
Deducing the type of variable from its initializer expression
(revision 2)

Programming Language C++
Document no: N1794=05-0054

Jaakko Järvi
Texas A&M University

College Station, TX
jarvi@cs.tamu.edu

Bjarne Stroustrup
AT&T Research

and Texas A&M University
bs@research.att.com

Gabriel Dos Reis
Texas A&M University

College Station, TX
gdr@cs.tamu.edu

2005-04-13

1 Introduction

This document is a minor revision of the document N1721=04-0161. The document N1721=04-0161 contained the
suggested wording for new uses of keywordauto, which were unanimously approved by the evolution group meeting
in Redmond, October 2004. Based on the discussions and straw-polls in the Lillehammer meeting in April 2005,
this document now adds wording for allowing the initialization (with auto) of more than one variables in a single
statement; N1721=04-0161 allowed only one variable initialization per statement.

2 Proposed features

We suggest that theauto keyword would indicate that the type of a variable is to be deduced from its initializer
expression. For example:

auto x = 3.14; // x has type double

Theautokeyword can occur as a basic type specifier (allow to be used with cv-qualifiers,∗, [] and&) and the semantics
of autoshould follow exactly the rules of template argument deduction. Examples (the notationx : T is read as “x has
typeT”):

int foo();
auto x1 = foo(); // x1 : int
const auto& x2 = foo(); // x2 : const int&
auto& x3 = foo(); // x3 : int&: error, cannot bind a reference to a temporary

float& bar();
auto y1 = bar(); // y1 : float
const auto& y2 = bar(); // y2 : const float&
auto& y3 = bar(); // y3 : float&

A∗ fii()

1

Doc. no: N1794=05-0054 2

auto∗ z1 = fii(); // z1 : A∗
auto z2 = fii(); // z2 : A∗
auto∗ z3 = bar(); // error, bar does not return a pointer type

auto z4[] = fii(); // z4 : A∗

A major concern in discussions ofauto-like features has been the potential difficulty in figuring out whether the
declared variable will be of a reference type or not. Particularly, is unintentional aliasing or slicing of objects likely?
For example

class B { ... virtual void f(); }
class D : public B { ... void f(); }
B∗ d = new D();
...
auto b =∗d; // is this casting a reference to a base or slicing an object?
b.f(); // is polymorphic behavior preserved?

Basingauto on template argument deduction rules provides a natural wayfor a programmer to express his intention.
Controlling copying and referencing is essentially the same as with variables whose types are declared explicitly. For
example:

A foo();
A& bar();
...
A x1 = foo(); // x1 : A
auto x1 = foo(); // x1 : A

A& x2 = foo(); // error, we cannot bind a non−lvalue to a non−const reference
auto& x2 = foo(); // error

A y1 = bar(); // y1 : A
auto y1 = bar(); // y1 : A

A& y2 = bar(); // y2 : A&
auto& y2 = bar(); // y2 : A&

Thus, as in the rest of the language, value semantics is the default, and reference semantics is provided through
consistent use of& .

Multi-variable declarations

More than one variable can be declared in a single statement:

int i;
auto a = 1,∗b = &i;

In the case of two or more variables, both deductions must lead to the same type. Note that the declared variables can
get different types, as is the case in the above example. The requirement on the type deductions to lead to the same
type is best explained by translation to template argument deduction. The deductions in the above example correspond
to the deductions of template parameterT below:

template <class T>
void foo(T a, T∗ b);
...
foo(1, &i);

Here,T must be deduced to be the same type based on both arguments; otherwise the code is ill-defined.

Doc. no: N1794=05-0054 3

Direct initialization syntax

Direct initialization syntax is allowed and is equivalent to copy initialization. For example:

auto x = 1; // x : int
auto x(1); // x : int

The semantics of a direct-initialization expression of theformT v(x) with T a type expression containing an occurrence
of of auto, v as a variable name, andx an expression, is defined as a translation to the corresponding copy initialization
expressionT v = x. Examples:

const auto& y(x)−> const auto& y = x;

It follows that the direct initialization syntax is allowedwith newexpressions as well:

new auto(1);

The expressionauto(1)has typeint, and thusnew auto(1)has typeint∗. Combining anewexpression usingautowith
anautovariable declaration gives:

auto∗ x = new auto(1);

Here,new auto(1)has typeint∗, which will be the type ofx too.

3 Proposed wording

Section 7.1.5.1 Type specifiers [dcl.type.simple]

Add to the paragraph 1

— auto can either be a storage class specifier, or a simple type specifier. auto can be combined with
any other type specifier, in which case it is treated as a storage class specifier. If thedecl-specifier-
sequencecontains no type specifier other thanauto, then the following restrictions apply to the
decl-specifier-sequence:

– It must be followed by one or moreinit-declarators, each of which must have a non-empty
initializer of either of the following two forms:

= initializer−clause
(initializer−clause)

– The only other alloweddecl-specifiersarecv-qualifiersand the storage class specifierstatic.

[Example:The following are valid declarations:

auto x = 5;
const auto *v = &x, u = 6;
static auto y = 0.0;
static auto int z; // invalid, auto treated as a storage class specifier
auto int r; // ok

— end example]

Section 7.1.5.2 Simple type specifiers [dcl.type.simple]

In paragraph 1, add the following to the list of simple type specifiers:

auto

To Table 7, add the line:

auto placeholder for a type

Doc. no: N1794=05-0054 4

Section 8.3 Meaning of declarators [dcl.meaning]

New paragraph after paragraph 1:

If decl-specifier-sequencecontains thesimple-type-specifierauto, the declarator is required to declare
an object and to specify an initial value; the type of the declared identifier is deduced from the type of its
initializer ([dcl.auto]).

Replace paragraph 4 with:

First, thedecl-specifier-seq determines a type; or, when it contains an occurrence ofauto, a
type scheme. A type scheme yields a type when the occurrence ofauto in the type scheme is replaced
by a type. In a declaration

T D

thedecl-specifier-seqT determines the type, or type scheme, “T”. [Example:in the declarations

int unsigned i;
const auto& p = f();

the type specifiersint unsigned determine the type “unsigned int”, and the type specifier
const auto determines the type scheme “const auto” ([dcl.type.simple]).]

Section 8.3.1 Pointers [dcl.ptr]

Change the first paragraph to:

In a declarationT D whereD has the form

* cv−qualifier−seqopt D1

and the type, or type scheme, of the identifier in the declarationT D1 isderived-declarator-type-listT,then
the type, or type scheme, of the identifier ofD is derived-declarator-type-list cv-qualifier-seqpointer toT.
The cv-qualifiers apply to the pointer and not to the object pointed to.

The change to this paragraph was the addition of the “or type scheme” in two places. Similar changes are needed
to Sections 8.3.2–5 discuss how references, arrays, and function types in the declarator propagate to the type of the
declarator-id. Details not shown.

New subsection: Auto [dcl.auto]

The section should be a subsection of Section 8.3 ([dcl.meaning]). The text of the new subsection:

Once the type scheme of adeclarator-idhas been determined, the type of the declared variable usingthe
declarator-idis determined from the type of its initializer using the rules for template argument deduction
([temp.deduct]). LetT be the type scheme that has been determined for a variable identifier d, ande be
the initializer expression ford. ObtainU fromT by replacing the occurrence ofautowith a new invented
type template parametert. Define a function template as follows:

template <class t>
void __f(U __d) {}

Doc. no: N1794=05-0054 5

The type deduced for the variabled is then the type that would be deduced for the parameter__d in a
call to__f with e as its actual argument. If the template argument deduction would fail, the declaration
is ill-formed.

If the list of declarators contains more that one declarator, the type of each declared variable is determined
as described above. If the type deduced for the template parametert is not the same in each deduction,
the program is ill-formed.

[Example:

const auto &i = expr;

The type scheme isconst auto&, and the type ofi is the deduced type of the argumenti in the call
__f(expr) of the following function template:

template <class t> void __f(const t& i);

— end example]

Section 8.5 Initializers [dcl.init]

To paragraph 14 add a case:

If the destination type contains theauto specifier, see section [dcl.auto].

Section 5.3.4 New [expr.new]

Paragraph 1 specifies the valid forms of new expressions. Addthe following form fornew-type-idto the grammar:

new−type−id:
...
cv auto direct−new−declaratoropt

And the text:

If new-type-idis of the form “cvauto direct-new-declaratoropt”, new-initializerwith exactly one initial-
izer argument must follownew-type-id, or the program is ill-formed. The allocated type is deducedfrom
the type of this initializer argument as follows: Let(e) be thenew-initializer, then the allocated type is
the type deduced for the variablex in the declaration ([dcl.auto]):

cv auto x = e

Once the allocated type has been deduced, the semantics of thenew-expressionis as if the form
“cvauto direct-new-declaratoropt” was written “T direct-new-declaratoropt”, whereT is the type de-
duced for the allocated type. [Example:

new auto(1); // allocated type is int
double& foo();
new const auto[10](foo()); // allocated type is const double
auto x = new auto(’a’); // allocated type is char, x is of type char*

— end example]

Doc. no: N1794=05-0054 6

4 Acknowledgments

We are grateful to Jeremy Siek, Douglas Gregor, Jeremiah Willcock, Gary Powell, Mat Marcus, Daveed Vandevoorde,
David Abrahams, Andreas Hommel, Peter Dimov, and Paul Mensonides for their valuable input in preparing this
proposal. Clearly, this proposal builds on input from members of the EWG as expressed in face-to-face meetings and
reflector messages.

