up the correct specification for
istream_iterator::operator== as the complete specification
requires reading two quite disconnected paragraphs,
24.5.1p3, and 24.5.1.2p6. Reading just the specifaction of
the operation itself suggests that end-of-stream iterators
are indistinguishable from 'valid' stream iterators, which is
a very dangerous misreading.

Merge 24.5.1p3, equality comparison of end-of-
stream-iterators, into 24.5.1.2p6, the specification
of the equality operator for istream_iterator.

UK
 290

24.5.2 1 Te The character type of a string delimiter for an
ostream_iterator should be const charT *, the type of the
elements, not char *, a narrow character string.

Replace char * with const charT *

C++0X, CD 1, NB Comments Date: 21 Feb 2009 Document: SC22 N4411, ISO/IEC CD 14882

1 2 3 4 5 6 7

MB1

Clause No./
Subclause No./

Annex
(e.g. 3.1)

Paragraph/
Figure/Table/

Note
(e.g. Table 1)

Type
of

com-
ment2

Comment (justification for change) by the MB Proposed change by the MB Disposition

1 MB = Member body (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial
NOTE Columns 1, 2, 4, 5 are compulsory.

page 114� of 139�
ISO electronic balloting commenting template/version 2001-10

UK
 291

24.5.2.2 2 Te ostream_iterator postincrement operator returns by
reference rather than by value. This may be a small
efficiency gain, but it is otherwise unconventional. Prefer
return-by-value.

ostream_iterator operator++(int);

FR
34

24.5.3
[istreambuf.ite
rator]

 ed There are two public sections, and the content of the
second one is indented with respect to the first. I don't it
should be.

UK
 292

24.5.3 1 Ed Prefer the use of the new nullptr constant to the zero
literal when using a null pointer in text.

Change istreambuf_iterator(0) to
istreambuf_iterator(nullptr)

UK
 293

24.5.3 2,3,4 Ed The listed paragraphs redundantly redefine an input
iterator, and redundancy can be a dangerous thing in a
specification. Suggest a simpler phrasing below.

2. The result of operator*() on an end of stream is
undefined. For any other iterator value a
char_type value is returned. 3. Two end of stream
iterators are always equal. An end of stream
iterator is not equal to a non-end of stream
iterator. 4. As istreambuf_iterator() is an
InputIterator but not a ForwardIterator,
istreambuf_iterators object can be used only for
one-pass algorithms. It is not possible to assign a
character via an input iterator.

UK
 294

24.5.3.2 2 Te Implicit converting constructors can be invoked at
surprising times, so there should always be a good
reason for declaring one.

Mark the two single-argument constructors take a
stream or stream buffer as explicit. The proxy
constructor should remain implicit. explicit
istreambuf_iterator(basic_istream<charT,traits>&
s) throw(); explicit
istreambuf_iterator(basic_streambuf<charT,traits>
* s) throw();

UK
 295

25 Te THere is a level of redundancy in the library specification
for many algorithms that can be eliminated with the
combination of concepts and default parameters for
function templates. Eliminating redundancy simplified
specification and reduces the risk of inttroducing

Adopt n2743, or an update of that paper.

C++0X, CD 1, NB Comments Date: 21 Feb 2009 Document: SC22 N4411, ISO/IEC CD 14882

1 2 3 4 5 6 7

MB1

Clause No./
Subclause No./

Annex
(e.g. 3.1)

Paragraph/
Figure/Table/

Note
(e.g. Table 1)

Type
of

com-
ment2

Comment (justification for change) by the MB Proposed change by the MB Disposition

1 MB = Member body (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial
NOTE Columns 1, 2, 4, 5 are compulsory.

page 115� of 139�
ISO electronic balloting commenting template/version 2001-10

accidental inconsistencies.

JP
62

25, 25.3.1.5,
26.3.6.5

 te The return types of is_sorted_until function and
is_heap_until function are iterator. But basically, the
return type of is_xxx function is bool. And the return
type of lower_bound function and upper_bound is
iterator.
So we think that it is reasonable to change those two

functions.

Change "is_sorted_until" to "sorted_bound"
 Change "is_heap" to "heap_bound"

UK
 296

25.1.8 1 Te The 'Returns' of adjacent_find requires only HasEqualTo,
or a Predicate. Requiring EqualityComparable or
EquivalenceRelation seems too strong and not useful.

Change EqualityComparable to HasEqualTo and
EquivalnceRelation to Predicate

UK
 297

25.2.11 6 Ed The definition of rotate_copy is very complicated. It is
equivalent to: return copy(first, middle, copy(middle, last,
result));

Change 'effects' to, returns, requires, complexity
to: effects: equivalent to: return copy(first, middle,
copy(middle, last, result));

UK
 298

25.2.13 13 Te partition_point requires a partitioned array requires: is_partitioned(first, last, pred) != false;

UK
 299

25.2.2 Ed Should be consistent in style use of concepts in template
parameter lists. The auto-OutputIterator sytle used in
std::copy is probably preferred.

Change way signature is declared:
template<InputIterator InIter, OutputIterator<auto,
RvalueOf<InIter::reference>::type> OutIter>
OutIter move(InIter first, InIter last, OutIter result);

UK
 300

25.2.3 Te Since publishing the original standard, we have learned
that swap is a fundamental operation, and several
common idioms rely on it - especially those related to
exception safety. As such it belongs in the common
<utility> header rather than the broader <algorithm>
header, and likewise should move to clause 20. For
backwards compatiblility the algorithm header should be
required to #include <utility>, which would be covered in
the resolution of LWG issue 343. There are already
dependencies in <algorithm> on types declared in this
header, so this comment does not create a new
dependency.

Move primary swap template from <algorithm>
into <utility>. Move 25.2.3 to somewhere under
20.2. Require <algorithm> to #include <utility> to
access pair and provide legacy support for finding
swap.

C++0X, CD 1, NB Comments Date: 21 Feb 2009 Document: SC22 N4411, ISO/IEC CD 14882

1 2 3 4 5 6 7

MB1

Clause No./
Subclause No./

Annex
(e.g. 3.1)

Paragraph/
Figure/Table/

Note
(e.g. Table 1)

Type
of

com-
ment2

Comment (justification for change) by the MB Proposed change by the MB Disposition

1 MB = Member body (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial
NOTE Columns 1, 2, 4, 5 are compulsory.

page 116� of 139�
ISO electronic balloting commenting template/version 2001-10

UK
 301

25.2.5 Te replace and replace_if have the requirement:
OutputIterator<Iter, Iter::reference> Which implies they
need to copy some values in the range the algorithm is
iterating over. This is not however the case, the only thing
that happens is const T&s might be copied over existing
elements (hence the OutputIterator<Iter, const T&>

Remove OutputIterator<Iter, Iter::reference> from
replace and replace_if

UK
 302

25.3 4 Ed the concept StrictWeakOrder covers the definition of a
strict weak ordering, described in paragraph 4.

Remove 4, and mention StrictWeakOrder in
paragraph 1.

UK
 303

25.3 6 Ed This paragraph just describes is_partitioned 6 A sequence [start,finish) is partitioned with
respect to an expression f(e) if is_partitioned(start,
finish, e) != false

UK
 304

25.3.6 Ed The requires clauses of push_heap, pop_heap and
make_heap are inconsistently formatted, dispite being
identical

Format them identically.

UK
 305

25.3.7 1, 9, 17 Te The negative requirement on IsSameType is a hold-over
from an earlier draught with a variadic template form of
min/max algorith. It is no longer necessary.

Strike the !IsSameType<T, Compare> constraint
on min/max/minmax algorithms

US
84

26 ge Parts of the numerics chapter are not concept enabled.

FR
35

26.3
[Complex
numbers]

 te Instantiations of the class template complex<> have to be
allowed for integral types, to reflect existing practice and
ISO standards (LIA-III).

UK
 306

26.4 Te Random number library component cannot be used in
constrained templates

Provide constraints for the random number library

JP
63

26.4.8.5.1 te No constructor of discrete_distribution that accepts
initializer_list.
discrete_distribution initialize distribution by a given range
(iterators), but temporary variable of a container or an
array is needed in the following case.

Add the following constructer.
 discrete_distribution(initializer_list<result_type>);

C++0X, CD 1, NB Comments Date: 21 Feb 2009 Document: SC22 N4411, ISO/IEC CD 14882

1 2 3 4 5 6 7

MB1

Clause No./
Subclause No./

Annex
(e.g. 3.1)

Paragraph/
Figure/Table/

Note
(e.g. Table 1)

Type
of

com-
ment2

Comment (justification for change) by the MB Proposed change by the MB Disposition

1 MB = Member body (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial
NOTE Columns 1, 2, 4, 5 are compulsory.

page 117� of 139�
ISO electronic balloting commenting template/version 2001-10

int ar[] = {1, 2, 3};
discrete_distribution<> dist(ar, ar+3);

Other libraries also accept initializer_list, so change
discrete_distribution library to accept initializer_list too.

JP
64

26.5.2 te “valarray<T>& operator+= (initializer_list<T>);” is not
defined.

Add valarray<T>& operator+= (initializer_list<T>);

UK
 307

26.7 Footnote
288

Ed The footnote refers to TR1, which is not a defined term in
this standard. Drop the reference to TR1, those templates
are a regular part of the standard now and how they were
introduced is no longer relevant.

Drop the reference to TR1.

US
85

27 ge The input/output chapter is not concept enabled.

UK
 308

27 Te iostreams library cannot be used from constrained
templates

Provide constraints for the iostreams library,
clause 27

JP
65

27.4.4 te Switch from “unspecified-bool-type” to “explicit operator
bool() const”.

Replace "operator unspecified-bool-type() const;"
with "explicit operator bool() const;"

JP
66

27.4.4.3 1st
paragraph

te Switch from “unspecified-bool-type” to “explicit operator
bool() const”

Replace "operator unspecified-bool-type() const;"
with "explicit operator bool() const;"

FR
36

27.6.1.2.2
[istream.form
atted.arithmeti
c]

1, 2, and 3 ed iostate err = 0;

iostate is a bitmask type and so could be an enumeration.
Probably using
goodbit is the solution.

FR 27.6.1.2.2 3 ed else if (lval < numeric_limits<int>::min()

C++0X, CD 1, NB Comments Date: 21 Feb 2009 Document: SC22 N4411, ISO/IEC CD 14882

1 2 3 4 5 6 7

MB1

Clause No./
Subclause No./

Annex
(e.g. 3.1)

Paragraph/
Figure/Table/

Note
(e.g. Table 1)

Type
of

com-
ment2

Comment (justification for change) by the MB Proposed change by the MB Disposition

1 MB = Member body (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial
NOTE Columns 1, 2, 4, 5 are compulsory.

page 118� of 139�
ISO electronic balloting commenting template/version 2001-10

37 [istream.form
atted.arithmeti
c]

|| numeric_limits<int>::max() < lval))

The parentheses aren't balanced.

JP
67

27.7.1 te basic_stringbuf dose not use concept. Replace “class Allocator” to “Allocator Alloc”.
 Correct as follows.

namespace std {
 template <class charT, class traits =
char_traits<charT>,
 Allocator Alloc = allocator<charT> >
 class basic_stringbuf : public
basic_streambuf<charT,traits> {
 public:
 ...

 // 27.7.1.1 Constructors:
 explicit basic_stringbuf(ios_base::openmode
which
 = ios_base::in | ios_base::out);
 explicit basic_stringbuf
 (const basic_string<charT,traits,Alloc>& str,
 ios_base::openmode which = ios_base::in |
ios_base::out);
 basic_stringbuf(basic_stringbuf&& rhs);

 ...

 // 27.7.1.3 Get and set:
 basic_string<charT,traits,Alloc> str() const;
 void str(const basic_string<charT,traits,Alloc>&
s);

 ...
 };

C++0X, CD 1, NB Comments Date: 21 Feb 2009 Document: SC22 N4411, ISO/IEC CD 14882

1 2 3 4 5 6 7

MB1

Clause No./
Subclause No./

Annex
(e.g. 3.1)

Paragraph/
Figure/Table/

Note
(e.g. Table 1)

Type
of

com-
ment2

Comment (justification for change) by the MB Proposed change by the MB Disposition

1 MB = Member body (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial
NOTE Columns 1, 2, 4, 5 are compulsory.

page 119� of 139�
ISO electronic balloting commenting template/version 2001-10

 template <class charT, class traits, Allocator
Alloc>
 void swap(basic_stringbuf<charT, traits, Alloc>&
x,
 basic_stringbuf<charT, traits, Alloc>& y);
 template <class charT, class traits, Allocator
Alloc>
 void swap(basic_stringbuf<charT, traits,
Alloc>&& x,
 basic_stringbuf<charT, traits, Alloc>& y);
 template <class charT, class traits, Allocator
Alloc>
 void swap(basic_stringbuf<charT, traits, Alloc>&
x,
 basic_stringbuf<charT, traits, Alloc>&& y);
}

JP
68

27.7.2 te basic_istringstream dose not use concept. Replace “class Allocator” to “Allocator Alloc”.
 Correct as follows.

namespace std {
 template <class charT, class traits =
char_traits<charT>,
 Allocator Alloc = allocator<charT> >
 class basic_istringstream : public
basic_istream<charT,traits> {
 public:
 typedef charT char_type;
 typedef typename traits::int_type int_type;
 typedef typename traits::pos_type pos_type;
 typedef typename traits::off_type off_type;
 typedef traits traits_type;
 typedef Alloc allocator_type;

 // 27.7.2.1 Constructors:
 explicit

C++0X, CD 1, NB Comments Date: 21 Feb 2009 Document: SC22 N4411, ISO/IEC CD 14882

1 2 3 4 5 6 7

MB1

Clause No./
Subclause No./

Annex
(e.g. 3.1)

Paragraph/
Figure/Table/

Note
(e.g. Table 1)

Type
of

com-
ment2

Comment (justification for change) by the MB Proposed change by the MB Disposition

1 MB = Member body (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial
NOTE Columns 1, 2, 4, 5 are compulsory.

page 120� of 139�
ISO electronic balloting commenting template/version 2001-10

basic_istringstream(ios_base::openmode which =
ios_base::in);
 explicit basic_istringstream(
 const basic_string<charT,traits,Alloc>&
str,
 ios_base::openmode which =
ios_base::in);
 basic_istringstream(basic_istringstream&& rhs);

 // 27.7.2.2 Assign and swap:
 basic_istringstream&
operator=(basic_istringstream&& rhs);
 void swap(basic_istringstream&& rhs);

 // 27.7.2.3 Members:
 basic_stringbuf<charT,traits,Alloc>* rdbuf()
const;

 basic_string<charT,traits,Alloc> str() const;
 void str(const basic_string<charT,traits,Alloc>&
s);

 private:
 // basic_stringbuf<charT,traits,Alloc> sb;
exposition only
 };

 template <class charT, class traits, Allocator
Alloc>
 void swap(basic_istringstream<charT, traits,
Alloc>& x,
 basic_istringstream<charT, traits, Alloc>&
y);
 template <class charT, class traits, Allocator
Alloc>
 void swap(basic_istringstream<charT, traits,
Alloc>&& x,

C++0X, CD 1, NB Comments Date: 21 Feb 2009 Document: SC22 N4411, ISO/IEC CD 14882

1 2 3 4 5 6 7

MB1

Clause No./
Subclause No./

Annex
(e.g. 3.1)

Paragraph/
Figure/Table/

Note
(e.g. Table 1)

Type
of

com-
ment2

Comment (justification for change) by the MB Proposed change by the MB Disposition

1 MB = Member body (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial
NOTE Columns 1, 2, 4, 5 are compulsory.

page 121� of 139�
ISO electronic balloting commenting template/version 2001-10

 basic_istringstream<charT, traits, Alloc>&
y);
 template <class charT, class traits, Allocator
Alloc>
 void swap(basic_istringstream<charT, traits,
Alloc>& x,
 basic_istringstream<charT, traits,
Alloc>&& y);
}

JP
69

27.7.3 te basic_ostringstream dose not use concept. Replace “class Allocator” to “Allocator Alloc”.
 Correct as follows.

namespace std {
 template <class charT, class traits =
char_traits<charT>,
 Allocator Alloc = allocator<charT> >
 class basic_ostringstream : public
basic_ostream<charT,traits> {
 public:
 // types:
 typedef charT char_type;
 typedef typename traits::int_type int_type;
 typedef typename traits::pos_type pos_type;
 typedef typename traits::off_type off_type;
 typedef traits traits_type;
 typedef Alloc allocator_type;

 // 27.7.3.1 Constructors/destructor:
 explicit
basic_ostringstream(ios_base::openmode which =
ios_base::out);
 explicit basic_ostringstream(
 const basic_string<charT,traits,Alloc>&
str,
 ios_base::openmode which =
ios_base::out);

C++0X, CD 1, NB Comments Date: 21 Feb 2009 Document: SC22 N4411, ISO/IEC CD 14882

1 2 3 4 5 6 7

MB1

Clause No./
Subclause No./

Annex
(e.g. 3.1)

Paragraph/
Figure/Table/

Note
(e.g. Table 1)

Type
of

com-
ment2

Comment (justification for change) by the MB Proposed change by the MB Disposition

1 MB = Member body (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial
NOTE Columns 1, 2, 4, 5 are compulsory.

page 122� of 139�
ISO electronic balloting commenting template/version 2001-10

 basic_ostringstream(basic_ostringstream&&
rhs);

 // 27.7.3.2 Assign/swap:
 basic_ostringstream&
operator=(basic_ostringstream&& rhs);
 void swap(basic_ostringstream&& rhs);

 // 27.7.3.3 Members:
 basic_stringbuf<charT,traits,Alloc>* rdbuf()
const;
 basic_string<charT,traits,Alloc> str() const;
 void str(const
basic_string<charT,traits,Alloc>& s);
 private:
 // basic_stringbuf<charT,traits,Alloc> sb;
exposition only
 };

 template <class charT, class traits, Allocator
Alloc>
 void swap(basic_ostringstream<charT, traits,
Alloc>& x,
 basic_ostringstream<charT, traits, Alloc>&
y);
 template <class charT, class traits, Allocator
Alloc>
 void swap(basic_ostringstream<charT, traits,
Alloc>&& x,
 basic_ostringstream<charT, traits, Alloc>&
y);
 template <class charT, class traits, Allocator
Alloc>
 void swap(basic_ostringstream<charT, traits,
Alloc>& x,
 basic_ostringstream<charT, traits,
Alloc>&& y);

C++0X, CD 1, NB Comments Date: 21 Feb 2009 Document: SC22 N4411, ISO/IEC CD 14882

1 2 3 4 5 6 7

MB1

Clause No./
Subclause No./

Annex
(e.g. 3.1)

Paragraph/
Figure/Table/

Note
(e.g. Table 1)

Type
of

com-
ment2

Comment (justification for change) by the MB Proposed change by the MB Disposition

1 MB = Member body (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial
NOTE Columns 1, 2, 4, 5 are compulsory.

page 123� of 139�
ISO electronic balloting commenting template/version 2001-10

}

JP
71

27.7.3 ed Typo.
"template" is missing in "class basic_ostringstream" of the
title of the chapter.

Correct as follows.
27.7.3 Class basic_ostringstream

 should be

27.7.3 Class template basic_ostringstream

JP
72

27.7.4 te basic_stringstream dose not use concept. Replace "class Allocator" to "Allocator Alloc".
 Correct as follows.

namespace std {
 template <class charT, class traits =
char_traits<charT>,
 Allocator Alloc = allocator<charT> >
 class basic_stringstream
 : public basic_iostream<charT,traits> {
 public:
 // types:
 typedef charT char_type;
 typedef typename traits::int_type int_type;
 typedef typename traits::pos_type pos_type;
 typedef typename traits::off_type off_type;
 typedef traits traits_type;
 typedef Alloc allocator_type;

 // constructors/destructor
 explicit basic_stringstream(
 ios_base::openmode which =
ios_base::out|ios_base::in);
 explicit basic_stringstream(
 const basic_string<charT,traits,Alloc>& str,
 ios_base::openmode which =
ios_base::out|ios_base::in);
 basic_stringstream(basic_stringstream&& rhs);

C++0X, CD 1, NB Comments Date: 21 Feb 2009 Document: SC22 N4411, ISO/IEC CD 14882

1 2 3 4 5 6 7

MB1

Clause No./
Subclause No./

Annex
(e.g. 3.1)

Paragraph/
Figure/Table/

Note
(e.g. Table 1)

Type
of

com-
ment2

Comment (justification for change) by the MB Proposed change by the MB Disposition

1 MB = Member body (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial
NOTE Columns 1, 2, 4, 5 are compulsory.

page 124� of 139�
ISO electronic balloting commenting template/version 2001-10

 // 27.7.5.1 Assign/swap:
 void swap(basic_stringstream&& rhs);

 // Members:
 basic_stringbuf<charT,traits,Alloc>* rdbuf()
const;
 basic_string<charT,traits,Alloc> str() const;
 void str(const basic_string<charT,traits,Alloc>&
str);
 private:
 // basic_stringbuf<charT, traits> sb; exposition
only
 };

 template <class charT, class traits, Allocator
Alloc>
 void swap(basic_stringstream<charT, traits,
Alloc>& x,
 basic_stringstream<charT, traits, Alloc>&
y);
 template <class charT, class traits, Allocator
Alloc>
 void swap(basic_stringstream<charT, traits,
Alloc>&& x,
 basic_stringstream<charT, traits, Alloc>&
y);
 template <class charT, class traits, Allocator
Alloc>
 void swap(basic_stringstream<charT, traits,
Alloc>& x,
 basic_stringstream<charT, traits, Alloc>&&
y);
}

JP
73

27.8.1.14 te It is a problem from C++98, fstream cannot appoint a
filename of wide character string(const wchar_t and const
wstring&).

Add interface corresponding to wchar_t, char16_t
and char32_t.

C++0X, CD 1, NB Comments Date: 21 Feb 2009 Document: SC22 N4411, ISO/IEC CD 14882

1 2 3 4 5 6 7

MB1

Clause No./
Subclause No./

Annex
(e.g. 3.1)

Paragraph/
Figure/Table/

Note
(e.g. Table 1)

Type
of

com-
ment2

Comment (justification for change) by the MB Proposed change by the MB Disposition

1 MB = Member body (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial
NOTE Columns 1, 2, 4, 5 are compulsory.

page 125� of 139�
ISO electronic balloting commenting template/version 2001-10

US
86

28 ge The regular expressions chapter is not concept enabled.

UK
 309

28 Te Regular expressions cannot be used in constrained
templates

Provide constraints for the regular expression
library, clause 28

UK
 310

28 Te The regex chapter uses iterators in the old pre-concept
style, it should be changed to use concepts instead.

Use concepts for iterator template arguments
throughout.

UK
 314

28.4 Te The swap overloads for regex classes are only supplied
for l-value references. Other sections of the library (eg 21
strings or 23 containers) provide two extra overloads
taking an r-value reference as the first and second
argument respectively.

Add the missing overloads to 28.4 and the
corresponding later sections in 28 for each swap
function. We want to accept AMs paper which
proposes a single overload with two r-value
references

UK
 315

28.4 p6 Te 6 Effects: string_type str(first, last); return
use_facet<collate<charT> >(
getloc()).transform(&*str.begin(), &*str.end()); Is it legal to
dereference str.end() ?

Reword to effect clause to use legal iterator
dereferences

UK
 316

28.4 ff Te The constructors for regex classes do not have an r-value
overload.

Add the missing r-value constructors to regex
classes.

UK
 317

28.8 Te basic_string has both a constructor and an assignment
operator that accepts an initializer list, basic_regex
should have the same.

In the basic_regex synopsis, after: basic_regex&
operator=(const charT* ptr); add: basic_regex&
operator=(initializer_list<charT> il); And after
paragraph 20 add: basic_regex&
operator=(initializer_list<charT> il); Effects: returns
assign(il.begin(), il.end());

JP
74

28.8 te “basic_regx & operator= (initializer_list<T>);” is not
defined.

Add basic_regx & operator= (initializer_list<T>);

UK
 318

28.8.2 para 22 Ed Constructor definition should appear with the other
constructors not after assignment ops.

Move para 22 to just after para 17.

C++0X, CD 1, NB Comments Date: 21 Feb 2009 Document: SC22 N4411, ISO/IEC CD 14882

1 2 3 4 5 6 7

MB1

Clause No./
Subclause No./

Annex
(e.g. 3.1)

Paragraph/
Figure/Table/

Note
(e.g. Table 1)

Type
of

com-
ment2

Comment (justification for change) by the MB Proposed change by the MB Disposition

1 MB = Member body (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial
NOTE Columns 1, 2, 4, 5 are compulsory.

page 126� of 139�
ISO electronic balloting commenting template/version 2001-10

UK
 319

28.12.2 Te It was always expected that regex_token_iterator would
be constructible from an array literal: indeed ideally this is
the prefered method of initializing such an object.
However, the best we could do in C++0x was: template
<std::size_t N> regex_token_iterator(BidirectionalIterator
a, BidirectionalIterator b, const regex_type& re, const int
(&submatches)[N], regex_constants::match_flag_type m
= regex_constants::match_default); Now that we have
initializer_lists we should use them to remove this
particular wart.

To the synopsis for regex_token_iterator, after
template <std::size_t N>
regex_token_iterator(BidirectionalIterator a,
BidirectionalIterator b, const regex_type& re, const
int (&submatches)[N],
regex_constants::match_flag_type m =
regex_constants::match_default); add
regex_token_iterator(BidirectionalIterator a,
BidirectionalIterator b, const regex_type& re,
initializer_list<int> submatches,
regex_constants::match_flag_type m =
regex_constants::match_default); In 28.12.2.1 add
the declaration:
regex_token_iterator(BidirectionalIterator a,
BidirectionalIterator b, const regex_type& re,
initializer_list<int> submatches,
regex_constants::match_flag_type m =
regex_constants::match_default); And to the end
of para 3 add: The forth constructor initializes the
member subs to hold a copy of the sequence of
integer values in the range [submatches.begin(),
submatches.end()).

US
87

29 ge The atomics chapter is not concept enabled. The adopted
paper, N2427, did have those concepts.

UK
 311

29 Te Atomic types cannot be used generically in a constrained
template

Provide constraints for the atomics library, clause
29

UK
 312

29 Te The contents of the <stdatomic.h> header are not listed
anywhere, and <cstdatomic> is listed as a C99 header in
chapter 17. If we intend to use these for compatibility with
a future C standard, we should not use them now.

Remove <cstdatomic> from the C99 headers in
table 14. Add a new header <atomic> to the
headers in table 13. Update chapter 29 to remove
reference to <stdatomic.h> and replace the use of
<cstdatomic> with <atomic>. If and when WG14
adds atomic operations to C we can add
corresponding headers to table 14 with a TR.

JP 29 ed A definition of enum or struct is the style of C using Change to a style of C++.

C++0X, CD 1, NB Comments Date: 21 Feb 2009 Document: SC22 N4411, ISO/IEC CD 14882

1 2 3 4 5 6 7

MB1

Clause No./
Subclause No./

Annex
(e.g. 3.1)

Paragraph/
Figure/Table/

Note
(e.g. Table 1)

Type
of

com-
ment2

Comment (justification for change) by the MB Proposed change by the MB Disposition

1 MB = Member body (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial
NOTE Columns 1, 2, 4, 5 are compulsory.

page 127� of 139�
ISO electronic balloting commenting template/version 2001-10

75 typedef. Correct as follows.

29.1

namespace std {
 typedef enum memory_order {
 memory_order_relaxed,
memory_order_consume, memory_order_acquire,
 memory_order_release,
memory_order_acq_rel, memory_order_seq_cst
 } memory_order;
}

 should be

namespace std {
 enum memory_order {
 memory_order_relaxed,
memory_order_consume, memory_order_acquire,
 memory_order_release,
memory_order_acq_rel, memory_order_seq_cst
 };
}

29.3.1

namespace std {
 typedef struct atomic_bool {
 ...
 } atomic_bool;
}

 should be

namespace std {
 struct atomic_bool {
 ...

C++0X, CD 1, NB Comments Date: 21 Feb 2009 Document: SC22 N4411, ISO/IEC CD 14882

1 2 3 4 5 6 7

MB1

Clause No./
Subclause No./

Annex
(e.g. 3.1)

Paragraph/
Figure/Table/

Note
(e.g. Table 1)

Type
of

com-
ment2

Comment (justification for change) by the MB Proposed change by the MB Disposition

1 MB = Member body (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial
NOTE Columns 1, 2, 4, 5 are compulsory.

page 128� of 139�
ISO electronic balloting commenting template/version 2001-10

 };
}

namespace std {
 typedef struct atomic_itype {
 ...
 } atomic_itype;
}

 should be

namespace std {
 struct atomic_itype {
 ...
 };
}

29.3.2

namespace std {
 typedef struct atomic_address {
 ...
 } atomic_address;
}

 should be

namespace std {
 struct atomic_address {
 ...
 };
}

29.5

namespace std {
 typedef struct atomic_flag {

C++0X, CD 1, NB Comments Date: 21 Feb 2009 Document: SC22 N4411, ISO/IEC CD 14882

1 2 3 4 5 6 7

MB1

Clause No./
Subclause No./

Annex
(e.g. 3.1)

Paragraph/
Figure/Table/

Note
(e.g. Table 1)

Type
of

com-
ment2

Comment (justification for change) by the MB Proposed change by the MB Disposition

1 MB = Member body (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial
NOTE Columns 1, 2, 4, 5 are compulsory.

page 129� of 139�
ISO electronic balloting commenting template/version 2001-10

 ...
 } atomic_flag;
}

 should be

namespace std {
 struct atomic_flag {
 ...
 };
}

UK
 313

29.1 Te seq_cst fences don't necessarily guarantee ordering
http://home.twcny.rr.com/hinnant/cpp_extensions/issues_
preview/lwg-active.html#926

Add a new paragraph after 29.1 [atomics.order]p5
that says For atomic operations A and B on an
atomic object M, where A and B modify M, if there
are memory_order_seq_cst fences X and Y such
that A is sequenced before X, Y is sequenced
before B, and X precedes Y in S, then B occurs
later than A in the modifiction order of M.

US
88

29.2 te The "lockfree" facilities do not tell the programmer
enough.

Expand the "lockfree" facilities. See the attached
paper "Issues with the C++ Standard" under
Chapter 29, "atomics.lockfree doesn't tell the
programmer enough"

US
89

29.3.1 Table 122 te The types in the table "Atomics for standard typedef
types" should be typedefs, not classes. These semantics
are necessary for compatibility with C.

Change the classes to typedefs. Google

US
90

29.4 te Are atomic functions allowed to have non-volatile
overloads?

Allow non-volatile overloads. See the attached
paper "Issues with the C++ Standard, under
Chapter 29, "Are atomic functions allowed to have
non-volatile overloads?"

US
91

29.4 te Whether or not a failed compare_exchange is a RMW
operation (as used in 1.10 [intro.multithread]) is unclear.

Make failing compare_exchange operations not
be RMW. See the attached paper under "atomic
RMW status of failed compare_exchange"

C++0X, CD 1, NB Comments Date: 21 Feb 2009 Document: SC22 N4411, ISO/IEC CD 14882

1 2 3 4 5 6 7

MB1

Clause No./
Subclause No./

Annex
(e.g. 3.1)

Paragraph/
Figure/Table/

Note
(e.g. Table 1)

Type
of

com-
ment2

Comment (justification for change) by the MB Proposed change by the MB Disposition

1 MB = Member body (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial
NOTE Columns 1, 2, 4, 5 are compulsory.

page 130� of 139�
ISO electronic balloting commenting template/version 2001-10

US
92

29.4 te The effect of memory_order_consume with atomic RMW
operations is unclear.

Follow the lead of fences [atomics.fences], and
promote memory_order_consume to
memory_order_acquire with RMW operations.

JP
76

30 ed A description for "Throws: Nothing." are not unified.
At the part without throw, "Throws: Nothing." should be
described.

Add "Throws: Nothing." to the following.
 30.2.1.6 , 1st paragraph
 30.3.3.1 , 4th paragraph
 30.3.3.2.1 , 6th paragraph
 30.4.1 , 7th and 8th paragraph
 30.4.2 , 6th, 7th,19th,21th and 25th paragraph

US
93

30 ge The thread chapter is not concept enabled.

UK
 320

30 Te Threads library cannot be used in constrained templates Provide constraints for the threads library, clause
30

UK
 321

30 Ed Throughout this clause, the term Requires: is used to
introduce compile time requirements, which we expect to
be replaced with concepts and requires in code. Run-time
preconditions are introduced with the term
"Preconditions:" which is not a defined part of the library
documentation structure (17.5.2.4). However, this is
exactly the direction that BSI would like to see the
organisation move, replacing Requires: clauses with
Preconditions: clasues throught the library. See comment
against clause 17 for more details.

Decument Preconditions: paragraphs in 17.5.2.4,
and use consistently through rest of the library.

US
94

30.1.2 1 te The first sentence of para 1 suggests that no other library
function is permitted to call operating system or low level
APIs.

Rewrite para 1 as: “ Some functions described in
this Clause are specified to throw exceptions of
type system_error (19.4.5). Such exceptions shall
be thrown if a call to an operating system or
underlying API results in an error that prevents the
library function from satisfying its postconditions or
from returning a meaningful value.”

C++0X, CD 1, NB Comments Date: 21 Feb 2009 Document: SC22 N4411, ISO/IEC CD 14882

1 2 3 4 5 6 7

MB1

Clause No./
Subclause No./

Annex
(e.g. 3.1)

Paragraph/
Figure/Table/

Note
(e.g. Table 1)

Type
of

com-
ment2

Comment (justification for change) by the MB Proposed change by the MB Disposition

1 MB = Member body (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial
NOTE Columns 1, 2, 4, 5 are compulsory.

page 131� of 139�
ISO electronic balloting commenting template/version 2001-10

US
95

30.1.3 1 te “native_handle_type” is a typedef, not a class member. Several classes described in this Clause have a
member native_handle (of type
native_handle_type) . The
presence of this member and its semantics is
implementation defined. [Note: This member
allows implementations to provide access to
implementation details. The name of the member
and the type are specified to facilitate portable
compile-time detection. Actual use of this member
or the corresponding type is inherently non-
portable. —end note]

US
96

30.1.4 2 te There is no definition here for monotonic clock. Implementations should use a monotonic clock to
measure time for these functions. A monotonic
clock measures real time, but cannot be set, and
is guaranteed to have no negative clock jumps.

UK
 322

30.1.4 2 Te Not all systms can provide a monotonic clock. How are
they expected to treat a _for function?

Add at least a note explaining the intent for
systems that do not support a monotonic clock.

UK
 323

30.2.1 1 Te The presence of a non-explicit variadic template
constructor alongside an explicit single-argument
constructor can lead to behaviour that is not intended: the
variadic constructor will be selected for implicit
conversions, defeating the purpose of the explicit single-
argument constructor. Additionally the single-argument
constructor is redundant; the variadic constructor can
provide identical functionality with one *fewer* copies if
the supplied func is an lvalue.

Mark constructor template <class F, class ...Args>
thread(F&& f, Args&&... args); as explicit and
remove the single-argument constructor.

UK
 324

30.2.1.1 Te thread::id objects should be as useable in hashing
containers as they are in ordered associative containers.

Add thread::id support for std::hash

JP 30.2.1.2 te "CopyConstructible" and "MoveConstructible" in
"Requires: F and each Ti in Args shall be

Add a concept for constructor of thread.

C++0X, CD 1, NB Comments Date: 21 Feb 2009 Document: SC22 N4411, ISO/IEC CD 14882

1 2 3 4 5 6 7

MB1

Clause No./
Subclause No./

Annex
(e.g. 3.1)

Paragraph/
Figure/Table/

Note
(e.g. Table 1)

Type
of

com-
ment2

Comment (justification for change) by the MB Proposed change by the MB Disposition

1 MB = Member body (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial
NOTE Columns 1, 2, 4, 5 are compulsory.

page 132� of 139�
ISO electronic balloting commenting template/version 2001-10

77 CopyConstructible if an lvalue and otherwise
MoveConstructible." are reflected by interface.

JP
78

30.2.1.2 4th
paragraph,
1st line

ed In "F and each Ti in Args", 'Ti' is not clear. Replace "Ti" with "args"

US
97

30.2.1.3 1 te detach-on-destruction may result in “escaped” threads
accessing objects with bounded lifetime after the end of
their lifetime.

See document WG21 N2802=08-0312 written by
Hans Boehm.

US
98

30.2.1.3,
30.2.1.4

 The current defined behavior for the std::thread
destructor is to detach the thread. Unfortunately, this
behavior exposes programmers to tricky, hard-to-
diagnose, undefined behavior.

Change destruction behavior to undefined
behavior, with a note strongly encouraging
termination. See the attached paper "Issues with
the C++ Standard" under Chapter 30, "Implicit
thread detach is harmful".

UK
 325

30.3.3 2 Te We believe constexpr literal values should be a more
natural expression of empty tag types than extern objects
as it should improve the compilers ability to optimize the
empty object away completely.

Replace the extern declarations: extern const
defer_lock_t defer_lock; extern const try_to_lock_t
try_to_lock; extern const adopt_lock_t adopt_lock;
with constexpr values constexpr defer_lock_t
defer_lock{}; constexpr try_to_lock_t try_to_lock{};
constexpr adopt_lock_t adopt_lock{};

UK
 326

30.3.3.2.1 7 Te The precondition that the mutex is not owned by this
thread offers introduces the risk of un-necessary
undefined behaviour into the program. The only time it
matters whether the current thread owns the mutex is in
the lock operation, and that will happen subsequent to
construction in this case. The lock operation has the
identical pre-condition, so there is nothing gained by
asserting that precondition earlier and denying the
program the right to get into a valid state before calling
lock.

Strike 30.3.3.2.1p7

UK
 327

30.3.3.2.2 4, 9, 14, 19 Te Not clear what the specification for error condition
resource_deadlock_would_occur means. It is perfectly

Add a precondition !owns. Change the 'i.e.' in the
error condition to be 'e.g.' to allow for this

C++0X, CD 1, NB Comments Date: 21 Feb 2009 Document: SC22 N4411, ISO/IEC CD 14882

1 2 3 4 5 6 7

MB1

Clause No./
Subclause No./

Annex
(e.g. 3.1)

Paragraph/
Figure/Table/

Note
(e.g. Table 1)

Type
of

com-
ment2

Comment (justification for change) by the MB Proposed change by the MB Disposition

1 MB = Member body (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial
NOTE Columns 1, 2, 4, 5 are compulsory.

page 133� of 139�
ISO electronic balloting commenting template/version 2001-10

possible for this thread to own the mutex without setting
owns to true on this specific lock object. It is also possible
for lock operations to succeed even if the thread does
own the mutex, if the mutex is recursive. Likewise, if the
mutex is not recursive and the mutex has been locked
externally, it is not always possible to know that this error
condition should be raised, depending on the host
operating system facilities. It is possible that 'i.e.' was
supposed to be 'e.g.' and that suggests that recursive
locks are not allowed. That makes sense, as the
exposition-only member owns is boolean and not a
integer to count recursive locks.

condition to propogate deadlock detection by the
host OS.

UK
 328

30.3.3.2.2 20 Te There is a missing precondition that owns is true, or an
if(owns) test is missing from the effect clause

Add a precondition that owns == true. Add an
error condition to detect a violation, rather than
yield undefined behaviour.

UK
 329

30.5 Te future, promise and packaged_task provide a framework
for creating future values, but a simple function to tie all
three components together is missing. Note that we only
need a *simple* facility for C++0x. Advanced thread pools
are to be left for TR2.

Provide a simple function along the lines of:
template< typename F, typename ... Args >
requires Callable< F, Args... > future<
Callable::result_type > async(F&& f, Args && ...);
Semantics are similar to creating a thread object
with a packaged_task invoking f with
forward<Args>(args...) but details are left
unspecified to allow different scheduling and
thread spawning implementations. It is unspecified
whether a task submitted to async is run on its
own thread or a thread previously used for another
async task. If a call to async succeeds, it shall be
safe to wait for it from any thread. The state of
thread_local variables shall be preserved during
async calls. No two incomplete async tasks shall
see the same value of this_thread::get_id(). [Note:
this effectively forces new tasks to be run on a
new thread, or a fixed-size pool with no queue. If
the library is unable to spawn a new thread or
there are no free worker threads then the async

C++0X, CD 1, NB Comments Date: 21 Feb 2009 Document: SC22 N4411, ISO/IEC CD 14882

1 2 3 4 5 6 7

MB1

Clause No./
Subclause No./

Annex
(e.g. 3.1)

Paragraph/
Figure/Table/

Note
(e.g. Table 1)

Type
of

com-
ment2

Comment (justification for change) by the MB Proposed change by the MB Disposition

1 MB = Member body (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial
NOTE Columns 1, 2, 4, 5 are compulsory.

page 134� of 139�
ISO electronic balloting commenting template/version 2001-10

call should fail.]

UK
 330

30.5.1 Ed 30.5.1 (and then 30.5.7) refer to a specialisation of
constructible_with_allocator_prefix<> However this trait is
not in the CD, so references to it should be removed.

Remove the reference to
constructible_with_allocator_prefix in 30.5.1
Remove paragraph 30.5.7

JP
79

30.5.1 te The concept of UsesAllocator and Allocator should be
used.

Correct as follows.

template <class R, class Alloc>
struct uses_allocator<promise<R>, Alloc>;
template <class R>
struct
constructible_with_allocator_prefix<promise<R>
>;

 should be

template<class R, Allocator Alloc>
concept_map UsesAllocator<promise<R>, Alloc>;

UK
 331

30.5.3 Te Not clear what it means for a public constructor to be
'exposition only'. If the intent is purely to support the
library calling this constructor then it can be made private
and accessed through friendship. Otherwise it should be
documented for public consumption.

Declare the constructor as private with a note
about intended friendship, or remove the
exposition-only comment and document the
semantics.

UK
 332

30.5.4 Ed It is not clear without reference to the original proposal
how to use a future. In particular, the only way for the
user to construct a future is via the promise API which is
documented after the presentation of future. Most library
clauses feature a small description of their components
and intended use, it would be most useful in this case.

Provide a small introductory paragraph,
docuenting intended purpose of the future class
template and the way futures can only be created
via the promise API.

UK
 333

30.5.4 5 Ge We expect the complicated 3-signature specifcation for
future::get() to be simplified to a single signature with a
requires clause by the application of concepts.

Requires fully baked concepts for clause 30

C++0X, CD 1, NB Comments Date: 21 Feb 2009 Document: SC22 N4411, ISO/IEC CD 14882

1 2 3 4 5 6 7

MB1

Clause No./
Subclause No./

Annex
(e.g. 3.1)

Paragraph/
Figure/Table/

Note
(e.g. Table 1)

Type
of

com-
ment2

Comment (justification for change) by the MB Proposed change by the MB Disposition

1 MB = Member body (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial
NOTE Columns 1, 2, 4, 5 are compulsory.

page 135� of 139�
ISO electronic balloting commenting template/version 2001-10

UK
 334

30.5.4 5 Te Behaviour of get() is undefined if calling get() while not
is_ready(). The intent is that get() is a blocking call, and
will wait for the future to become ready.

Effects: If is_ready() would return false, block on
the asynchronous result associated with *this.

UK
 335

30.5.4 Te std::unique_future is MoveConstructible, so you can
transfer the association with an asynchronous result from
one instance to another. However, there is no way to
determine whether or not an instance has been moved
from, and therefore whether or not it is safe to wait for it.
std::promise<int> p; std::unique_future<int>
uf(p.get_future()); std::unique_future<int>
uf2(std::move(uf)); uf.wait(); // oops, uf has no result to
wait for.

Add a "waitable()" function to unique_future (and
shared_future) akin to std::thread::joinable(),
which returns true if there is an associated result
to wait for (whether or not it is ready). Then we
can say: if(uf.waitable()) uf.wait();

UK
 336

30.5.4 Te It is possible to transfer ownership of the asynchronous
result from one unique_future instance to another via the
move-constructor. However, it is not possible to transfer it
back, and nor is it possible to create a default-constructed
unique_future instance to use as a later move target. This
unduly limits the use of unique_future in code. Also, the
lack of a move-assignment operator restricts the use of
unique_future in containers such as std::vector -
vector::insert requires move-assignable for example.

Add a default constructor with the semantics that it
creates a unique_future with no associated
asynchronous result. Add a move-assignment
operator which transfers ownership.

JP
80

30.5.4 ,
30.5.5

 ed Typo, duplicated ">"
"class Period>>"

Remove one

UK
 337

30.5.5 Te shared_future should support an efficient move
constructor that can avoid unnecessary manipulation of a
reference count, much like shared_ptr

Add a move constructor

UK
 338

30.5.5 Te shared_future is currently CopyConstructible, but not
CopyAssignable. This is inconsistent with shared_ptr, and
will surprise users. Users will then write work-arounds to
provide this behaviour. We should provide it simply and
efficiently as part of shared_future. Note that since the

Remove "=delete" from the copy-assignment
operator of shared_future. Add a move-
constructor shared_future(shared_future&& rhs),
and a move-assignment operator shared_future&
operator=(shared_future&& rhs). The

C++0X, CD 1, NB Comments Date: 21 Feb 2009 Document: SC22 N4411, ISO/IEC CD 14882

1 2 3 4 5 6 7

MB1

Clause No./
Subclause No./

Annex
(e.g. 3.1)

Paragraph/
Figure/Table/

Note
(e.g. Table 1)

Type
of

com-
ment2

Comment (justification for change) by the MB Proposed change by the MB Disposition

1 MB = Member body (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial
NOTE Columns 1, 2, 4, 5 are compulsory.

page 136� of 139�
ISO electronic balloting commenting template/version 2001-10

shared_future member functions for accessing the state
are all declared const, the original usage of an immutable
shared_future value that can be freely copied by multiple
threads can be retained by declaring such an instance as
"const shared_future".

postcondition for the copy-assignment operator is
that *this has the same associated state as rhs.
The postcondition for the move-constructor and
move assignment is that *this has the same
associated as rhs had before the
constructor/assignment call and that rhs has no
associated state.

UK
 339

30.5.6 6, 7 Te Move assignment is goiing in the wrong direction,
assigning from *this to the passed rvalue, and then
returning a reference to an unusable *this

Strike 6. 7 Postcondition: associated state of *this
is the same as the associated state of rhs before
the call. rhs has no associated state.

UK
 340

30.5.6 11, 12, 13 Te There is an implied postcondition that the state of the
promise is transferred into the future leaving the promise
with no associated state. It should be spelled out.

Postcondition: *this has no associated state.

UK
 341

30.5.6 Te promise::swap accepts its parameter by lvalue reference.
This is inconsistent with other types that provide a swap
member function, where those swap functions accept an
rvalue reference

Change promise::swap to take an rvalue
reference.

UK
 342

30.5.6 Te std::promise is missing a non-member overload of swap.
This is inconsistent with other types that provide a swap
member function

Add a non-member overload void
swap(promise&& x,promise&& y){ x.swap(y); }

UK
 343

30.5.6 3 Te The move constructor of a std::promise object does not
need to allocate any memory, so the move-construct-
with-allocator overload of the constructor is superfluous.

Remove the constructor with the signature
template <class Allocator>
promise(allocator_arg_t, const Allocator& a,
promise& rhs);

JP
81

30.5.8 ed There are not requirements for F and a concept of
Allocator dose not use.

Correct as follows.

template <class F>
explicit packaged_task(F f);
template <class F, class Allocator>
explicit packaged_task(allocator_arg_t, const
Allocator& a, F f);
template <class F>

C++0X, CD 1, NB Comments Date: 21 Feb 2009 Document: SC22 N4411, ISO/IEC CD 14882

1 2 3 4 5 6 7

MB1

Clause No./
Subclause No./

Annex
(e.g. 3.1)

Paragraph/
Figure/Table/

Note
(e.g. Table 1)

Type
of

com-
ment2

Comment (justification for change) by the MB Proposed change by the MB Disposition

1 MB = Member body (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial
NOTE Columns 1, 2, 4, 5 are compulsory.

page 137� of 139�
ISO electronic balloting commenting template/version 2001-10

explicit packaged_task(F&& f);
template <class F, class Allocator>
explicit packaged_task(allocator_arg_t, const
Allocator& a, F&& f);

 should be

template <class F>
 requires CopyConstructible<F> && Callable<F,
ArgTypes...>
 && Convertible<Callable<F,
ArgTypes...>::result_type, R>
explicit packaged_task(F f);

template <class F, Allocator Alloc>
 requires CopyConstructible<F> && Callable<F,
ArgTypes...>
 && Convertible<Callable<F,
ArgTypes...>::result_type, R>
explicit packaged_task(allocator_arg_t, const
Alloc& a, F f);

template <class F>
 requires CopyConstructible<F> && Callable<F,
ArgTypes...>
 && Convertible<Callable<F,
ArgTypes...>::result_type, R>
explicit packaged_task(F&& f);

template <class F, Allocator Alloc>
 requires CopyConstructible<F> && Callable<F,
ArgTypes...>
 && Convertible<Callable<F,
ArgTypes...>::result_type, R>
explicit packaged_task(allocator_arg_t, const
Alloc& a, F&& f);

C++0X, CD 1, NB Comments Date: 21 Feb 2009 Document: SC22 N4411, ISO/IEC CD 14882

1 2 3 4 5 6 7

MB1

Clause No./
Subclause No./

Annex
(e.g. 3.1)

Paragraph/
Figure/Table/

Note
(e.g. Table 1)

Type
of

com-
ment2

Comment (justification for change) by the MB Proposed change by the MB Disposition

1 MB = Member body (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial
NOTE Columns 1, 2, 4, 5 are compulsory.

page 138� of 139�
ISO electronic balloting commenting template/version 2001-10

DE-
23

Annex B p2 te DE-23 Recursive use of constexpr functions appears to
be permitted. Since such functions may be required to be
evaluated at compile-time, Annex B "implementation
quantities" should specify a maximum depth of recursion.

In Annex B, specify a recursion depth of 256 or a
larger value.

DE-
24

 Annex B p2 te DE-24 The number of placeholders for "bind" is
implementation-defined in 20.7.12.1.4, but no minimum is
suggested in Annex B.

Add a miminum of 10 placeholders to Annex B.

DE-
25

Annex B p2 te DE-25 Specifying a minimum of 17 recursively nested
template instantiations is too small for practical purposes.
The limit is too high to effectively limit compiler resource
usage, see
http://ubiety.uwaterloo.ca/~tveldhui/papers/2003/turing.pd
f . The conclusion is that the metric "number of
recursively nested template instantiations" is inapposite.

Remove the bullet "Recursively nested template
instantiations [17]".

FR
38

C.2
[diffs.library]

1 ed What is ISO/IEC 1990:9899/DAM 1? My guess is that's a
typo for ISO/IEC
9899/Amd.1:1995 which I'd have expected to be
referenced here (the tables
make reference to things which were introduced by
Amd.1).

One need probably a reference to the document
which introduce char16_t and
char32_t in C (ISO/IEC TR 19769:2004?).

UK
 344

Appendix D Ge It is desirable to allow some mechanism to support
phasing out of deprecated features in the future. Allowing
compilers to implement a mode where deprecated
features are not available is a good first step.

Add to the definition of deprecated features
permission for compilers to maintain a
conditionally supported mode where deprecated
features can be disabled, so long as they also
default to a mode where all deprecated features
are supported.

FR
39

Index ed Some definitions seem not indexed (such as /trivially
copyable/ or

C++0X, CD 1, NB Comments Date: 21 Feb 2009 Document: SC22 N4411, ISO/IEC CD 14882

1 2 3 4 5 6 7

MB1

Clause No./
Subclause No./

Annex
(e.g. 3.1)

Paragraph/
Figure/Table/

Note
(e.g. Table 1)

Type
of

com-
ment2

Comment (justification for change) by the MB Proposed change by the MB Disposition

1 MB = Member body (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial
NOTE Columns 1, 2, 4, 5 are compulsory.

page 139� of 139�
ISO electronic balloting commenting template/version 2001-10

/sequenced before/), indexing them would be useful (and
marking specially the page -- say bold or italic -- which
reference to the definition would increase the usefulness;
having a separate index of all definitions is something
which could also be considered).

Additional Details to USNB Comments

 1

US-26: Use of objects, especially from other threads, during destruction

Author
Jeffrey Yasskin <jyasskin@google.com>

Section
3.8 [basic.life]

The current draft says:

[3.8-1] The lifetime of an object of type T ends when ... the destructor call starts.

[3.8-5] ... after the lifetime of an object has ended and before the storage which the object
occupied is reused or released, any pointer that refers to the storage location where the
object will be or was located may be used but only in limited ways. ... The program has
undefined behavior if:
...
- the pointer is used to access a non-static data member or call a non-static member
function of the object, or
...

This prohibits use of the object's fields from within its own destructor, conflicting with
the specification in section 12.7 [class.cdtor]. It also prohibits use of the object from other
threads during destruction, which isn't addressed anywhere. Thread pools form a concrete
use case:

A ThreadPool? class looks something like:

struct ThreadPool {
 ThreadPool(int num_threads) {
 for (int i = 0; i < num_threads; ++i) {
 threads.push_back(std::thread(&ThreadPool::Worker, this));
 }
 }
 ~ThreadPool() {
 this->shutting_down = true;
 for (std::thread& thread : this->threads) {
 this->threadsafe_queue.push(&DoNothing);
 }
 for (std::thread& thread : this->threads) {
 thread.join();
 }
 }
 void execute(function<void()> task) {
 this->threadsafe_queue.push(task);
 }
 void Worker();
};

Additional Details to USNB Comments

 2

US-26 (cont'd)

I'd like to define Worker() as:

void ThreadPool::Worker() {
 while (true) {
 function<void()> next_task = this->threadsafe_queue.pop());
 if (this->shutting_down) break;
 next_task();
 }
}

But this can easily access threadsafe_queue and shutting_down after the destructor starts.
Importantly, however, because of the thread.join()s in ~ThreadPool, it can't access them
after the destructor finishes. Copying the wording from 12.7, "For an object with a non-
trivial destructor, referring to any non-static member or base class of the object after the
destructor finishes execution results in undefined behavior.", to 3.8 would mostly solve
this. Of course, class invariants may no longer hold after the start of the destructor.

It's a little ambiguous when "the destructor" finishes, since a single object's destruction
may involve running several destructors. I think it makes sense to choose the destructor
for the static type of the pointer used to access the member, although Lawrence Crowl
suggests the destructor for the fully-derived type.

Now we have another wrinkle:

First, note that the following code is defined (assuming the modification above):

{
 ThreadPool pool(1);
 pool.execute([&]() {
 DoSomeStuff();
 pool.execute(&AnotherTask);
 });
}

Since the second pool.execute() call must run before the pool's threads are joined, it
definitely runs before the destructor finishes.

Now say that we want to define a generic Executor class and make ThreadPool? a
subclass of it:

struct Executor {
 virtual void execute(function<void()> task) = 0;
};
struct ThreadPool : public Executor { ... };

Additional Details to USNB Comments

 3

US-26 (cont'd)

Then we might want to subclass ThreadPool? again to record more information:

struct RecordingThreadPool : public ThreadPool {
 void execute(function<void()> task) {
 RecordStuff();
 ThreadPool::execute(task);
 }
};

And we run the following:

{
 RecordingThreadPool pool(1);
 pool.execute([&]() {
 DoSomeStuff();
 pool.execute(&AnotherTask);
 });
}

Which class's execute() definition does the second pool.execute() call run? There's no
happens-before relation constraining it, so it's either unspecified or undefined. Even if it's
just unspecified, RecordingThreadPool?::execute() would have to be really careful about
accessing its own members since ~RecordingThreadPool() is can finish inside the
execute() call. So I'd say it's undefined.

But not all subclasses have this problem:

struct DerivedThreadPool : public ThreadPool {
 // Doesn't override execute().
};

{
 DerivedThreadPool pool(1);
 pool.execute([&]() {
 DoSomeStuff();
 pool.execute(&AnotherTask);
 });
}

Since this always resolves to ThreadPool?::execute(), we could define that as the
behavior.

Additional Details to USNB Comments

 4

US-42: Meaning of [[final]] attribute applied to classes

Author
Jeffrey Yasskin <jyasskin@google.com>

Section
7.6.4 [dcl.attr.final]

7.6.4 [dcl.attr.final] says,

"If the attribute is specified for a class definition, it is equivalent to being specified for
each virtual member function of that class, including inherited member functions."

This means that the following program is well-formed:

struct Base [[final]] { /* No virtual methods */ };
struct Derived : Base { /* Anything */ };

There are two problems with this:

1) This is different from Java's final keyword, which will surprise people who first
encountered the keyword in Java.

2) One might want to prohibit deriving from a class without a virtual destructor to avoid
that route to undefined behavior. But without a virtual destructor, applying [[final]] to
a class doesn't prohibit deriving from that class, removing one of the major use cases.

Also, N2761 described the attribute with "A class with the final attribute will not be
allowed to be a base class for another class.", which is not what the text specifies.

To make the draft standard match Java and the rough description in N2761, I propose:

1) Strike the sentence "If the attribute is specified for a class definition, it is equivalent to
being specified for each virtual member function of that class, including inherited
member functions."

2) Add a third paragraph:

"If a class B is marked final and a class D is derived from B, the program is ill-formed;
no diagnostic required. [Example:

struct B2 {};
struct D2 : B2 {}; // ill-formed

-- end example]"

Additional Details to USNB Comments

 5

US-42 (cont'd)

3) Perhaps add "[Note: Because a final class cannot be derived from, all of its virtual
member functions behave as if they were also marked final. -- end note]" if that's not
clear enough from the other definitions.

US-49 8.5.4/6 Editorial

8.5.4/6 [dcl.init.list] In the Example, the comments could be improved:

• char c3{y}; // error: narrows (assuming char is 8 bits)
o I have worked with DSPs where sizeof(int) == sizeof(char) and this would

not be an error.
• float f1 { x }; // error: might narrow

o for consistency with comment on c2 declaration
o presumably float(999) doesn't typically lose precision.

US-78: Conversion from shared_ptr to unique_ptr

Author
Pardo <pardo@google.com>

Section
20.8.12 [unique.ptr] 20.8.13.2 [util.smartptr.shared]

There is presently no way to convert directly from a shared_ptr to a unique_ptr. It
may be desirable to do so, as example so a class or module can use unique_ptr to return
a value which was computed internally using shared_ptr, but which at return is known
to be unique. C++ presently supports indirect conversion by extracting the raw pointer
and checking the reference count of the shared_ptr is one.

To make such usage cleaner, I propose adding an interface that performs conversion.
Behavior when the reference count is not one could take several forms, including leaving
the behavior undefined, or throwing an exception -- though throwing may be problematic
in constructors. Throwing an exception seems most natural.

Comment from James Dennett <jdennett@google.com>

It is currently not possible to take the pointer away from a shared_ptr; it's an invariant of
shared_ptr that the last shared_ptr to an object will call the deleter on the owned
pointer/object when the shared_ptr is destroyed. The way around that, such as it is, is to
use a custom deleter which can be told to act as a no-op. It might be hard to persuade the
committee to allow a way to "steal" from a shared_ptr, i.e., there's no way to tell the
shared_ptr to release() its owned object, even if you know that the shared_ptr is unique.

Additional Details to USNB Comments

 6

US-88: atomics.lockfree doesn't tell the programmer enough

Author
Jeffrey Yasskin <jyasskin@google.com>

Section
29.2 [atomics.lockfree]

There are 2 problems here. First, at least on x86, it's less important to me whether some
integral types are lock free than what is the largest type I can pass to atomic and have it
be lock-free. For example, if long longs are not lock-free,
ATOMIC_INTEGRAL_LOCK_FREE is probably 1, but I'd still be interested in knowing
whether longs are always lock-free. Or if long longs at any address are lock-free, I'd
expect ATOMIC_INTEGRAL_LOCK_FREE to be 2, but I may actually care whether I
have access to the cmpxchg16b instruction. None of the support here helps with that
question. (There are really 2 related questions here: what alignment requirements are
there for lock-free access; and what processor is the program actually running on, as
opposed to what it was compiled for?)

Second, having atomic_is_lock_free only apply to individual objects is pretty useless
(except, as Lawrence Crowl points out, for throwing an exception when an object is
unexpectedly not lock-free). I'm likely to want to use its result to decide what algorithm
to use, and that algorithm is probably going to allocate new memory containing atomic
objects and then try to act on them. If I can't predict the lock-freedom of the new object
by checking the lock-freedom of an existing object, I may discover after starting the
algorithm that I can't continue.

To solve the first problem, I think 2 macros would help:
MAX_POSSIBLE_LOCK_FREE_SIZE and
MAX_GUARANTEED_LOCK_FREE_SIZE, which expand to the maximum value of
sizeof(T) for which atomic may (or will, respectively) use lock-free operations. Lawrence
points out that this "relies heavily on implementations using word-size compare-swap on
sub-word-size types, which in turn requires address modulation." He expects that to be
the end state anyway, so it doesn't bother him much.

To solve the second, I think one could specify that equally aligned objects of the same
type will return the same value from atomic_is_lock_free(). I don't know how to specify
"equal alignment". Lawrence suggests an additional function,
atomic_is_always_lock_free().

Additional Details to USNB Comments

 7

US-90: Are atomic functions allowed to have non-volatile overloads?

Author
Jeffrey Yasskin <jyasskin@google.com>

Section
29.4 [atomics.types.operations]

The C++0X draft declares all of the functions dealing with atomics (section 29.3) to take
volatile arguments. Yet it also says (29.4-3),

[Note: Many operations are volatile-qualified. The "volatile as device register" semantics
have not changed in the standard. This qualification means that volatility is preserved
when applying these operations to volatile objects. It does not mean that operations on
non-volatile objects become volatile. Thus, volatile qualified operations on non-volatile
objects may be merged under some conditions. —end note]

I was thinking about how to implement this in gcc, and I believe that we'll want to
overload most of the functions on volatile and non-volatile. Here's why:

To let the compiler take advantage of the permission to merge non-volatile atomic
operations and reorder atomics in certain, we'll need to tell the compiler backend about
exactly which atomic operation was used. So I expect most of the function of the form
atomic_<op>_explicit() (e.g. atomic_load_explicit, atomic_exchange_explicit,
atomic_fetch_add_explicit, etc.) to become compiler builtins. A builtin can tell whether
its argument was volatile or not, so those functions don't really need extra explicit
overloads. However, I don't expect that we'll want to add builtins for every function in
chapter 29,

since most can be implemented in terms of the _explicit free functions:

class atomic_int {
 __atomic_int_storage value;
 public:
 int fetch_add(int increment, memory_order order =
memory_order_seq_cst) volatile {
 // &value has type "volatile __atomic_int_storage*".
 atomic_fetch_add_explicit(&value, increment, order);
 }
 ...
};

Additional Details to USNB Comments

 8

US-90 (cont'd)

But now this always calls the volatile builtin version of atomic_fetch_add_explicit(),
even if the atomic_int wasn't declared volatile. To preserve volatility and the compiler's
permission to optimize, I'd need to write:

class atomic_int {
 __atomic_int_storage value;
 public:
 int fetch_add(int increment, memory_order order =
memory_order_seq_cst) volatile {
 atomic_fetch_add_explicit(&value, increment, order);
 }
 int fetch_add(int increment, memory_order order =
memory_order_seq_cst) {
 atomic_fetch_add_explicit(&value, increment, order);
 }
 ...
};

But this is visibly different from the declarations in the standard because it's now
overloaded. (Consider passing &atomic_int::fetch_add as a template parameter.)

The implementation may already have permission to add overloads to the member
functions:

[17.6.5.5-2] An implementation may declare additional non-virtual member function
signatures within a class:
...

• by adding a member function signature for a member function name.

but I don't see an equivalent permission to add overloads to the free functions.

US-91: atomic RMW status of failed compare_exchange

Author
Lawrence Crowl <crowl@google.com>

Section
29.4 [atomics.types.operations]

Whether or not a failed compare_exchange is a RMW operation (as used in 1.10
[intro.multithread]) is unclear.

The proposed resolution is to make failing compare_exchange operations not be RMW.

Additional Details to USNB Comments

 9

Author
Anthony Williams <anthony.ajw@gmail.com>

Section
29.4 [atomics.types.operations]

In 29.4p18 it says that "These operations are atomic read-modify-write operations" (final
sentence). This is overly restrictive on the implementations of compare_exchange_weak
and compare_exchange_strong on platforms without a native CAS instruction.

Proposed resolution:

Replace that sentence with "If the comparison is true, these operations are atomic read-
modify-write operations (1.10). If the comparison is false, these operations are atomic
load operations."

US-98: Implicit thread detach is harmful

Author
Lawrence Crowl <crowl@google.com>

Section
30.2.1.3 [thread.thread.destr], 30.2.1.4 [thread.thread.assign]

The current defined behavior for the std::thread destructor is to detach the thread.

~std::thread() { if (joinable()) detach(); }

Unfortunately, this behavior exposes programmers to tricky, hard-to-diagnose, undefined
behavior.

The problem is that many threads will be created with references to the creating thread's
call stack. If the creating thread encounters an exception, it will detach all threads it
owns, leaving them with dangling references to memory.

The propose resolution is to change destruction behavior to undefined behavior, with a
note strongly encouraging:

~std::thread() { if (joinable()) terminate(); }

The reason for undefined behavior now is to leave the standard room to change its mind
later. The reason to encourage terminate is to diagnose problem early.

The same reasoning applies to a thread over-written by assignment.

