N2337=07-0197
2007-08-01

Daveed Vandevoorde
daveed@edg.com

The Syntax of auto Declarations

1 The lssues

Two proposed new uses of the keyword auto (one of which is already in the Working
Paper) are raising new parsing ambiguity issues. The issues arise primarily because in a
declaration an identifier followed by a parenthesis can mean one of three things (not
considering cases where the identifier is actually part of an expression within the
declaration):
* atype name followed by a nested declarator;
e.g.. X(*p) [2]
* avariable name followed by a parenthesized initializer;
e.g.,Complex X(1, 2)
* afunction name followed by a parenthesized list of parameter declarations;
e.g.,void X(int, int)
Let's first examine in some detail the ambiguities raised by the two new uses of auto.

1.1 Known Problem: The auto type specifier
This issue is also Core Issue 629.
Consider the following bit of code:

typedef int T;
int x1, x2, y;

void £1() {
auto T(&xl) =vy; // (1)
auto T(&x2); /!l (2)
}

In C+498, declaration (1) is a valid declaration of a reference x1 to an object of type T
(the object is y in this case), whereas (2) is an error because it attempts to declare a
reference x2 without any initialization.

In C+40x, auto has a new meaning associated with the following syntactic

disambiguation rule (7.1.5.4):
[1] The auto type-specifier has two meanings depending on the context of its
use. In a decl-specifier-seq that contains at least one type-specifier (in addition to
auto) that is not a cv-qualifier, the auto type-specifier specifies that the object
named in the declaration has automatic storage duration. The decl-specifier-seq
shall contain no storage-class-specifiers. This use of the auto specifier shall
only be applied to names of objects declared in a block (6.3) or to function
parameters (8.4).



[2] Otherwise (auto appearing with no type specifiers other than cv-qualifiers),
the auto type-specifier signifies that the type of an object being declared shall be
deduced from its initializer. The name of the object being declared shall not
appear in the initializer expression.
The current working paper includes words that make the T in our example a type
specifier (7.1):
[2] The longest sequence of decl-specifiers that could possibly be a type name is
taken as the decl-specifier-seq of a declaration. |...]
These words arguably need work (is static inline int a "type name"?) but the
intent seems unambiguous: T in our example is part of the decl-specifiers and not part of
the declarator. That in turn implies that the meaning of the example is unchanged from
C++98. Unfortunately, that outcome is surprising in the context of C++0x where auto is
likely to be used exclusively for type deduction purposes (paragraph [2] in 7.1.5.4). Other
examples may seem even more surprising:

typedef int T;
void £2() {

auto T = 3; // (3) Error.
}

On the other hand, making all cases like (2) and (3) be valid with an intuitive meaning
either breaks backward compatibility with C++98, or requires heroic parsing strategies.

1.2 Potential problem: New function declarator syntax

N1978 "Decltype (revision 5)" proposes a new function declaration syntax that moves the
return type from the decl-specifier sequence to the declarator. The proposal suggests
using the keyword auto as a placeholder "type specifier" in such cases. For example':

// Function f() returning int:

auto f() -> int;

// Function type F returning pointer to int:

typedef auto F() -> int*;

// Pointer to function pf, that:

// - takes a pointer to a function returning an int,
// - return a pointer to a function returning an int.
auto *pf(auto *p() -> int) -> auto *()->int;

Consider now the following case illustrating what looks like an ambiguity:
typdef int T;
auto f£(T()) -> int;

Until the —> token is seen, this looks like a variable declaration with a deduced type.
However, this is a case where the declaration-vs.-expression disambiguation rules apply,
and hence the T () is not treated as an expression, but as a declaration of a parameter of
pointer-to-function type.

" The details of the syntax are not yet fully specified and N1978 no longer reflects the
latest thinking on the matter. So the example may not end up being valid C++0x.



Although the details of the new function declarator syntax are not yet known, it is
nonetheless clear that reusing the auto specifier for that purpose constrains the design
choices and/or increases the potential to create additional ambiguities. Furthermore, those
ambiguities may be the interpretation of auto as a deducible type specifier rather than
auto as a storage class indication.

2 Possible Resolutions
The following subsections describe a few alternatives to address the known problem.

2.1 Drop auto for storage class specification

The use of auto to denote the storage class of a local variable (the only valid C++98
use) is superfluous in that a C++98 auto declaration will not change meaning if the auto
keyword is simply dropped. Furthermore, searching for uses of auto using tools like
Google Code Search (http://google.com/codesearch) suggest that in C++ auto is used
very little (Google Code Search finds less than 50 uses of auto in C++ code).

This suggests that a simple solution to the ambiguities between auto as a storage class
and auto as a deducible type is to drop the C++98 meaning of auto altogether, and
only leave the new meaning as a deducible type specifier. This may be somewhat
controversial, in part because a language feature would be dropped without going through
a "deprecated stage". On the other hand, it would greatly simplify the programming
model. Subsection 2.4 below also demonstrates that some valid C++98 cases can change
meaning with this approach.

A potential shortcoming of this option is that it may not resolve ambiguities that might
arise with the use of auto to introduce a new-style function declaration.

2.2 Clarify the status quo

If the known problem presented here is considered minor, we could opt not to address it.
Instead, it might be worthwhile to clarify the status quo (e.g., by tightening up the words
in 7.1[2]).

The resulting semantics are what is currently implemented in the EDG front end
(versions 3.9 and later). It is to the best of our knowledge the only existing
implementation experience. It also maintains full backward compatibility with C++98.

One argument against the status quo, however, is that an unrelated declaration in
namespace scope (brought in through header-inclusion, for example) may invalidate a
local declaration. That is a significant wart on the programming model, but similar
situations abound elsewhere in C++ and in this case the problem is easily corrected when
it arises. Such problems can also be avoided using extra parentheses (generally regarded
as an unattractive style option) or using appropriate naming conventions (although the
naming conventions of third-party header files are usually outside the programmer's
control).

Again, this approach does not help the potential problem of ambiguities that might arise
with the use of auto to introduce a new-style function declaration.



2.3 Drop parenthesized initializers for auto deduction

A potential solution is to require that parsers pick whichever interpretation of auto
actually works. If both interpretations work (likely a much rarer situation), either
interpretation could be mandated, or the construct could be deemed invalid.

Unfortunately, the added complexity this implies for implementations is unreasonable.

It turns out, however, that the most objectionable situations involve syntax where
parentheses could be interpreted as enclosing an initializer expression (as opposed to
enclosing a nested declarator). Line (2) in our original example is such a situation. If only
initializers introduced with a = token can be used with deduced auto type specifiers in
variable declarations®, then the cost of looking ahead to determine which interpretation is
applicable becomes much more reasonable. In fact, a single-token look-ahead provides
the answer: If an identifier is followed by = and auto has been seen, that identifier is a
declarator-id.

Disallowing parenthesized initializers may seem a drastic limitation since direct-
initialization is often preferred (and sometimes required) when initializing objects of
class type. However, the new brace-based initializer syntax proposed in N2215
("Initializer lists", B.Stroustrup and D. Dos Reis) provides an alternative to express the
same semantics using the = token. This option would also preserve full backward
compatibility with C++98.

An added attraction of this option is that it almost certainly avoids the potential problem
of ambiguities that might arise with the use of auto to introduce a new-style function
declaration.

2.4 Rejected options

The previous section already mentioned the idea that the standard could require "full
disambiguation"; i.e., an implementation would effectively try the two interpretations of
auto and retain the one that results in a valid declaration (if indeed there is only one).
The cost of doing so is considered prohibitive, however. It is possible for a construct to
be valid under both interpretations:

typedef int T;
int n = 3;
void f() {
auto T(n);
n=17; // Which n is this?
}

A disambiguation rule that prefers auto to be a deducible type over auto being a
storage class indication would result in a silent change of meaning. That is also true if the
storage class interpretation is dropped altoghether.

Another option is to retain only the classical meaning of auto (i.e., as a storage class
indication) for a few cases where it is "obviously" the only possible interpretation. This
would include decl-specifier sequences containing a simple-type-specifier that is a

> The use of auto in new-expressions is unambiguous and therefore need not be affected
by this rule.



keyword (like short or £loat), or situations where a problematic identifier is followed
by another identifier (e.g., in auto X Y the identifier X cannot be a valid start of a
declarator, and can therefore be assumed to name a type). The Core WG considered such
approaches, but concluded they were too "ad hoc".

3 Conclusion

Without a clearer picture of the new function declaration syntax, it is difficult to make a
recommendation for the best way forward. The following therefore assumes that the
proposal for the new function declaration syntax does not introduce new ambiguities.

Despite the unfortunate precedent of dropping a language feature without a transition
period where that feature has been deprecated, I recommend dropping the classic use of
the auto specifier altogether. This provides a complete and simple solution for the new
meaning of auto, and I do not expect it to have a significant impact in terms of
backward compatibility.

If no consensus can be found for that option or if the new function declaration syntax
introduces new ambiguities, my "second preferred" option is to disallow parenthesized
variable initializers for variables declared with a deducible auto type specifier. That
option was the consensus resolution of core issue 629 by the Core WG in April 2007
(Oxford). This would require the availability of the newly-proposed brace-based
initialization syntax to achieve direct-initialization.



