
Lambda Expressions and Closures:

Wording for Monomorphic Lambdas (Revision 4)

Document no: N2550=08-0060

Jaakko Järvi∗

Texas A&M University
John Freeman

Texas A&M University
Lawrence Crowl

Google Inc.

2008-02-29

1 Introduction

This document describes lambda expressions, reflecting the specification that was agreed upon within the
evolution working group of the C++ standards committee in the 2008 Bellevue meeting. The document is
a revision of N2529=08-0039 [JFC08], N2487 [JFC07b], N2413 [JFC07a], and N2329 [JFC07c]. N2329 was
a major revision of the document N1968 [WJG+06], and draw also from the document N1958 [Sam06] by
Samko.

We use the following terminology in this document:

• Lambda expression or lambda function: an expression that specifies an anonymous function object

• Closure: An anonymous function object that is created automatically by the compiler as the result of
evaluating a lambda expression. Closures consists of the code of the body of the lambda function and
the environment in which the lambda function is defined. In practice this means that variables referred
to in the body of the lambda function are stored as member variables of the anonymous function object,
or that a pointer to the frame where the lambda function was created is stored in the function object.

The specification (not necessarily the implementation) of the proposed features relies on several future
additions to C++, some of which are already in the working draft of the standard, others likely candidates.
These include the decltype [JSR06b] operator, new function declaration syntax [JSR06a, Section 3][Mer07],
and changes to linkage of local classes [Wil07].

2 In a nutshell

The use of function objects as higher-order functions is commonplace in calls to standard algorithms. In the
following example, we find the first employee within a given salary range:

class between {
double low, high;

public:
between(double l, double u) : low(l), high(u) { }
bool operator()(const employee& e) {

return e.salary() >= low && e.salary() < high;
}

}
∗jarvi@cs.tamu.edu

Doc. no: N2550=08-0060 2

....
double min salary;
....
std::find if(employees.begin(), employees.end(),

between(min salary, 1.1 ∗ min salary));

The constructor call between(min salary, 1.1 ∗ min salary) creates a function object, which is comparable to
what, e.g., in the context of functional programming languages is known as a closure. A closure stores the
environment, that is the values of the local variables, in which a function is defined. Here, the environment
stored in the between function object are the values low and high, which are computed from the value of the
local variable min salary.

The syntactic requirement of defining a class with its member variables, function call operator, and
constructor, and then constructing an object of that type is very verbose and thus not well-suited for
creating function objects “on the fly” to be used only once. The essence of this proposal is a concise syntax
for defining such function objects—indeed, we define the semantics of lambda expressions via translation to
function objects. With the proposed features, the above example becomes:

double min salary =
....
double u limit = 1.1 ∗ min salary;
std::find if(employees.begin(), employees.end(),

[&](const employee& e) { return e.salary() >= min salary && e.salary() < u limit; });

3 Acknowledgements

We are grateful for help and comments by Dave Abrahams, Matt Austern, Peter Dimov, Gabriel Dos Reis,
Doug Gregor, Howard Hinnant, Andrew Lumsdaine, Clark Nelson, Gary Powell, Valentin Samko, Jeremy
Siek, Bjarne Stroustrup, Herb Sutter, Jeremiah Willcock, Jon Wray, and Jeffrey Yasskin.

References

[JFC07a] Jaakko Järvi, John Freeman, and Lawrence Crowl. Lambda expressions and closures: Wording
for monomorphic lambdas. Technical Report N2413=07-0273, ISO/IEC JTC 1, Information
technology, Subcommittee SC 22, Programming Language C++, September 2007.

[JFC07b] Jaakko Järvi, John Freeman, and Lawrence Crowl. Lambda expressions and closures: Wording
for monomorphic lambdas (revision 2). Technical Report N2487=07-0357, ISO/IEC JTC 1,
Information technology, Subcommittee SC 22, Programming Language C++, December 2007.

[JFC07c] Jaakko Järvi, John Freeman, and Lawrence Crowl. Lambda functions and closures for C++
(Revision 1). Technical Report N2329=07-0189, ISO/IEC JTC 1, Information technology, Sub-
committee SC 22, Programming Language C++, June 2007.

[JFC08] Jaakko Järvi, John Freeman, and Lawrence Crowl. Lambda expressions and closures: Wording
for monomorphic lambdas (revision 3). Technical Report N2529=08-0039, ISO/IEC JTC 1,
Information technology, Subcommittee SC 22, Programming Language C++, February 2008.

[JSR06a] Jaakko Järvi, Bjarne Stroustrup, and Gabriel Dos Reis. Decltype (revision 5). Technical Report
N1978=06-0048, ISO/IEC JTC 1, Information technology, Subcommittee SC 22, Programming
Language C++, April 2006.

[JSR06b] Jaakko Järvi, Bjarne Stroustrup, and Gabriel Dos Reis. Decltype (revision 6): proposed wording.
Technical Report N2115=06-0185, ISO/IEC JTC 1, Information technology, Subcommittee SC
22, Programming Language C++, November 2006. http://www.open-std.org/jtc1/sc22/
wg21/docs/papers/2006/n2115.pdf.

Doc. no: N2550=08-0060 3

[Mer07] Jason Merrill. New function declarator syntax wording. Technical Report N2445=07-0315,
ISO/IEC JTC 1, Information Technology, Subcommittee SC 22, Programming Language C++,
October 2007. http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2007/n2445.html.

[Sam06] Valentin Samko. A proposal to add lambda functions to the C++ standard. Technical Re-
port N1958=06-0028, ISO/IEC JTC 1, Information technology, Subcommittee SC 22, Pro-
gramming Language C++, February 2006. www.open-std.org/JTC1/SC22/WG21/docs/papers/
2006/n1958.pdf.

[Wil07] Anthony Williams. Names, linkage, and templates (rev 1). Technical Report N2187=07-0047,
ISO/IEC JTC 1, Information technology, Subcommittee SC 22, Programming Language C++,
March 2007. www.open-std.org/JTC1/SC22/WG21/docs/papers/2007/n2187.pdf.

[WJG+06] Jeremiah Willcock, Jaakko Järvi, Douglas Gregor, Bjarne Stroustrup, and Andrew Lumsdaine.
Lambda functions and closures for C++. Technical Report N1968=06-0038, ISO/IEC JTC 1,
Information technology, Subcommittee SC 22, Programming Language C++, February 2006.
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2006/n1968.pdf.

A Proposed wording

The proposed wording follows starting from the next page. Within the proposed wording, text that has been
added will be presented in blue and underlined when possible. Text that has been removed will be presented
in red, with strike-through when possible. The wording in this document is based on the C++0X draft, and
uses its LATEX sources. There are some dangling references in the final document, which will be resolved
when merged back to the full sources of the working paper.

Text typeset as follows is not intended as part of the wording:
[Editorial note: Example of a meta comment.]

Chapter 5 Expressions [expr]

5.1 Primary expressions [expr.prim]

Primary expressions are literals, names, and names qualified by the scope resolution operator ::, and lambda expres-
sions.

primary-expression:
literal
this

(expression)

id-expression
lambda-expression

id-expression:
unqualified-id
qualified-id

unqualified-id:
identifier
operator-function-id
conversion-function-id
∼ class-name
template-id

[EDITORIAL NOTE: Add the following new section:]

5.1.1 Lambda Expressions [expr.prim.lambda]

lambda-expression:
lambda-introducer lambda-parameter-declarationopt compound-statement

lambda-introducer:
[lambda-captureopt]

lambda-capture:
capture-default
capture-list
capture-default , capture-list

capture-default:
&

=

capture-list:
capture
capture-list , capture

capture:
identifier
& identifier
this

lambda-parameter-declaration:
(lambda-parameter-declaration-listopt) exception-specificationopt lambda-return-type-clauseopt

1

2 CHAPTER 5. EXPRESSIONS

lambda-parameter-declaration-list:
lambda-parameter
lambda-parameter , lambda-parameter-declaration-list

lambda-parameter:
decl-specifier-seq declarator

lambda-return-type-clause:
-> type-id

1 The evaluation of a lambda-expression results in a closure object, which is an rvalue. Invoking the closure object
executes the statements specified in the lambda-expression’s compound-statement. Each lambda expression has a
unique type. Except as specified below, the type of the closure object is unspecified. [Note: A closure object behaves
as a function object ([function.objects], 20.5) whose function call operator, constructors, and data members are defined
by the lambda-expression and its context. — end note]

2 A name in the lambda-capture shall be in scope in the context of the lambda expression, and shall be this or refer
to a local variable or reference with automatic storage duration. [Note: A member of an anonymous union is not a
variable. — end note] The same name shall not appear more than once in a lambda-capture. In a lambda-introducer
of the form [capture-default , capture-list], if the capture-default is &, the capture-list shall not contain a capture
having the prefix &, otherwise each capture in the capture-list other than this shall have the prefix &.

3 An effective capture set is defined as follows.

— For a lambda-introducer of the form [], the effective capture set is empty.

— For a lambda-introducer of the form [capture-list], the effective capture set consists of the captures in the
capture-list.

— For a lambda-introducer of the form [capture-default] or [capture-default , capture-list], the effective
capture set consists of

— the captures in the capture-list, if any; and,

— for each name v that appears in the lambda expression and denotes a local variable or reference with
automatic storage duration in the context where the lambda expression appears and that does not appear in
the capture-list or as a parameter name in the lambda-parameter-declaration-list, &v if the capture-default
is & and v otherwise; and

— this if the lambda expression contains a member access expression referring to this (implicitly or ex-
plicitly).

4 The compound-statement of a lambda expression shall use ([basic.def.odr], 3.2) an automatic variable or reference
from the context where the lambda expression appears only if the name of the variable or reference is a member of
the effective capture set, and shall reference this (implicitly or explicitly) only if this is a member of the effective
capture set. The compound-statement of a lambda expression shall not refer to a member of an anonymous union with
automatic storage duration.

5 A lambda-expression defines a function and the compound-statement of a lambda-expression has an associated func-
tion scope ([basic.scope], 3.3).

6 The type of the closure object is a class with a unique name, call it F , considered to be defined at the point where the
lambda expression occurs.

Each name N in the effective capture set is looked up in the context where the lambda expression appears to determine
its object type; in the case of a reference, the object type is the type to which the reference refers. For each element in
the effective capture set, F has a private non-static data member as follows:

— if the element is this, the data member has some unique name, call it t, and is of the type of this ([class.this],
9.3.2);

— if the element is of the form & N, the data member has the name N and type “reference to object type of N”;

5.19. CONSTANT EXPRESSIONS 3

— otherwise, the element is of the form N, the data member has the name N and type “cv-unqualified object type of
N”.

The declaration order of the data members is unspecified.

F has a public const function call operator ([over.call], 13.5.4) with the following properties:

— The parameter-declaration-clause is the lambda-parameter-declaration-list.

— The return type is the type denoted by the type-id in the lambda-return-type-clause; for a lambda expression
that does not contain a lambda-return-type-clause the return type is void, unless the compound-statement is of
the form { return expression; }, in which case the return type is the type of expression.

— The exception-specification is the lambda expression’s exception-specification, if any.

— The compound-statement is obtained from the lambda expression’s compound-statement as follows: If the
lambda expression is within a non-static member function of some class X , transform id-expressions to class
member access syntax as specified in ([class.mfct.non-static], 9.3.1), then replace all occurrences of this by t.
[Note: References to captured variables or references within the compound-statement refer to the data members
of F . — end note]

7 F has an implicitly-declared copy constructor ([class.copy], 12.8), and it has a public move constructor that performs
a member-wise move. The copy assignment operator in F is defined as deleted. The size of F is unspecified.

8 If every name in the effective capture set is preceded by &, F is publicly derived from std::reference_clo-
sure<R(P)> (20.5.17), where R is the return type and P is the parameter-type-list of the lambda expression. Con-
verting an object of type F to type std::reference_closure<R(P)> and invoking its function call operator shall
have the same effect as invoking the function call operator of F . [Note: This requirement effectively means that such
F must be implemented using a pair of a function pointer and a static scope pointer. — end note]

9 The closure object is initialized by direct-initializing each member N of F with the local variable or reference named
N; the member t is initialized with this. If one or more names in the effective capture set are preceded by &, the effect
of invoking a closure object, or a copy, after the innermost block scope of the context of the lambda expression has
been exited is undefined.

5.3.5 Delete [expr.delete]

[EDITORIAL NOTE: Add the following as a new paragraph:]

If a delete keyword is immediately followed by empty square brackets, it is interpreted as introducing a delete array
expression. [Note:It is possible to disambiguate these empty square brackets from a lambda-introducer by putting
parentheses around the lambda expression. — end note]

5.19 Constant expressions [expr.const]

2 [EDITORIAL NOTE: Add the following bullet]

— a lambda-expression (5.1.1)

3.3.2 Local scope [basic.scope.local]

2 The potential scope of a function parameter name (including one appearing in a lambda-parameter-declaration-clause)
or of a function-local predefined variable in a function definition (8.4) begins at its point of declaration. If the function
has a function-try-block the potential scope of a parameter or of a function-local predefined variable ends at the end of
the last associated handler, otherwise it ends at the end of the outermost block of the function definition. A parameter
name shall not be redeclared in the outermost block of the function definition nor in the outermost block of any handler
associated with a function-try-block.

4 CHAPTER 5. EXPRESSIONS

Chapter 20 General utilities library [utilities]

20.5 Function objects [function.objects]

2 [EDITORIAL NOTE: Add the following to the synopsis of header <functional>]

// 20.5.17, reference_closure
template<class> class reference_closure; // undefined

[EDITORIAL NOTE: Add the following new section]

20.5.17 Class template reference_closure [func.referenceclosure]

namespace std {

template<class> class reference_closure; // undefined

template<class ResType , class... ArgTypes >

class reference_closure<ResType (ArgTypes ...)>

{

public:

typedef ResType result_type;

typedef T1 argument_type; // iff sizeof...(ArgTypes) == 1 and ArgTypes contains T1
typedef T1 first_argument_type; // iff sizeof...(ArgTypes) == 2 and ArgTypes contains T1, T2
typedef T2 second_argument_type; // iff sizeof...(ArgTypes) == 2 and ArgTypes contains T1, T2

// 20.5.17.1, trivial members:
reference_closure() = default;

reference_closure(const reference_closure&) = default;

reference_closure& operator=(const reference_closure&) = delete;

~reference_closure() = default;

// 20.5.17.2, null values:
constexpr reference_closure(nullptr_t);

reference_closure& operator=(nullptr_t);

explicit operator bool() const;

// 20.5.17.3, invocation:
ResType operator()(ArgTypes ...) const;

};

// 20.5.17.4, comparisons:
template <class ResType , class... ArgTypes >

bool operator==(const reference_closure<ResType (ArgTypes ...)>&, nullptr_t);

template <class ResType , class... ArgTypes >

bool operator==(nullptr_t, const reference_closure<ResType (ArgTypes ...)>&);

template <class ResType , class... ArgTypes >

bool operator!=(const reference_closure<ResType (ArgTypes ...)>&, nullptr_t);

template <class ResType , class... ArgTypes >

bool operator!=(nullptr_t, const reference_closure<ResType (ArgTypes ...)>&);

} // namespace std

5

6 CHAPTER 20. GENERAL UTILITIES LIBRARY

1 The reference_closure class template represents reference-only closures [expr.prim.lambda].

2 A reference_closure object f of type F is Callable for argument types T1, T2, ..., TN in ArgTypes and a
return type R , if, given lvalues t1, t2, ..., tN of types T1, T2, ..., TN , respectively, INVOKE(f, t1, t2,

..., tN) is well-formed (20.5.2) and, if R is not void, convertible to ResType .

3 The instances of reference_closure class template are trivial and standard-layout classes (3.9 [basic.types]).

4 Unless otherwise specified, none of the functions in this section throw exceptions.

20.5.17.1 trivial members [func.referenceclosure.trivial]

explicit reference_closure()

1 Postconditions: None — the object state is undefined.

reference_closure(const reference_closure& f)

2 Postconditions: *this is a copy of f

~reference_closure();

3 Effects: destroys this

20.5.17.2 null values [func.referenceclosure.null]

reference_closure(nullptr_t);

1 Postconditions: !*this

reference_closure& operator=(nullptr_t);

2 Postconditions: !*this

3 Returns: *this

explicit operator bool() const

4 Returns: true if *this was constructed or copied from a closure, false if *this was constructed or copied
from an unspecified-null-pointer-type, undefined otherwise.

20.5.17.3 invocation [func.referenceclosure.invoke]

ResType operator()(ArgTypes ... args) const

1 Preconditions: (bool)*this

2 Effects: Undefined if *thiswas default constructed, constructed from an unspecified-null-pointer-type or copied
from such. Otherwise, invokes the closure with the given arguments.

3 Returns: Nothing if ResType is void, otherwise the return value of the closure.

4 Throws: Any exception thrown by the wrapped function object.

20.5.17.4 comparison [func.referenceclosure.compare]

template <class ResType , class... ArgTypes >

bool operator==(const reference_closure<ResType (ArgTypes ...)>& f , nullptr_t);

template <class ResType , class... ArgTypes >

bool operator==(nullptr_t, const reference_closure<ResType (ArgTypes ...)>& f);

20.5. FUNCTION OBJECTS 7

1 Returns: !f

template <class ResType , class... ArgTypes >

bool operator!=(const reference_closure<ResType (ArgTypes ...)>& f , nullptr_t);

template <class ResType , class... ArgTypes >

bool operator!=(nullptr_t, const reference_closure<ResType (ArgTypes ...)>& f);

2 Returns: (bool)f

