A Proposal to add a max significant decimal digits value to the C++ Standard Library Numeric limits

Document number: JTC 1/SC22/WG21/N1822=05-0082
Date: 2005-06-14, version 3
Project: Languages C++
References: C++ ISO/IEC IS 14882:1998(E),
William Kahan http://http.cs.berkley.edu/~wkahan/ieee754status/ieee754.ps
Reply to: Paul A Bristow, pbristow@hetp.u-net.com, J16/04-0108

Contents

1 Background \& motivation

Why is this important? What kinds of problems does it address, and what kinds of programmers is it intended to support? Is it based on existing practice?

C99[ISO:9899] provides numeric limits 18.2.1 including

```
numeric_limits<FloatingPoint Type>::digits10
```

also available (and often implemented using) via C macros FLT_DIG, DBL_DIG, LDBL_DIG.
The member stores the number of decimal digits that the type can represent without change.
In effect, it is the number of decimal digits GUARANTEED to be correct (after rounding).
While useful, this does not provide another value, often more useful, the number of potentially significant decimal digits that the type can represent. This number of decimal digits is necessary to avoid misleading display of two floating-point numbers which only differ by one or a few least significant bits.

For example, if using IEEE 754/IEC559 32-bit floating-point float values, and numeric_limits $<$ float $>:$:digits 10 is 6 ,

So a number declared as
float $f=3.145900 \mathrm{~F}$;
might be displayed, by setting cout.precision(6) as
"3.14590"
But nextafterf(3.145900F, 1.), a single bit different, and so definitely not equal, will also display as " 3.14590 " so log files may display a most misleading, and unhelpful, output like
"3.14590" != "3.14590"

Whereas if the proposed numeric_limits<float>::max_digits10 which is 9 is used, the output
"3.14590001" != "3.14590025".
that is much less confusing, especially to the majority of readers whose understanding of floating-point accuracy limitations is incomplete.

This max_digits 10 number is also the number of decimal digits required to avoid loss of accuracy when converting to a string and back to a floating-point representation, for example during serialization.

For example (W. Kahan page 4)
"If a decimal string with at most 6 decimal digits is converted to float, and then converted back to the same number a significant digits, then the final string should match the original.

If a float is correct to a decimal string with at least 9 significant decimal digits, and then converted back to float, then the final number must match the original."
(Although the $\mathrm{C}++$ Standard is not clear if it is a requirement that a round trip like

```
float a = 1.F;
float aa = 0;
std::stringstream s;
s.precision(9); // max_digits10 for 32-bit IEE754 float
s << std::scientific << a;
s >> aa;
assert (a != aa);
```

or simply a good quality implementation. This could usefully be clarified).

2 Impact on the \mathbf{C} and $\mathbf{C}++$ Standards

This proposal is for a pure addition to existing numeric_limits class. It does not require any language change, nor any change to the existing values provided by numeric_limits.

3 Design Decisions

3.1 Implementation

Using the formulae provided by Kahan, provided

```
    numeric_limits< T >: ins_specialized \&\& std: : numeric_limits< \(T>:\) :radix \(==2\)
    std: : numeric_limits<float>::digits \(==24\) //the number of significand bits
std: : numeric_limits<float>::digits10 == \(6 / /\) Gauranteed digits
    floor(float_significand_digits -1) * \(\log 10(2)==6\)
    cei1(1 + float_significand_digits * log10(2) == 9
```

Note that a C++ compiler will NOT evaluate this at compile time, but an WILL perform an integer division, so 3010/10000 is already widely used as an approximation for $\log 10(2$.).

$$
\text { float const log10Two }=0.30102999566398119521373889472449 \mathrm{~F} ; / / \log 10(2 .)
$$

(3010/10000 is a near approximation using short int (10000<max of 32767).
So it is convenient instead to use the following formula which can be calculated at compile time:

$$
2 \text { + std::numeric_1imits<Target>::digits * 3010/10000; }
$$

This formula may also be used for integer types, including built-in types.

Default

An obvious default value is zero (required by 18.2.1.1 note 2), and all types, especially user-defined types will provide this unless specifically implemented for that type.

User defined Types

A high-precision user-defined type, for example NTL quad_float type using two 64 -bit numbers to provide a 128-bit 106-bit significand could sensibly provide digits $10=31$ and max_digits $10=33$ by using the above formula.

The table below shows values for some floating-point formats.

Floating point Type	Often used for $\mathbf{C} / \mathbf{C}++$ type	Total bits	Significand bits (+1 if an implicit bit)	guaranteed decimal digits digits10	significant decimal digits max_digits 10
IEEE single	float	32	$23+1=24$	6	9
VAXF	float	32	$23+1=24$	6	9
IBM G/390 short	float	32	24	6	9
IEEE single extended	?	$P=43$	$p=32$	7	11
IEEE double	double	64	$52+1=53$	15	17
VAXG	double	64	$52+1=53$	15	17
IBM G/390 long	double	64	56	15	17
VAXD	long double	64	56	15	17
IEEE double extended	long double	80	P 64	19	21
Sparc doubleextended (x86)	long double	80	64	18	21
AIX quad	long double	128	106	31	33
NTL quad	'quad'	128	106	31	33
IBM G/390 extended	long double	128	112	33	35
VAXH	long double	128	$112+1=113$	34	36
IEEE quadruple	long double	128	$112+1=113$	34	36
Sparc double extended	long double	128	$112+1=113$	34	36
signed fractional	?	127	128	38	40
unsigned fractional	?	128	128	38	40
unsigned fractional	?	128	$128+1=129$	38	40

Draft of Proposed Revised Text for

 18.2.1.1 template class numeric_limitsAfter
static const int digits10 $=0$;
insert:
static const int max_digits10 = 0;
After Note 9, insert (and shuffle down the following items)
10 The number of base 10 digits required to ensure that values which differ by only one epsilon are always differentiated.

