
Doc Number: N2486=07-0356
Date: 2007-12-05
Reply To: Lance Diduck
lancediduck .a. nyc…rr…com
lance.diduck .a. ubs…com

Alternative Allocators and Standard Containers
A look at C++ alternative allocators specification.
Overview ... 2
MOTIVATION ...3
A performance check ... 3
A few ways to apply alternative allocators ... 5
CLARIFICATION OF TERMS...7
AllocatorStorage... 7
AllocatorManager .. 8
AllocatorAdapter.. 9
CURRENT STATE OF AFFAIRS ...10
Intent of the Current Standard ... 10
Stateful AllocatorAdapter Programmability ... 11
EqualityComparable .. 13
Stateful AllocatorAdapters and Rebind .. 13
MoveSemantic AllocatorAdapters .. 14
Polymorphic Allocators.. 15
Alternative Pointers.. 16
Alternative Accessors ... 18
max_size .. 20
Support / Requirement Levels... 21
THE CODE ...21
AllocatorStorage... 22
AllocatorManager .. 23
AllocatorAdapter.. 23
EXAMPLES ..27
Malloc Allocator ... 27
Polymorphic Allocator ... 27
Stack Memory Allocator.. 28
Shared Memory Container .. 30
Object Pool.. 31

IMPLEMENTATION DEFINED...33
Trivial Allocators.. 33
Concurrent Containers .. 33
ExpandInPlace.. 34
Hybrid Allocators ... 34
Scoped Allocator Semantics... 34
BIBLIOGRAPHY ..35

Overview
A common complaint among standard container users is performance. Custom allocators
can dramatically improve the situation, but the current way to parameterize allocators
leaves a lot to be desired. Indeed, many users find it easier to just implement containers
themselves, than figure out how to make an allocator work with their native library.
Worse, custom container authors have almost no clue on how to fully take advantage of
allocators in their own offerings. The standard offers no guidance.
The language of the standard is over-constrained, under-constrained, or simply absent in
terms of just what kinds of allocators are supported, and how they interact with the
containers.
This paper presents an allocator specification and implementation that

• Reduces Boilerplate – this is perhaps the single biggest impediment for a user.
• Is backward compatible – the allocator code works with current container

implementations as-is, and the container modifications work with the current
std::allocator as-is

• Does not promote a particular style of programming. The current intent of the
standard is considered the preferred style (but certainly not the only style).

• No pet ideas –almost every recommendation here has been heard elsewhere.
• Reflects what is available now with most current library implementations and

compilers
• Does not undo any of the functionality envisioned in the original allocator design
• Accommodate virtually all the current standard as written (e.g. complexity

guarantees, function signatures) Most additional language largely reflects current
implementations. Eliminates weasel wording

• Keep simple and easy to teach (Compared to allocators now, anything is simpler)
This paper does not address specific changes to the wording of the standard. This is easy
to remedy in a revision, if desired.
To accommodate most current compilers, all code presented is C++03, without template
template parameters. These and the C++0x enhancements1 can be added, which would get rid of
even more boilerplate.
The containers prefixed with “std::” used in the examples are either native (tested using Visual
Studio 2003 /2005, and/or gcc 3.4 and 4.1, but see this for others when only alternative
allocate/deallocate is wanted) . The containers without the std:: prefix are modified versions of

1 For example, perfect forwarders in construct()

N2486 Lance Diduck

Page 2 of 36

http://www.lancediduck.com/papers/Cpp/StatefulSTL.pdf

stdcxx2 containers. The modifications are largely to accommodate this papers wording on
construct/destroy, alternative pointers, and copy assigning the allocator. These modifications still
default to unmodified std::allocator. Modified container code is not shown3.

Motivation
These are real life use cases, used with commonly available compilers and standard
libraries. No thought experiments.

A performance check
We will start with a performance check, to find out why C++ users bother with allocators,
and want the “weasel wording” out:
An application was (properly) written using out of the box native containers and
allocators, and profiling indicates a bottleneck when inserting and erasing list<string>.
We make a small program that mimics the bottleneck, and try out different things. This is
run on four concurrent threads, and the times are averaged together. Each test
uncomments one of the typedefs:
//What the application uses
// typedef std::list<std::string> test_list;
//Base line test uses a vector
// typedef std::vector<std::string> test_list;
//List with full allocator support, with defaults
// typedef FullAlloc::list<std::string> test_list;
//List with tuned allocator, in a wrapper
// typedef ObjectList<std::string,2500> test_list;
void* perftest(void*){
 unsigned long long start=get_timestamp();
 //application creates list of strings, and repeatedly
 // fill it up, manipulates the string, and then clears the list
 // profiling indicates bottleneck in adding and clearing strings
 test_list mytest;
 for (std::size_t i=25000;i;--i){
 for(unsigned j=2500;j>30;--j){
 mytest.resize(mytest.size()+1);//add new string
 mytest.back().resize(j%50+20,char(j));//a value
 }
 //app manipulates string, then clears everything
 mytest.clear();
 }
 unsigned long long finish=get_timestamp();
 return reinterpret_cast<void*>(static_cast<unsigned>(
 (finish-start)/100000));
}
The Base Line test runs at 1 unit (avg. 39.0 seconds on my box). std::vector is a
very simple stateful allocator and naturally has no thread contention in this case. For this

2 Chosen primarily for licensing, portability and current feature set. I also had a modified version of
Dinkum containers used for testing, but these were abandoned due to licensing constraints. The Dinkum
alternative allocator support is comparable (but not identical) to stdcxx.
3 It is straightforward to make the modifications to any library that supports the optional stateful allocator
argument.

N2486 Lance Diduck

Page 3 of 36

http://incubator.apache.org/stdcxx/

particular benchmark it represents the fastest achievable time – so when we know when
to quit trying.
The Native List test uses an average of 150% of vectors time (i.e. half again slower). The
native std library does not fully support alternative allocators (like most, it is missing
support for pointer and accessors). Part of the overhead is the pointer manipulations
inherent in list, but certainly not an additional 50%.
“FullAlloc::list” is a slightly modified version of a list from a major STL provider, such
that it fully supports alternative allocators (pointers, accessors, and allocations). Using
defaults, it also takes average of 150% of vectors time – demonstrating that full allocator
support does not add any time overhead, and is backwards compatible with the native
std::allocator. Any differences are more likely due to what the compiler can optimize (see
EASTL) rather than the feature support for allocators.
Now we make the tuned version: ObjectList is a convenience wrapper that inherits from
FullAlloc::list, which stuffs in a “stack memory” allocator that maintains a free list of
equal size blocks, and allows for caching live objects in lieu of raw memory. We make
enough room for 2500 objects. Since the high water mark is reached early and rarely
exceeded, an unbounded version would perform just as well. I just happen to have the
“stack” version in my toolbox.
The buffer only method takes 107% of the time. If we add object caching to that buffer,
then this becomes 108%. I figure that the compiler/native strings have some sort of
tuning going on of their own, so I stay out of the way and kill object cache idea.4 Part of
the extra time is just for the pointer manipulations, so gains after this are harder to come
by, and I should focus my attention elsewhere. I can easily extend the “stack” allocator to
an unbounded version, and I am done.
If this had been rather list<int>, then the “ObjectList” version runs in 9% of the time that
plain list<int> (either std:: or FullAlloc::) takes. But still 6 times slower than vector<int>.

In the end I have all the guarantees of a list, but at a fraction of the cost. And I know this
is close to the best time I can get, because I can easily try out a number of different
strategies. Total time, about 4 hours work.

What did we learn?
Foremost, that we need to match the allocator behavior to the specific application
behavior. This point seems forgotten and relearned quite often, since perhaps allocators –
even after a decade of use-- are commonly seen as being somehow divorced from the
subsequent use of that memory. In other words, the typical viewpoint is that allocators
consider only the structure of the type in question, and not its use.
This is perhaps because we all spend our formative years programming in languages
where this is indeed the case. And even those few languages where the application
programmer can select among allocators, most programmers only consider the structure
of the type being allocated.
However, C++ uses behavioral typing in addition to structural typing, which makes it
easy to select algorithms based on a data structures behavior. Indeed, this is the
cornerstone of the STL.

4 To contrive an example that demonstrates better performance using object caches would require far more
time and space that this paper allows

N2486 Lance Diduck

Page 4 of 36

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2007/n2271.html

We just saw that a programmer can use the type system to easily select and correctly
apply various behavioral allocation schemes, and get a substantial performance increase.
(But as always, premature optimization is the root of all evil5.)
As we will see, the standard containers themselves only have a few behaviors, but even
here there is a wealth of allocation options. The trouble is that nowhere in the standard
does it specify just what container exhibits what allocation behavior. And once you do
discover it, actually getting a container to portably use an alternative allocator, well, that
exercise will make a C++ guru out of anyone. And it shouldn’t.

A few ways to apply alternative allocators

Make Node Based Containers Fast
This is the classic application. There are many examples in use.

Thread Local Storage / Object Specific Allocator
vector and string have their own private heaps, why not any container? Private heaps
mitigate the need for locking both the container AND the stateless allocator in MT
programs, plus can keep objects packed close together. This is easy to implement using a
stateful memory pool and a node container. The memory pool keeps allocating blocks
that are later reclaimed by the system according to some policy, typically not until the
container is destructed, just like vector / string. The swap trick works as well, if the
container swaps allocators.
This is most prevalent use case I’ve seen of stateful alternative allocators. They are
mostly used in multithreaded programming, to take advantage of the fact that the
container object access must be serialized anyway, so why pay for two locks? In many
cases the containers can be partitioned so that no locking is required.
The performance impact over std::allocator can be 20-50 times, especially in cases that
one thread allocates, and another thread deallocates.
Support : every major STL provider

Reentrant Scratchpad
The use case that people first try their hand with stateful allocators is a container that uses
stack memory. These are useful for containers that are local to a function.
The problem of course is knowing just how much memory you are going to need before
hand, but otherwise the allocator is simple and easy to build.
void foo(){
 vector<int,stackallcator<int,1000> > mystuff;
};
Depending on just how many reallocations you are going to make mystuff do, this can
work. It is brittle, but sometimes the performance gain is worth it.

Support : every major STL provider

5 C.A.R. Hoare

N2486 Lance Diduck

Page 5 of 36

http://www.cs.umass.edu/%7Eemery/pubs/berger-pldi2001.pdf
http://www.cs.umass.edu/%7Eemery/pubs/berger-oopsla2002.pdf
http://www.dinkumware.com/manuals/?manual=compleat&page=allocators.html
http://www.tantalon.com/pete/customallocators.ppt#320,37,In-Place Summary

Cache Coherent
It is helpful to locate the controlled sequence in memory adjacent to the container
bookkeeping information, and that the controlled sequence be packed together as close as
possible. This is similar to the “reentrant scratchpad” except that memory is recycled,
resulting in a far less brittle design.
In practical terms, it is something like
template<class T,size_t N>
struct CCList:std::list<T,statefulalloc>{
 aligned_storage< <N+1*(sizeof(T)+nodeoverhead)> buf;
 CCList():std::list<T,statefulalloc>(buf,sizeof(buf)){}
//accessors
//max_size==N or more
};
where “statefulalloc” dices up buf in a freelist of ~N blocks. It is a simple matter to make
this unbounded, where only the first N elements are packed.
Current Support : every major STL provider

Object Pool
A common problem in high performance application is: removing an expensive-to-
construct element from the controlled sequence, only to immediately insert another new
value. It is often the case that copy-assign would be faster – but for things like map and
set, I simply can’t copy over existing elements in general.
Object Pool keeps a collection of all objects deallocated. construct() is overridden to do
assignment (either by operator= or another class specific method), destroy() takes care of
calling the element’s clear() or dispose() function or whatever. allocate() returns a already
constructed object, either from the free list or newly created. All objects are destructed
when the allocator is destructed.
Given a suitable implementation, deque makes a good way to implement object pools for
container requiring random access iterators. For others we just use a free list.
And just Like Object Specific Allocator, this can be made stateful to avoid multiple
locks.
Current Support : A few providers, depending on the container

Relocatable Container
“Relocatable” means that the contents of the memory do not depend their location in
memory. This is a very important concept both in automatic memory garbage collection,
and in interprocess IO. The former case is beyond the scope of what a standard container
is capable of6, but in the latter case is easily handled. Using a specialty pointer that stores
offsets, rather than the raw pointer value, I can make a container capable of being
streamed from one process to the next (of course, each process must be compiled using
the same compiler settings, which is typical in high performance IPC). More likely, I am
placing this container in Shared Memory. Shared Memory Transport is, after all, the
fastest known IPC method. Likewise, such a container can easily be written to disk
without having to transform it to some other format.

6 The generally accepted rule that &*container.begin() yields a pointer to real memory effectively rules out
any hope of using mark-sweep or copy collector GC methods inside a standard container.

N2486 Lance Diduck

Page 6 of 36

This requires a suitable pointer definition, plus a relocatable stateful allocator (no
polymorphic allocators!!!).
For example
template<class T,size_t N>
struct RelocList:std::list<T,relocstatefulalloc>{
 aligned_storage< <N*(sizeof(T)+ factor) > buf;
 RelocList ():std::list<T, relocstatefulalloc >(buf,sizeof(buf)){}
//
//max_size()==N (bounded)
};
With the proviso that T is also relocatable, RelocList is suitable for placing in shared
memory, sending via a socket, placing in a file, fast copies (by memcpy) etc.

Current Support: A few providers, depending on the container

Clarification of Terms
Much of the present confusion is that there is no clear description of allocator concepts
nor their programmability. Here is a possible taxonomy of allocators from the perspective
of the container. It is divided into three kinds – the Storage, the Manager, and the
Adapter.
Later there is code that ties all this together.

AllocatorStorage
This is the resource under consideration, almost always “raw memory.” It represents all
the std::allocator typedefs, plus construct(), and destroy().

Table 1 Concepts of AllocatorStorage
 Refinement of
Bounded None
Unbounded Bounded
Relocatable Bounded

Table 2 Programmability of AllocatorStorage
 Static (empty) Nonstatic
DefaultConstructible Yes No
Swappable Yes No
MoveConstructible Yes Yes
MoveAssignable Yes Yes
CopyConstructible Yes No
CopyAssignable Yes No
EqualityComparable Yes always false

Examples
a pointer to char buf[100]; (bounded)
a region of memory acquired via shmget (bounded, relocatable)
memory is DMA addressable

N2486 Lance Diduck

Page 7 of 36

region with processor affinity (NUMA)
region is never swapped to disk (i.e. mlockall)(unbounded)
memory obtained via brk() (malloc/free)
Discussion
AllocatorStorage represents the resource (almost always untyped raw memory) and
where we find the specifications for alternative pointers and accessors.
Bounded represents a quantity defined by the application.
Unbounded means “limited only by system resources”
Relocatable is a specific requirement for types constructed using this memory, such that
memcpy is a valid way to copy construct an object.
For instance, when the AllocatorStorage is Relocatable, then an alternative pointer that
maintains offsets is desirable. Also, the AllocatorStorage can represent special regions of
memory (e.g. DMA addressable) or memory under control by an AllocatorManager that
cannot tolerate raw pointers (i.e. GC).
AllocatorStorage is too platform specific to specify in detail. For example, it is
conceivable to make an AllocatorStorage that represents a XML DOM Level 3 binding,
for use with a specialty container that modeled a Sequence. Unbounded, Bounded, and
Relocatable are concepts that have broad usage however.

AllocatorManager
This is the representation of allocate(), deallocate(), operator==(), and max_size(). It has
the semantics of a typical resource manager.
Each AllocatorStorage has one and only one AllocatorManager. An AllocatorManager
can handle one or more AllocatorStorage (all of the same type).

Table 3 Concepts of AllocatorManager
 Refinement of
Trivial None
FixedSize Trivial Works with class

operator new
VariableSize FixedSize
Contiguous VariableSize Works with operator

new[]
NonDeterministicReclaim FixedSize
ExpandInPlace Trivial
Hybrid VariableSize

Table 4 Programmability of AllocatorManager
 Static Case nonstatic Case (in

general)
DefaultConstructible Yes No
Swappable Yes Yes
MoveConstructible Yes Yes
MoveAssignable Yes Yes
CopyConstructible Yes No

N2486 Lance Diduck

Page 8 of 36

CopyAssignable Yes No
EqualityComparable always true always false
Examples:
free list of fixed size blocks from AllocatorStorage (FixedSize)
Object Pool -- free list of live objects (FixedSize or VariableSize)
a pointer that gets “bumped” on each allocation (VariableSize)
The functions malloc/free/realloc (Contiguous + ExpandInPlace)
The POSIX functions mmap/mfree (Trivial)
The Linux functions mmap/mfree/mrealloc (Trivial + ExpandInPlace)
BDW / Hazard pointer (NonDeterministicReclaim)

Discussion
There are of course many more ways to manage memory than listed here. However, this
is from the point of view of “what does a standard container expect” and not “what is
possible”
Trivial is a manager that owns one AllocatorStorage, and allocate() simply returns the
start address held by the storage, and deallocate() reclaims that memory.
FixedSize means it only has to be able to handle one value for the first parameter to
allocate(), and returns a pointer that be used to construct() a single element
VariableSize means it must be able to handle any value for the first parameter to
allocate(), up to the value returned by max_size(), and returns a pointer to the first
element of a memory sequence suitable to construct() N elements.
Contiguous means “can be iterated by a C style pointer.”
NonDeterministicReclaim, Hybrid and ExpandInPlace are included as examples of how
these concepts can be extended. They are elaborated on in a later section.

AllocatorAdapter
This is the interface that enables an AllocatorStorage and AllocatorManager to be used
with a container. When the current standard says “the allocator” it is referring to the
AllocatorAdapter. The AllocatorAdapter can only refer to one AllocatorManager.
Only the AllocatorAdapter can be “stateful” or “stateless.”

It adapts the functions and typedefs of the AllocatorStorage and AllocatorManager for
use in containers.

Table 5 Programmability of AllocatorAdapter
 Stateless CopySemantic MoveSemantic
DefaultConstructible Yes NullSemantic* Yes
Swappable Yes Yes No
MoveConstructible Yes Optional Yes
MoveAssignable Yes Optional Yes
CopyConstructible Yes Yes No
CopyAssignable Yes Yes No
EqualityComparable Yes Yes Yes
*NullSemantic means that the default constructor places the object in a null state.

N2486 Lance Diduck

Page 9 of 36

Examples
std::allocator (stateless)
__gnu_cxx::malloc_allocator (stateless)
A container allocator that maintains a pointer to an AllocatorManager (CopySemantic)
A container allocator that embeds an AllocatorManager (MoveSemantic, swappable)
A container allocator that embeds an AllocatorStorage (MoveSemantic, not swappable)

Discussion
In practice, the vast majority of AllocatorAdapters are stateless or CopySemantic. In
some cases, it is desirable to code the AllocatorManager and even the AllocatorStorage
into the AllocatorAdapter. In these cases, the AllocatorAdapter has the minimum
programmability available in either AllocatorManager or AllocatorStorage.
MoveSemantic is discussed in a later section.

Current State of Affairs

Intent of the Current Standard
First, we take note of what the standard already says:

Table 40 --Note 224 : It is intended that a.allocate be an efficient means of
allocating a single object of type T, even when sizeof(T) is small. That is, there is no
need for a container to maintain its own ‘‘free list’’.

We can see that the allocators are preferred to be FixedSize, i.e. for use in node based
containers. We will keep this bias moving forward –indeed, it is the canonical example of
a allocator matched to a type’s behavior. Indeed, perhaps the most significant
performance enhancements obtainable are with supplying node based containers with
allocators that support free lists of size T. Furthermore, these same allocators can be
easily used inside class specific operator new and delete. They are ubiquitous and easy to
code. Even in the stateful allocators, the “state” is often to make these same FixedSize
allocators either object specific, thread specific, practical in concurrent data structures,
etc. It is likewise easy and practical to make a stateful class specific operator new /delete
that can use these same allocators.
However, virtually none of the trade press mentions this intent. Rather, the focus is on
navigating the boilerplate, musings about FAR pointers, the curious weird rebind
mechanism, and such. Few users are actually providing their node based containers with
free list allocators. So at least one implementation just maintains the free list anyway.
To add to the confusion, not all containers can use FixedSize Allocators.

Recommendation

• The node based containers are NOT defaulted to std::allocator, but rather to a free
list allocator.

N2486 Lance Diduck

Page 10 of 36

• For each container, explicitly state what the allocator requirements are

Table 6 Standard Containers that take Allocator Argument
 Allocator

Manager
Requirement

Allocator
Manager
Options

Allocator
Adapter
Requirement

Allocator
Adapter
Options

Notes

vector VariableSize ExpandInPlace,
Trivial

CopySemantic MoveSemantic Contiguous
property
only applies
when
Contiguous
allocator is
used

sring Contiguous ExpandInPlace,
Trivial

CopySemantic MoveSemantic Support for
construct/
destroy
prohibited

deque VariableSize ExpandInPlace,
Hybrid

CopySemantic

list FixedSize CopySemantic MoveSemantic
forward_list N2231 FixedSize CopySemantic MoveSemantic
set FixedSize CopySemantic MoveSemantic
multiset FixedSize CopySemantic MoveSemantic
map FixedSize CopySemantic MoveSemantic
multimap FixedSize CopySemantic MoveSemantic
unordered_set

VariableSize ExpandInPlace,
Hybrid

CopySemantic

unordered_map

VariableSize ExpandInPlace,
Hybrid

CopySemantic

unordered_multiset

VariableSize ExpandInPlace,
Hybrid

CopySemantic

unordered_multimap

VariableSize ExpandInPlace,
Hybrid

CopySemantic

Stateful AllocatorAdapter Programmability
Multithreaded programming has made stateful allocators more than just a curiosity. Let’s
see what the issues are, and how to fix them. (Almost all of these issues are mentioned in
EASTL as well)

DefaultConstructiblity
A problem with stateful AllocatorAdapter is specifying a reasonable value to use for
default construction. In general, there is no reasonable default value. This is true of many
resource managers. As an illustration, consider the havoc if shared_ptr<T> was defaulted
to the address of some global static T, rather than 0. It would always make the pointer
dereferenceable – thereby eliminating accidental seg faults. However, calling the default
T is likely NOT what you had in mind. Now, root out just where you forgot to initialize
the shared_ptr….

The current practice is to disable the default ctor. Why? Consider this:
MyAllocatorStorage mybuf(ptr_beg,ptr_end);//some memory
MyAllocatorManager my_am(mybuf);//OK

N2486 Lance Diduck

Page 11 of 36

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2007/n2231.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2007/n2271.html

struct MyAllocatorAdapter{
 MyAllocatorAdapter(MyAllocatorManager &);
private:
 MyAllocatorAdapter();//default is meaningless
};
typedef std::container<T, MyAllocatorAdapter> my_t;
typedef std::container<my_t> mc_t;
mc_t tmp;//OK
//tmp.resize(1);//BOOM no compilation
tmp.resize(1, my_t(my_am));//Works for most implementations

A novice may think “Well, I could just make MyAllocatorAdapter use malloc as a
default.” And indeed it would compile and link. However, note what we just did: malloc
may (and probably does) implement completely different policies than
MyAllocatorStorage and MyAllocatorManager. And these concepts are essential for
program correctness –else you would have just used malloc.

CopyConstruction and CopyAssignable
The DefaultConstructible problem is exacerbated by the fact that the only way to specify
AllocatorAdapters is by copy construction. The standard reads:
23.1/8 Copy constructors for all container types defined in this clause copy an allocator argument from
their respective first parameters. All other constructors for these container types take an Allocator&
argument (20.1.5), an allocator whose value type is the same as the container’s value type. A copy of this
argument is used for any memory allocation performed, by these constructors and by all member functions,
during the lifetime of each container object. In all container types defined in this clause, the member
get_allocator()returns a copy of the Allocator object used to construct the container

In short, once constructed with an allocator, that allocator does not change. This leads to
this curious problem: upon a mutation that increases the size of the controlled sequence,
some implementations will default construct an element first, and then move the values in
later using a proprietary method similar to a move. So in container<container2> just how
are you supposed to get your container2 element’s special allocator copied into the
containers controlled sequence? And forget about using any mutating algorithms. My
experience is by killing the allocators default ctor, and then much trial and error with the
different implementations. (not trivial when coding something like
map<special_string,special_set_of_special_vector>,…,specialallocator>)
The perfect solution would be to go through the specification of every mutating member
function, and specify whether or not it is allowed to default construct an element. Then a
programmer only has to dodge the minefield only once. I think this is forcing the issue a
little too much – there are good reasons for each implementation to do what it does.
Besides, then you would have to note just which algorithms and adapters (e.g.
back_inserter) use which mutators. A good approach is rather: CopyAssign the
AllocatorAdapter via operator=, the problem does not completely go away; however, it
brings it into the realm of sanity. An application writer can make the AllocatorAdapter
default just indicate a runtime error, and then “assign it out” before use. This would
mimic the behavior of a container of shared_ptrs -- a shared_ptr can be default
constructed to Null, and then assigned before use.

N2486 Lance Diduck

Page 12 of 36

This is safer than the method used by EASTL, which has a “set_allocator” function. With
set_allocator, one has to worry about the cases where it is called when the container
already has elements.
Furthermore, copying the allocator adapter brings this semantic inline with any other
container value, like controlled sequence elements, comparators, hashers, etc. And,
allows the algorithms to be used in the normal way, without having to make “stateful
allocators” a special case.

Recommendation

• Require that no implementation may call allocate() in the container’s default
constructor

• Require that for every container, operator= copy the AllocatorAdapter as well
(except if the allocator compares equal)

• Require that for every container, swap exchanges the AllocatorAdapter as well.
This allows operator= to be defined in terms of swap, and vice versa.

EqualityComparable
The semantic that “operator== return true iff memory allocator by one can be deallocated
by the other” is underspecified. There are several cases where this is true, but otherwise
one would say they are unequal:
1. mmap operates on a given file handle, but munmap does not need this filehandle. So
any allocator with “file handle state” can deallocate from any other, but they should not
compare equal
2. many allocators just take a buffer, and deallocate is a no-op. One allocator takes a
buffer to shared memory, the other to the current stack. They could deallocate each other,
since they don’t “deallocate” at all. Here again, allocators are not equal

The point here is that instead of trying to reason about the “meaning” of operator==,
rather reason about what a container does if in fact they do compare equal. For a
consideration of allocators that can reallocate, see this discussion.
Recommendation

• When allocators compare equal, and implementation is free to deallocate
allocations from the other.

• When allocators compare equal, an implementation is not required to swap nor
assign allocators.

• list::splice has a precondition that allocators compare equal
• EqualityCompare is transitive see Section 3 of N2346

Stateful AllocatorAdapters and Rebind
Now that we have figured out in general just how to get our container to actually use the
allocator we specify, now comes the problem: just how do we specify the allocator?

N2486 Lance Diduck

Page 13 of 36

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2007/n2271.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2007/n2436.pdf

23.1/8 All other constructors for these container types take an Allocator& argument (20.1.5), an
allocator whose value type is the same as the container’s value type.
This is great, except for the case of stateful FixedSize allocators. Consider
MyAllocatorStorage mybuf(ptr_beg,ptr_end);//some memory
FixedSizeAllocatorManager my_am(mybuf);//supposed to allocate nodes of
T
typedef RegularAllocatorAdapter< FixedSizeAllocatorManager >
 MyAllocatorAdapter;
typedef std::set<T, MyAllocatorAdapter> my_t;
my_t my_cont(MyAllocatorAdapter(my_am));//OK
…but…
How does FixedSizeAllocatorManager know just what size my_cont wants to
allocate????
Without breaking encapsulation, there is no way to portably know at compile time. We
just wait for the first call to allocate to find out. We need a better way.
This was also noted in EASTL.

Recommendation

• No AllocatorAdapter definition can depend on the names of the type it allocates
(i.e. for AllocatorAdapter<T>, AllocatorAdapter cannot depend on a name in T)

• Every container has some identifier making it possible to determine the alignment
and size of the allocations required (The EASTL method does not account for
alternative pointers, however, but the idea is the same)

(note this presents a problem with containers that use more that one type of allocator
(deque , unordered_*) I regret that I have not worked out a acceptable solution for this)

MoveSemantic AllocatorAdapters
One part of the confusion is that the literature confuses the portion of the allocator that
actually does the allocating with the portion that adapt this for use in a container. The
former is a typical resource manager object, and is naturally move semantic. The latter is
almost always (in the stateful case) a copy of a pointer to this resource manager. It is
ONLY the case that the adapter and the resource manager are both the same object that
this situation occurs. Containers in general cannot tolerate this case – for example, it is
hard to implement a unordered_* or a deque that only used one copy of an allocator –
unless it forced this allocator not to care about the type of object it allocates. And this
situation is antithetical to alternative allocators (and performance minded applications).
One problem with MoveSemantic adapters is how to swap them. Even if the user never
calls swap, (either directly or indirectly) some libraries use swap internally, to implement
operator=(), clear(), reserve() and such.
Another problem with MoveSemantic allocators is that they cannot be easily used in
containers that use more than one copy of the allocator, such as deque and unordered_*.
Likewise, containers of containers using MoveSemantic allocators, that has the same
problems that auto_ptr would have i.e. you can’t reliably use it with the algorithms.
Adding to the headaches, get_allocator() can no longer return a copy of the
“allocator.” get_allocator()is used in at least one implementation internally, and
also custom adapters that rely on the “copy behavior.”

N2486 Lance Diduck

Page 14 of 36

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2007/n2271.html
http://www.lancediduck.com/papers/Cpp/StatefulSTL2.pdf

I have found that MoveSemantic adapters make some syntax easier, but rarely does it
translate to performance gains or ease of use overall.
Recommendation

• Support for MoveSemantic AllocatorAdapters is implementation dependent

Polymorphic Allocators
This means that at least the functions allocate() and deallocate() are declared virtual.
Given that standard container can inquire at compile time about specific types supported
by an allocator, it has a distinct advantage over containers that use only polymorphic
allocators. Either polymorphic allocators have to be applied carefully to a particular type
--thereby negating the polymorphism. Or, a polymorphic allocator has to be able to
allocate ANY type --thereby negating any performance tuning that can be applied to a
particular types behavior. On top of that, polymorphic allocators cannot be used with
relocatable container, since virtually every compiler implements virtuals using pointers. It
is a perhaps a coming of age for any IPC programmer to discover that they can’t use
virtuals reliably in shared memory.
To add to the restrictions, polymorphic allocators cannot tolerate alternative pointers nor
alternative accessors.
Interestingly, other that the original HP reference implementation, all implementation
correctly handle polymorphic allocators. The issue is that they are hard to apply, tune
and debug. Yes, it is easier to compile and link a polymorphic allocator, but that is where
the advantage ends. Even Section 4 of N2387 recommends quite a battery of tests to
ensure that the users polymorphic allocators were applied correctly.
Nevertheless, in many cases polymorphic allocators can be advantageous. In these cases,
we aren’t looking for how to make containers go fast or how to easily debug mistakes –
polymorphic allocators can never contend with their templatized cousins in this regard.
What we are looking for is the ability for a library to advertise “installable allocators.”
There is no reason that the specification of std::allocator cannot be pressed into this
service, so that a library that advertises this ability can also easily be implemented in
terms of standard containers.7 This does not mean that any part of the standard allocator
is specified as virtual (there by negating the space concerns), just that virtuals could
easily be used.
To this end, the signature to allocate is modified to deprecate the “const void*” hint
(which has very limited applicability) and changed to take alignment and flags
parameters. In most typed allocators the alignment parameter (just like the size
parameter) can be ignored, but when the allocator specification is pressed for service for
use outside a single container, this parameter can be used effectively.
The flags parameter is implementation defined.
See EASTL.

7 This does NOT imply that containers with polymorphic allocators make good types to use in the interface
of such libraries. Almost always, such libraries have abstract base classes as interfaces. Standard containers
are still templates, with is problematic at best to mix with abstract base classes, plus one has to worry about
the lifetime, origination and behavior of the allocators passed back and forth via the interface containers

N2486 Lance Diduck

Page 15 of 36

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2007/n2387.pdf
http://xerces.apache.org/xerces-c/program-others.html#PluggableMemoryManager
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2007/n2271.html

Recommendation

• Overload the allocate function to pointer allocate(std::size_t, std::size_t align,
unsigned flags);

• The allocate and deallocate functions are non-const

Alternative Pointers
Alternative Pointers has not found much use, mostly because the weasel wording neuters
this feature, and each implementation has very different notions of what is possible. (For
example, one implementation applies stateful construct and destroy not only to the
controlled sequence, but to the pointers themselves.)
There are at least two classes of pointers used: first is those that a container uses for it
own internals (i..e node pointers, iterator implementation), and the other is for the
signature of construct/destroy/address/data, but otherwise not used by implementations to
store the value of the pointer.
This code snippet sums it up
template<class T, template<class Y> class SmartPtr>
struct custom{
 typedef T* raw_pointer;//could be FAR, etc
 typedef T const* raw_const_pointer;
 typedef T& reference;
 typedef T const& const_reference;
 typedef SmartPtr<T> pointer;
 typedef SmartPtr<T const> const_pointer;
 // static_assert(is_same<raw_pointer,typeof(&*SmartPtr<T>)>::value)
 // static_assert(is_convertible<pointer,custom<void>::pointer)
 // pointer u;u==pointer() means "NULL"
};
raw_pointer is what is used for the arguments to construct, and destroy. It is
traditionally where a user you specify FAR, NEAR, etc. In other words, raw_pointer
is something that works with extern C. pointer is what is used for implementing
iterators, in the interface of a container, and pointers that are used as member (e.g. node
pointers). This is where a pointer –like class is used.
We note this relationship – every container that requires a VariableSize
AllocatorManager also requires a pointer that is a model of RandomAccessIterator.
Otherwise, the pointer could be a model of TrivialIterator – in other words, no arithmetic
is ever applied to the pointer objects themselves in this case. This mirrors the case with
operators new / new[].

shared_ptr
shared_ptr is a model of TrivialIterator, but it will not work in any standard container that
could take a FixedSize AllocatorManager (but see forward_list N2231 for a
counterexample). auto_ptr and unique_ptr will of course not work at all with the current
model.
Why might I want a shared_ptr? It would be possible in theory to make a custom
container where iterators are always dereferencable. So allocators themselves should
allow it, just not the existing standard containers. (This is similar to the auto_ptr problem
– it is possible to make a container that uses auto_ptrs, just that the standard containers

N2486 Lance Diduck

Page 16 of 36

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2007/n2231.html

can’t use them reliably. And part of the goal is a specification that custom container
writers can use as well).
Making a standard container use a shared_ptr as the pointer type is a can of worms –
First, one would have to deal with the cycles inherent in the node based containers;
second, one would have to figure out a way that the shared_ptr allocator “matched” the
containers allocator; third, a deleter would have to be used that told the shared_ptr not
only which allocator to delete from, but what the second parameter is to deallocate.
Fourth, the deleter would have to call destroy for you. Fifth, even though the iterator
may be correctly dereferenced, they remain invalid otherwise. Now put all this together
such that the container works with both T* and shared_ptr<T>. Possible? Yes. Practical?
I don’t think so.

basic_string
alternative pointers can cause some grief when used with basic_string. This is because
char_traits requires “raw pointer” types as function arguments. Therefore, it is unlikely
that a fancy pointer (which is typically NOT convertible to its associated raw pointer
type) can be passed directly to it. So when an implementation passes a iterator or the
internal buffer to a char_traits function, that implementation should always call address()
or &* first. This relieves the user of having to define an appropriate char_traits just so
fancy pointer could be used.

data()
The return type of data() should be the raw pointer type. Why? Because this function was
intended such that it is compatible with extern C functions. In the odd case that a non-
contiguous allocator was used (i.e. for vector) then this function is undefined.

Recommendation

• Add language assuring that pointers have null semantics
• Add language assuring that each AllocatorAdapter has the same “template

typedefs” for each specialization See N2082 and “The Standard C++ Library”
• with FixedSize AllocatorManagers, it is desired that pointer types that are not

models of RandomAccessIterator be allowed for container that could use them.
This make programming alternative pointers far easier

• Add language that stated that any pointer type used for list, map, multimap,
multiset, and set allow cyclic references

• Separate out the pointer typedefs used for construct/destroy/address from the
others. This reduces the boilerplate required

• Add diagnostics to disallow shared_ptr or unique_ptr for pointer inside any
standard container.

• Require implementations to convert fancy pointer to raw pointer when calling
char_traits functions

• Require that constructors and assign operators of alternative pointers are no-fail
(this makes it easier to code for alternative accessors)

N2486 Lance Diduck

Page 17 of 36

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2006/n2082.pdf
http://www.amazon.com/C%2B%2B-Standard-Template-Library/dp/0134376331/ref=pd_bbs_2?ie=UTF8&s=books&qid=1197160242&sr=8-2

Alternative Accessors
The standard says, a==b, iff b.deallocate(a.allocate(N,0),N) is valid. However,
nothing can be said about b.destroy(a.construct(P,V));
N2257 declares that there is no known use for this. Or course the standard discourages
ANY use by neutering these functions (as noted in LWG 580). And while many
implementations call these functions, few do so in a usable way –vector typically does,
but then again writing a variable sized object allocator for vector is difficult.8 So of
course there are few people using these, since taking the trouble is not portable nor well
understood.

There are at least two uses cases for construct/destroy:
Relocatable containers: It is desirable to make containers relocatable. To do this we need
to store offsets rather than raw pointers.
And indeed offset_ptr fits the bill..
double val;
offset_ptr<double> offp(&val);
&*offp==&val;//OK
However, I can’t do this
offset_ptr<double> offp2(a.allocate(1));
new ((void*) offp2) T(val);

The remedy is simple – define construct() to handle my special pointer type. However, if
the above changes proposed for pointers are adopted, then this point is moot.
Object Pools: I can easily make a case for an allocator that recycles live objects, rather
than just raw memory. A suitable construct/destroy would readily handle this, if certain
limitation are set on just what a container can do with construct/destroy.
Construct/destroy should only be applied to the elements of the controlled sequence (that
is, the “T”). Applying it to the nodes does little good – a user does not want to
construct/destroy nodes for the container, and shouldn’t. Applying construct/destroy to
fancy pointers is also not needed. A fancy pointer supplier is going to have suitable
regular constructor / destructors anyway, and is unlikely to then override that behavior
with construct/destroy. This rule takes away the issue of constructing and destroying
things like comparators, the pointers themselves, temporaries, and every other component
of a container
To avoid confusion with stateful allocate/deallocate, make construct/destroy are static
functions. This makes issues of “swap” “copy” and “equality” moot, and brings a little
sanity. Any state that is needed could be put into the memory referred to by pointer
argument.
Construct/destroy use raw pointers as arguments, and not fancy pointer types.
Construct/destroy should not be used in basic_string. basic_string was designed for use
with POD types only. Applying construct/destroy to each member is a big performance
hit. No implementation actually uses construct/ destroy in basic_string, but this is not
mentioned in the standard.9

8 It is possible to wrap up a std::deque for this. See Exercise 10.10 in the “The Standard C++ Library”
9 For vector of POD types, sometime big performance gains can be realized by using basic_string in lieu of
vector – especially in those cases that COW makes sense

N2486 Lance Diduck

Page 18 of 36

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2007/n2257.html
http://cci.lbl.gov/%7Erwgk/shortcuts/boost_hot/boost/interprocess/offset_ptr.hpp
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2007/n2339.htm
http://www.amazon.com/C%2B%2B-Standard-Template-Library/dp/0134376331/ref=sr_1_4?ie=UTF8&s=books&qid=1197161553&sr=1-4

When the constructors and assign operators of the alternative pointers are no-fail, this
makes code using construct/destroy far easier to implement.

address()? If the language for pointers is adopted, then this is replaced by &*ptr. This
simplifies what a container author must be able to support (see section 8 of N2387)

Recommendation

• destroy, construct and address are static members only
• destroy, construct and address are only applied to members of the controlled

sequence.
• destroy, construct, data and address signature only use “raw” pointers. These can

still be parameterized (i.e. to specify FAR, etc) but the typedefs are distinct
• construct/destroy is prohibited from use in basic_string

Example of list code snippet that uses construct/destroy in the manner above. NOTE—
the ctor/dtor of ListNode is never called. Here, the ListNode relies on “structural” typing
only – the traditional “C++ type expresses behavior” is neutered, delegating this to other
functions10, namely construct/destroy:

template<class T, class Alloc>
struct ListNode{
 typedef typename Alloc::template
 rebind<ListNode>::other::pointer node_pointer_type;
 T m_val;
 //m_val is coincident with the start of ListNode -- important!!
 node_pointer_type m_next;
 node_p
private:

ointer_type m_prev;

//ctor/dtor should not be called
//this conflicts with construct/destroy
 ListNode();//=delete
 ~ListNode();//=delete
};
template<class Alloc>
struct allocholder{
 typedef Alloc l locator_ pe; va ue_al ty
 typedef typename Alloc::template
 rebind<ListNode>::other node_allocator_type;
protected:
 node_allocator_type m_nodeallocator;
 allocholder(Alloc const&a):m_nodeallocator(a){}
};
template<class T, class Alloc>
struct list:allocholder{//typical EBCO
 typedef Alloc lue_alloca e; va tor_typ
 typedef typename ListNode<T,Alloc>::node_pointer_type
 node_pointer_type;
//internal use class

10 This is the approach taken in “The Standard C++ Library” but only applied to the T, and not everything
else

N2486 Lance Diduck

Page 19 of 36

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2007/n2387.pdf
http://www.amazon.com/C%2B%2B-Standard-Template-Library/dp/0134376331/ref=sr_1_4?ie=UTF8&s=books&qid=1197161553&sr=1-4

friend struct CreateNode;

//internal member function to create node
node_pointer_type get_newnode(node_pointer_type prev,
 node_pointer_type next,T const&val) {
 CreateNode newnode(prev,next,val,*this);
 node_pointer_type ret();
 using std::swap;
 swap(newnode.m_newval,ret);
 return ret;
}

//CreateNode does the work of constructing a ListNode
struct CreateNode{
CreateNode(node_pointer_type prev, node_pointer_type next,
 T const&val,list &a):m_parent(a){
 m_newval = a->m_nodeallocator.allocate(1);
 on r OT applied to container internals //c struct/dest oy N
 new (static_cast<void*>(&(m_newval.m_next))
 d inter_type(next); no e_po
 new (static_cast<void*>(&(m_newval.m_prev))
 node_pointer_type(prev);
 //construct/destroy applied to element

 value_allocator_type::construct(
 value_allocator_type::address(m_newval->m_val), val);
}
~CreateNode(){
 //NULL pointer check
 if(m_newval==node_pointer_type())return;
 //call ListNode dtors
 (m_newval.m_prev).~node_pointer_type();
 (m_newval.m_next).~node_pointer_type();
 //deallocate
 a->m_nodeallocator.deallocate(
 node_allocator_type::address(m_newval),1);
}
 node_pointer_type m_newval;
 m_parent &m_alloc;
}
//other node creation/deletion functions follow the same intent
};//list

max_size
We note that AllocatorStorage has two concepts, bounded and unbounded. “unbounded”
simply means “up to the limits imposed by the system.” The max_size() has little
meaning in the unbounded case. In the bounded case, it means “how many objects can I
put into the container?”
Recommendation

• for every container that maintains the strong guarantee (i.e. list), for every
mutating member that can insert more than one element at a time into the
controlled sequence, test max_size first.

N2486 Lance Diduck

Page 20 of 36

• Each container max_size function must subtract from max_size the number of
allocations it uses for its own internals (i.e. list, tree base nodes)

• max_size is const when not static

Support / Requirement Levels
Not all containers need to support all features. However, instead of ambiguous “weasel
wording” this is a language by which a container author can advertise their support.
While it should be mandatory that the standard containers all portably support a
minimum of features, specialty container authors are can describe the features they
support, graded on level of implementation difficulty.
SupportLevel0 – no allocator required (tr1::array)
SupportLevel1 – custom allocator changes not possible, or on a global basis (ICU,
bitarray, locales)
SupportLevel2 – static allocator adapter, no alternative pointers, no alternative accessors
(the current standard)
SupportLevel3 – SupportLevel2, plus stateful allocator adapter (most custom
implementations, and most shared_ptr’s)
SupportLevel4 - SupportLevel3, plus alternative pointers
SupportLevel5 - SupportLevel4, plus static alternative accessors (applied to value only)
SupportLevel6 - SupportLevel5, plus stateful alternative accessors (applied to pointers
and value)

(users that need support beyond this are likely to implement custom data structures)

SupportOptionA – ExpandInPlace Allocators
SupportOptionB – Trivial Allocators
SupportOptionC – Hybrid Allocators

Also, some specialty containers have additional requirements on allocators, beyond
FixedSize, VariableSize, or Contiguous

RequirementA – Concurrent / NonDeterministicReclaim (BDW)
RequirementB – Serialized (gcc mtalloc)
RequirementC -- Unbounded
RequirementD -- Relocatable

Recommendation

• all standard variable size containers support a minimum SupportLevel5. This
covers all known use cases.

• string and shared_ptr uses SupportLevel3

The Code
This sample allocator implementation does not require any interface changes to existing
containers, nor any code changes (other than meeting minimum support levels).

N2486 Lance Diduck

Page 21 of 36

http://www.icu-project.org/apiref/icu4c/classUMemory.html

There is still an “allocator” template, but users should not have to replace this in any
conceivable use case. It is for backward compatibility only.
There are three new templates: A default “AllocatorStorage” class, for defining fancy
pointers and construct/destroy, one static “Manager Class,” and a “Stateful Adapter”
class, for easily specifying stateful pools. The replacement allocator class is modified to
adapt the new templates.
The idea is to make the manager classes easy to replace - -this is the majority of the
alternative allocator usage. Only when a user changes the pointer type or use object pools
does a lot of boilerplate come into play, and even then less than the current model.
No examples of alternative pointers or alternative accessors are provided in this paper, in
the interest of saving space – the required pointer definitions and allocators alone would
more that double the length of the paper (but the allocator boilerplate is a small fraction
of it!!)

AllocatorStorage
This is the place that the pointer typedef’s and construct/destroy live

template<class Y>
struct AllocatorStorage {
 template<class T> struct rebind{
 typedef AllocatorStorage<T> other;
 };
 typedef Y value_type;
 typedef value_type* raw_pointer;
 typedef value_type const* raw_const_pointer;
 typedef value_type& reference;
 typedef value_type const& const_reference;
 typedef std::size_t size_type;
 typedef std::ptrdiff_t difference_type;
 typedef value_type* pointer;
 typedef ue_type const* const_pointer; val
 static void construct(raw_pointer ptr, value_type const& val) {
 new(static_cast<void*>(ptr))value_type(val);
 }
 static void destroy(raw_pointer ptr1) {
 ptr1->~value_type();
 }
};
template<>
struct o age<void { Allocat rStor >
 template<class T> struct rebind{
 typedef AllocatorStorage<T> other;
 };
 typedef void value_type;
 typedef value_type* raw_pointer;
 typedef value_type const* raw_const_pointer;
 typedef value_type* pointer;
 typedef value_type const* const_pointer;
 typedef std::size_t size_type;
 typedef std::ptrdiff_t difference_type;

};
//requirements

N2486 Lance Diduck

Page 22 of 36

//pointer u,raw_pointer v
// is_same<raw_pointer,typeof(&*u)>::value==true
// AllocatorStorage<T>::pointer a; AllocatorStorage<void>::pointer b;
// b(a);//is valid
// pointer n();
// n==pointer();//means "null pointer"
// pointer is model of TrivialIterator, or
// better depending on container
// pointer must have CopySemantics
// pointer must allow cyclic references

AllocatorManager
This is the place that the pool managers live. Its default looks like:

struct AllocatorManagerBase {
 typedef AllocatorStorage<void>::size_type size_type;
 typedef AllocatorStorage<void>::raw_pointer void_pointer;
 static void_pointer allocate(size_type req,
 size_type align=size_type(-1),unsigned flags=0) {
 return ::operator new(req);}
 static void deallocate(void_pointer d,size_type) {
 : operator delete(d);} :
 static bool equal_to(AllocatorManagerBase const&) {
 return true;
 }
 static size_type max_size(){
 return size_type(-1);
 }
};
template<class T>
struct AllocatorManager:AllocatorManagerBase{
 template<class U>struct rebind{
 typedef AllocatorManager<U> other;
 };
 template<class U> AllocatorManager(AllocatorManager<U> const&){}
 AllocatorManager(){}
};// max_size always returns number of bytes available
The reason for the separation is to demonstrate to users that this can easily be done
without templates. The “rebind” mechanism is still required however in the general case.

AllocatorAdapter
There are two adapter templates. One is to make stateful AllocatorManagers easy to
specify. The other is for backward compatibly with existing containers:

template<class T, class Pool, class Storage=AllocatorStorage<void> >
struct StatefulAdapter{
 typedef typename Storage::size_type size_type;
 typedef typename Storage::difference_type difference_type;
 typedef typename Storage::template
 rebind<Pool>::other::pointer
 impl_pointer_type;
 typedef typename Storage::template
 rebind<void>::other::raw_pointer void_pointer;
 template<class U>struct rebind{

N2486 Lance Diduck

Page 23 of 36

 typedef StatefulAdapter<U,Pool,Storage> other;
 };
 void_pointer allocate(size_type req,std::size_t align,
 unsigned flags) {
 return m_Manager->allocate(req,align,flags);
 }
 void_pointer allocate(size_type req,
 unsigned flags=0) {
 return m_Manager->allocate(req,flags);
 }

 void deallocate(void_pointer d,size_type n) {
 m_Manager->deallocate(d,n);
 }
 bool equal_to(StatefulAdapter const&_r) const {
 return m_Manager==_r.m_Manager;
 }
 size_type x_size()const { ma
 return m_Manager->max_size();
 }
 StatefulAdapter(P const b) ool &
 :m_Manager(const_cast< Pool *>(&b)){}
 StatefulAdapter():m_Manager(Pool::get_instance()){}
 StatefulAdapter(StatefulAdapter const & b)
 :m_Manager(b.m_Manager){}
 StatefulAdapter& operator=(StatefulAdapter const& r){
 m_Manager=r.m_Manager;
 return *this;
 }
 template <class U>
 StatefulAdapter (StatefulAdapter <U, Pool,
 Storage >
 const& r)
 : m_Manager (r.m_Manager) {
 }

 void swap(StatefulAdapter&r){
 using std::swap;
 swap(m_Manager,r.m_Manager);
 }
private:
 template<class X,class Y,class Z> friend struct StatefulAdapter;
 impl_pointer_type m_Manager;
};
template<class X,class Y,class Z>
void swap(StatefulAdapter<X,Y,Z>&l,StatefulAdapter<X,Y,Z>&r){
 l.swap(r);
}

template <class T,class Manager=AllocatorManager<T>,
 class Storage=AllocatorStorage<T> >
struct AllocatorAdapter:Manager {
 typedef Manager base_type;
 typedef T value_type;
 typedef Storage storage_policy;
 typedef typename storage_policy::pointer pointer;
 typedef typename storage_policy::const_pointer const_pointer;

N2486 Lance Diduck

Page 24 of 36

 typedef typename storage_policy::raw_pointer raw_pointer;
 typedef typename storage_policy::raw_const_pointer
 raw_const_pointer;
 typedef typename storage_policy::reference reference;
 typedef typename storage_policy::const_reference const_reference;
 typedef typename storage_policy::size_type size_type;
 typedef typename storage_policy::difference_type difference_type;
 static raw_pointer address(reference _val)
 {
 return (&_val);
 }
 static raw_const_pointer address(const_reference _val)
 {
 return (&_val);
 }
#if defined(NEWSTYLE)
 static void construct(raw_pointer ptr, const_reference val)
 {
 storage_policy::construct(ptr, val);
 }

 static void destroy(raw_pointer ptr1) {
 storage_policy::destroy(ptr1);
 }
#else
 static void construct(pointer ptr, const_reference val)
 {
 storage_policy::construct(address(*ptr), val);
 }

 static void destroy(pointer ptr1) {
 storage_policy::destroy(address(*ptr1));
 }
#endif
 pointer allocate(size_type n) {
 using boost::al ignment_of;
 return pointer(static_cast<raw_pointer>(
 this->base_type::allocate(n*sizeof (T)
 ,alignment_of<T>::value)));
 }
 void deallocate (pointer x,size_type n) {
 this->base_type::deallocate(address(*x),n);
 }

 size_type max_size()const {
 return this->base_type::max_size()/sizeof(T);
 }
 bool operator llocatorAdapter const &r)const { ==(A
 return this->base_type::equal_to(r);
 }
 bool operator!=(AllocatorAdapter const &r)const {
 return !((*this) ==r);
 }
 template<class OtherType>
 AllocatorAdapter(OtherType const & _buf):base_type(_buf) {
 }

N2486 Lance Diduck

Page 25 of 36

 AllocatorAdapter(AllocatorAdapter const&r):base_type(r){}
 AllocatorAdapter(Manager const&r):base_type(r){}

 template<class U>struct rebind {
 typedef AllocatorAdapter<U,
 typename base_type::template
 rebind<U>::other,
 typename storage_policy::template

rebind<U>::other> other;
 };
 template <class U>
 AllocatorAdapter(AllocatorAdapter<U,Manager,Storage>
 const& r)
 : base_type(r) {
 }
 template<class U>
 AllocatorAdapter<T,Manager,Storage>&
 operator=(AllocatorAdapter<U,Manager,Storage>const&r)
 {
 this->base_type::operator=(r);
 return (*this);
 }
 void swap(AllocatorAdapter &r){
 using std::swap;
 swap(static_cast<base_type&>(*this),
 static_cast<base_type&>(r));
 }
 AllocatorAdapter() {}

};
template <class Manager,class Storage =AllocatorStorage<void> >
struct AllocatorAdapter<void,Manager,Storage> {
 typedef void value_type;
 typedef Storage storage_policy;
 typedef typename storage_policy::pointer pointer;
 typedef typename storage_policy::const_pointer const_pointer;
 typedef typename storage_policy::raw_pointer raw_pointer;
 typedef typename storage_policy::const_raw_pointer
const_ nraw_poi ter;
 typedef typename storage_policy::reference reference;
 typedef typename storage_policy::const_reference const_reference;
 typedef typename storage_policy::size_type size_type;
 typedef typename storage_policy::difference_type difference_type;
 template<class U>struct rebind {
 typedef AllocatorAdapter<U,
 typename Manager::template rebind<U>::other,
 typename storage_policy::template rebind<U>::other > other;
 };
};
template <class T,class U,class Manager,class Storage>
bool operator==(AllocatorAdapter<T,Manager,Storage>
 const&l,AllocatorAdapter<U,Manager,Storage> const&r) {
 return l.operator==(r);
}
template <class T,class U,class Manager,class Storage>
bool operator!=(AllocatorAdapter<T,Manager,Storage>
 const&l,AllocatorAdapter<U,Manager,Storage> const&r) {

N2486 Lance Diduck

Page 26 of 36

 return !(l==r);
}

This adapter makes it easy to specify “polymorphic allocators” if desired, merely by
changing the Manager class.

Examples
These are a few examples. The idea is that the most common cases –like just changing
what allocate and deallocate do in the static case – requires the least boilerplate. Even in
the more difficult cases, the boilerplate is still far less than that required by the current
design.
Template Typedefs and constructor forwarding would make this easier still.
Malloc Allocator
An all time classic
template<class T>
struct Malloc_Alloc{
 template class U>struct rebind{ <
 typedef Malloc_Alloc<U> other;
 };
 template class U> Malloc_Alloc(Malloc_Alloc<U> const&){} <
 Malloc_Alloc(){}
 typedef std::size_t size_type;
 static void* allocate(size_type req,
 size_type align=size_type(-1),unsigned flags=0) {
 return malloc(req);}
 static void deallocate(void*p ,std::size_t) {
 free(p);
 }
 static bool equal_to(Malloc_Alloc const&) {
 return true;
 }
 static type max_size(){ size_
 return size_type(-1);
 }
};
template<class T>struct MallocAlloc{
 typedef AllocatorAdapter<T,Malloc_Alloc<T> > type;
};
Usage is like this:

std::vector<int,MallocAlloc<int>::type > myvec;

Polymorphic Allocator
When alternative accessor nor pointers are needed, this is a useful way to write libraries
that can use “installable” memory managers determined at runtime. Almost always, these
allocators are used to allocate heterogeneous types unknown to the allocator author, so in
general they are hard to tune and debug. But for particular applications, they can be
advantageous, given the alternative of redefining global operator new and rebuilding
everything.

N2486 Lance Diduck

Page 27 of 36

http://xerces.apache.org/xerces-c/program-others.html#PluggableMemoryManager

This example also uses a shared_ptr to manage the lifetime of the allocator instance. It
looks like this:
//the abstract base class
//get_instance() returns a default
struct Poly_Alloc {
 typedef std::s ze_type; ize_t si
 virtual void* allocate(size_type req,
 size_type align=size_type(-1),unsigned flags=0)=0;
 virtual void deallocate void ize_type)=0; (*p ,s
 virtual size_type max_size()const=0;
 static shared_ptr<Poly_Alloc> get_instance();
};
// a suitable default
struct DefaultPoly_Alloc: Poly_Alloc{
 void* allocate(size_type req,
 size_type =size_type(-1),unsigned =0) {
 return ::operator new(req);}
 void deallocate void ,size_type) { (* d
 ::operator delete(d);
 }
 size_t max_size()const { ype
 return size_type(-1);
 }
};
//get_instance, just a regular singleton
void no_op(void*){}
shared oly_Alloc> Poly_Alloc::get_instance() { _ptr<P
 static DefaultPoly_Alloc defalloc;
 static shared_ptr<Poly_Alloc> defalloc_ptr(&defalloc,no_op);
 return defalloc_ptr;
}
//something to tell the StatefulAdapter to use a shared_ptr
//this d es NO c
template<class Y>

o T hange the definition of allocator::pointer

struct SharedPtrSpec : AllocatorStorage<Y> {
 template<class Z> struct rebind{
 typedef SharedPtrSpec<Z> other;
 };
 typedef shared_ptr<Y> pointer;
};
//put it all together
template<class T>struct PolyAlloc {
 typedef AllocatorAdapter<T,StatefulAdapter<T,Poly_Alloc,
 SharedPtrSpec<void> > > type;
};
Usage is
typedef std::set<int,std::less<int>,PolyAlloc<int>::type > myset_t;

Stack Memory Allocator
An example of a stack memory allocator, that can be shared amongst other containers, or
is unique to one (i.e. could be MoveConstructible):
//StackAllocatorBase is the machinery
template<class T, std::size_t N> struct StackAllocatorBase {
 static const std::size_t my_align =alignment_of<T>::value;
 void* allocate(std::size_t req, std::size_t /*align*/

N2486 Lance Diduck

Page 28 of 36

 =std::size_t(-1),
 unsigned /*flags*/=0) {
 std::size_t const areq=req%my_align ?
 req+my_align-req%my_align : req;
 if (unsigned((reinterpret_cast<char*>(&m_buf)
 +sizeof(m_buf))-m_ptr)<=areq)
 throw std::bad_alloc();
 void* ret=m_ptr;
 =areq; m_ptr+
 return ret;
 }
 void deallocate(void*, std::size_t) {
 }
 std::size_t max_size() const {
 return sizeof(m_buf);
 }
protected:
 StackAllocatorBase()
 : m_ptr((char*)&m_buf) {}
 to get this to work he "unique" case //wierdness needed in t
 StackAllocatorBase(StackAllocatorBase const&)
 :m_ptr((char*)&m_buf) {}//just a default ctor
 void operator=(StackAllocatorBase const&) {/*do nothing*/}
private:
 aligned_storage<sizeof(T)*N,alignment_of<T>::value> m_buf;
 char * m_ptr;
};
Now, for a version that can be shared and works all containers:
//StackAllocShareable will be used with the StatefulAdapter
template<class T, std::size_t N>
struct StackAllocShareable :StackAllocatorBase<T,N> {
 static StackAllocShareable*get_instance() {
 return 0;
 }
 StackAllocShareable() {
 }
private:
#if !defined(__GNUC__)
 //gcc wants to see the copy ctor
 //but it should not be required
 StackAllocShareable(StackAllocShareable const&);//=delete
#endif
 void operator=(StackAllocShareable const&);//=delete
};
And one that is unique, that works with many containers11
//StackAllocUnique will be used with the AllocatorAdapter
template<class T, std::size_t N>
struct StackAllocUnique :StackAllocatorBase<T,N> {
 template<class U> struct rebind {
 typedef StackAllocUnique<U,N> other;
 };
 static bool equal_to(StackAllocUnique const&) {
 return false;
 }

11 Theoretically, any container that makes only one copy of the allocator argument

N2486 Lance Diduck

Page 29 of 36

};

And a way to put this together:

template<class T, std::size_t N> struct StackAlloc {
 typedef StackAllocShareable<T,N> stype;
 typedef AllocatorAdapter<T,StatefulAdapter<T,stype > > ctype;
 typedef AllocatorAdapter<T,StackAllocUnique<T,N> > mtype;
};

typedef StackAlloc<int,1000> myalloc_t;

Now, the user does this for the “unique” case:

typedef std::vector<int,myalloc_t::mtype > mvec_t;
mvec_t mvec;
mvec.resize(3,1);
mvec_t mvec2;
mvec2=mvec;
And for the shared case, one does this:

//this vector assigns the allocator in operator=
typedef vector<int,myalloc_t::ctype > cvec_t;
cvec_t cvec((myalloc_t::ctype(myalloc_t::stype())));
cvec.resize(3,1);
cvec_t cvec2;
cvec2=cvec;
cvec_t cvec3(cvec2.begin(),cvec2.end(),cvec2.get_allocator());

The “shared” version works with every container in every implementation commonly in
use (provided that you don’t call a default as I did here), and the “unique” version works
with many containers on many implementation, but has more “gotcha’s” -- like O(N)
swap for instance.

Shared Memory Container
Lets modify the “stack” example above to make it use a deque, and usable in shared
memory. To do this, we cannot rely on the value of any pointer. We can only use offsets.
With offset_ptr, we have what we want.
template<class Y>
struct RelocatableStorage {
 template class U>struct rebind{ <
 typedef reloc_node_policy <U> other;
 };
 typedef Y value_type;
 typedef offset_ptr<Y> pointer;
 typedef offset_ptr<Y const> const_pointer;
 typedef value_type* raw_pointer;
 typedef value_type const* raw_const_pointer;
 typedef value_type& reference;
 typedef value_type const& const_reference;
 typedef std::size_t size_type;

N2486 Lance Diduck

Page 30 of 36

 typedef std::ptrdiff_t difference_type;
 static void construct(Y* ptr, Y const& val)
 {
 new(static_cast<void*>(ptr))Y(val);
 }
 static void destroy(Y* ptr1) {
 ptr1->~Y();
 }
};
template<>
struct RelocatableStorage<void> {
 template<class T> struct rebind{
 typedef reloc_node_policy<T> other;
 };
 typedef void value_type;
 typedef value_type* raw_pointer;
 typedef value_type const* raw_const_pointer;
 typedef offset_ptr<value_type>pointer;
 typedef offset_ptr<value_type const> const_pointer;
 typedef std::size_t size_type;
 typedef std::ptrdiff_t difference_type;
};
Change StackAllocatorBase to use max alignment, and change m_ptr to read,
 RelocatableStorage<char>::pointer m_ptr;

Now, with the proviso that std::deque is going to actually use the pointer specified by the
allocator, and of course T is relocatable as well:
template<class T, std::size_t N>
struct lloc { RelocA
 typedef StackAllocShareable<T,N> stype;
 typedef AllocatorAdapter<T,
 StatefulAdapter<T,stype,RelocatableStorage<T> >,
 RelocatableStorage<T> > allocator_type;
};
template<class T,std::size_t N>
struct RelocDeque
:RelocAlloc<T,N>::stype
,std:: T,typename Relo T,N>::allocator_type >{ deque< cAlloc<
 typedef std::deque<T,typename RelocAlloc<T,N>::allocator_type >

base_type;
 RelocDeque():base_type(typename

base_type::allocator_type(*this)){};
};

This is a deque that be properly placed in shared memory, without “fixing” the addresses.
char* sharedmem=mmap(0,sizeof(RelocDeque<int,200>),/*args*/);
RelocDeque<int,200>& relocdeq=*new(sharedmem)RelocDeque<int,200>;

Object Pool
With a suitable allocator manager (not shown here), one does this:

template<class Y>
struct ObjectStorage :AllocatorStorage<Y> {
 //two user defined functions to "hook"

N2486 Lance Diduck

Page 31 of 36

 //into the specialty allocator manager
 template<class U>
 static void alloc_destroy(U*) {
 //do nothing
 }
 static void* alloc_construct(void*ptr) {
 return ptr;
 }
};
template<>
struct ObjectStorage<void>
 :AllocatorStorage<void> {};
template<>
struct ObjectStorage<std::string>
 :AllocatorStorage<std::string> {
 //this is now how a container controls
 l ts lifetime //an e emen
 static void construct(pointer ptr,
 value_type const& val) {
 *ptr=val;
 }
 static void destroy(value_type* ptr1) {
 ptr1->clear();
 }
 static void alloc_destroy(pointer ptr) {
 ptr->~value_type();
 }
 static value_type* alloc_construct(void*ptr) {
 return new(static_cast<void*>(ptr))value_type;
 }
};

For example, during allocate, if there are no objects on the free list, an allocator manager
will allocate a new node, and the call alloc_construct. At some time after the container
is destroyed, then alloc_destroy is called. The typedefs to get this into a list are more
involved, but amounts to this :

typedef ObjectStorage<std::string> ObjectStringStorage;
//ListNode is made public, so that Alignment and Size can be inquired
typedef ListNode<std::string, ObjectStringStorage >
 ObjectStringListNode;
typedef ObjectAllocator<std:string,sizeof(ObjectListNode)
 ,alignment_of(ObjectListNode), ObjectStringStorage>
 ObjectStringNodeManager;
typedef AllocatorAdapter<std::string,ObjectStringNodeManager,
 ObjectStringStorage > ObjectStringNodeAdapter;
list<std::string,ObjectStringNodeAdapter>
 objectstringlist;//at last!!!!

ObjectAllocator does the work, and the code is not show here –however anybody
reading this should be able to make an example. This requires that the nodes that list
manages can be inquired as to size and alignment, and that the list follows the guidelines
for construct/destroy set forth earlier.

N2486 Lance Diduck

Page 32 of 36

Implementation Defined
Now that we have cleaned up some of the specification for the typical cases of alternative
allocators, and saw what we could do only if we found a suitable implementation, we can
move on to other interesting use cases.

Trivial Allocators
Many implementations can accommodate Trivial Allocators for vector and string, as long
as you don’t expect to

1. swap the container
2. ever cause a reallocation after the initial one

Imagine I had a AllocatorAdapter that combined the AllocatorManager and
AllocatorStorage together:
template<class T,std::size_t N>
struct Trivial{
 aligned_storage<sizeof(T)*N,alignmentof<T>::value> buf;
 void* allocate(std::size_t){return &buf;}
 void deallocate(void*,std::size_t){}
 static std::size_t max_size(){return sizeof(buf);}
 bool operator==(Trivial const&)const{return false;}
};
vector<double,AllocatorAdapter<double,
 Trivial<double,100> > > myvec (100);
//do anything with myvec as long as capacity() never exceeds 100

Almost as fast as std::array<double,100> except its variable size!!
Furthermore, with a proper selection of pointer an implementation can easily make
myvec relocatable.
There is some work needed to make this portable and practical, however.

Concurrent Containers
Although not part of the standard, it is not hard to imagine that in the near future a
concurrent container library would be proposed. (“concurrent” meaning concurrent reads
and writes)
Concepts of thread access models
 Refinement of
Sequential None Multiple threads must be serialized
Concurrent Sequential Does not include calls to acquire

more blocks of memory from system

Of course, every standard container requires the Sequential model. The foundation of the
STL is the Iterator concept. Data structures that have iterators cannot be concurrent --
Why? Because to meaningfully “iterate” through anything requires an arbitrary amount
of steps to complete before modifications are allowed. And this is not “concurrent.”
However, many data structures can be concurrent, such as stacks and queues. These are
far easier to implement (but still difficult) when the allocator is likewise concurrent and
reclaim is deferred to some arbitrary point in the future. This is the motivation for
NonDeterministicReclaim.

N2486 Lance Diduck

Page 33 of 36

Details are beyond the scope of this paper, but I have in my toolbox containers that use
concurrent allocators.

ExpandInPlace
The idea here is that containers that use VariableSize allocators can attempt to allocate
more memory, while keeping the existing memory valid, much like realloc().
In this case, you would prefer that the AllocatorAdapter is not copied during operator=.
This isn’t a problem in the stateless case.
In the stateful case, it is still preferable to copy (or move) the allocator, since a container
can never be sure of just what part of the state should be copied and what should not. As
an example, consider an allocator implementation for use on Linux – it’s state is
comprised of the file descriptor, protection flags, sync state, lock state. The allocator
performs mmap, munmap, mremap, msync and mlockall. Methods like msync and
mlockall are performed via extensions.
Such an allocator can ExpandInPlace, and is clearly stateful. Does the “ExpandInPlace”
semantics negate all the other semantics of this allocator when operator= is invoked? A
rule is – if the allocators compare equal, then the implementation is free to
ExpandInPlace using the current allocator. ExpandInPlace:;realloc should not be a
member of allocator, but rather an implementation that support it should implement a
traits class, to inquire if an allocator support this capability. The default of course is to
reallocate then deallocate, and an implementation should correctly handle this case.

Hybrid Allocators
For certain values of allocate() this allocator performs like a FixedSize allocator,
otherwise it performs like VariableSize. This is useful for deque and unordered_*. The
trouble is knowing just how many special values exist, and what those values are.
Additionally, and implementation could take advantage of ExpandInPlace for the
VariableSize allocations.
Due to the varying ways that unordered_* and deque can be implemented, this is hard to
standardize. One solution is to use a non-zero hint parameter to signal the allocator when
a FixedSize allocation is requested.

Scoped Allocator Semantics
This is perhaps the logical conclusion of polymorphic allocators discussed earlier. The
idea is that when a container has an element that can take an allocator argument, the
containers allocator is passed to the element, and the element-to-be uses that allocator to
construct a copy of itself. In the case that the object is NOT part of a container, then the
allocator is defaulted, or user supplied. The application should not care on just what
allocator is selected.
In this method, any container must use any allocator. One can easily see this greatly
restricts what performance enhancements we can do. The chosen allocator must be the
least common denominator (unbounded and contiguous, equivalent to the default), and all
containers act accordingly. Furthermore, the container doesn’t actually have to use the
allocator you specified. Indeed, it is difficult to write such an general purpose allocator12.

12 See http://www.cs.umass.edu/~emery/heaplayers.html for a library that indeed accomplishes this feat

N2486 Lance Diduck

Page 34 of 36

http://www.cs.umass.edu/%7Eemery/heaplayers.html

But this style does have one interesting advantage: In the case where it is important that
“containers of containers” all use the same stateful AllocatorStorage, this makes it easy to
code, as long as you disable the default ctor. To this end an adapter can be used that
simplifies the otherwise tedious syntax. For example
template<class T,class S=vector<T,PolymorphicAllocator> >
struct scopedsequenceadapter:protected S{
//all non-mutators fwd to S
void resize(size_t _sz, T const& _Val){
// alloc_traits determines if the T takes an allocator argument
// detail::choose_ctor uses the correct constructor
 if (size() < _sz)
 this->S::insert(end(), _sz - size(),
 detail::choose_ctor<value_type,allocator_type,
 alloc_traits<value_type>::value >(_Val,get_allocator()));
 else{
 this->S::resize(_sz);
 }
};
This method also changes the complexity guarantees of swap and splice, and makes it
very hard to code the normal cases where you do care about the performance and other
properties of the AllocatorManager.

Bibliography
Most references are included as hyperlinks in the text. Virtually all of this paper is the
result of studying source code, due to the dearth of commentary on C++ allocators. These
are a few libraries and papers that stood out:

Apache Software Foundation stdcxx
http://incubator.apache.org/stdcxx/
This is RogueWave’s Open Source donation.
This open source library that has excellent support for alternative allocators

Plauger, et al ”The C++ Standard Template Library”
http://www.amazon.com/exec/obidos/ASIN/0134376331
Simply the best book for people wanting to implement their own high quality containers.
Contains full source code (alas not open source) and commentary of a container library
that has excellent support for alternative allocators. Working through the “very hard”
exercises alone qualifies anyone as a C++ black belt.

The Dinkum Allocator Library
http://www.dinkumware.com/manuals/?manual=compleat&page=allocators.html
A great reference implementation for allocator authors.

Heaplayers
http://www.cs.umass.edu/~emery/heaplayers.html
The best studies in applying general purpose allocators to whole applications. Library
code included. This is similar to the types of applications that might use polymorphic
allocators.

N2486 Lance Diduck

Page 35 of 36

http://incubator.apache.org/stdcxx/
http://www.amazon.com/exec/obidos/ASIN/0134376331
http://www.dinkumware.com/manuals/?manual=compleat&page=allocators.html

Veldhuizen, Todd “Active Libraries and Universal Languages”
http://www.cs.chalmers.se/~tveldhui/papers/2004/dissertation.pdf
While not specifically relate to allocators, Dr. Veldhuizen makes the argument that
libraries take an active role in their own optimization. This is the same observation that
Dr Stepanov had that inspired the port of STL to C++.
About the Author

I work with High Frequency Trading Systems at UBS. I have been programming C++
applications for over 12 years, ranging from embedded systems to large SMP machines.
For the past five years, I have been studying just what that “allocator” argument to
standard containers is good for.

N2486 Lance Diduck

Page 36 of 36

http://www.cs.chalmers.se/%7Etveldhui/papers/2004/dissertation.pdf
http://www.lancediduck.com/
http://www.ubs.com/

	Overview
	Motivation
	A performance check
	A few ways to apply alternative allocators
	Make Node Based Containers Fast
	Thread Local Storage / Object Specific Allocator
	Reentrant Scratchpad
	Cache Coherent
	Object Pool
	Relocatable Container

	Clarification of Terms
	AllocatorStorage
	AllocatorManager
	Discussion

	AllocatorAdapter
	Examples
	Discussion

	Current State of Affairs
	Intent of the Current Standard
	 Recommendation

	Stateful AllocatorAdapter Programmability
	DefaultConstructiblity
	CopyConstruction and CopyAssignable

	EqualityComparable
	Stateful AllocatorAdapters and Rebind
	MoveSemantic AllocatorAdapters
	Polymorphic Allocators
	Alternative Pointers
	shared_ptr
	basic_string
	data()

	Alternative Accessors
	max_size
	Support / Requirement Levels

	The Code
	AllocatorStorage
	AllocatorManager
	AllocatorAdapter

	Examples
	Polymorphic Allocator
	Stack Memory Allocator
	Shared Memory Container
	Object Pool

	Implementation Defined
	Trivial Allocators
	Concurrent Containers
	ExpandInPlace
	Hybrid Allocators
	Scoped Allocator Semantics

