Doc No: X3J16/97-0102 WG21/N1140
Date: November 12th, 1997
Project: Programming Language C++
Ref Doc:
Reply to: Josee Lajoie
(josee@vnet.ibm.com)
+ +

| Core 1 WG -- Morristown Resolutions |
+ +

Issue 850: How does name look up proceed in the parameter list of a
========== friend function?

Add after 3.4.1 (basic.lookup.unqual) para 9:

+ Except for the names used in

+ .l template-arguments

+of a

+ .| template-id ,

+ name look up for a name used in the function declarator for a
+ .CW friend

+ function that is a class member function

+ is first looked up in the scope of the member function's class, and if not
+ found, the look up follows the look up for unqualified names in the
+ definition of the class granting friendship.

+.Cb

+ struct A {

+ typedefint AT;

+ void f1(AT);

+ void f2(float);

+}

+ struct B {

+ typedef float BT;

+ friend void A::fL(AT); INf2\& parameter type is \&\fPA::AT

+ friend void A::f2(BT); INf2\& parameter type is \&\fPB::BT
+}

+.Ce

+ In the declaration of a

+ .CW friend

+ function that is a class member function,

+ the look up for a name used in the function declarator in a

+ .1 template-argument

+of a

+ .l template-id

+ follows the look up for unqualified names used in the definition of the
+ class granting friendship.

Issue 893: Lookup of conversion functions conversion-type-id and of
========== template argument names is missing when these appear in
qualified-ids

Change 3.4.3.1 (class.qual) para 1 as follows:

If the

I nested-name-specifier

of a

I qualified-id

nominates a class, the name specified after the

I nested-name-specifier

is looked up in the scope of the class (_class.member.lookup_),
I except for the cases listed below.

The name shall represent

one or more members of that class or of one of its base classes

(clause _class.derived).
N[
a class member can be referred to using a
I qualified-id
at any point in its potential scope (_basic.scope.class).
N]e
+ The exceptional cases are the following:
+.LI
+ a destructor name is looked up as specified in _basic.lookup.qual_;
+.LI
+ the
+ .l conversion-type-id
+ of an
+ .1 operator-function-id
+ is looked up both in the scope of the class and
+ in the context in which the entire
+ .1 postfix-expression
+ occurs and shall refer to the same type in both contexts;
+ LI
+ the
+ .| template-arguments
+ofa
+ .| template-id
+ are looked up in the context in which the entire
+ .1 postfix-expression
+ occurs.

Change 3.4.3.2 (namespace.qual) para 1 as follows:

If the
.I nested-name-specifier
of a
I qualified-id
nominates a namespace,
the name specified after the
.I nested-name-specifier
I'is looked up in the scope of the namespace, except that
+.L
+the
+ .1 conversion-type-id
+ of an
+an
+ .1 operator-function-id
+ is looked up both in the scope of the namespace and
+ in the context in which the entire
+ .1 postfix-expression
+ occurs and shall refer to the same type in both contexts;
+ .l
+ the
+ .l template-arguments
+ofa
+ .l template-id
+ are looked up in the context in which the entire
+ .1 postfix-expression
+ occurs.

Change 3.8 (basic.life) para 5, third bullet as follows:

LI
the pointer is used as the operand of a

.CW static_cast
(_expr.static.cast)
(except when the conversion is to
.CW void* ,
+ and subsequently to
.CW char*,
or
.CW unsigned
.CW char).

Change 3.8 (basic.life) para 6, third bullet as follows:

LI
the Ivalue is used as the operand of a
.CW static_cast
I (_expr.static.cast) (except when the conversion is ultimately to
.CW char&
or
.CW unsigned
.CW char&),
or

Add at the end of 7.1.2 (dcl.fct.spec) para 4

I A string literal in an

I.CW extern

I .CW inline

I function is the same object in different translation units.

Add after 7.3.3 (namespace.udecl) para 4:

+.P

+A

+ .1 using-declaration

+ shall not name a

+ .1 template-id .

+ .E[

+.Cb

+ class A {

+ public:

+ template <class T> void f(T);

+ template <class T> struct X { };

+};

+ class B : public A {

+ public:

+ using A:f<double>; /Nf2\& ill-formed\&\fP
+ using A:X<int>; /\f2\& ill-formed\&\fP
+%

+ .Ce

+ .E]

Issue 902: When is 'template<class T> S(T);' used to generate a copy
========== constructor?

Add to 12.8 (class.copy) para 3:

+ A member function template is never instantiated to perform the copy of an
+ class object to an object of its class type.

+ .E[

+.Cb

+ struct S {

+ template<typename T> S(T);

+5

N }

+ S f();

+

+ void g() {

+ S a(f()); /M2\& does not instantiate member template\&\fP
+}

+.Ce

+.E]

