

Doc No: SC22/WG21/N2140
J16/06-0210
of project JTC1.22.32

Address: LM Ericsson Oy Ab
Hirsalantie 1
Jorvas 02420

Date: 2006-11-05 to 2006.11.06 21:55:00 Phone: +358 40 507 8729 (mobile)

Reply to: Attila (Farkas) Fehér Email: attila f feher at ericsson com
wolof at freemail hu

Adding Alignment Support to the C++
Programming Language / Consolidated

1 Short summary
Document status: proposal with the changes suggested by core and library. Proposed wording
will be in the mid term mailing.

One-liner: Extending the standard language and library with alignment related features.

Problems targeted:

• Allow most efficient fixed capacity-dynamic size containers and optional elements
• Allow specially aligned variables/buffers for hardware related programming
• Allow building heterogeneous containers at run time
• Allow programming of discriminated unions
• Allow optimized code generation for data with stricter alignment

Related issues not addressed:

• Class-type “packing” (although allowed)
• Requesting specially aligned memory from memory allocators (new, malloc)

Proposed changes:

• New: alignment-specifier (alignas) to declarations (type based and value based)
• New: alignof operator to retrieve alignment value for a type (like sizeof for size)
• New: alignment arithmetic by library support
• New: standard functions for pointers for proper alignment at run time

Note: The proposed library changes are different from the ones we voted on at the 2006
Portland meeting due to input from the Library Working Group!

WG21/N2140 = J16/06-0210 page 2
Evolution WG Proposal

Table of Contents
1 Short summary.. 1
2 Alignment defined ... 2
3 The alignof operator.. 3
4 The alignas alignment specifier ... 4
5 (Compatible) changes to aligned_storage... 5
6 New template aligned_union.. 6
7 Run-time pointer alignment ... 7

7.1 The stdalign function... 7
7.2 The std::align function .. 7

2 Alignment defined
1 Alignment is a quality of an address. An address may satisfy several alignment requirements.

2 Alignment requirements are implementation defined integer values, expressed as alignment
values. Implementations may define alignment requirements (with their corresponding
alignment values) that are not alignment requirements of built-in types.

3 Alignment values have the type size_t. When used as an alignment value, the valid value
set of size_t type only includes those values returned by the alignof operator and those
additionally specified by the implementation.

4 The alignment value 0 is reserved for future use. All other alignment values are
implementation-defined. Alignment values that are not powers of 2 are reserved for the
implementation to define alignment requirements that are only known at run time. Other
alignment values (powers of two) represent alignment requirements known at compile time;
and are called static alignments.

5 All complete types have, one and only one, static alignment requirement that can be retrieved
using the alignof operator. That alignment will be the optimal alignment for the type.

6 The types char, signed char and unsigned char have the weakest possible alignment.

7 Alignments have an order from weaker to stronger. The strongest alignment of a set of
alignments is called the strictest alignment. Stronger alignments have larger alignment values.

8 An alignment requirement is satisfied by all alignments that are a multiple of it.

9 Comparing alignment values of type size_t is supported and provides the obvious results:
two alignment values are equal, if their numeric values are equal; when an alignment value is
larger than another it represents a stricter, but not necessarily compatible, alignment. The
remainder operation can be used to detect if an alignment satisfies an alignment requirement;
in which case the remainder of the division by the required alignment value is zero.

WG21/N2140 = J16/06-0210 page 3
Evolution WG Proposal

3 The alignof operator
1 The alignof operator returns the alignment requirement of its argument.

expression:

alignof (type-id)

2 The alignof expression is a constant expression of type std::size_t.

3 The operand is a type-id representing a complete type.

4 When applied to a reference or a reference type, the alignment of the referenced type is used.

5 When applied to a base class subobject is the alignment of the base class type is used.

6 When applied to an array type-id, the alignment of the element type is used.

7 The alignof operator can be applied to a pointer to a function, but shall not be applied
directly to a function.

8 Types shall not be defined in an alignof expression.

[Note: The operator will return the special alignment value of a type that has aligned members:

struct cacheline { // Assuming cache lines are 128 bytes
 char alignas(128) memory[128];
};

std::size_t a=aligof(cacheline);

// a==128

WG21/N2140 = J16/06-0210 page 4
Evolution WG Proposal

4 The alignas alignment specifier
1 The alignas alignment specifier is:

alignment-specifier:

alignas (type-id)
alignas (constant-expression)

2 Any number of alignment-specifier may appear in a given declaration. In case the requested
multiple alignments cannot be solved into a single static alignment the program is ill-formed.

3 If an alignment-specifier appears in a declarator (init-declarator-list), there can be no typedef
specifier in the same simple-declaration.

4 The alignment-specifier applies to the name declared by the init-declarator that precedes it.

5 The alignment-specifier can be applied only to names of objects, names of data members.
[Note: In particular, function parameters cannot be declared with an alignment-specifier.]

6 Declarations that are not definitions (do not allocate storage to objects) may omit the
alignment-specifier as long as the definition contains it. [Note: it is recommended to use the
alignment specifier in the declarations too, as that provides an opportunity for better code
generation.] If a declaration contains alignment-specifiers it has to specify the same alignment
as the alignment-specifiers of the corresponding definition, otherwise the program is ill-formed.

7 An alignment-specifier used in the declaration of an object declares the object to satisfy the
alignment requirements defined by its argument.

8 A type-id argument shall denote a complete type.

A constant expression (alignment value) argument shall represent a static alignment (shall be a
power of 2). A constant-expression argument of the alignment-specifier shall only be an alignment-
value that represents an alignment requirement known at compile time. [Note: In other words only
powers of 2, see Table of Contents
1 Short summary.. 1
2 Alignment defined ... 2
3 The alignof operator.. 3
4 The alignas alignment specifier ... 4
5 (Compatible) changes to aligned_storage... 5
6 New template aligned_union.. 6
7 Run-time pointer alignment ... 7

7.1 The stdalign function... 7
7.2 The std::align function .. 7

9 Alignment defined).

10 An alignment-specifier shall not weaken the alignment of the object it is applied to.

11 An implementation shall support alignments of all built-in types in alignment specifiers. If an
implementation supports specification of stricter alignments it may specify different limits to the
supported alignments in different contexts. [Note: For example it may limit alignments
applicable to automatic variable.]

WG21/N2140 = J16/06-0210 page 5
Evolution WG Proposal

5 (Compatible) changes to aligned_storage
1 aligned_storage becomes:

template <std::size_t Len, std::size_t... Alignments>
struct aligned_storage {
 static const std::size_t alignment_value=N;
 typedef integral_constant<alignment_value> alignment_of;
 implementation-defined-POD type;
};

2 The template is backwards compatible with the TR1 aligned_storage.

3 The restrictions on the supported alignments are lifted. Now it is implementation defined what
“special” alignments are supported in different contexts.
[Note: So it is possible to create an aligned storage that is aligned on page boundary (let’s say
8096 bytes) but an implementation may stop you from using it as an automatic (stack stored)
variable.)]

4 The template now supports variadic arguments and thus we are able to specify many
alignments. All of them must (still) be static alignments; powers of 2.

5 The template first calculates the weakest alignment that satisfies all the requested alignments.
(Basically binary-ors all alignments, then picks the largest digit that is set.) The inner constant
alignment_value will contain the resulting number. The inner type alignment_of is the
same number as a TR1 alignment_of template metafunction applied to this type.

6 The typical implementation of the inner POD type will be:

template <std::size_t __S, std::size_t __A>
struct __aligned_type {
 char alignas(A) __arr[__S];
};
typedef __aligned_type<Len,alignment_value> type;

WG21/N2140 = J16/06-0210 page 6
Evolution WG Proposal

6 New template aligned_union
1 aligned_union becomes:

template <std::size_t Len, T... Types>
struct aligned_union {
 static const std::size_t alignment_value=N;
 typedef integral_constant<alignment_value> alignment_of;
 implementation-defined-POD type;
};

2 The template is same as the TR1 aligned_storage, but it takes types instead of alignment
values, and uses the alignment requirements of all the types.

3 Passing 0 for Len will cause the template to calculate it. In such case Len will be the
maximum of all the sizes of all the type arguments.

4 The template first calculates the weakest alignment that satisfies the alignment requirements
of all types. The inner type alignment_of is the same number as a TR1 alignment_of
template metafunction applied to this type.

5 The typical implementation of aligned_union will be done by publicly inheriting from
aligned_storage and using variadic template techniques together with the alignof
operator to pass the alignment values of each template argument to the base.

WG21/N2140 = J16/06-0210 page 7
Evolution WG Proposal

7 Run-time pointer alignment
1 The run-time pointer alignment functions forward-adjust (increase) the value of a pointer within

a buffer to the closest value that satisfies the alignment requirement specified by a given
alignment value. The alignment value may be a run-time alignment (non-power of 2) value as
well. The run-time pointer alignment functions come in C and C++ flavors: the stdalign
function in the <cstdlib> headers; and the std::align function in the <memory> header.

2 The functions work on buffers defined by a pointer to the first available byte and the size that
is the number of the remaining bytes in the buffer. In addition to the required alignment, the
callers need to specify the size (in bytes) of the element(s) to be stored at the aligned pointer.
If the alignment cannot be done within the remaining buffer, or there would not remain enough
space for the user defined size the functions have no effect and returns a NULL pointer.

3 In case the alignment is done, the functions adjust the pointer (into the buffer) to point after the
aligned area (with the user defined size); and decrease the value of remaining buffer space by
the number of bytes used up for alignment plus the number of bytes the caller indicated to
use.

4 The functions return the aligned pointer value; or the NULL pointer value if the alignment was
not done.

[Note: The run-time alignment functions can be used to test a pointer against an alignment
requirement by passing 0 for buffer size and required size. The function will return the NULL
pointer value, if the pointer passed in is not well-aligned.]

7.1 The stdalign function
void *stdalign(size_t align_val, size_t size, void **pptr, ptrdiff_t *pspace);

1 Effects: The value of the pointer pointed by pptr is increased by the minimum amount
necessary to satisfy the alignment requirements represented by align_val. The value
pointed by pspace is decreased by the amount of bytes used up during the pointer value
increase plus the value of the size argument; but only if it is possible to do so within the
buffer denoted by the original value of the pointer pointed by pptr and space in bytes pointed
by the pspace argument. If the alignment cannot be done within the mentioned buffer, or
there would not remain at least size bytes in the buffer after the alignment is done, calling the
function has no effects. If the value of the pointer pointed by pptr is the NULL pointer value,
or the buffer denoted by it and the value (as size in bytes) pointed by the pspace argument is
not allocated to the application the effect of the function are undefined.

2 Returns: The modified value of the pointer pointed by pptr or the NULL pointer value if the
function had no effect.

7.2 The std::align function
void *
align(
 std::size_t align_val,
 std::size_t size,
 void *&ptr,
 std::ptrdiff_t &space
);

1 Same as stdalign, but it takes references (not pointers) to the arguments it changes.

