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noncopyable utility class 

Background 
For a long time C++ developers have had to solve the problem that a class will implicitly declare 

special member functions for copying, whether appropriate for a given class or not. 

Initially the solution was been to declare the copy constructor and copy assignment operator as 

private, and choose not to define them.  However, this solution is generally confusing to newcomers 

learning the language, and easily overlooked by the experienced developer. 

A popular library idiom has since evolved using a base class with private copy constructor and 

assignment operators.  With the name of this class appearing in the base list at the top of the class 

definition, the (lack of) copy semantics are more visible and clearly documented.  Once added to a 

suitable library this idiom is much easier to teach to novices.  Boost has provided the 

noncopyable class for this purpose for many years. 

The evolution group was sufficiently motivated to work through a series of papers focussing on the 

issue, culminating in paper n1717.  However this direction was eventually rejected as the working 

group did not like the notion of adding a second kind of class to the core language when a library 

solution was available.  Ultimately an alternative syntax was introduced to make suppressing 

functions look less obscure and intimidating: n2346. 

New Language Facilities 
The addition and interaction of several new language facilities now makes the library-based solution 

even more appealing.  First let us propose an appropriate definition for this class: 

struct noncopyable { 

    noncopyable() = default; 

    noncopyable(noncopyable const &) = delete; 

    noncopyable & operator=(noncopyable const &) = delete; 

}; 

 

Note that the default constructor is declared as default to maintain triviality.  Likewise, the deleted 

copy constructor and copy assignment operator are also deemed trivial.  In addition struct 

noncopyable is an empty standard layout class.  This means it is also a POD.  Under the revised 

rules for trivial types, standard layout types and PODs, the well-known “empty base optimization” is 

now required for an empty standard-layout class – see n2342 for details.   

The result of these language changes is a guarantee of no per-instance space or runtime overhead 

associated with this solution, compared to simply declaring the members deleted in the desired 

class. 
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With the update to the implicitly declared special functions wording in the upcoming concepts paper 

(n2501), derived types would implicitly have deleted copy constructor/assignment operators, which 

should give a clearer diagnostic than simply being ill-formed on use, as per C++98/03. 

C++0x or a future TR? 
The class is the implementation of a simple, well-understood idiom.  It is a low risk, reasonable value 

addition to the library that that exploits new language features.  As such it would be reasonable to 

include it in C++0x. 

This class is certainly easy enough for end-users to implement themselves.  The chief reason for 

providing it in the standard library is that a class so widely re-invented truly should be a part of the 

regular toolbox, rather than any common vocabulary issue.  As such, it might safely be deferred to a 

future TR. 

The biggest irritant in deferring to TR2 is that additions to existing standard headers through TRs can 

be painful to implement.  Therefore, the author leans if favor of adopting directly for C++0x. 
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Proposed Standard Wording 
Add to header <utility> synopsis in 20.2 [utility] 

// 20.2.x support classes 

class noncopyable;  

Append a new section to 20.2 

20.2.x Support Classes[utility.support] 

The following classes are provided to simplify implementation of common idioms. 

20.2.x.1 class noncopyable [utility.noncopyable] 

struct noncopyable { 

    noncopyable() = default; 

    noncopyable(noncopyable const &) = delete; 

    noncopyable & operator=(noncopyable const &) = delete; 

}; 

 

Class noncopyable is provided so simply creation of classes that inhibit copy semantics. 

[example: 

template< typename T > 

class resource_manager : private noncopyable { 

public: 

    resource_manager() : t( new T() ) {} 

    ~resource_manager() { delete t; } 

private: 

    T *t; 

}; 

] 


