
Author: Matthew Austern austern@google.com

Revision 1: Alan Talbot alan.talbot@teleatlas.com

Document: N2350=07-0210

Date: 2007-07-19

Reference: N2315 = 07-0175

Container insert/erase and iterator constness

(Revision 1)

Ten years ago, just before the standard was finished, Dave Abrahams pointed out

that the container requirements were too fussy about constness. Table 82, sequence

requirements, says that the expression for single-element sequence insert is

a.insert(p, t), where p stands for "a valid iterator to a". The requirement tables

say similar things for sequence erase, and for associative container erase and

insert. This is too strict, because these requirements confuse iterator constness and

container constness. The container is being modified, but the iterator, which is used

only for positioning, is not. There is no reason to forbid it from being a const iterator.

Making the iterator argument const_iterator does raise another question.

Currently the return type for the single-element sequence insert, both versions of

sequence erase, single-element associative container insert, and both versions of

associative container erase, is iterator. If we change the arguments without

making any other changes, then we will have functions with a const_iterator

argument type and an iterator return type. Strictly speaking, this is not a violation

of const correctness. It doesn't turn a const_iterator into an iterator; all it does

is generate an iterator given a non-const container, and of course there is nothing

extraordinary about that. Still, this member function made some committee

members uncomfortable enough to look for an alternative fix: overloading these

member functions on iterator and const_iterator, so that the return type

matches the argument type.

This problem was never fixed for the sequence containers (vector, list, and deque)

or for the associative containers (map, set, multimap, and multiset). It was fixed

for the unordered associative containers (unordered_map, unordered_set,

unordered_multimap, and unordered_multiset). Based on the results of an LWG

straw poll, the unordered associative containers use the second alternative: two

overloaded member functions.

We ought to fix this problem for the sequences containers and the associative

containers. It would be silly to release two standards with this known defect, or to

treat this issue differently in the unordered associative containers than in the

sequences and the associative containers.

We have two options for this fix: A) apply the same fix to sequences and associative

containers as we already did for unordered associative containers, or B) consistently

change all of the containers to use a single member function with a const_iterator

argument and an iterator return type.

I prefer option B, because it's simpler: I believe that these overloads are

cumbersome and add no const correctness value. The first version of this document

provided wording for both options because option A was more consistent with the

straw poll from the 2004 Redmond meeting.

At the 2007 Toronto meeting the LWG discussed this and agreed that Option B was

correct after all. The group also strongly believed that list::splice should also have

const_iterator arguments. Revision 1 of this document has been updated to eliminate

language for Option A and add language for splice.

Proposed Wording

In 23.1.1 [lib.sequence.reqmts] paragraph 3, replace "p denotes a valid iterator to a,

q denotes a valid dereferenceable iterator to a, [q1, q2) denotes a valid range in a"

with "p denotes a valid const iterator to a, q denotes a valid dereferenceable const

iterator to a, [q1, q2) denotes a valid range of const iterators in a"

In 23.1.2 [lib.associative.reqmts] paragraph 7, replace "p is a valid iterator to a, q is

a valid dereferenceable iterator to a, [q1, q2) is a valid range in a" with "p is a valid

const iterator to a, q is a valid dereferenceable const iterator to a, [q1, q2) is a

valid range of const iterators in a".

In the class synopses of 23.2.2 [lib.deque], and 23.2.5 [lib.vector],

and in the member function descriptions in 23.2.2.3 [lib.deque.modifiers], and

23.2.5.4 [lib.vector.modifiers], change the signatures of insert and erase to
iterator insert(const_iterator position, const T& x);
void insert(const_iterator position, size_type n, const T& x);

template <class InputIterator>
 void insert(const_iterator position, InputIterator first,

InputIterator last);
iterator erase(const_iterator position);
iterator erase(const_iterator first, const_iterator last);

In the class synopsis of 23.2.3 [lib.list], and in the member function description in

23.2.3.3 [lib.list.modifiers], change the signatures of insert, erase and splice to
iterator insert(const_iterator position, const T& x);
void insert(const_iterator position, size_type n, const T& x);
template <class InputIterator>

 void insert(const_iterator position, InputIterator first,
InputIterator last);

iterator erase(const_iterator position);
iterator erase(const_iterator first, const_iterator last);
void splice(const_iterator position, list<T,Allocator>&& x);

void splice(const_iterator position,
list<T,Allocator>&& x, const_iterator i);

void splice(const_iterator position,
list<T,Allocator>&& x,
const_iterator first, const_iterator last);

In the class synopses in 23.3.1 [lib.map], 23.3.2 [lib.multimap], 23.3.3 [lib.set], and

23.3.4 [lib.multiset], change the signatures
iterator insert(iterator position, const value_type& x);

iterator erase(iterator position);

iterator erase(iterator first, iterator last);

to
iterator insert(const_iterator position, const value_type& x);

iterator erase(const_iterator position);

iterator erase(const_iterator first, const_iterator last);

In 23.1.3 [lib.unord.req] paragraph 9, change "p and q2 are valid iterators to a, q

and q1 are valid dereferenceable iterators to a, [q1, q2) is a valid range in a, r and

r1 are valid dereferenceable const iterators to a, r2 is a valid const iterator to a,

[r1, r2) is a valid range in a" to "p and q2 are valid const iterators to a, q and q1

are valid dereferenceable const iterators to a, [q1, q2) is a valid range in a".

In table 92 (unordered associative container requirements), delete the rows for

a.insert(r, t), a.erase(r), and a.erase(r1, r2).

In the class synopses in 23.4.1 [lib.unord.map], 23.4.2 [lib.unord.multimap], 23.4.3

[lib.unord.set], and 23.4.4 [lib.unord.multiset], replace the signatures
iterator insert(iterator hint, const value_type& obj);
const_iterator insert(const_iterator hint, const value_type& obj);

iterator erase(iterator position);
const_iterator erase(const_iterator position);
iterator erase(iterator first, iterator last);

const_iterator erase(const_iterator first, const_iterator last);

with
iterator insert(const_iterator hint, const value_type& obj);

iterator erase(const_iterator position);
iterator erase(const_iterator first, const_iterator last);

