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Abstract
Multiple dispatch – the selection of a function to be invokedbased
on the dynamic type of two or more arguments – is a solution
to several classical problems in object-oriented programming. We
present the rationale, design, and implementation of a language fea-
ture, called open multi-methods, for C++. Open multi-methods sup-
port both repeated and virtual inheritance and our call resolution
rules generalize both virtual function dispatch and overload reso-
lution semantics. After using all information from argument types,
these rules can resolve further ambiguities by using covariant re-
turn types. We describe a model implementation and compare its
performance and space requirements to existing open multi-method
extensions and workaround techniques for C++. Compared to these
techniques, our approach is simpler to use, catches more user mis-
takes (such as ambiguities), performs significantly better, and re-
quires less memory. For example, our implementation of a multi-
method call is constant-time and more than twice as fast as double
dispatch - only 4% slower than a C++ virtual function call. Finally,
we provide a sketch of a design for open multi-methods in the pres-
ence of dynamic loading and linking of libraries.

Keywords multi-methods, open-methods, multiple dispatch, object-
oriented programming, generic programming, C++

1. Introduction
This technical report presents work in progress prompted byreal-
world problems, academic research, and discussions in the C++

standards committee (SC22/WG21). In particular, N1529 [28] is
a specific proposal for adding a form of multimethods to the up-
coming revision of the ISO C++ standard, C++0x. The aim of this
TR is to provide a thorough (if still incomplete) discussionof the
design alternatives, present a current best effort design,and present
performance data from the current implementation demonstrating
significant advantages over current workarounds.

Runtime polymorphism is a fundamental concept of object-
oriented programming (OOP), typically achieved by late binding
of method invocations. “Method” is a common term for a func-
tion chosen through runtime polymorphic dispatch. Most OOP
languages (e.g.: C++ [31], Eiffel [24], Java [3], Simula [6], and
Smalltalk [18]) use only a single parameter at runtime to determine
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the method to be invoked (“single dispatch”). This is a well-known
problem for operations where the choice of a method depends on
the types of two or more arguments (“multiple dispatch”), such as
an intersect() function. A well-studied subset of this problem is
the binary method problem [7]. Another problem is that dynami-
cally dispatched functions have to be declared within classdefini-
tions. This often requires more foresight than class designers pos-
sess, complicating maintenance and limiting the extensibility of li-
braries.

Workarounds for both of these problems exist for single-
dispatch languages. In particular, the visitor pattern (double dis-
patch) [16] circumvents the first problem without compromising
type safety. Using the visitor pattern, the class-designerprovides
an accept method in each class and defines the interface of thevis-
itor. This interface definition, however, limits the ability to intro-
duce new subclasses and hence curtails program extensibility [11].
In [33] Visser presents a possible solution to the extensibility prob-
lem in the context of visitor combinators, which make use of RTTI.

Providing dynamic dispatch for multiple arguments lifts these
restrictions. If declared within classes, such functions are often
referred to as “multi-methods”. If declared independentlyof the
type on which they dispatch, such functions are often referred to
as open class extensions, accessory functions [35], arbitrary multi-
methods [26], or “open-methods”. Languages supporting multiple
dispatch include CLOS [29], MultiJava [11, 25], Dylan [27],and
Cecil [9]). We implemented and measured both multi-methodsand
open-methods. Since open-methods address a larger class ofdesign
problems than multi-methods, our discussion concentrateson open-
methods.

Generalizing from single dispatch to open-methods raises the
question how to resolve function invocations in cases whereno
overrider provides an exact type match for the runtime-types of the
arguments. Symmetric dispatch treats each argument alike but is
subject to ambiguity conflicts. Asymmetric dispatch resolves con-
flicts by ordering the argument based on some criteria – typically,
an argument list is considered left-to-right). Asymmetricdispatch
semantics is simple and ambiguity free (if not necessarily unsur-
prising to the programmer), but it is not without criticism [8]. In
addition, asymmetric dispatch differs radically from C++’s sym-
metric function overload resolution rules.

We derive our design goals for the open-method extension from
the C++ design principles outlined in [30]:

• A language extension should address several specific problems.

• A new mechanism should not impose costs on code that does
not use it. In this case, open-methods should neither prevent
separate compilation of translation units nor increase thecost
of ordinary virtual function calls.

• Code using a new language feature should benefit compared
to code that uses workaround techniques. In this case, open-



methods should be more convenient to use than all workarounds
(e.g. the visitor pattern) as well as outperforming them in both
time and space.

• Semantics introduced by a new mechanism should fit well with
existing features. In particular, open-methods should be unsur-
prising when compared to virtual and overloaded functions.

• The mechanism should be general and useful for a wide variety
of systems. In particular, exception handling is not currently
considered suitable for hard real-time system (e.g. [23]) so
throwing exceptions to indicate an ambiguity conflict is best
avoided.

Section 2 presents application domains for both open-methods
and multi-methods. Section 3 describes our function call and ambi-
guity resolution mechanisms. Section 4 shows the necessarymod-
ifications to the C++ compiler and linker strategy as well as exten-
sions of the IA-64 object model [12] based on our model imple-
mentation. Section 6 discusses problems related to dynamicload-
ing and linking of libraries. Section 7 gives an overview of research
in the area of multi-methods for C++ and other languages. Section
8 compares the performance of our approach to other methods that
add support for multi-methods to C++. Section 9 summarizes our
contributions and sketches remaining open problems.

2. Application Domains
The question whether open-methods address a sufficient range of
problems to be a worthwhile language extension is a popular ques-
tion. We think they do, but do not consider the problem one that
can in general be settled objectively, so we just present examples
that would benefit significantly. We consider these exampleschar-
acteristic for larger classes of problems.

2.1 Shape Intersection

An intersect operation is a classical example of multi-methods us-
age [30]. For a hierarchy of shapes,intersect() decides if two
shapes intersect. Handling all different combinations of shapes (in-
cluding those added later by library users) can be quite a challenge.
Worse, a programmer needs specific knowledge of a pair of shapes
to use the most specific and efficient algorithm.

Using the multi-method syntax from [30], withvirtual indicat-
ing runtime dispatch, we can write:

bool intersect(virtual Shape&, virtual Shape&); // open−method
bool intersect(virtual Rectangle&, virtual Circle&); // overrider

We note that for some shapes, such as rectangles and lines,
the cost of double dispatch can exceed the cost of the intersect
algorithm itself.

2.2 Data Format Conversion

Consider an application, such as an image processor or a web
browser that deals with many image formats and must frequently
convert between them. Generic handling of formats by converting
them to and from a common representation in general gives un-
acceptable performance, degradation in image quality, loss of in-
formation, etc. For example, conversions between an RGB anda
YUV format are computation intensive. However, conversions be-
tween different RGB formats and between different YUV formats
can be done simply and efficiently. Here is the top of a realistic
image format hierarchy:

Image

RasterImage

LoslessImageLossyImage

RandomAccessImageCompressedImage

VectorImage

YUV CMYKRGB

PalletizedRGBTrueColorRGBPackedYUVPlanarYUV

A host of concrete image formats such as RGB24, JPEG, and
planar YUY2 will be represented by further derivations. Theopti-
mal conversion algorithm must be chosen based on a source-target
pair of formats [20] [36]. That is, we again need a lookup based on
two runtime types from a large and extensible hierarchy.

2.3 Binary operations

Most forms of computation involve many types and binary opera-
tions. Matrix algebra is an obvious example. For example:

void computation(const Matrix& a, const Matrix& b)
{

Matrix tmp = a+b; // binary operation
// ...
}

Often, operations are selected based on static types, rather than
relying on a base class as in the example. The reason for that is to
improve performance, to eliminate the complexity of doubledis-
patch, and to gain the benefits of predictable ambiguity resolution.
Open-methods address those concerns.

The implementation of a scripting language would be an appli-
cation where the solution to the binary operation problem would be
performance sensitive.

3. Definition of open-methods
Open-methods are dynamically dispatched functions, wherethe
callee depends on the dynamic type of one or more arguments.
ISO C++ supports compile-time (static) function overloading and
runtime (dynamic) dispatch on a single argument. The two mecha-
nisms are orthogonal and complementary. We define open-methods
to generalize both, so our language extension must unify their se-
mantics. Our dynamic call resolution mechanism is modeled after
the overload resolution rules of C++. The ideal is to give the same
result as static resolution would have given had we known alltypes
at compile time. To achieve this, we treat the set of overriders as a
viable set of functions and choose the single most specific method
for the actual combination of types.

We derive our terminology from virtual functions: a function
declared virtual in a base class (super class) can be overridden in a
derived class (sub class):

• an open-method is a non-member function with one or more
parameters declared virtual

• an overrider is an open-method that refines another open-
method according to the rules defined in§3.1

• an open-method that does not override another open-method is
called a base-method.

For example:

struct A { virtual ˜A(); };
struct B : A {};

void print(virtual A&, virtual A&); // (1)



void print(virtual B&, virtual A&); // (2)
void print(virtual B&, virtual B&); // (3)

Here, both (2) and (3) are overriders of (1), allowing us to re-
solve calls involving every combination of A’s and B’s. For exam-
ple, a callprint(a,b) will involve a conversion of the B to an A and
invoke (1). This is exactly what both static overload resolution and
double dispatch would have done.

To introduce the role of multiple inheritance, we can add to that
example:

struct X { virtual ˜X(); };
struct Y : X, A {};

void print(virtual X&, virtual X&); // (4)
void print(virtual Y&, virtual Y&); // (5)

Here (4) defines a new open-methodprint on the class hierarchy
rooted in X. Y inherits from both A and X, and since bothprint
open-methods have the same signature, – (5) is an overrider for
both (4) and (1).

3.1 Overriding

DEFINITION 1. An open-method is considered an overrider (or)
for an open-method (om) in the same translation unit if it has:

• the same name
• the same number of parameters
• possibly covariant virtual parameter types
• invariant non-virtual parameter types

A base-method must be declared before any of its overriders.
This restriction parallels other C++ rules and greatly simplifies
compilation. As shown in the previous example, an overridercan
be associated with more than one base-method.

For every overrider and base-method pair, the compiler checks,
if the exception specifications comply with the rules used for virtual
functions and if the overriders comply with covariant return type
semantics.

DEFINITION 2. An open-method that is not an overrider and an
overrider that introduces a covariant return type are considered a
base-methodfor a translation unit.

DEFINITION 3. A Dispatch table (DT)maps the type-tuple of the
base-method’s virtual parameters to actual overriders that will be
called for that type-tuple.

Millstein and Chambers show in [26] that open-methods can-
not be modularly type checked if the language supports multiple
implementation inheritance. Therefore, we split our call resolution
mechanism into three distinct stages:

• Overload resolution

• Ambiguity resolution

• Run-time dispatch

The goal of overload resolution is to find at compile time a
unique base-method, through which the call can be dispatched. We
note, that this base-method will not be used for the actual dispatch
at run-time, but rather to determine a dispatch table through which
the call will be made, the necessary casts of the arguments and the
expected return type. The actual overrider to handle the call will
only be determined at run-time.

The C++ overload resolution rules [21] are unchanged: the vi-
able set includes both open-methods and regular functions and
treats open-methods like any other free-standing functions. Dy-
namic dispatch is used only if an open-method is the best match.

We relax this rule slightly: if a set of best matches consistsof open-
methods only and the intersection of their base-methods hasa sin-
gle element - overload resolution does not report an ambiguity. We
demonstrate with an example:

struct X;
struct Y;
struct Z;

void foo(virtual X&, virtual Y&); // (1)
void foo(virtual Y&, virtual Y&); // (2)
void foo(virtual Y&, virtual Z&); // (3)

struct XY : X, Y {}
struct YZ : Y, Z {}

void foo(virtual XY&, virtual Y&); // (4)
void foo(virtual Y&, virtual YZ&); // (5)

Open-methods 1,2 and 3 are three independent base-methods
defined on different class hierarchies. Because XY and YZ are
parts of several hierarchies, overriders 4 and 5 refine several base-
methods. In particular 4 is an overrider for 1 and 2 and 5 is an
overrider for 2 and 3.

A call foo(xy,yz); with arguments of types XY and YZ respec-
tively is now ambiguous according to the standard overload reso-
lution rules as both 4 and 5 are equally good matches. Our relaxed
rule, however, does not reject this call as ambiguous at compile
time, because these overriders have a unique base-method through
which the call can be dispatched – 2.

At link time, when all the overriders have been seen, we check
the overriders for return type consistency, perform ambiguity res-
olution and build the dispatch tables. We describe this stage more
in 3.2.

Run-time dispatch simply looks up the entry in the dispatch
table that corresponds to the dynamic types of the argumentsand
dispatches to that function.

This three-stage approach parallels the resolution to the equiv-
alent modular-checking problem for template calls using concepts
in C++0x [19]. Further, the use of open-methods (as opposed to or-
dinary virtual functions and multi-methods) can be seen as adding
a runtime dimension to generic programming [4].

3.2 Ambiguity resolution

C++ supports single-, repeated-, and virtual inheritance:

A

CB

A

D

A

CB

D

A

CB

D

Note that to distinguish repeated and virtual inheritance,this
diagram represents sub-object relationships, not just sub-class rela-
tionships. We must handle all ambiguities that can arise in all these
cases. By “handle” we mean resolve or detect as errors.

Our ideal for resolving open-method calls is the union of the
ideals for virtual functions and overloading:

• virtual functions: the same function is called independently of
which sub-type in an inheritance hierarchy is used in the call.

• overloading: a call is considered unambiguous if (and only
if) every parameter is at least as good a match for the actual
argument as the equivalent parameter of every other candidate
function and that it has at least one parameter that is a better
match than the equivalent parameter of every other candidate
function.



This implies that a call of a single-argument open-method isre-
solved equivalently to a virtual function call. The rules described
below closely approximate this ideal. As mentioned, the static res-
olution is done exactly according to the usual C++ rules. The dy-
namic resolution is presented as the algorithm for generating dis-
patch tables in§3.4. Before looking at that algorithm, we present
some key motivating examples.

3.2.1 Single Inheritance

In object models supporting single inheritance (§3.2) ambiguities
can only occur with open-methods taking at least two virtualpa-
rameters. Ambiguities in this case have to be resolved by intro-
ducing a new overrider. The resolution of an open-method with
one argument is identical to that of a virtual function. Thus, open-
methods provide an unsurprising mechanism for expressing non-
intrusive (“external”) polymorphism.

3.2.2 Repeated Inheritance

Consider the repeated inheritance case (§3.2) together with this set
of open-methods visible at a call site tofoo(d1,d2):

void foo(virtual A&, virtual A&);
void foo(virtual B&, virtual B&);
void foo(virtual B&, virtual C&);
void foo(virtual C&, virtual B&);
void foo(virtual C&, virtual C&);

Every foo() is a match, but is one a best match? No, the usual
overload resolution rules reject that call, and the compiler reports
the ambiguity immediately. The result of overload resolution deter-
mines the base-method through which the call will be dispatched.
The choice of this method will affect casting of argument types at
the call site and determine the expected return type (in the presence
of covariant return). To resolve that ambiguity, a user can either add
an overriderfoo(D&,D&) visible at the call site or explicitly cast
arguments to either the B or C sub-object.

When the above ambiguity is resolved by casting, a question
still remains on how the pre-linker should resolve a call with two
arguments of type D? We know at runtime (by looking into the
virtual function table’s open-method table (see§4) which “branch”
of a D object (either B or C) is on. Thus, we can fill our dispatch
table appropriately; that is, for each combination of typesthere is a
unique “best match” according to the usual C++ rules:

A B C D/B D/C
A AA AA AA AA AA
B AA BB BC BB BC
C AA CB CC CB CC
D/B AA BB BC BB BC
D/C AA CB CC CB CC

This depicts the dispatch table for the repeated-inheritance hier-
archy in§3.2 and the set of overriders above. Since the base method
is foo(A&,A&) and A occurs twice in D, each dimension has two
entries for D: D/B meaning ”D along the B branch”. This resolution
exactly matches our ideals.

3.2.3 Virtual Inheritance

Consider the virtual inheritance class hierarchy from§3.2 together
with the set of open-methods from§3.2.2: In contrast to repeated
inheritance, a D has only one A part, shared by B, C, and D.
This causes a problem for calls requiring conversions, suchas
foo(b,d); is that D to be considered a B or a C? There is not enough
information to resolve such a call. Note that the problem canarise
is such a way that we cannot catch it at compile time:

C& rc = d;

foo(b,rc);
B& rb = d;
foo(b,rb);

Using static type information to resolve either call would violate
the fundamental rule for virtual function calls: thus, use runtime
type information to ensure that the same overrider is calledfrom
every point of a class hierarchy. At runtime, the dispatch mecha-
nism will (only) know that we are callingfoo with a B and a D.
It is not known whether (or when) to consider that D a B or a C.
Based on this reasoning (embodied in the algorithm in§3.4) we
must generate this dispatch table:

A B C D/A
A AA AA AA AA
B AA BB BC ??
C AA CB CC ??
D/A AA ?? ?? ??

We cannot detect the ambiguities marked with?? at compile
time, but we can catch them at link time when the full set of
overriders are known.

3.3 Covariant return types

Covariant return types are a useful element of C++. If anything they
appear to be more useful for operations with multiple arguments
than for single argument functions. For example, consider aclass
Symmetric derived fromMatrix:

Matrix& operator+(Martix&, Matrix&);
Symmetric& operator+(Symmetric&, Symmertic&);

It follows that we must generalize the covariant return rules
for open-methods. Doing so turned out to be unexpectedly useful
because covariant return types help resolve ambiguities.

In single dispatch, covariance of a return type implies covari-
ance of the receiver object. Consequently, covariance of return
types for open-methods imply an overrider (or) - base-method
(bm) relationship between two open-methods. Liskov’s substitu-
tion principle [22] guarantees that any call type-checked based on
bm can useor’s covariant result without compromising type safety.

This can be used to eliminate what would otherwise have been
ambiguities. Consider the class hierarchiesA ← B ← C and
R1← R2← R3← R4 and this set of open-methods:

R1∗ foo(virtual A&, virtual A&);
R2∗ foo(virtual A&, virtual B&);
R3∗ foo(virtual B&, virtual A&);
R4∗ foo(virtual B&, virtual C&);

A call foo(b,b) appears to be ambiguous and the rules out-
lined so far would indeed make it an error. However, choosing
R2∗ foo(A&,B&) would throw away information compared to us-
ing R3∗ foo(B&,A&): An R3 can be used wherever an R2 can,
but R2 cannot be used wherever an R3 can. So we prefer a func-
tion with a more derived return type and for this example get the
following dispatch table:

A B C
A AA AB AB
B BA BA BC
C BA BA BC

At first glance, this may look useful, but ad hoc. However, an
open-method with a return type that differs from its base method
becomes a new base method and requires its own dispatch table(or
equivalent implementation technique). The fundamental reason is
the need to adjust the return type in calls. Obviously, the resolutions



for this new base method must be consistent with the resolution
for its base method (or we violate the fundamental rule for virtual
functions). However, sinceR2∗ foo(A&,B&) will not be part of
R3∗ foo(B&,A&)’s table, the only consistent resolution is the one
we chose.

If the return types of two overriders are siblings, then there is
an ambiguity in the type-tuple that is a meet of the parameter-
type tuples. Consider for example thatR3 derives directly from
R1 instead ofR2, then none of the existing overriders can be used
for (B,B) tuple as its return type on one hand has to be a subtype of
R2 and on the other a subtype ofR3. To resolve this ambiguity, the
user will have to explicitly provide an overrider for (B,B),whose
return type must derive from bothR2 andR3.

Using the covariant return type for ambiguity resolution also
allows the programmer to specify preference of one overrider over
another when asymmetric dispatch semantics is desired.

To conclude: covariant return types do not only improve static
type information, but also enhance our ambiguity resolution mech-
anism. We are unaware of any other multi-method proposal using a
similar technique.

3.4 Algorithm for dispatch table generation

Let us assume we have a multi-methodrf(h1, h2, ..., hk) with
k virtual arguments. Classhi is a base of hierarchy of theith

argument.Hi = {c : c <: hi} is a set of all classes from the
hierarchy rooted athi. X = H1 ×H2 × · · · ×Hk is the set of all
possible argument type-tuples off . SetY = {(y1, y2, · · · , yk)} ⊆
X is the set of argument type-tuples, on which the user defined
overridersfj for f . The setOf = {f0, · · · , fm−1} is the set
of those overriders (f0 ≡ f ). A mappingF : Y ↔ Of is a
bijection between type-tuples on which overriders are defined and
the overriders themselves.

Because different derivation paths may get different entries
in the dispatch table, we assume thatxi in the type-tuplex =
(x1, · · · , xk) identifies not only the concrete type, but also a
particular derivation path for it (see [34] for formal definitions).
Under this assumption, we defineB(xi) to be a direct ances-
tor (base-class) ofxi in the derivation path represented byxi.
For example, for the repeated inheritance hierarchy from§3.2,
B(D/B) = B, B(D/C) = C, B(C) = A, while for the vir-
tual inheritance hierarchyB(D/A) = A, B(B) = A, B(C) = A.

For the sake of convenience we define:

Bi(x) ≡ (x1, · · · , B(xi), · · · , xk).

With it we extend the definition ofB to type-tuples as follows:

B(x) ≡ {B1(x),B2(x), · · · , Bk(x)}.

P (X,<) : (x1, ..., xk) <P (y1, ..., yk)⇔ ∀i : xi <: yi ∧∃j :
yj ≮: xj defines a partial ordering that models ordering of viable
functions for overload resolution as defined in [21].max set(S) =
{x ∈ S ⊆ X : @y ∈ S : x < y} is a set of maximal elements ofS
with respect to the partial orderingP .

Dispatch tableDT is a mappingDT : X → Of that maps
various combinations of argument types to the overriders used to
handle that combination.

For any combination of argument typesx ∈ X, we recursively
define entries of the dispatch table DT as following:

DT [x] =







F (x), x ∈ Y
DT [max set(B(x))], |max set(B(x))| = 1
Ambiguity, otherwise

The above recursion exhibits optimal substructure and has over-
lapping sub-problems, which lets us use dynamic programming

[13] to create an efficient algorithm for generation of dispatch table,
shown in Algorithm 1.

Algorithm 1 Dispatch Table Generation

S ← topological sort(X)
for all x ∈ S do

if x ∈ Y then
DT [x]← F (x)

else
max set = {B1(x)}
for i← 2, k do

dominated← false
for all e ∈ max set do

if F−1(DT [e]) <P F−1(DT [Bi(x)]) then
max set← max set− {e}

else ifF−1(DT [Bi(x)]) <P F−1(DT [e]) then
dominated← true
break

if not dominated then
max set← max set ∪ {F−1(DT [Bi(x)])}

if |max set| = 1 then
DT [x]← F (max set)

else
Report ambiguity forx

To analyze its performance, we first note that comparison of
two type-tuples fromX can be done in timeO(k). If n =
max(|Hi|, i = 1, k) and r = max(ri, i = 1, k) (whereri is
a maximum number of timeshi is used as non-virtual base class in
any class of hierarchyHi) then|X| <= (n ∗ r)k and the amount
of edges for topological sort is less thenk ∗ (n ∗ r)k. Therefore
the complexity of topologically sorting X isO(k ∗nk). The second
loop has complexityO(k2∗nk) so the overall complexity isO(nk)
sincek is a constant defining the amount of virtual arguments. This
means that the algorithm is linear in the size of the dispatchtable.

3.5 Alternative dispatch semantics

Our open-method semantics strictly corresponds to virtualmember
function semantics in ISO C++ but does not entirely reflect over-
load resolution semantics. The reason is that less information is
available for compile-time resolution that for link-time or run-time
resolution. For example, consider the repeated inheritance class hi-
erarchy from§3.2 with a virtual function added:

struct A { virtual void foo(); };
struct B : A {};
struct C : A { virtual void foo(); };
struct D : B, C {};

void bar(A&); // conventional overloading
void bar(C&);

void foobar(virtual A&); // open−method
void foobar(virtual C&); // open−method

D d;
B& db = d; // B part of D
C& dc = d; // C part of D

// (run−time) Virtual Member Function Semantics:
b.foo(); // calls A::foo
c.foo(); // calls C::foo
d.foo(); // error: ambiguous

// (compile−time) Overload Resolution Semantics:
bar(db); // calls bar(A&)
bar(dc); // calls bar(C&)



bar(d); // calls bar(C&) (why not ambiguous?)

// (runtime−time) open−method Semantics:
foobar(db); // calls foobar(A&)
foobar(dc); // calls foobar(C&)
foobar(d); // error: ambiguous

The difference between the ordinary virtual function (foo) calls
and the ordinary overloaded resolution for (bar) is odd and depends
on pretty obscure rules that may be more historical than fundamen-
tal. The open-method (foobar calls follows the virtual function res-
olution.

Further differences emerge in cases where a different resolu-
tion become possible in cases where additional informationfrom
other translation units may become available to resolve open-
methods (see§5 and §6.2). This parallels decisions for related
parts of the language. For example, the resolution ofstatic cast
and dynamic cast can differ even given identical arguments:
dynamic cast can use more information thanstatic cast.

4. Implementation
We implemented open-methods as described here by modifyingthe
EDG compiler front-end [14].

4.1 Changes to Compiler & Linker

Our mechanism extends ideas presented in [15, 35] as to compiler
and linker model. We adopted the multi-method syntax proposed
in [30], which in turn was inspired by an early idea by Doug Lea.
One or more parameters of a non-static freestanding function can
be specified to bevirtual. A virtual argument must be a reference
or pointer to a polymorphic class (that is, a class containing at least
one virtual function). For example:

struct A { virtual ˜A(); };

void print(virtual A&); // ok
void print(int, virtual A&); // ok

void dump(virtual Shape); // compiler error
void dump(virtual int); // compiler error

Open-methods are generic free-standing functions, which do
not have the access privileges of member functions. If an open-
method needs access to non-public members of a class, that class
must declare it to be a friend. An open-method must be defined;that
is, there are no abstract (pure virtual) open-methods. For example,
we must define theintersect of shapes:

bool intersect(virtual Shape&, virtual Shape&) { }

We could allow multi-methods for abstract classes to be ab-
stract. The obvious implementation would be to call an errorfunc-
tion of some sort (like for a virtual function). Similarly, the obvious
syntax would be the=0 (like for a virtual function).

For each translation unit, the compiler generates anopen-
method description(OMD) file that stores the data needed to gen-
erate the runtime data-structure discussed in§4.2. Essentially, this
includes the names of all classes, their inheritance relationships, as
well as the kind of inheritance. Open-methods are represented by
name, return-type, and their parameter-list. Finally, theOMD-file
also contains definitions of all user-defined types that appear in sig-
natures of open-methods (both as virtual and regular parameters).
These definitions are necessary to regenerate prototype declarations
for the open-methods, which pass data through by value.

Information collected in OMD-files is assembled together by
the pre-linker, which is invoked last in the compilation chain, be-
fore the object code of all translation units is linked together.

The pre-linker will synthesize each base-method with its overrid-
ers into a dispatch table, issue link-errors for ambiguities, deter-
mine the indices necessary to access the open-method and dispatch-
table, as well as define and interlink the om-tables of each sub-
object type as described in§4.2. When the call of an overrider re-
quires adjustments of the this-pointers (as is sometimes needed in
multiple inheritance hierarchies), the pre-linker creates thunks and
makes the dispatch table entries refer to them instead. During dis-
patch table synthesis, the linker will report errors for allargument-
combinations, which do not have a unique best overrider. Theout-
put of the pre-linking stage is a C-source file containing themissing
definitions. If the linker generates a library, the pre-linker also puts
out a merged OMD-file.

4.2 Changes to Object Model

We augment the IA-64 C++ object model [12] by four elements
to support constant time dispatching of open-methods. First, for
each base-method there will be a dispatch table containing the
function addresses. Second, the v-table of each sub-objectcontains
an additional pointer to theopen-method table (om-table). Finally,
the indices used for the open-method-table offsets are stored as
global variables.

Figure 1 shows the layout of objects, v-tables, om-tables and
dispatch-tables for repeated (left) and virtual (right) inheritance.
Our extensions to the object-model are shown with grey back-
ground. From left to right the elements in each diagram represent
the object, v-table, om-table, and dispatch table(s) for the class hi-
erarchy in§3.2. From top to the bottom, the objects are of type A,
B, C, and D respectively.

An open-method can be declared after the declarations of the
classes used in its virtual parameters. Therefore, the compiler can-
not reserve v-table entries to store the data related to open-method
dispatch immediately in a class’s virtual function table. Hence, we
always extend every v-table by one pointer referencing the om-
table, which can be laid down later by the pre-linker.

The om-table reserves one position for each virtual parameter
of each base-method, where objects of this type can be passed
as arguments. This position stores an index into corresponding
dimension of the dispatch table. Since the size of the om-tables
is not known at compile-time, our technique relies on a literal for
each open-method and virtual parameter position (called foo 1st,
foo 2nd in Figure 1) that determines the offset within the om-tables.

Note that Figure 1 depicts our actual implementation, where
entries for first argument positions already resolves one dimension
of the table lookup. Entries for all other argument positions store
the byte offset within the table.

In the presence of multiple-inheritance, a this-pointer shift
might be required to pass the object correctly. In this case,we
replace the address of the overrider by an address of a thunk that
takes care of correctly adjusting the this-pointer. As described in
§3.2.2 in case of repeated inheritance different bases can show dif-
ferent dispatch behavior depending on the sub-object to which the
this-pointer refers. As a result, different bases may pointto different
om-tables. In case of virtual inheritance, the open-methoddispatch
entries are only stored through the types mentioned in the base-
method. Hence, in the virtual inheritance case, all open-method
calls are dispatched through the virtual base type.

4.3 Alternative Approaches

We considered a few other design alternatives to explore their trade-
offs in extensibility and performance.

4.3.1 Multi-Methods

Multi-methods differ from open-methods in that the base-method
has to be declared in the class definition of its virtual parameters.



Figure 1. Object Model for repeated (left) and virtual (right) inheritance

This allows the offset within the v-table be known at compile
time, which saves two indirections per argument of a function call
(one for the om-table, and one to read the index within the om-
table). For a call withk virtual arguments, open-methods need
4k + 1, while multi-methods need only2k + 1 memory references
to dispatch a call. The downside of multi-methods is that existing
classes cannot easily be extended with dynamically dispatched
functions. Consider:

class Matrix
{ // multi−method declaration

friend Matrix& operator+( virtual const Matrix& lhs,
virtual const Matrix& rhs );

// ...
virtual Matrix& operator∗(virtual const Matrix&);
};

We implemented only the non-member version of multi-methods.
The member version can be implemented with exactly the same
techniques. However, in many cases it is harder to write codethat
uses the member version because an overrider must be a member
of (only) one class – and the main rationale for multi-methods is to
elegantly deal with combinations of classes. Even the non-member
(friend) version is hard to use. By requiring a declaration to be
present in a class, we limit the polymorphic operations those that
the class designer thought of. That requires too much foresight of
the class designer or leads to unstable classes (classes that keep
having multi-methods added).

Such problems are well-known in languages relying on member
functions. Open-methods provide an abstraction mechanismthat
solves such problems by separating operations from classes.

4.3.2 Chinese Remainders

In this section, we present an ”ideal” scheme for implementing
open-methods, inspired by ideas presented in [17]. The proposed
scheme circumvents the necessity for open-method tables bymov-
ing all the necessary information from the class to the dispatch ta-
ble.

Suppose that for every multi-methodf there is a functionIf :
T × N → N such that for any typet ∈ T (where T is a domain
of all types) and argument positionn ∈ N it returns index of type
t in the nth dimension of thef ’s dispatch table. If such function

is reasonably fast (preferably constant time) and its rangeis small
(preferably from 0 to maximum number of types that can be usedin
any argument position) then we can efficiently implement multiple
dispatch by properly arranging rows and columns accordingly to
the indices returned byIf . As in [17] we use the Chinese reminder
theorem [13] to generate functionIf .

Despite its elegance, this approach is rather theoretical because
it is hard to use for large class hierarchies. The reason is that we
need to assign different prime numbers to classes and perform
computations on numbers that are bound by the product of these
primes. Such product can fit into 32-bit integers for only the9
first primes and into 64-bit integers for only the 15 first primes.
Table compression techniques [2] or use of minimal perfect hash
functions [13] instead, can help overcome the problem.

5. Discussion
Ambiguities can arise at various stages in the build process. We
describe here alternatives in their handling as well as various issues
that may arise during development.

During compilation of a translation unit the compiler may take
into consideration all the overriders seen in that translation unit as
well as all the classes visible there, with which an open-method
can potentially be called. The compiler then may report an error,
when the dispatch table cannot be built unambiguosly using the
overriders seen. Alternatively it may pospone ambiguity resolution
to the next stage, where more overriders can be seen. We opt for
postponing ambiguity resolution to the linking stage to allow other
translation units to contribute in specializing. Resolving ambiguity
at compile time seems inappropriate, because that same pairof
types may be resolved differently in another translation unit.

Ambiguities detected at link time are due to inability to pick a
unique best match for a particular combination of argument types.
Again, we can report an error here, forcing the user to explicitly
resolve it by providing an unambiguous overrider for that argument
tuple. Alternatively we can postpone it till load time, hoping that
some dynamic module will resolve the ambiguity. Further on we
show a case in which we may also want to resolve ambiguity at
link time due to user’s physical inability to resolve it.

Loading several dynamically linked modules at run-time may
again result in ambiguities even when each of the modules didnot
have any ambiguities at link time (see§6). This usually happens



because of the new classes introduced by modules as well as be-
cause of overriders that clash with overriders from other modules.
Taking this into account, we disliked termination of an application
(error) as user will not be able to intercept such scenario. We did
not like throwing exceptions on ambiguities to allow for embedded
systems. Besides, introduction of a single overrider can easily in-
validate most of the dispatch table, which may be counterintuitive
to the user.

We summarize the possibilities (marked with◦) and the choices
we’ve made (marked with•) in the following table:

Stage Error Postpone Resolve Throw
Compile time ◦ •
Link time • ◦ •
Load time ◦ • ◦

5.1 ”Hidden” classes

To resolve ambiguities at link time, the programmer needs access
to the class definitions for which there is no unique best overrider.
We call classes not available at link time ”hidden” classes.Hidden
classes can occur for two reasons. First, all local classes are consid-
ered to be hidden, because their name is local to the functionscope
in which they were defined. Second a programmer cannot access
classes that are defined within a library or an implementation file
and for which no definition is available in header files. We demon-
strate with an example:

// Available common header
class A {};

void foo(virtual A&, virtual A&); // base method

class B : A {};
class C : A {};

// B1.cpp
class B1 : B {}; // definition of B1 is not available to others
void foo(virtual B1&, virtual A&);

// C1.cpp
class C1 : C {}; // definition of C1 is not available to others
void foo(virtual A&, virtual C1&);

The linker will find an ambiguity when it decides which over-
rider to call for a pair (B1,C1); however the user might not beable
to resolve it because definitions of B1 and C1 are not available to
him.

Since in this case the programmer will not be able to write
code resolving ambiguities, we suggest to treat these casesequal
to ambiguity resolution for dynamically linked libraries from §6.2.
Only if the linker can determine, that ambiguities are resolveable,
it must report an error.

Following, we will briefly describe a possible mechanism that
could sufficiently well distinguish available from hidden classes.
Such a mechanism could for example record all ambiguities that
occur within at compile time of a translation unit. Hence, these am-
biguities would be constrained by the class hierarchies andover-
riders seen at compile time. At link time, all these recordedambi-
guities need to be resolved, otherwise the linker would report an
error. After checking all recorded ambiguities, the linkercan use
rules described in§6.2 to resolve remaining ambiguities. By defi-
nition, libraries have been seen by the prelinker, and are therefore
ambiguity free.

5.1.1 Open-methods and namespaces

Virtual functions have a class scope and can only be overriden in the
derived classes. Open-methods do not have such a scope by default,

so the question arises when should an open-method be considered
an overrider and when just a different open-method? Let’s look at
the following example:

namespace X
{

class A {};
void bar(virtual A&); // base method

class B : A {};
void bar(virtual B&); // (1)
}

namespace Z
{

void bar(virtual B&); // (2)
}

namespace Y
{

class D : X::A {};
void bar(virtual D&); // (3)
}

class C : X::A {};
void bar(virtual C&); // (4)

One approach may be to require overrider be declared in the
same namespace as its base-method (1). In such scenario, open-
methods with the same name and compatible parameter types, de-
fined in different namespaces would not be considered overriders.
Among advantages of this approach is easiness of understanding
and implementation. Unfortunately such semantics is not unifiable
with regular virtual function calls, where derived classescan be
declared in a different namespace. We note that using declaration
could potentially be used to work around these limitations.

Second alternative would be to let overriders be declared inany
namespace (1,2,3,4). It is easy to understand but defeats the purpose
of namespaces that were introduced to better structure the code and
avoid name-clashes among indpendently developed modules.

Third approach may consider an open-method to be an over-
rider, if its base-method is defined in the same scope or in thescope
of their argument types and their base classes. In this scenario (1, 3,
4) would override; (2) would not. Among its pros is its resemblance
to argument dependent lookup. It would also work for virtualfunc-
tions. Its cons, however, is that it is not easily comprehendable.

6. Dynamic linking
Outside embedded systems, dynamically linked libraries are almost
universally used with C++. Thus, a design for open-methods that
does not allow for DLLs is largely theoretical. We do not currently
have an implementation, but here we outline a design addressing
the major issues for open-methods in a dynamically linked library.
It guarantees that the most specialized overrider available at run-
time that preserves type-safety of a call will be used to dispatch a
call.

Dynamic modules, compiled independently, may have different
sets of overriders defined at the time of compilation. Furthermore,
there could be new classes added to a hierarchy in one of the mod-
ules and objects of those classes may be passed into code of other
modules. This is not a problem for regular virtual functionsas their
v-tables are found in the module where the class was defined. In
case of open-methods, the dispatch table generated within apartic-
ular module can be simply unaware of a class, defined somewhere
else. That is, the dispatch table for an open-method may lackthe
rows and columns needed to handle the class. To deal with thiswe



can either update each module’s dispatch table with new classes (at
load time) or keep a shared global dispatch table (updated bythe
loader).

We first argue why the second option is not viable and why each
module that can be dynamically loaded into the process should have
its own dispatch table.

6.1 Consistency of covariant return types

Covariant return introduces subtleties when dynamic linking is
used. Consider a two-class hierarchyA← B and another two-class
hierarchyR1← R2. The base-methodR1 foo(virtual A&, virtual A&)
is defined in a header visible by two dynamically linked modules
D1 and D2 that do not know anything about each other. Mod-
ule D1 introduces overriderR2 foo(A&, B&) and moduleD2

introduces overriderR1 foo(B&, B&). Each of the dynamically
linked modules perfectly type-checks and links withfoo() re-
solved through the dispatch table (a superscript in a cell denotes
type that is returned by appropriate overrider e.g.AB2 denotes
R2 foo(A&, B&)):

D1 A B D2 A B
A AA1 AB2 A AA1 AA1

B AA1 AB2 B AA1 BB1

When both modules are loaded together we get the dilemma of
how to resolve a call with both arguments of type B: on one side
foo(B&,B&) from D2 is more specialized, but on the other hand
foo(A&,B&) from D1 imposes additional requirement that return
type of whatever is called for (B,B) should be a subtype of R2,
which R1 is not. Keeping a unique shared dispatch table for all
the modules will force us to choose between suboptimal and type
unsafe alternatives. What’s worth - is that there may not be aunique
type-safe alternative.

Imagine for example that a moduleD3 introduces overrider
R3 foo(B&, A&) whereR1 ← R3, soR2 andR3 are siblings.
WhenD1 andD3 are loaded together, neitherR2 foo(A&, B&)
nor R3 foo(B&, A&) can be used to resolve a call with both
arguments of type B - both alternatives are type unsafe for the other
overrider.

Taking the above into account, we propose to keep a separate
dispatch table for each dynamically linked module (for eachbase
method if necessary). The dynamic loader is then responsible for
filling them accordingly to the static requirements of each module
and the most specific overriders. This results in:

D1 A B D2 A B D3 A B
A AA1 AB2 A AA1 AB2 A AA1 AB2

B BA3 AB2 B BA3 BB1 B BA3 BA3

It looks as if modules now violate covariant consistency, but in
reality they do not because their return types are casted back to the
types that were statically expected by the modules from a call. For
example inD2 a call tofoo(A&,B&) is wrapped into a thunk, that
adjusts the result type fromR2 to R1, soR1 is actually returned,
which is what module expects and which is type-safe.

As can be seen, this logic may result in different functions being
called for the same type tuple depending on where the call is made
from. We note, however, thatthe call is always made to the most
specialized overrider that is type-safe for the caller.

It is also possible that different modules provide different over-
riders for the same combination of types. Some of such cases can be
resolved by considering covariance of the return types (§3.3). The
others can be resolved by letting each module call its own imple-
mentation. In such scenario, a third module that does not provide
its own implementation of that overrider willdeterministicallyget

one of the existing implementations, e.g. the one coming from a
module with a more recent date.

6.2 Late ambiguities

Let’s consider a plausible scenario involving three DLLs:

// dll−1
struct GuiButton { virtual ˜GuiButton(); };
struct GuiEvent { virtual ˜GuiEvent(); };

void handleEvent(virtual GuiButton&, virtual GuiEvent&);

// dll−2
#include<dll1>
struct MyButton : GuiButton { };

void handleEvent(virtual MyButton&, virtual GuiEvent&);

// dll−3
#include<dll1>
struct SpecialEvent : GuiEvent {}

void handleEvent(virtual GuiElement&, virtual SpecialEvent&);

The first DLL defines a classGuiButton, a classGuiEvent,
and a base-multi-methodhandleEvent. Internally, a second DLL
derives a new typeMyButton from GuiButton and introduces a
new overrider forhandleEvent. Likewise, the third DLL derives
a new internal classSpecialEvent from GuiEvent and introduces a
new overrider. The second and third DLL could stem from different
vendors that do not know about each other.

Now a call ofhandleEvent with aMyButton and aSpecialEvent
is ambiguous. The writer of the total system (the “system integra-
tor”) should in principle have considered that possibilityand dealt
with it. So, one solution would be to terminate the program or
to throw an exception [28]. However, such problems are hard to
predict and design for. Relaxed Multi-Java [25] resolves these con-
flicts by introducing glue methods (to glue DLL2 and DLL3) that
the system-integrator provides. While this might be a viable solu-
tion for software developers integrating several libraries, it is not a
feasible scenario for end-user applications, as dynamically linked
modules can be loaded into the process without direct request of a
developer. This, for example, is the case with various component
object models when application may ask the system to create an
object with a particular name and operating system will locate and
load the module it is resided in.

In §3.2.2 we saw that when dynamic type of an object cannot
uniquely choose the best overrider we could use a static typeof
an object to disambiguate. Similarly, when module does not know
anything about a particular dynamic type, because its definition was
not available during compilation of the module, we may use infor-
mation about its most specific static type, known at the module’s
compilation time. What is important, is that it must not restrict us
from selecting the most specific overrider when it is available.

With this said, in the example above it seems reasonable to
have calls with arguments of typesMyButton& andSpecialEvent
be handled byhandleEvent(MyButton&, GuiEvent&) inside
DLL2 and by handleEvent(GuiElement&, SpecialEvent&) in-
side DLL3. Having different dispatch tables per module allows us
to do this. But what about calls in other modules that neitherknew
about MyButton nor about SpecialEvent? One option will be to
treat both classes as their base classes and dispatch appropriately,
but as we have just argued, static view of a module should not pre-
vent us from choosing a better overrider. This can be supported by
the fact that some modules may have only seen the interface: the
base-multi-method and the roots of the hierarchies it is defined on.
Nevertheless they would expect more refined overriders to handle
calls on derived classes.



We note that in principle,both handleEvent functions should
correctly handle the event; that is, bothhandleEvent functions must
assume that its arguments could be of a further derived classthat
it does not know of. That is, the code of the bothhandleEvent
functions must be written in a way that is generic on its arguments
(probably using virtual functions on the individual arguments).
This implies that as long as an event handler’s code does not make
more assumptions about its arguments than the interface defined
in the base-class guarantees, it can be replaced by the otherevent
handler. Even a non-deterministic selection of the overrider would
produce a correct result! Furthermore, we expect that two different
DLLs may provide the same overrider.

With this said we propose to resolve ambiguities at load-time as
following:

• If there is a unique best match among all type-safe overriders of
a module that can handle a particular combination of argument
types – use it.

• If there is no such a unique best match, but an overrider pre-
ferred by a static view of a module is among best matches, – it
is preferred to other overriders.

• Finally, if there is no a unique best match, and the overriderpre-
ferred by a static view of a module is not among best matches,
– an unspecified deterministic choice among best matches is
made.

7. Related work
Programming languages can support multi-methods either through
built-in facilities, pre-processors, or through library extensions.
Naturally, tighter language integration enjoys a much broader de-
sign space for type checking, ambiguity handling, and optimiza-
tions compared to libraries. In this section, we will first review both
library and non-library approaches for C++ and then give a brief
overview of multi-methods in other languages.

7.1 Cmm

Cmm [28] is a preprocessor based prototype implementation for an
open-method C++ extension. It takes a translation unit and gener-
ates C++ dispatch code from it. Cmm is available in two versions.
One of them uses RTTI to recover the dynamic type of objects to
identify the best overrider. The other approach achieves constant
time dispatch by relying on a virtual function overridden ineach
class. This virtual function returns a small integer that uniquely
identifies its class. Dispatch ambiguities are resolved by throwing
runtime exceptions. Cmm allows dynamically linked libraries to
register and unregister their open-methods at load and un-load time.
In addition to open-method dispatch, Cmm also provides call-site
virtual dispatch. Cmm does not provide special support for multiple
inheritance and therefore its dispatch technique does not coincide
with virtual function semantics.

7.2 DoubleCpp

DoubleCpp [5] is another preprocessor based approach for multi-
methods dispatching on two virtual parameters. It essentially trans-
lates these multi-methods into the visitor pattern. For doing so,
DoubleCpp requires access to the files containing the class defi-
nitions in order to add the appropriate accept and visit methods.
DoubleCpp, like any other visitor-based approach, does notreport
but quietly resolve ambiguities.

7.3 Accessory Function

The accessory functions papers [15, 35] mention possible ways to
enhance the basic accessory function mechanism to allow multi-
ple virtual parameters. The compilation model they describe uses,

like our approach, a compiler and linker cooperation to perform
ambiguity resolution and dispatch table generation. However, the
accessory functions are integrated into the regular v-tables of their
receiver types, which requires the linker to not only generate the
dispatch table but also to recompute and resolve the v-tableindex
of any other virtual member function. While [15] explicitlyrequires
an overrider to resolve ambiguities introduced by multipleinheri-
tance, [35] adopts overload resolution rules (§3.5). The authors do
not refer to a model or prototype implementation to which we could
compare our approach.

7.4 Loki

The Loki [1] approach is based on Alexandrescu’s template pro-
gramming library with the same name. It provides several differ-
ent dispatchers that balance between speed, flexibility, and code
verbosity. Currently, it supports multi-methods with two arguments
only, except for the constant-time dispatcher that allows more argu-
ments. The static dispatcher provides call resolution based on over-
load resolution rules, but requires manual linearization of the class
hierarchy in order to uncover the most derived type of an object
first. All other dispatchers, including the constant time dispatcher,
do not take hierarchical relations into account and effectively re-
quire explicit resolution of all possible cases.

7.5 Other languages

One of the first widely known languages to support multi-methods
was CLOS [29]. CLOS linearizes the class hierarchy and uses
asymmetric dispatch semantics to avoid ambiguity conflicts. In
Cecil’s [8,9] class-less object-model multi-methods are regarded as
an integral part of objects. Cecil views silent ambiguity resolution
as a potential source for programming errors. Therefore, ituses
symmetric dispatch semantics and dispenses with object hierarchy
linearization in order to expose these errors at runtime. In[26], the
authors discuss the trade-offs between multi-methods and modular
type-checking in languages with neither a total order of classes
nor asymmetric dispatch semantics. Ranging from globally type-
checked programs to modularly type-checked units, the models
embrace or restrict the expressive power of the language to different
degrees. Based on these findings, MultiJava [11] implementsa
model that allows separate compilation and eliminates the need
for a link-time type-checker but also curtails extensibility. Relaxed
MultiJava [25] re-introduces a link-time type checker and relies
on the system integrator to resolve ambiguities by providing new
overriders (glue-methods). An example of a language addingmulti-
methods through a library is Python [32]. Chambers and Chen [10]
present an alternative implementation technique based on alookup
DAG. Their work generalizes multiple dispatch to be a subsetof
predicate based dispatch.

8. Results
In order to discuss time and space performance, we implemented
the Shape-intersection example for regular C++ (Visitor), our open-
methods, multi-methods, the two Cmm branches (default and ex-
perimental constant time), and the LOKI library.

We wrote 20 classes (representing shapes, etc.) which can in-
tersect each other. All in all, this results in 400 combinations for
binary dispatch functions. We implemented 40 specific intersect
functions to which all of the 400 combinations are dispatched to. In
order to get a reliable timing of the function invocation, these 40 in-
tersect functions only increment a counter. Since not all techniques
we use support multiple inheritance, these 20 classes only use sin-
gle inheritance. The actual test consists of a loop that randomly
chooses two out of 32 objects and invokes the intersect method. We
implemented a table-based random number generator that is simple



and does not contain any unpredictable operation such as floating-
point calculations or integer-divisions. We ran the loop twice with
the same random numbers: The first run allows implementations,
which build the dispatch data structure on the fly to warm up and
load data/code into the cache. The second loop was timed. The
clock-cycle based timer takes the time before and after the loop
and we calculate the average number of clock-cycles per loopto
compare the results.

8.1 Implementations

We used g++ 4.0 and compiled our test-code with optimization-
O3. We ran our test code on a dual-core (Pentium D, 2.8Ghz) under
CentOS Linux from the login-shell. We used nice -20 to invokeour
test-programs with the highest possible priority.

C++ Visitor The implementer of the visitor has to foresee all
possible shapes and provide interfaces for it. For example:

struct Shape {
virtual void intersect(Shape& shape);
virtual void intersect(Rectangle& shape);
virtual void intersect(Circle& shape);

virtual void accept(Shape& shape) { shape.intersect(∗this); }
};

The concrete first type is recovered byaccept(); the second type
is recovered byintersect().

C++ Open-Methods/Multi-Methods This approach is based
on the object model described in§4.

Chinese RemainderUsing the Chinese Remainder approach
(§4.3.2), the number associated with the dispatch table growsex-
ponentially with the number of types, we could only implement a
simplified version that can handle eight types instead of 20.Hence,
we omit the size of the program executable.

Loki Only the static dispatcher was used in our tests with Loki
since other dispatchers require manual handling of all possible
cases. Using other dispatchers would have been closer to a sce-
nario of manually allocated array of functions through which calls
are made. However, as we indicated before, dual nature of multi-
methods require them to provide both dynamic dispatch and auto-
matic resolution mechanism.

Other approachesThe Cmm versions and DoubleCpp are de-
scribed in§7.1 and 7.2, respectively.

8.2 Results & Interpretation

Our experimental results can be summarized in terms of execution
time and program size:

Approach Program size Cycles/Loop

Virtual function n/a 75

C++ Multi-method 19 547 78
C++ Open-method 19 725 82
Double Cpp 20 859 120
C++ Visitor 35 289 132
Chinese Remainders n/a 175
Cmm (constant time) 112 250 415
Cmm 111 305 1 320
Loki Library 34 908 3 670

8.2.1 Executable size

The size of dispatch tables is mentioned as one of the major draw-
backs of providing multi-methods as programming language fea-
ture [35]. However, our results reveal that the C++ multi-method
based approach is 80% smaller than the visitor approach thatis

based on a brute force implementation. Each class implements
intersect methods for all 20 types of the hierarchy. A somewhat
smarter approach would be to remove redundant intersect overrid-
ers. However, removing specific overriders is tedious and difficult
to maintain, since the dispatch would be based on the static type
information of the base class. Intrinsically, DoubleCpp reduces the
program size for visitor based implementations. Nevertheless, the
optimized result would be at best able to match the multi-method
implementation, simply because each type contains 20 intersect en-
tries in the v-table. Multiplying this with the number of shapes, 20,
results in 400, exactly the number of entries found in the dispatch
table. We do not discuss the program size of the two Cmms and
Loki, since they use additional header files such as<typeinfo>
and<stdexcept> that distort a direct comparison.

8.2.2 Execution time

Both Multi-Methods and Open-Methods are (as expected) roughly
comparable to a single virtual function dispatch, which needs 75
cycles per loop. Hence, the better performance compared to the
visitors is not surprising. However, the fact that multi-methods re-
duce the runtime to 62% of the reference implementation using the
visitor is noteworthy. We conjecture this is an effect of thesize of
the class hierarchy and that double dispatch depends on the num-
ber of overriders. Our conjecture is supported by two observations:
firstly, the DoubleCpp-based visitor eliminates redundantoverrid-
ers and runs slightly faster. Secondly, we also simulated ananalysis
pass dispatching over AST-objects of 20 different types andcount-
ing the category to which they belong (type, declaration, expres-
sion, statement, other). In this case, the double dispatch has only
20 leaf-functions instead of 400 and our dispatch test runs 78 cy-
cles instead of 132. The open-method approach (requiring only five
overriders), is still faster and needs 68 cycles.
The difference between multi-methods and open-methods is within
the expected range. Three more indirections require 4 more clock
cycles. Although significantly slower, Cmm (constant time)per-
forms better than expected, since its author estimates the dispatch
cost as 10 times a regular virtual function call. As expectedthe two
non-constant time approaches perform worst.

8.2.3 Significance of performance

The performance numbers comes from experiments designed to
highlight the cost of multiple dispatch: the functions invoked hardly
do anything. Depending on the application the improved perfor-
mance might or might not be significant. For the image conversion
example, gains in execution speed are negligible compared to time
spent in the actual conversion algorithm. In other cases, such as
the evaluation of expressions using user-defined arithmetic types,
traversal of abstract syntax trees, and some of the most frequent
shape intersect examples, the speed differences among the double
dispatch approaches appear to be notable.

Contrary to much “popular wisdom”, our experiments revealed
that for many applications the use of dispatch tables for open-
methods and multi-methods actually reduce the program sizecom-
pared to brute-force and work-around techniques.

9. Conclusions and future work
We presented a novel approach to dispatching open multi-methods
that is in line with the multiple inheritance semantics of the current
C++ object model and the C++ overload resolution rules. This im-
plies compile-time or link-time detection of ambiguities.By con-
sidering covariant return type in the ambiguity resolutionwe reduce
the number of potential conflicts. We have discussed an implemen-
tation based on modifications to the EDG compiler front-end and
have described a mechanism that supports the integration ofseveral



translation units. Our evaluation of different approachesto imple-
menting open-methods in C++ shows that our approach is signifi-
cantly better (in time and space) than current alternatives. Indeed,
it is almost as efficient as single dispatch. Because the dispatch is
constant time and does not rely on exceptions to signal ambiguities,
it is applicable in embedded and hard real-time systems.

Planned future work includes:

9.1 Virtual Function Templates

Virtual function templates are a powerful abstraction mechanism.
However, C++ cannot do that because generating v-tables for vir-
tual function templates requires a whole-program view and C++

traditionally relies almost exclusively on separate compilation of
translation units. The pre-linker technique described here should
be able to synthesize v-tables for virtual function templates as it
does for open-methods.

9.2 Function pointers to open-methods

Pointers to member functions in C++ preserve polymorphic behav-
ior when they point to a virtual member function. To be in line
with this semantics, pointers to open-methods should preserve dy-
namic dispatch too. This could be implemented by allocatinga
proxy function every time an address of an open-method is taken
and returning address of this proxy. Inside the function compiler
simply generates call to appropriate open-method. Note that simi-
lar to single dispatch in C++, it is not possible to take an address of
a particular open-method overrider, - returned pointer will always
have a polymorphic behavior.

9.3 Calling a base implementation

C++ provides a syntax to call a particular overrider of a virtual
member function directly, avoiding dynamic dispatch. Thisis often
used to call the function in the base class. To do this, C++ requires
the user to use a fully qualified name of virtual member function:
e.g.: p−>MyClass::foo(); It is likely that similar functionality
will be required for open-methods. We would have to invent some
syntax for fixing the type of either individual or all arguments.

9.4 Space Optimizations

With class hierarchies consisting of around 100 classes, the size of
dispatch tables can become significant, especially when we con-
sider support for covariant return types. Several techniques to com-
pressing and reusing of dispatch tables have been proposed in [2].
Proposed techniques should be directly applicable to our approach
so we would like to implement them in the future.
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