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Overview 
A common complaint among standard container users is performance.  Custom allocators 
can dramatically improve the situation, but the current way to parameterize allocators 
leaves a lot to be desired. Indeed, many users find it easier to just implement containers 
themselves, than figure out how to make an allocator work with their native library.  
Worse, custom container authors have almost no clue on how to fully take advantage of 
allocators in their own offerings. The standard offers no guidance. 
The language of the standard is over-constrained, under-constrained, or simply absent in 
terms of just what kinds of allocators are supported, and how they interact with the 
containers.  
This paper presents an allocator specification and implementation that  

• Reduces Boilerplate – this is perhaps the single biggest impediment for a user.  
• Is backward compatible – the allocator code works with current container 

implementations as-is, and the container modifications work with the current 
std::allocator as-is 

• Does not promote a particular style of programming. The current intent of the 
standard is considered the preferred style (but certainly not the only style).  

• No pet ideas –almost every recommendation here has been heard elsewhere. 
• Reflects what is available now with most current library implementations and 

compilers  
• Does not undo any of the functionality envisioned in the original allocator design 
• Accommodate virtually all the current standard as written (e.g. complexity 

guarantees, function signatures) Most additional language largely reflects current 
implementations. Eliminates weasel wording 

• Keep simple and easy to teach (Compared to allocators now, anything is simpler) 
This paper does not address specific changes to the wording of the standard. This is easy 
to remedy in a revision, if desired. 
To accommodate most current compilers, all code presented is C++03, without template 
template parameters.  These and the C++0x enhancements1 can be added, which would get rid of 
even more boilerplate. 
The containers prefixed with “std::” used in the examples are either native (tested using Visual 
Studio 2003 /2005, and/or gcc 3.4 and 4.1, but see this for others when only alternative 
allocate/deallocate is wanted) . The containers without the std:: prefix are modified versions of 

                                                 
1 For example, perfect forwarders in construct() 
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stdcxx2 containers. The modifications are largely to accommodate this papers wording on 
construct/destroy, alternative pointers, and copy assigning the allocator. These modifications still 
default to unmodified std::allocator.  Modified container code is not shown3.  

Motivation 
These are real life use cases, used with commonly available compilers and standard 
libraries. No thought experiments. 

A performance check 
We will start with a performance check, to find out why C++ users bother with allocators, 
and want the “weasel wording” out:  
An application was (properly) written using out of the box native containers and 
allocators, and profiling indicates a bottleneck when inserting and erasing list<string>. 
We make a small program that mimics the bottleneck, and try out different things. This is 
run on four concurrent threads, and the times are averaged together. Each test 
uncomments one of the typedefs: 
//What the application uses 
//  typedef std::list<std::string> test_list; 
//Base line test uses a vector 
//  typedef std::vector<std::string> test_list; 
//List with full allocator support, with defaults 
//  typedef FullAlloc::list<std::string> test_list; 
//List with tuned allocator, in a wrapper 
//  typedef ObjectList<std::string,2500> test_list; 
void* perftest(void*){ 
   unsigned long long start=get_timestamp(); 
   //application creates list of strings, and repeatedly 
   // fill it up, manipulates the string, and then clears the list 
   // profiling indicates bottleneck in adding and clearing strings 
   test_list mytest; 
   for (std::size_t i=25000;i;--i){ 
    for(unsigned j=2500;j>30;--j){ 
     mytest.resize(mytest.size()+1);//add new string 
     mytest.back().resize(j%50+20,char(j));//a value  
    } 
    //app manipulates string, then clears everything 
    mytest.clear(); 
   } 
   unsigned long long finish=get_timestamp(); 
   return reinterpret_cast<void*>(static_cast<unsigned>( 
             (finish-start)/100000)); 
} 
The Base Line test runs at 1 unit (avg. 39.0 seconds on my box). std::vector is a 
very simple stateful allocator and naturally has no thread contention in this case. For this 

                                                 
2 Chosen primarily for licensing, portability and current feature set. I also had a modified version of 
Dinkum containers used for testing, but these were abandoned due to licensing constraints. The Dinkum 
alternative allocator support is comparable (but not identical) to stdcxx. 
3 It is straightforward to make the modifications to any library that supports the optional stateful allocator 
argument. 
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particular benchmark it represents the fastest achievable time – so when we know when 
to quit trying. 
The Native List test uses an average of 150% of vectors time (i.e. half again slower). The 
native std library does not fully support alternative allocators (like most, it is missing 
support for pointer and accessors). Part of the overhead is the pointer manipulations 
inherent in list, but certainly not an additional 50%. 
“FullAlloc::list” is a slightly modified version of a list from a major STL provider, such 
that it fully supports alternative allocators (pointers, accessors, and allocations). Using 
defaults, it also takes average of 150% of vectors time – demonstrating that full allocator 
support does not add any time overhead, and is backwards compatible with the native 
std::allocator. Any differences are more likely due to what the compiler can optimize (see 
EASTL) rather than the feature support for allocators. 
Now we make the tuned version: ObjectList is a convenience wrapper that inherits from 
FullAlloc::list, which stuffs in a “stack memory” allocator that maintains a free list of 
equal size blocks, and allows for caching live objects in lieu of raw memory. We make 
enough room for 2500 objects. Since the high water mark is reached early and rarely 
exceeded, an unbounded version would perform just as well. I just happen to have the 
“stack” version in my toolbox. 
The buffer only method takes 107% of the time. If we add object caching to that buffer, 
then this becomes 108%. I figure that the compiler/native strings have some sort of 
tuning going on of their own, so I stay out of the way and kill object cache idea.4 Part of 
the extra time is just for the pointer manipulations, so gains after this are harder to come 
by, and I should focus my attention elsewhere. I can easily extend the “stack” allocator to 
an unbounded version, and I am done.  
If this had been rather list<int>, then the “ObjectList” version runs in 9% of the time that 
plain list<int> (either std:: or FullAlloc::) takes. But still 6 times slower than vector<int>. 
 
In the end I have all the guarantees of a list, but at a fraction of the cost.  And I know this 
is close to the best time I can get, because I can easily try out a number of different 
strategies. Total time, about 4 hours work. 
 
What did we learn? 
Foremost, that we need to match the allocator behavior to the specific application 
behavior. This point seems forgotten and relearned quite often, since perhaps allocators –
even after a decade of use-- are commonly seen as being somehow divorced from the 
subsequent use of that memory. In other words, the typical viewpoint is that allocators 
consider only the structure of the type in question, and not its use.  
This is perhaps because we all spend our formative years programming in languages 
where this is indeed the case. And even those few languages where the application 
programmer can select among allocators, most programmers only consider the structure 
of the type being allocated. 
However, C++ uses behavioral typing in addition to structural typing, which makes it 
easy to select algorithms based on a data structures behavior. Indeed, this is the 
cornerstone of the STL. 
                                                 
4 To contrive an example that demonstrates better performance using object caches would require far more 
time and space that this paper allows 
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We just saw that a programmer can use the type system to easily select and correctly 
apply various behavioral allocation schemes, and get a substantial performance increase. 
(But as always, premature optimization is the root of all evil5. ) 
As we will see, the standard containers themselves only have a few behaviors, but even 
here there is a wealth of allocation options. The trouble is that nowhere in the standard 
does it specify just what container exhibits what allocation behavior. And once you do 
discover it, actually getting a container to portably use an alternative allocator, well, that 
exercise will make a C++ guru out of anyone. And it shouldn’t. 

A few ways to apply alternative allocators 

Make Node Based Containers Fast 
This is the classic application. There are many examples in use. 

Thread Local Storage / Object Specific Allocator 
vector and string have their own private heaps, why not any container? Private heaps 
mitigate the need for locking both the container AND the stateless allocator in MT 
programs, plus can keep objects packed close together. This is easy to implement using a 
stateful memory pool and a node container. The memory pool keeps allocating blocks 
that are later reclaimed by the system according to some policy, typically not until the 
container is destructed, just like vector / string. The swap trick works as well, if the 
container swaps allocators.  
This is most prevalent use case I’ve seen of stateful alternative allocators. They are 
mostly used in multithreaded programming, to take advantage of the fact that the 
container object access must be serialized anyway, so why pay for two locks? In many 
cases the containers can be partitioned so that no locking is required.  
The performance impact over std::allocator can be 20-50 times, especially in cases that 
one thread allocates, and another thread deallocates. 
Support : every major STL provider 

Reentrant Scratchpad 
The use case that people first try their hand with stateful allocators is a container that uses 
stack memory. These are useful for containers that are local to a function.  
The problem of course is knowing just how much memory you are going to need before 
hand, but otherwise the allocator is simple and easy to build. 
void foo(){ 
   vector<int,stackallcator<int,1000> > mystuff; 
}; 
Depending on just how many reallocations you are going to make mystuff do, this can 
work. It is brittle, but sometimes the performance gain is worth it.  

Support : every major STL provider 

                                                 
5 C.A.R. Hoare 
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Cache Coherent 
It is helpful to locate the controlled sequence in memory adjacent to the container 
bookkeeping information, and that the controlled sequence be packed together as close as 
possible. This is similar to the “reentrant scratchpad” except that memory is recycled, 
resulting in a far less brittle design.  
In practical terms, it is something like 
template<class T,size_t N>  
struct CCList:std::list<T,statefulalloc>{ 
    aligned_storage< <N+1*(sizeof(T)+nodeoverhead)> buf; 
    CCList():std::list<T,statefulalloc>(buf,sizeof(buf)){} 
//accessors 
//max_size==N or more  
}; 
where “statefulalloc” dices up buf in a freelist of ~N blocks. It is a simple matter to make 
this unbounded, where only the first N elements are packed. 
Current Support : every major STL provider 

Object Pool 
A common problem in high performance application is: removing an expensive-to- 
construct element from the controlled sequence, only to immediately insert another new 
value. It is often the case that copy-assign would be faster – but for things like map and 
set, I simply can’t copy over existing elements in general.  
Object Pool keeps a collection of all objects deallocated. construct() is overridden to do 
assignment (either by operator= or another class specific method), destroy() takes care of 
calling the element’s clear() or dispose() function or whatever. allocate() returns a already 
constructed object, either from the free list or newly created. All objects are destructed 
when the allocator is destructed. 
Given a suitable implementation, deque makes a good way to implement object pools for 
container requiring random access iterators. For others we just use a free list.  
And just Like Object Specific Allocator, this can be made stateful to avoid multiple 
locks. 
Current Support : A few providers, depending on the container 

Relocatable Container 
“Relocatable” means that the contents of the memory do not depend their location in 
memory. This is a very important concept both in automatic memory garbage collection, 
and in interprocess IO. The former case is beyond the scope of what a standard container 
is capable of6, but in the latter case is easily handled. Using a specialty pointer that stores 
offsets, rather than the raw pointer value, I can make a container capable of being 
streamed from one process to the next (of course, each process must be compiled using 
the same compiler settings, which is typical in high performance IPC). More likely, I am 
placing this container in Shared Memory. Shared Memory Transport is, after all, the 
fastest known IPC method. Likewise, such a container can easily be written to disk 
without having to transform it to some other format.  

                                                 
6 The generally accepted rule that &*container.begin() yields a pointer to real memory effectively rules out 
any hope of using mark-sweep or copy collector GC methods inside a standard container. 
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This requires a suitable pointer definition, plus a relocatable stateful allocator (no 
polymorphic allocators!!!).   
For example 
template<class T,size_t N>  
struct RelocList:std::list<T,relocstatefulalloc>{ 
   aligned_storage< <N*(sizeof(T)+ factor) > buf; 
   RelocList ():std::list<T, relocstatefulalloc >(buf,sizeof(buf)){} 
// 
//max_size()==N (bounded) 
}; 
With the proviso that T is also relocatable, RelocList is suitable for placing in shared 
memory, sending via a socket, placing in a file, fast copies (by memcpy) etc.  

Current Support: A few providers, depending on the container 

Clarification of Terms 
Much of the present confusion is that there is no clear description of allocator concepts 
nor their programmability. Here is a possible taxonomy of allocators from the perspective 
of the container. It is divided into three kinds – the Storage, the Manager, and the 
Adapter. 
Later there is code that ties all this together. 

AllocatorStorage  
This is the resource under consideration, almost always “raw memory.” It represents all 
the std::allocator typedefs, plus construct(), and destroy().  
 
Table 1 Concepts of AllocatorStorage 
 Refinement of  
Bounded None  
Unbounded Bounded  
Relocatable Bounded  
 
Table 2 Programmability of AllocatorStorage 
 Static (empty) Nonstatic 
DefaultConstructible Yes No 
Swappable Yes No 
MoveConstructible Yes Yes 
MoveAssignable Yes Yes 
CopyConstructible Yes No 
CopyAssignable Yes No 
EqualityComparable Yes always false 
 
Examples 
a pointer to char buf[100];  (bounded) 
a region of memory acquired via shmget (bounded, relocatable) 
memory is DMA addressable  
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region with processor affinity (NUMA) 
region is never swapped to disk (i.e. mlockall)(unbounded) 
memory obtained via brk() (malloc/free) 
Discussion 
AllocatorStorage represents the resource (almost always untyped raw memory) and 
where we find the specifications for alternative pointers and accessors.  
Bounded represents a quantity defined by the application. 
Unbounded means “limited only by system resources”  
Relocatable is a specific requirement for types constructed using this memory, such that 
memcpy is a valid way to copy construct an object.  
For instance, when the AllocatorStorage is Relocatable, then an alternative pointer that 
maintains offsets is desirable. Also, the AllocatorStorage can represent special regions of 
memory (e.g. DMA addressable) or memory under control by an AllocatorManager that 
cannot tolerate raw pointers (i.e. GC). 
AllocatorStorage is too platform specific to specify in detail. For example, it is 
conceivable to make an AllocatorStorage that represents a XML DOM Level 3 binding, 
for use with a specialty container that modeled a Sequence. Unbounded, Bounded, and 
Relocatable are concepts that have broad usage however.  

AllocatorManager  
This is the representation of allocate(), deallocate(), operator==(), and max_size(). It has 
the semantics of a typical resource manager. 
Each AllocatorStorage has one and only one AllocatorManager. An AllocatorManager 
can handle one or more AllocatorStorage (all of the same type).  
 
Table 3 Concepts of AllocatorManager 
 Refinement of  
Trivial None  
FixedSize Trivial Works with class 

operator new 
VariableSize FixedSize  
Contiguous VariableSize Works with operator 

new[] 
NonDeterministicReclaim FixedSize  
ExpandInPlace Trivial  
Hybrid VariableSize  
 
Table 4 Programmability of AllocatorManager 
 Static Case nonstatic  Case (in 

general) 
DefaultConstructible Yes No 
Swappable Yes Yes 
MoveConstructible Yes Yes 
MoveAssignable Yes Yes 
CopyConstructible Yes No 
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CopyAssignable Yes No 
EqualityComparable always true  always false 
Examples: 
free list of fixed size blocks from AllocatorStorage (FixedSize) 
Object Pool -- free list of live objects (FixedSize or VariableSize) 
a pointer that gets “bumped” on each allocation (VariableSize) 
The functions malloc/free/realloc (Contiguous + ExpandInPlace) 
The POSIX functions mmap/mfree (Trivial) 
The Linux functions mmap/mfree/mrealloc (Trivial + ExpandInPlace) 
BDW / Hazard pointer (NonDeterministicReclaim) 

Discussion 
There are of course many more ways to manage memory than listed here. However, this 
is from the point of view of “what does a standard container expect” and not “what is 
possible” 
Trivial is a manager that owns one AllocatorStorage, and allocate() simply returns the 
start address held by the storage, and deallocate() reclaims that memory. 
FixedSize means it only has to be able to handle one value for the first parameter to 
allocate(), and returns a pointer that be used to construct() a single element 
VariableSize means it must be able to handle any value for the first parameter to 
allocate(), up to the value returned by max_size(), and returns a pointer to the first 
element of a memory sequence suitable to construct() N elements. 
Contiguous means “can be iterated by a C style pointer.” 
NonDeterministicReclaim, Hybrid and ExpandInPlace are included as examples of how 
these concepts can be extended. They are elaborated on in a later section. 

AllocatorAdapter 
This is the interface that enables an AllocatorStorage and AllocatorManager to be used 
with a container. When the current standard says “the allocator” it is referring to the 
AllocatorAdapter. The AllocatorAdapter can only refer to one AllocatorManager.  
Only the AllocatorAdapter can be “stateful” or “stateless.”  
 
It adapts the functions and typedefs of the AllocatorStorage and AllocatorManager for 
use in containers. 

Table 5 Programmability of AllocatorAdapter 
 Stateless CopySemantic MoveSemantic
DefaultConstructible Yes NullSemantic* Yes 
Swappable Yes Yes No 
MoveConstructible Yes Optional Yes 
MoveAssignable Yes Optional Yes 
CopyConstructible Yes Yes No 
CopyAssignable Yes Yes No 
EqualityComparable Yes Yes Yes 
*NullSemantic means that the default constructor places the object in a null state.  
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Examples 
std::allocator (stateless) 
__gnu_cxx::malloc_allocator (stateless) 
A container allocator that maintains a pointer to an AllocatorManager (CopySemantic) 
A container allocator that embeds an AllocatorManager (MoveSemantic, swappable) 
A container allocator that embeds an AllocatorStorage (MoveSemantic, not swappable) 
 

Discussion 
In practice, the vast majority of AllocatorAdapters are stateless or CopySemantic. In 
some cases, it is desirable to code the AllocatorManager and even the AllocatorStorage 
into the AllocatorAdapter. In these cases, the AllocatorAdapter has the minimum 
programmability available in either AllocatorManager or AllocatorStorage.  
MoveSemantic is discussed in a later section. 

Current State of Affairs 

Intent of the Current Standard  
First, we take note of what the standard already says: 
 
Table 40 --Note 224 : It is intended that a.allocate be an efficient means of 
allocating a single object of type T, even when sizeof(T) is small. That is, there is no 
need for a container to maintain its own ‘‘free list’’. 
 
We can see that the allocators are preferred to be FixedSize, i.e. for use in node based 
containers. We will keep this bias moving forward –indeed, it is the canonical example of 
a allocator matched to a type’s behavior. Indeed, perhaps the most significant 
performance enhancements obtainable are with supplying node based containers with 
allocators that support free lists of size T. Furthermore, these same allocators can be 
easily used inside class specific operator new and delete. They are ubiquitous and easy to 
code. Even in the stateful allocators, the “state” is often to make these same FixedSize 
allocators either object specific, thread specific, practical in concurrent data structures, 
etc. It is likewise easy and practical to make a stateful class specific operator new /delete 
that can use these same allocators. 
However, virtually none of the trade press mentions this intent. Rather, the focus is on 
navigating the boilerplate, musings about FAR pointers, the curious weird rebind 
mechanism, and such. Few users are actually providing their node based containers with 
free list allocators. So at least one implementation just maintains the free list anyway.  
To add to the confusion, not all containers can use FixedSize Allocators. 

  
Recommendation 

• The node based containers are NOT defaulted to std::allocator, but rather to a free 
list allocator.  
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• For each container, explicitly state what the allocator requirements are 
 
Table 6 Standard Containers that take Allocator Argument 
 Allocator 

Manager  
Requirement 

Allocator 
Manager 
Options 

Allocator 
Adapter 
Requirement 

Allocator 
Adapter  
Options 

Notes 

vector VariableSize  ExpandInPlace, 
Trivial 

CopySemantic MoveSemantic Contiguous 
property 
only applies 
when 
Contiguous 
allocator is 
used 

sring Contiguous ExpandInPlace, 
Trivial 

CopySemantic MoveSemantic Support for 
construct/ 
destroy 
prohibited 

deque VariableSize ExpandInPlace, 
Hybrid 

CopySemantic   

list FixedSize  CopySemantic MoveSemantic  
forward_list N2231 FixedSize  CopySemantic MoveSemantic  
set FixedSize  CopySemantic MoveSemantic  
multiset FixedSize  CopySemantic MoveSemantic  
map FixedSize  CopySemantic MoveSemantic  
multimap FixedSize  CopySemantic MoveSemantic  
unordered_set 
 

VariableSize ExpandInPlace, 
Hybrid 

CopySemantic   

unordered_map 
 

VariableSize ExpandInPlace, 
Hybrid 

CopySemantic   

      
unordered_multiset 
 

VariableSize ExpandInPlace, 
Hybrid 

CopySemantic   

unordered_multimap 
 

VariableSize ExpandInPlace, 
Hybrid 

CopySemantic   

 

Stateful AllocatorAdapter Programmability  
Multithreaded programming has made stateful allocators more than just a curiosity. Let’s 
see what the issues are, and how to fix them. (Almost all of these issues are mentioned in 
EASTL as well) 

DefaultConstructiblity 
A problem with stateful AllocatorAdapter is specifying a reasonable value to use for 
default construction. In general, there is no reasonable default value. This is true of many 
resource managers. As an illustration, consider the havoc if shared_ptr<T> was defaulted 
to the address of some global static T, rather than 0. It would always make the pointer 
dereferenceable – thereby eliminating accidental seg faults. However, calling the default 
T is likely NOT what you had in mind.  Now, root out just where you forgot to initialize 
the shared_ptr…. 
 
The current practice is to disable the default ctor. Why? Consider this: 
MyAllocatorStorage  mybuf(ptr_beg,ptr_end);//some memory 
MyAllocatorManager my_am(mybuf);//OK 
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struct MyAllocatorAdapter{ 
  MyAllocatorAdapter(MyAllocatorManager &); 
private: 
  MyAllocatorAdapter();//default is meaningless 
}; 
typedef std::container<T, MyAllocatorAdapter> my_t; 
typedef std::container<my_t> mc_t; 
mc_t tmp;//OK 
//tmp.resize(1);//BOOM no compilation 
tmp.resize(1, my_t(my_am));//Works for most implementations 
 
A novice may think “Well, I could just make MyAllocatorAdapter use malloc as a 
default.” And indeed it would compile and link. However, note what we just did: malloc 
may (and probably does) implement completely different policies than 
MyAllocatorStorage and MyAllocatorManager. And these concepts are essential for 
program correctness –else you would have just used malloc. 

CopyConstruction and CopyAssignable 
The DefaultConstructible problem is exacerbated by the fact that the only way to specify 
AllocatorAdapters is by copy construction. The standard reads: 
23.1/8 Copy constructors for all container types defined in this clause copy an allocator argument from 
their respective first parameters. All other constructors for these container types take an Allocator& 
argument (20.1.5), an allocator whose value type is the same as the container’s value type. A copy of this 
argument is used for any memory allocation performed, by these constructors and by all member functions, 
during the lifetime of each container object. In all container types defined in this clause, the member 
get_allocator()returns a copy of the Allocator object used to construct the container 
 
In short, once constructed with an allocator, that allocator does not change. This leads to 
this curious problem: upon a mutation that increases the size of the controlled sequence, 
some implementations will default construct an element first, and then move the values in 
later using a proprietary method similar to a move. So in container<container2> just how 
are you supposed to get your container2 element’s special allocator copied into the 
containers controlled sequence? And forget about using any mutating algorithms. My 
experience is by killing the allocators default ctor, and then much trial and error with the 
different implementations. (not trivial when coding something like 
map<special_string,special_set_of_special_vector>,…,specialallocator>) 
The perfect solution would be to go through the specification of every mutating member 
function, and specify whether or not it is allowed to default construct an element. Then a 
programmer only has to dodge the minefield only once. I think this is forcing the issue a 
little too much – there are good reasons for each implementation to do what it does. 
Besides, then you would have to note just which algorithms and adapters (e.g. 
back_inserter) use which mutators. A good approach is rather: CopyAssign the 
AllocatorAdapter via operator=, the problem does not completely go away; however, it 
brings it into the realm of sanity. An application writer can make the AllocatorAdapter 
default just indicate a runtime error, and then “assign it out” before use.  This would 
mimic the behavior of a container of shared_ptrs -- a shared_ptr can be default 
constructed to Null, and then assigned before use. 
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This is safer than the method used by EASTL, which has a “set_allocator” function. With 
set_allocator, one has to worry about the cases where it is called when the container 
already has elements. 
Furthermore, copying the allocator adapter brings this semantic inline with any other 
container value, like controlled sequence elements, comparators, hashers, etc. And, 
allows the algorithms to be used in the normal way, without having to make “stateful 
allocators” a special case. 
 
Recommendation

• Require that no implementation may call allocate() in the container’s default 
constructor  

• Require that for every container, operator= copy the AllocatorAdapter as well 
(except if the allocator compares equal)  

• Require that for every container, swap exchanges the AllocatorAdapter as well. 
This allows operator= to be defined in terms of swap, and vice versa.  

EqualityComparable 
The semantic that “operator== return true iff memory allocator by one can be deallocated 
by the other” is underspecified. There are several cases where this is true, but otherwise 
one would say they are unequal: 
1. mmap operates on a given file handle, but munmap does not need this filehandle. So 
any allocator with “file handle state” can deallocate from any other, but they should not 
compare equal 
2. many allocators just take a buffer, and deallocate is a no-op. One allocator takes a 
buffer to shared memory, the other to the current stack. They could deallocate each other, 
since they don’t “deallocate” at all. Here again, allocators are not equal 
 
The point here is that instead of trying to reason about the “meaning” of operator==, 
rather reason about what a container does if in fact they do compare equal. For a 
consideration of allocators that can reallocate, see this discussion.
Recommendation 

• When allocators compare equal, and implementation is free to deallocate 
allocations from the other.  

• When allocators compare equal, an implementation is not required to swap nor 
assign allocators.  

• list::splice has a precondition that allocators compare equal 
• EqualityCompare is transitive see Section 3 of N2346  
 

Stateful AllocatorAdapters  and Rebind 
Now that we have figured out in general just how to get our container to actually use the 
allocator we specify, now comes the problem: just how do we specify the allocator? 
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23.1/8 All other constructors for these container types take an Allocator& argument (20.1.5), an 
allocator whose value type is the same as the container’s value type. 
This is great, except for the case of stateful FixedSize allocators. Consider 
MyAllocatorStorage  mybuf(ptr_beg,ptr_end);//some memory 
FixedSizeAllocatorManager my_am(mybuf);//supposed to allocate nodes of 
T 
typedef RegularAllocatorAdapter< FixedSizeAllocatorManager > 
                        MyAllocatorAdapter; 
typedef std::set<T, MyAllocatorAdapter> my_t; 
my_t my_cont(MyAllocatorAdapter(my_am));//OK 
…but… 
How does FixedSizeAllocatorManager know just what size my_cont wants to 
allocate???? 
Without breaking encapsulation, there is no way to portably know at compile time. We 
just wait for the first call to allocate to find out. We need a better way. 
This was also noted in EASTL. 
 
Recommendation 

• No AllocatorAdapter definition can depend on the names of the type it allocates 
(i.e. for AllocatorAdapter<T>, AllocatorAdapter cannot depend on a name in T)  

• Every container has some identifier making it possible to determine the alignment 
and size of the allocations required (The EASTL method does not account for 
alternative pointers, however, but the idea is the same) 

(note this presents a problem with containers that use more that one type of allocator 
(deque , unordered_*) I regret that I have not worked out a acceptable solution for this)  

MoveSemantic AllocatorAdapters 
One part of the confusion is that the literature confuses the portion of the allocator that 
actually does the allocating with the portion that adapt this for use in a container. The 
former is a typical resource manager object, and is naturally move semantic. The latter is 
almost always (in the stateful case) a copy of a pointer to this resource manager. It is 
ONLY the case that the adapter and the resource manager are both the same object that 
this situation occurs. Containers in general cannot tolerate this case – for example, it is 
hard to implement a unordered_* or a deque that only used one copy of an allocator – 
unless it forced this allocator not to care about the type of object it allocates. And this 
situation is antithetical to alternative allocators (and performance minded applications). 
One problem with MoveSemantic adapters is how to swap them. Even if the user never 
calls swap, (either directly or indirectly) some libraries use swap internally, to implement 
operator=(), clear(), reserve() and such.  
Another problem with MoveSemantic allocators is that they cannot be easily used in 
containers that use more than one copy of the allocator, such as deque and unordered_*. 
Likewise, containers of containers using MoveSemantic allocators, that has the same 
problems that auto_ptr would have i.e. you can’t reliably use it with the algorithms.  
Adding to the headaches, get_allocator() can no longer return a copy of the 
“allocator.” get_allocator()is used in at least one implementation internally, and 
also custom adapters that rely on the “copy behavior.” 
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I have found that MoveSemantic adapters make some syntax easier, but rarely does it 
translate to performance gains or ease of use overall. 
Recommendation 

• Support for MoveSemantic AllocatorAdapters is implementation dependent 
 

Polymorphic Allocators 
This means that at least the functions allocate() and deallocate() are declared virtual. 
Given that standard container can inquire at compile time about specific types supported 
by an allocator, it has a distinct advantage over containers that use only polymorphic 
allocators. Either polymorphic allocators have to be applied carefully to a particular type 
--thereby negating the polymorphism. Or, a polymorphic allocator has to be able to 
allocate ANY type --thereby negating any performance tuning that can be applied to a 
particular types behavior. On top of that, polymorphic allocators cannot be used with 
relocatable container, since virtually every compiler implements virtuals using pointers. It 
is a perhaps a coming of age for any IPC programmer to discover that they can’t use 
virtuals reliably in shared memory. 
To add to the restrictions, polymorphic allocators cannot tolerate alternative pointers nor 
alternative accessors. 
Interestingly, other that the original HP reference implementation, all implementation 
correctly handle polymorphic allocators. The issue is that they are hard to apply, tune 
and debug. Yes, it is easier to compile and link a polymorphic allocator, but that is where 
the advantage ends. Even Section 4 of N2387 recommends quite a battery of tests to 
ensure that the users polymorphic allocators were applied correctly.  
Nevertheless, in many cases polymorphic allocators can be advantageous. In these cases, 
we aren’t looking for how to make containers go fast or how to easily debug mistakes – 
polymorphic allocators can never contend with their templatized cousins in this regard. 
What we are looking for is the ability for a library to advertise “installable allocators.” 
There is no reason that the specification of std::allocator cannot be pressed into this 
service, so that a library that advertises this ability can also easily be implemented in 
terms of standard containers.7 This does not mean that any part of the standard allocator 
is specified as virtual (there by negating the space concerns), just that virtuals could 
easily be used. 
To this end, the signature to allocate is modified to deprecate the “const void*” hint 
(which has very limited applicability) and changed to take alignment and flags 
parameters. In most typed allocators the alignment parameter (just like the size 
parameter) can be ignored, but when the allocator specification is pressed for service for 
use outside a single container, this parameter can be used effectively. 
The flags parameter is implementation defined. 
See EASTL. 
                                                 
7 This does NOT imply that containers with polymorphic allocators make good types to use in the interface 
of such libraries. Almost always, such libraries have abstract base classes as interfaces. Standard containers 
are still templates, with is problematic at best to mix with abstract base classes, plus one has to worry about 
the lifetime, origination and behavior of the allocators passed back and forth via the interface containers 
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Recommendation 

• Overload the allocate function to pointer allocate(std::size_t, std::size_t align, 
unsigned flags); 

• The allocate and deallocate functions are non-const 

Alternative Pointers 
Alternative Pointers has not found much use, mostly because the weasel wording neuters 
this feature, and each implementation has very different notions of what is possible. (For 
example, one implementation applies stateful construct and destroy not only to the 
controlled sequence, but to the pointers themselves.)  
There are at least two classes of pointers used: first is those that a container uses for it 
own internals (i..e node pointers, iterator implementation), and the other is for the 
signature of construct/destroy/address/data, but otherwise not used by implementations to 
store the value of the pointer. 
This code snippet sums it up 
template<class T, template<class Y> class SmartPtr>  
struct custom{ 
    typedef T* raw_pointer;//could be FAR, etc 
    typedef T const* raw_const_pointer; 
    typedef T& reference; 
    typedef T const& const_reference; 
    typedef SmartPtr<T> pointer; 
    typedef SmartPtr<T const> const_pointer; 
  //  static_assert(is_same<raw_pointer,typeof(&*SmartPtr<T>)>::value) 
  //  static_assert(is_convertible<pointer,custom<void>::pointer) 
  //  pointer u;u==pointer() means "NULL" 
}; 
raw_pointer is what is used for the arguments to construct, and destroy. It is 
traditionally where a user you specify FAR, NEAR, etc. In other words, raw_pointer 
is something that works with extern C. pointer is what is used for implementing 
iterators, in the interface of a container, and pointers that are used as member (e.g. node 
pointers). This is where a pointer –like class is used. 
We note this relationship – every container that requires a VariableSize 
AllocatorManager also requires a pointer that is a model of RandomAccessIterator. 
Otherwise, the pointer could be a model of TrivialIterator – in other words, no arithmetic 
is ever applied to the pointer objects themselves in this case. This mirrors the case with 
operators new / new[].  

shared_ptr 
shared_ptr is a model of TrivialIterator, but it will not work in any standard container that 
could take a FixedSize AllocatorManager (but see forward_list N2231 for a 
counterexample). auto_ptr and unique_ptr will of course not work at all with the current 
model. 
Why might I want a shared_ptr? It would be possible in theory to make a custom 
container where iterators are always dereferencable. So allocators themselves should 
allow it, just not the existing standard containers. (This is similar to the auto_ptr problem 
– it is possible to make a container that uses auto_ptrs, just that the standard containers 
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can’t use them reliably. And part of the goal is a specification that custom container 
writers can use as well).  
Making a standard container use a shared_ptr as the pointer type is a can of worms – 
First, one would have to deal with the cycles inherent in the node based containers; 
second, one would have to figure out a way that the shared_ptr allocator “matched” the 
containers allocator; third, a deleter would have to be used that told the shared_ptr not 
only which allocator to delete from, but what the second parameter is to deallocate. 
Fourth, the deleter would have to call destroy for you. Fifth, even though the iterator 
may be correctly dereferenced, they remain invalid otherwise. Now put all this together 
such that the container works with both T* and shared_ptr<T>. Possible? Yes. Practical? 
I don’t think so. 

basic_string 
alternative pointers can cause some grief when used with basic_string. This is because 
char_traits requires “raw pointer” types as function arguments. Therefore, it is unlikely 
that a fancy pointer (which is typically NOT convertible to its associated raw pointer 
type) can be passed directly to it. So when an implementation passes a iterator or the 
internal buffer to a char_traits function, that implementation should always call address() 
or &* first. This relieves the user of having to define an appropriate char_traits just so 
fancy pointer could be used. 

data() 
The return type of data() should be the raw pointer type. Why? Because this function was 
intended such that it is compatible with extern C functions. In the odd case that a non-
contiguous allocator was used (i.e. for vector) then this function is undefined.   
 
Recommendation 

• Add language assuring that pointers have null semantics  
• Add language assuring that each AllocatorAdapter has the same “template 

typedefs” for each specialization See N2082 and “The Standard C++ Library” 
• with FixedSize AllocatorManagers, it is desired that pointer types that are not 

models of RandomAccessIterator be allowed for container that could use them. 
This make programming alternative pointers far easier  

• Add language that stated that any pointer type used for list, map, multimap, 
multiset, and set allow cyclic references 

• Separate out the pointer typedefs used for construct/destroy/address from the 
others. This reduces the boilerplate required 

• Add diagnostics to disallow shared_ptr   or unique_ptr for pointer inside any 
standard container. 

• Require implementations to convert fancy pointer to raw pointer when calling 
char_traits functions 

• Require that constructors and assign operators of alternative pointers are no-fail 
(this makes it easier to code for alternative accessors) 
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Alternative Accessors 
The standard says, a==b, iff b.deallocate(a.allocate(N,0),N) is valid. However, 
nothing can be said about b.destroy(a.construct(P,V));  
N2257 declares that there is no known use for this. Or course the standard discourages 
ANY use by neutering these functions ( as noted in LWG 580). And while many 
implementations call these functions, few do so in a usable way –vector typically does, 
but then again writing a variable sized object allocator for vector is difficult.8 So of 
course there are few people using these, since taking the trouble is not portable nor well 
understood.  
 
There are at least two uses cases for construct/destroy: 
Relocatable containers: It is desirable to make containers relocatable. To do this we need 
to store offsets rather than raw pointers.  
And indeed offset_ptr fits the bill..  
double val; 
offset_ptr<double> offp(&val); 
&*offp==&val;//OK 
However, I can’t do this 
offset_ptr<double> offp2(a.allocate(1));  
new ((void*) offp2) T(val); 
 
The remedy is simple – define construct() to handle my special pointer type. However, if 
the above changes proposed for pointers are adopted, then this point is moot.  
Object Pools: I can easily make a case for an allocator that recycles live objects, rather 
than just raw memory. A suitable construct/destroy would readily handle this, if certain 
limitation are set on just what a container can do with construct/destroy.  
Construct/destroy should only be applied to the elements of the controlled sequence (that 
is, the “T”). Applying it to the nodes does little good – a user does not want to 
construct/destroy nodes for the container, and shouldn’t. Applying construct/destroy to 
fancy pointers is also not needed. A fancy pointer supplier is going to have suitable 
regular constructor / destructors anyway, and is unlikely to then override that behavior 
with construct/destroy. This rule takes away the issue of constructing and destroying 
things like comparators, the pointers themselves, temporaries, and every other component 
of a container 
To avoid confusion with stateful allocate/deallocate, make construct/destroy are static 
functions. This makes issues of “swap” “copy” and “equality” moot, and brings a little 
sanity. Any state that is needed could be put into the memory referred to by pointer 
argument. 
Construct/destroy use raw pointers as arguments, and not fancy pointer types.  
Construct/destroy should not be used in basic_string. basic_string was designed for use 
with POD types only. Applying construct/destroy to each member is a big performance 
hit. No implementation actually uses construct/ destroy in basic_string, but this is not 
mentioned in the standard.9

                                                 
8 It is possible to wrap up a std::deque for this. See Exercise 10.10 in the “The Standard C++ Library” 
9 For vector of POD types, sometime big performance gains can be realized by using basic_string in lieu of 
vector – especially in those cases that COW makes sense 
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When the constructors and assign operators of the alternative pointers are no-fail, this 
makes code using construct/destroy far easier to implement. 
 
address()? If the language for pointers is adopted, then this is replaced by &*ptr. This 
simplifies what a container author must be able to support (see section 8 of N2387)  
 
Recommendation 

• destroy, construct and address are static members only  
• destroy, construct and address are only applied to members of the controlled 

sequence.  
• destroy, construct, data and address signature only use “raw” pointers. These can 

still be parameterized (i.e. to specify FAR, etc) but the typedefs are distinct 
• construct/destroy is prohibited from use in basic_string 

 
Example of list code snippet that uses construct/destroy in the manner above. NOTE—
the ctor/dtor of ListNode is never called. Here, the ListNode relies on “structural” typing 
only – the traditional “C++ type expresses behavior” is neutered, delegating this to other 
functions10, namely construct/destroy: 
 
template<class T, class Alloc> 
struct ListNode{ 
 typedef typename Alloc::template 
        rebind<ListNode>::other::pointer node_pointer_type; 
 T m_val;  
 //m_val is coincident with the start of ListNode -- important!! 
 node_pointer_type m_next;  
 node_p
private: 

ointer_type m_prev;  

//ctor/dtor should not be called 
//this conflicts with construct/destroy 
 ListNode();//=delete 
 ~ListNode();//=delete 
}; 
template<class Alloc> 
struct allocholder{ 
 typedef Alloc l locator_ pe;  va ue_al ty
 typedef typename Alloc::template 
 rebind<ListNode>::other node_allocator_type; 
protected: 
 node_allocator_type m_nodeallocator; 
 allocholder(Alloc const&a):m_nodeallocator(a){}  
}; 
template<class T, class Alloc>  
struct list:allocholder{//typical EBCO 
 typedef Alloc lue_alloca e;  va tor_typ
 typedef typename ListNode<T,Alloc>::node_pointer_type  
   node_pointer_type; 
//internal use class 

                                                 
10 This is the approach taken in “The Standard C++ Library” but only applied to the T, and not everything 
else 
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friend struct CreateNode; 
 
//internal member function to create node 
node_pointer_type get_newnode(node_pointer_type prev,  
                              node_pointer_type next,T const&val) {  
 CreateNode newnode(prev,next,val,*this); 
 node_pointer_type ret(); 
 using std::swap; 
 swap(newnode.m_newval,ret); 
 return ret; 
} 
 
//CreateNode does the work of constructing a ListNode 
struct CreateNode{ 
CreateNode(node_pointer_type prev, node_pointer_type next, 
           T const&val,list &a):m_parent(a){ 
 m_newval = a->m_nodeallocator.allocate(1); 
 on r OT applied to container internals //c struct/dest oy N
 new (static_cast<void*>(&(m_newval.m_next)) 
 d inter_type(next);     no e_po
 new (static_cast<void*>(&(m_newval.m_prev)) 
   node_pointer_type(prev); 
 //construct/destroy applied to element  
 
 value_allocator_type::construct( 
           value_allocator_type::address(m_newval->m_val), val); 
} 
~CreateNode(){ 
 //NULL pointer check 
 if(m_newval==node_pointer_type())return; 
 //call ListNode dtors 
 (m_newval.m_prev).~node_pointer_type(); 
 (m_newval.m_next).~node_pointer_type(); 
 //deallocate 
 a->m_nodeallocator.deallocate( 
      node_allocator_type::address(m_newval),1); 
} 
   node_pointer_type m_newval; 
   m_parent &m_alloc; 
} 
//other node creation/deletion functions follow the same intent 
};//list 

max_size 
We note that AllocatorStorage has two concepts, bounded and unbounded. “unbounded” 
simply means “up to the limits imposed by the system.” The max_size() has little 
meaning in the unbounded case. In the bounded case, it means “how many objects can I 
put into the container?” 
Recommendation 

• for every container that maintains the strong guarantee (i.e. list), for every 
mutating member that can insert more than one element at a time into the 
controlled sequence, test max_size first. 
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• Each container max_size function must subtract from max_size the number of 
allocations it uses for its own internals (i.e. list, tree base nodes) 

• max_size is const when not static 

Support / Requirement Levels 
Not all containers need to support all features. However, instead of ambiguous “weasel 
wording” this is a language by which a container author can advertise their support. 
While it should be mandatory that the standard containers all portably support a 
minimum of features, specialty container authors are can describe the features they 
support, graded on level of implementation difficulty. 
SupportLevel0 – no  allocator required (tr1::array) 
SupportLevel1 – custom allocator changes not possible, or on a global basis (ICU, 
bitarray, locales) 
SupportLevel2 – static allocator adapter, no alternative pointers, no alternative accessors 
(the current standard) 
SupportLevel3 – SupportLevel2, plus stateful allocator adapter (most custom 
implementations, and most shared_ptr’s) 
SupportLevel4 -  SupportLevel3, plus alternative pointers  
SupportLevel5 -  SupportLevel4, plus static alternative accessors  (applied to value only)  
SupportLevel6 -  SupportLevel5, plus stateful alternative accessors (applied to pointers 
and value)  
 
(users that need support beyond this are likely to implement custom data structures) 
 
SupportOptionA – ExpandInPlace Allocators 
SupportOptionB – Trivial Allocators 
SupportOptionC – Hybrid Allocators 
 
Also, some specialty containers have additional requirements on allocators, beyond 
FixedSize, VariableSize, or Contiguous 
 
RequirementA – Concurrent / NonDeterministicReclaim (BDW) 
RequirementB – Serialized (gcc mtalloc) 
RequirementC  -- Unbounded 
RequirementD  -- Relocatable 
 
Recommendation 

• all standard variable size containers support a minimum SupportLevel5. This 
covers all known use cases.  

• string and shared_ptr uses SupportLevel3 

The Code 
This sample allocator implementation does not require any interface changes to existing 
containers, nor any code changes  (other than meeting minimum support levels).  
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There is still an “allocator” template, but users should not have to replace this in any 
conceivable use case. It is for backward compatibility only. 
There are three new templates:  A default “AllocatorStorage” class, for defining fancy 
pointers and construct/destroy, one static “Manager Class,” and a “Stateful Adapter” 
class, for easily specifying stateful pools. The replacement allocator class is modified to 
adapt the new templates. 
The idea is to make the manager classes easy to replace - -this is the majority of the 
alternative allocator usage. Only when a user changes the pointer type or use object pools 
does a lot of boilerplate come into play, and even then less than the current model.  
No examples of alternative pointers or alternative accessors are provided in this paper, in 
the interest of saving space – the required pointer definitions and allocators alone would 
more that double the length of the paper (but the allocator boilerplate is a small fraction 
of it!!)  

AllocatorStorage 
This is the place that the pointer typedef’s and construct/destroy live 

template<class Y> 
struct AllocatorStorage { 
 template<class T> struct rebind{ 
  typedef AllocatorStorage<T> other;  
 };  
 typedef Y value_type; 
 typedef value_type* raw_pointer; 
 typedef value_type const* raw_const_pointer; 
 typedef value_type& reference; 
 typedef value_type const& const_reference; 
 typedef std::size_t size_type; 
 typedef std::ptrdiff_t difference_type; 
 typedef value_type* pointer; 
 typedef ue_type const* const_pointer;  val
 static void construct(raw_pointer ptr, value_type const& val) { 
  new(static_cast<void*>(ptr))value_type(val); 
 } 
 static void destroy(raw_pointer ptr1) { 
  ptr1->~value_type(); 
 } 
}; 
template<> 
struct o age<void {  Allocat rStor > 
 template<class T> struct rebind{ 
  typedef AllocatorStorage<T> other;  
 };  
 typedef void value_type; 
 typedef value_type* raw_pointer; 
 typedef value_type const* raw_const_pointer; 
 typedef value_type* pointer; 
 typedef value_type const* const_pointer; 
 typedef std::size_t size_type; 
 typedef std::ptrdiff_t difference_type; 
  
}; 
//requirements 
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//pointer u,raw_pointer v 
// is_same<raw_pointer,typeof(&*u)>::value==true 
// AllocatorStorage<T>::pointer a; AllocatorStorage<void>::pointer b; 
// b(a);//is valid 
// pointer n(); 
// n==pointer();//means "null pointer" 
// pointer is model of TrivialIterator, or  
// better depending on container 
// pointer must have CopySemantics 
// pointer must allow cyclic references 

AllocatorManager 
This is the place that the pool managers live. Its default looks like: 

struct AllocatorManagerBase { 
 typedef  AllocatorStorage<void>::size_type size_type; 
 typedef  AllocatorStorage<void>::raw_pointer void_pointer; 
 static void_pointer allocate(size_type req, 
            size_type align=size_type(-1),unsigned flags=0) { 
  return ::operator new(req);} 
 static void deallocate(void_pointer d,size_type ) { 
  : operator delete(d);} :
 static bool equal_to(AllocatorManagerBase const&)  { 
  return true; 
 } 
 static size_type max_size(){ 
  return size_type(-1); 
 } 
}; 
template<class T> 
struct AllocatorManager:AllocatorManagerBase{ 
  template<class U>struct rebind{ 
        typedef AllocatorManager<U> other; 
  }; 
 template<class U> AllocatorManager(AllocatorManager<U> const&){} 
 AllocatorManager(){} 
};// max_size always returns number of bytes available 
The reason for the separation is to demonstrate to users that this can easily be done 
without templates. The “rebind” mechanism is still required however in the general case. 

AllocatorAdapter 
There are two adapter templates. One is to make stateful AllocatorManagers easy to 
specify. The other is for backward compatibly with existing containers: 

template<class T, class Pool, class Storage=AllocatorStorage<void> > 
struct StatefulAdapter{ 
 typedef typename Storage::size_type size_type; 
 typedef typename Storage::difference_type difference_type; 
 typedef typename Storage::template 
             rebind<Pool>::other::pointer  
   impl_pointer_type; 
 typedef typename Storage::template 
                  rebind<void>::other::raw_pointer void_pointer; 
 template<class U>struct rebind{ 
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   typedef StatefulAdapter<U,Pool,Storage> other; 
  }; 
 void_pointer allocate(size_type req,std::size_t align, 
  unsigned flags) { 
  return m_Manager->allocate(req,align,flags); 
 } 
 void_pointer allocate(size_type req, 
  unsigned flags=0) { 
  return m_Manager->allocate(req,flags); 
 } 
  
 void deallocate(void_pointer d,size_type n ) {  
  m_Manager->deallocate(d,n); 
 } 
 bool equal_to(StatefulAdapter const&_r) const { 
  return m_Manager==_r.m_Manager; 
 } 
 size_type x_size()const { ma
  return m_Manager->max_size(); 
 } 
 StatefulAdapter(P const  b) ool &
  :m_Manager(const_cast< Pool *>(&b)){} 
 StatefulAdapter():m_Manager(Pool::get_instance()){} 
 StatefulAdapter(StatefulAdapter const  & b) 
        :m_Manager(b.m_Manager){} 
 StatefulAdapter& operator=(StatefulAdapter const& r){ 
  m_Manager=r.m_Manager; 
  return *this; 
 } 
      template <class U> 
      StatefulAdapter (StatefulAdapter <U, Pool, 
             Storage > 
   const& r) 
      : m_Manager (r.m_Manager) { 
 } 
 
 void swap(StatefulAdapter&r){ 
  using std::swap; 
  swap(m_Manager,r.m_Manager); 
 } 
private: 
 template<class X,class Y,class Z> friend struct StatefulAdapter; 
 impl_pointer_type  m_Manager; 
}; 
template<class X,class Y,class Z> 
void swap(StatefulAdapter<X,Y,Z>&l,StatefulAdapter<X,Y,Z>&r){ 
  l.swap(r); 
} 
 
template <class T,class Manager=AllocatorManager<T>,  
           class Storage=AllocatorStorage<T> > 
struct AllocatorAdapter:Manager { 
    typedef Manager base_type; 
 typedef T value_type; 
 typedef Storage storage_policy; 
 typedef typename storage_policy::pointer pointer; 
 typedef typename storage_policy::const_pointer const_pointer; 
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 typedef typename storage_policy::raw_pointer raw_pointer; 
 typedef typename storage_policy::raw_const_pointer 
                     raw_const_pointer; 
 typedef typename storage_policy::reference reference; 
 typedef typename storage_policy::const_reference const_reference; 
 typedef typename storage_policy::size_type  size_type; 
 typedef typename storage_policy::difference_type difference_type; 
 static raw_pointer address(reference _val)  
 { 
  return (&_val); 
 } 
 static raw_const_pointer address(const_reference _val)  
 { 
  return (&_val); 
 } 
#if defined(NEWSTYLE) 
 static void construct(raw_pointer ptr, const_reference val) 
 { 
  storage_policy::construct(ptr, val); 
 } 
 
 static void destroy(raw_pointer ptr1) { 
  storage_policy::destroy(ptr1); 
 } 
#else 
 static void construct(pointer ptr, const_reference val) 
 { 
  storage_policy::construct(address(*ptr), val); 
 } 
 
 static void destroy(pointer ptr1) { 
  storage_policy::destroy(address(*ptr1)); 
 } 
#endif  
    pointer allocate(size_type n)  { 
  using boost::al   ignment_of;
  return pointer(static_cast<raw_pointer>( 
   this->base_type::allocate( n*sizeof (T) 
    ,alignment_of<T>::value )) ); 
 } 
 void deallocate (pointer x,size_type n)  { 
  this->base_type::deallocate(address(*x),n); 
 } 
 
 size_type max_size()const { 
  return this->base_type::max_size()/sizeof(T); 
 } 
 bool operator llocatorAdapter const &r)const { ==(A
  return this->base_type::equal_to(r); 
 } 
 bool operator!=(AllocatorAdapter const &r)const { 
  return !((*this) ==r); 
 } 
 template<class OtherType> 
 AllocatorAdapter(OtherType const & _buf):base_type(_buf) { 
 } 
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 AllocatorAdapter(AllocatorAdapter const&r ):base_type(r){} 
    AllocatorAdapter(Manager const&r ):base_type(r){} 
 
 template<class U>struct rebind { 
  typedef AllocatorAdapter<U, 
    typename base_type::template  
                                          rebind<U>::other, 
    typename storage_policy::template  

rebind<U>::other> other; 
 }; 
 template <class U> 
      AllocatorAdapter(AllocatorAdapter<U,Manager,Storage> 
   const& r) 
      : base_type(r) { 
 } 
 template<class U> 
      AllocatorAdapter<T,Manager,Storage>& 
 operator=(AllocatorAdapter<U,Manager,Storage>const&r) 
 { 
  this->base_type::operator=(r); 
  return (*this); 
 } 
 void swap(AllocatorAdapter &r){ 
   using   std::swap;
   swap(static_cast<base_type&>(*this), 
            static_cast<base_type&>(r)); 
 } 
 AllocatorAdapter() {} 
 
}; 
template <class Manager,class Storage =AllocatorStorage<void> >  
struct AllocatorAdapter<void,Manager,Storage> { 
 typedef void value_type; 
 typedef Storage storage_policy; 
 typedef typename storage_policy::pointer pointer; 
 typedef typename storage_policy::const_pointer const_pointer; 
 typedef typename storage_policy::raw_pointer raw_pointer; 
 typedef typename storage_policy::const_raw_pointer 
const_ nraw_poi ter; 
 typedef typename storage_policy::reference reference; 
 typedef typename storage_policy::const_reference const_reference; 
 typedef typename storage_policy::size_type  size_type; 
 typedef typename storage_policy::difference_type difference_type; 
 template<class U>struct rebind { 
  typedef AllocatorAdapter<U, 
   typename Manager::template rebind<U>::other, 
            typename storage_policy::template rebind<U>::other > other; 
 }; 
}; 
template <class T,class U,class Manager,class Storage> 
bool operator==(AllocatorAdapter<T,Manager,Storage> 
  const&l,AllocatorAdapter<U,Manager,Storage> const&r) { 
 return l.operator==(r); 
} 
template <class T,class U,class Manager,class Storage> 
bool operator!=(AllocatorAdapter<T,Manager,Storage> 
  const&l,AllocatorAdapter<U,Manager,Storage> const&r) { 

N2486 Lance Diduck 
 

Page 26 of 36



 return !(l==r); 
} 

 

This adapter makes it easy to specify “polymorphic allocators” if desired, merely by 
changing the Manager class. 

Examples 
These are a few examples. The idea is that the most common cases –like just changing 
what allocate and deallocate do in the static case – requires the least boilerplate. Even in 
the more difficult cases, the boilerplate is still far less than that required by the current 
design.  
Template Typedefs and constructor forwarding would make this easier still. 
Malloc Allocator 
An all time classic 
template<class T> 
struct Malloc_Alloc{ 
  template class U>struct rebind{ <
        typedef Malloc_Alloc<U> other; 
  }; 
 template class U> Malloc_Alloc(Malloc_Alloc<U> const&){} <
 Malloc_Alloc(){} 
 typedef  std::size_t size_type; 
 static void* allocate(size_type req, 
            size_type align=size_type(-1),unsigned flags=0) { 
  return malloc(req);} 
 static void deallocate(void*p ,std::size_t ) { 
  free(p); 
  } 
 static bool equal_to(Malloc_Alloc const&)  {   
  return true; 
 } 
 static type max_size(){  size_
  return size_type(-1); 
 } 
}; 
template<class T>struct MallocAlloc{ 
 typedef AllocatorAdapter<T,Malloc_Alloc<T>  > type; 
}; 
Usage is like this: 
 
std::vector<int,MallocAlloc<int>::type > myvec; 

Polymorphic Allocator 
When alternative accessor nor pointers are needed, this is a useful way to write libraries 
that can use “installable” memory managers determined at runtime. Almost always, these 
allocators are used to allocate heterogeneous types unknown to the allocator author, so in 
general they are hard to tune and debug. But for particular applications, they can be 
advantageous, given the alternative of redefining global operator new and rebuilding 
everything. 
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This example also uses a shared_ptr to manage the lifetime of the allocator instance. It 
looks like this: 
//the abstract base class 
//get_instance() returns a default 
struct Poly_Alloc { 
 typedef std::s ze_type; ize_t si
 virtual void* allocate(size_type req, 
  size_type align=size_type(-1),unsigned flags=0)=0; 
 virtual void deallocate void ize_type )=0; ( *p ,s
 virtual size_type max_size()const=0; 
 static shared_ptr<Poly_Alloc> get_instance(); 
}; 
// a suitable default 
struct DefaultPoly_Alloc: Poly_Alloc{ 
 void* allocate(size_type req, 
  size_type =size_type(-1),unsigned =0) { 
  return ::operator new(req);} 
 void deallocate void ,size_type ) { ( * d
  ::operator delete(d); 
 } 
 size_t max_size()const { ype 
  return size_type(-1); 
 } 
}; 
//get_instance, just a regular singleton 
void no_op(void*){} 
shared oly_Alloc> Poly_Alloc::get_instance() { _ptr<P
 static DefaultPoly_Alloc defalloc; 
 static shared_ptr<Poly_Alloc> defalloc_ptr(&defalloc,no_op); 
 return defalloc_ptr; 
} 
//something to tell the StatefulAdapter to use a shared_ptr 
//this d es NO  c
template<class Y>  

o T hange the definition of allocator::pointer 

struct SharedPtrSpec : AllocatorStorage<Y> { 
 template<class Z> struct rebind{ 
  typedef SharedPtrSpec<Z> other; 
 }; 
 typedef shared_ptr<Y> pointer; 
}; 
//put it all together 
template<class T>struct PolyAlloc { 
 typedef AllocatorAdapter<T,StatefulAdapter<T,Poly_Alloc, 
      SharedPtrSpec<void> > > type; 
};  
Usage is  
typedef std::set<int,std::less<int>,PolyAlloc<int>::type > myset_t; 

Stack Memory Allocator 
An example of a stack memory allocator, that can be shared amongst other containers, or 
is unique to one (i.e. could be MoveConstructible): 
//StackAllocatorBase is the machinery 
template<class T, std::size_t N> struct StackAllocatorBase { 
 static const std::size_t my_align =alignment_of<T>::value; 
 void* allocate(std::size_t req, std::size_t /*align*/ 
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                       =std::size_t(-1), 
   unsigned /*flags*/=0) { 
  std::size_t const areq=req%my_align ?  
    req+my_align-req%my_align : req; 
  if (unsigned((reinterpret_cast<char*>(&m_buf) 
      +sizeof(m_buf))-m_ptr)<=areq) 
   throw std::bad_alloc(); 
  void* ret=m_ptr; 
  =areq; m_ptr+
  return ret; 
 } 
 void deallocate(void*, std::size_t) { 
 } 
 std::size_t max_size() const { 
  return sizeof(m_buf); 
 } 
protected: 
 StackAllocatorBase() 
 : m_ptr((char*)&m_buf) {} 
  to get this to work he "unique" case  //wierdness needed  in t
 StackAllocatorBase(StackAllocatorBase const&) 
  :m_ptr((char*)&m_buf) {}//just a default ctor 
 void operator=(StackAllocatorBase const&) {/*do nothing*/} 
private: 
 aligned_storage<sizeof(T)*N,alignment_of<T>::value> m_buf; 
 char * m_ptr; 
};  
Now, for a version that can be shared and works all containers: 
//StackAllocShareable will be used with the StatefulAdapter 
template<class T, std::size_t N>  
struct StackAllocShareable :StackAllocatorBase<T,N> { 
 static StackAllocShareable*get_instance() { 
  return 0; 
 } 
 StackAllocShareable() { 
 } 
private: 
#if !defined(__GNUC__) 
 //gcc wants to see the copy ctor 
 //but it should not be required 
 StackAllocShareable(StackAllocShareable const&);//=delete 
#endif 
 void operator=(StackAllocShareable const&);//=delete 
}; 
And one that is unique, that works with many containers11
//StackAllocUnique will be used with the AllocatorAdapter 
template<class T, std::size_t N>  
struct StackAllocUnique :StackAllocatorBase<T,N> { 
 template<class U> struct rebind { 
  typedef StackAllocUnique<U,N> other; 
 }; 
 static bool equal_to(StackAllocUnique const&) { 
  return false; 
 } 

                                                 
11 Theoretically, any container that makes only one copy of the allocator argument 
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}; 

And a way to put this together: 

template<class T, std::size_t N> struct StackAlloc { 
 typedef StackAllocShareable<T,N> stype; 
 typedef AllocatorAdapter<T,StatefulAdapter<T,stype > > ctype; 
 typedef AllocatorAdapter<T,StackAllocUnique<T,N> > mtype; 
}; 

typedef StackAlloc<int,1000> myalloc_t; 
 

Now, the user does this for the “unique” case: 

typedef std::vector<int,myalloc_t::mtype > mvec_t; 
mvec_t mvec; 
mvec.resize(3,1); 
mvec_t mvec2; 
mvec2=mvec; 
And for the shared case, one does this: 

//this vector assigns the allocator in operator= 
typedef vector<int,myalloc_t::ctype > cvec_t; 
cvec_t cvec((myalloc_t::ctype(myalloc_t::stype()))); 
cvec.resize(3,1); 
cvec_t cvec2; 
cvec2=cvec; 
cvec_t cvec3(cvec2.begin(),cvec2.end(),cvec2.get_allocator()); 
 

The “shared” version works with every container in every implementation commonly in 
use (provided that you don’t call a default as I did here), and the “unique” version works 
with many containers on many implementation, but has more “gotcha’s” -- like O(N) 
swap for instance. 

Shared Memory Container 
Lets modify the “stack” example above to make it use a deque, and usable in shared 
memory. To do this, we cannot rely on the value of any pointer. We can only use offsets. 
With offset_ptr, we have what we want. 
template<class Y> 
struct RelocatableStorage { 
 template class U>struct rebind{ <
    typedef reloc_node_policy <U> other; 
  }; 
 typedef Y value_type; 
 typedef offset_ptr<Y> pointer; 
 typedef offset_ptr<Y const> const_pointer; 
 typedef value_type*   raw_pointer; 
 typedef value_type const* raw_const_pointer; 
 typedef value_type& reference; 
 typedef value_type const& const_reference; 
 typedef std::size_t size_type; 
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 typedef std::ptrdiff_t difference_type; 
 static void construct(Y* ptr,  Y const&  val) 
 { 
  new(static_cast<void*>(ptr))Y(val); 
 } 
 static void destroy(Y* ptr1) { 
  ptr1->~Y(); 
 } 
}; 
template<> 
struct RelocatableStorage<void> { 
 template<class T> struct rebind{ 
  typedef reloc_node_policy<T> other;  
 };  
 typedef void value_type; 
 typedef value_type* raw_pointer; 
 typedef value_type const* raw_const_pointer; 
 typedef offset_ptr<value_type>pointer; 
 typedef offset_ptr<value_type const> const_pointer; 
 typedef std::size_t size_type; 
 typedef std::ptrdiff_t difference_type; 
}; 
Change StackAllocatorBase to use max alignment, and change m_ptr to read,  
    RelocatableStorage<char>::pointer  m_ptr; 
 
Now, with the proviso that std::deque is going to actually use the pointer specified by the 
allocator, and of course T is relocatable as well: 
template<class T, std::size_t N>  
struct lloc {  RelocA
 typedef StackAllocShareable<T,N> stype; 
 typedef AllocatorAdapter<T, 
   StatefulAdapter<T,stype,RelocatableStorage<T> >, 
   RelocatableStorage<T> > allocator_type; 
}; 
template<class T,std::size_t N> 
struct RelocDeque 
:RelocAlloc<T,N>::stype 
,std:: T,typename Relo T,N>::allocator_type >{ deque< cAlloc<
 typedef std::deque<T,typename RelocAlloc<T,N>::allocator_type >  

base_type; 
 RelocDeque():base_type(typename  

base_type::allocator_type(*this)){}; 
}; 
 
 
This is a deque that be properly placed in shared memory, without “fixing” the addresses. 
char* sharedmem=mmap(0,sizeof(RelocDeque<int,200>),/*args*/); 
RelocDeque<int,200>& relocdeq=*new(sharedmem)RelocDeque<int,200>; 

Object Pool  
With a suitable allocator manager (not shown here), one does this: 

template<class Y>  
struct ObjectStorage :AllocatorStorage<Y> { 
    //two user defined functions to "hook"  
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 //into the specialty allocator manager 
 template<class U> 
 static void alloc_destroy(U* ) { 
 //do nothing 
 } 
 static void* alloc_construct(void*ptr) { 
  return ptr; 
 } 
}; 
template<> 
struct ObjectStorage<void> 
 :AllocatorStorage<void> {}; 
template<>  
struct ObjectStorage<std::string> 
  :AllocatorStorage<std::string> { 
    //this is now how a container controls  
 l ts lifetime //an e emen
 static void construct(pointer ptr,  
          value_type const& val) { 
  *ptr=val; 
 } 
 static void destroy(value_type* ptr1) { 
  ptr1->clear(); 
 } 
 static void alloc_destroy(pointer ptr) { 
  ptr->~value_type(); 
 } 
 static value_type* alloc_construct(void*ptr) { 
  return new(static_cast<void*>(ptr))value_type; 
 } 
}; 

For example, during allocate, if there are no objects on the free list, an allocator manager 
will allocate a new node, and the call alloc_construct. At some time after the container 
is destroyed, then alloc_destroy is called. The typedefs to get this into a list are more 
involved, but amounts to this : 

typedef ObjectStorage<std::string> ObjectStringStorage; 
//ListNode is made public, so that Alignment and Size can be inquired 
typedef ListNode<std::string, ObjectStringStorage >  
           ObjectStringListNode; 
typedef ObjectAllocator<std:string,sizeof(ObjectListNode) 
  ,alignment_of(ObjectListNode), ObjectStringStorage>   
          ObjectStringNodeManager; 
typedef AllocatorAdapter<std::string,ObjectStringNodeManager,   
            ObjectStringStorage > ObjectStringNodeAdapter; 
list<std::string,ObjectStringNodeAdapter>  
          objectstringlist;//at last!!!!   
 
ObjectAllocator does the work, and the code is not show here –however anybody 
reading this should be able to make an example. This requires that the nodes that list 
manages can be inquired as to size and alignment, and that the list follows the guidelines 
for construct/destroy set forth earlier.  
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Implementation Defined 
Now that we have cleaned up some of the specification for the typical cases of alternative 
allocators, and saw what we could do only if we found a suitable implementation, we can 
move on to other interesting use cases. 

Trivial Allocators 
Many implementations can accommodate Trivial Allocators for vector and string, as long 
as you don’t expect to  

1. swap the container 
2. ever cause a reallocation after the initial one  

Imagine I had a AllocatorAdapter that combined the AllocatorManager and 
AllocatorStorage together: 
template<class T,std::size_t N>  
struct Trivial{ 
    aligned_storage<sizeof(T)*N,alignmentof<T>::value> buf; 
    void* allocate(std::size_t ){return &buf;} 
    void deallocate(void*,std::size_t){} 
    static std::size_t max_size(){return sizeof(buf);} 
    bool operator==( Trivial const&)const{return false;} 
}; 
vector<double,AllocatorAdapter<double, 
              Trivial<double,100> > > myvec (100); 
//do anything with myvec as long as capacity() never exceeds 100 
 
Almost as fast as std::array<double,100> except its variable size!! 
Furthermore, with a proper selection of pointer an implementation can easily make 
myvec relocatable.  
There is some work needed to make this portable and practical, however.  

Concurrent Containers 
Although not part of the standard, it is not hard to imagine that in the near future a 
concurrent container library would be proposed. (“concurrent” meaning concurrent reads 
and writes) 
Concepts of thread access models  
 Refinement of  
Sequential None Multiple threads must be serialized 
Concurrent Sequential Does not include calls to acquire 

more blocks of memory from system 
 
Of course, every standard container requires the Sequential model. The foundation of the 
STL is the Iterator concept. Data structures that have iterators cannot be concurrent  -- 
Why? Because to meaningfully “iterate” through anything requires an arbitrary amount 
of steps to complete before modifications are allowed. And this is not “concurrent.” 
However, many data structures can be concurrent, such as stacks and queues. These are 
far easier to implement (but still difficult) when the allocator is likewise concurrent and 
reclaim is deferred to some arbitrary point in the future. This is the motivation for 
NonDeterministicReclaim.  
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Details are beyond the scope of this paper, but I have in my toolbox containers that use 
concurrent allocators. 

ExpandInPlace 
The idea here is that containers that use VariableSize allocators can attempt to allocate 
more memory, while keeping the existing memory valid, much like realloc(). 
In this case, you would prefer that the AllocatorAdapter is not copied during operator=. 
This isn’t a problem in the stateless case.  
In the stateful case, it is still preferable to copy (or move) the allocator, since a container 
can never be sure of just what part of the state should be copied and what should not.  As 
an example, consider an allocator implementation for use on Linux – it’s state is 
comprised of  the file descriptor, protection flags, sync state, lock state. The allocator 
performs mmap, munmap, mremap, msync and mlockall. Methods like msync and 
mlockall are performed via extensions.  
Such an allocator can ExpandInPlace, and is clearly stateful. Does the “ExpandInPlace” 
semantics negate all the other semantics of this allocator when operator= is invoked? A 
rule is – if the allocators compare equal, then the implementation is free to 
ExpandInPlace using the current allocator. ExpandInPlace:;realloc should not be a 
member of allocator, but rather an implementation that support it should implement a 
traits class, to inquire if an allocator support this capability. The default of course is to 
reallocate then deallocate, and an implementation should correctly handle this case. 

Hybrid Allocators 
For certain values of allocate() this allocator performs like a FixedSize allocator, 
otherwise it performs like VariableSize. This is useful for deque and unordered_*. The 
trouble is knowing just how many special values exist, and what those values are. 
Additionally, and implementation could take advantage of ExpandInPlace for the 
VariableSize allocations. 
Due to the varying ways that unordered_* and deque can be implemented, this is hard to 
standardize. One solution is to use a non-zero hint parameter to signal the allocator when 
a FixedSize allocation is requested. 

Scoped Allocator Semantics 
This is perhaps the logical conclusion of polymorphic allocators discussed earlier. The 
idea is that when a container has an element that can take an allocator argument, the 
containers allocator is passed to the element, and the element-to-be uses that allocator to 
construct a copy of itself. In the case that the object is NOT part of a container, then the 
allocator is defaulted, or user supplied. The application should not care on just what 
allocator is selected. 
In this method, any container must use any allocator. One can easily see this greatly 
restricts what performance enhancements we can do. The chosen allocator must be the 
least common denominator (unbounded and contiguous, equivalent to the default), and all 
containers act accordingly. Furthermore, the container doesn’t actually have to use the 
allocator you specified. Indeed, it is difficult to write such an general purpose allocator12. 
                                                 
12 See http://www.cs.umass.edu/~emery/heaplayers.html for a library that indeed accomplishes this feat 
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But this style does have one interesting advantage: In the case where it is important that 
“containers of containers” all use the same stateful AllocatorStorage, this makes it easy to 
code, as long as you disable the default ctor. To this end an adapter can be used that 
simplifies the otherwise tedious syntax. For example  
template<class T,class S=vector<T,PolymorphicAllocator> >  
struct scopedsequenceadapter:protected S{ 
//all non-mutators fwd to S  
void resize(size_t _sz, T const& _Val){ 
// alloc_traits  determines if the T takes an allocator argument 
// detail::choose_ctor uses the correct constructor 
     if (size() < _sz) 
   this->S::insert(end(), _sz - size(), 
       detail::choose_ctor<value_type,allocator_type, 
            alloc_traits<value_type>::value >(_Val,get_allocator())); 
   else{ 
      this->S::resize(_sz); 
   } 
}; 
This method also changes the complexity guarantees of swap and splice, and makes it 
very hard to code the normal cases where you do care about the performance and other 
properties of the AllocatorManager.  
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Dr Stepanov had that inspired the port of STL to C++.  
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