
X3J16/97-0011
WG21/N1049

Template Issues and Proposed Resolutions
Revision 17

John H. Spicer

Edison Design Group, Inc.

jhs@edg.com

January 28, 1996

Revision History

Version 16 (96-0158/N0976) { July 17, 1996: Distributed in the post-Stockholm mailing. Re-


ects decisions made in Stockholm.

Version 17 (97-0011/N1049) { January 28, 1997: Distributed in the pre-Nashua mailing. Re-


ects decisions made in Kona and contains new issues.

Summary of Issues

Other Issues

6.46 What are the rules used to determine whether expressions involving nontype tem-

plate parameters are equivalent?

6.47 When are friend functions de�ned in class templates evaluated? (closed in version

16)

6.48 Are template friend declarations permitted in local classes? (closed in version 16)

6.49 Where are partial specializations allowed?

6.50 Clari�cation of the interaction of friend declarations and partial specializations.

6.52 Clari�cation of ordering rules for nontype arguments in partial specializations.

6.53 Clari�cation of rules for partial specializations of member class templates.

6.54 Array/function decay in template parameter/argument lists.

Member Template Issues

8.3 Can a member function template be used as a copy constructor or copy assignment

operator? (closed in version 17)

8.10 What kind of entity can appear in a template friend declaration?



97-0011/N1049 - Template Issues and Proposed Resolutions - Revision 17 2

Other Issues

6.46 Question: What are the rules used to determine whether expressions involving nontype

template parameters are equivalent?

Status: Open

A template may be declared in one (or more) translation unit(s) and de�ned in still another.

Because such declarations may involve expressions containing nontype parameters, rules

are needed to determine when one such declaration in one translation unit is considered

to match another declaration in a di�erent translation unit.

Nontype template parameters cannot be deduced from function parameters in which they

are used in expressions, but they can be used in nondeduced contexts (such as return

types) and when explicitly speci�ed.

�le1.c:

template <int I> struct A {};

template <int I, int J> A<I+J> operator +(A<I>, A<J>);

template <int I, int J, class T>

void f(A<I>, A<I*2>, A<(I + J + sizeof(T));

int main()

{

A<1> a1; A<2> a2; A<3> a3; A<7> a7;

a3 = a1 + a2;

f<1,2,int>(a1, a2, a7);

}

�le2.c:

template <int I> struct A {};

template <int I, int J> A<J+I> operator +(A<I>, A<J>); // error

template <int I, int J, class T>

void f(A<I>, A<I*2>, A<(sizeof(T) + (I + J)); // error

Answer: Expressions involving nontype template parameters are compared using an ODR-

like rule (can the ODR wording be extended to cover this case?). That is, the tokens that

make up the expression must be identical, and the names of entities must refer to the

same entities in each translation unit. If two templates are considered to \potentially

equivalent", but violate this rule, the results are unde�ned (or should it be ill-formed with

no diagnostic required?) Two templates of a given name in a given scope are considered

\potentially equivalent" if they have identical template parameter lists and if, for every

given set of template arguments, they result in the generation of functions with the same

type.

In other words, function templates that are ODR-identical are guaranteed to refer to the

same entity. Function templates that are not \potentially equivalent" are guaranteed to

refer to di�erent entities. And function templates that are potentially equivalent render a

program unde�ned (ill-formed, no diagnostic required?)



97-0011/N1049 - Template Issues and Proposed Resolutions - Revision 17 3

// Guaranteed to be the same

template <int I> void f(A<I>, A<I+10>);

template <int I> void f(A<I>, A<I+10>);

// Guaranteed to be the different

template <int I> void f(A<I>, A<I+10>);

template <int I> void f(A<I>, A<I+11>);

// Undefined whether these two declarations refer to the same template

template <int I> void f(A<I>, A<I+10>);

template <int I> void f(A<I>, A<I+1+2+3+4>);

Version added: 15

Version updated: 15

6.49 Question: Where are partial specializations allowed?

Status: Open

Answer: A partial specialization must be declared in the class or namespace in which it is

a member. Once declared, it may later be de�ned outside of the class or namespace.

Version added: 17

Version updated: 17

6.50 Question: Clari�cation of the interaction of friend declarations and partial specializations

Status: Open

Answer: A template friend class declaration indicates that all instances of that template

are friends of the given class regardless of whether those instances are generated from the

primary template, a partial specialization, or a full specialization (i.e., explicit specializa-

tion).

class X {

template <class T> friend struct A;

class Y {};

};

template <class T> struct A { X::Y ab; }; // okay

template <class T> struct A<T*> { X::Y ab; }; // okay

Consequently, a friend declaration is not allowed to declare a partial specialization:

template <class T> struct A {};

template <class T> struct A<T*> {};

class X {

template <class T> friend struct A<T*>; // not allowed

};

Version added: 17

Version updated: 17



97-0011/N1049 - Template Issues and Proposed Resolutions - Revision 17 4

6.51 Clari�cation of nontype dependency rule in partial specializations

Status: Open

14.5.4 [temp.class.spec] paragraph 5, bullet 2 was editorially changed from

� The type of a specialized nontype argument shall not depend on another type param-

eter of the specialization.

to

� The type of a specialized argument shall not depend on another type parameter of

the specialization.

This rule was intended to prohibit examples such as:

template <class T, T t> struct A;

template <class T> struct A<T, 1>;

There are two problems with the change that was made. The �rst problem is that the

\specialized" vs. \nonspecialized" distinction only exists for nontype arguments, not for

type arguments, so it is impossible to know what a \specialized" type argument might be.

But, assuming that a \specialized" type argument is anything other than a type parameter

name, the wording change prohibits a large class of partial specializations that should be

permitted, such as:

template <class T1, class T2> struct A {};

template <class T1> struct A<T1, T1*> {};

Answer: The original wording should be restored.

Version added: 17

Version updated: 17

6.52 Clari�cation of ordering rules for nontype arguments in partial specializations.

Status: Open

A mistake in the original description of the partial ordering rules for nontype arguments

has resulted in an unnecessary complication of the partial ordering rules, a gratuitous

di�erence in the partial ordering rules for classes and functions, and a needless restriction

in the kinds of partial specialization that can be done.

The fundamental mechanism used to determine ordering of partial specializations is the

template argument deduction mechanism. All of the other rules relating to partial special-

izations are really clari�cations of the implications of the argument deduction process. For

example, the restriction that nontype arguments cannot be used in expressions in partial

specializations is derived from the fact that it is not generally possible to deduce values

from expressions.

Recall that the original example, which is prohibited by the WP rules, is:

template<int I, int J, class T> class X {}; // #1

template<int I, int J> class X<I, J, int> {}; // #2

template<int I> class X<I, I, int> {}; // #3



97-0011/N1049 - Template Issues and Proposed Resolutions - Revision 17 5

But the same example rewritten as a set of overloaded function templates is permitted,

and calls made using this set of templates will select the appropriate template.

template <int I, int J, class T> void f(X<I, J, T>); // #1

template <int I, int J> void f(X<I, J, int>); // #2

template <int I> void f(X<I, I, int>); // #3

Answer:

The WP should be modi�ed as suggested by Fergus Henderson in c++std-core-7283:

In

| 14.5.4.2 Partial ordering of class template [temp.class.order]

| specializations

replace

| 1 For two class template partial specializations, the first is at least

| as specialized as the second if:

|

| --the type arguments of the first template's argument list are at

| least as specialized as those of the second template's argument list

| using the ordering rules for function templates (_temp.func.order_),

| and

|

| --each non-type argument of the first template's argument list is at

| least as specialized as that of the second template's argument list.

|

| 2 A non-type argument is at least as specialized as another non-type

| argument if:

|

| --both are formal arguments, or

|

| --the first is a value and the second is a formal argument, or

|

| --both are the same value.

with

| 1 For two class template partial specializations, the first is at

| least as specialized as the second if the arguments of the first

| template's argument list are at least as specialized as those of

| the second template's argument list using the ordering rules for

| function templates (_temp.func.order_).

Version added: 17

Version updated: 17



97-0011/N1049 - Template Issues and Proposed Resolutions - Revision 17 6

6.53 Clari�cation of rules for partial specializations of member class templates.

Status: Open

1. When a member template of a class template is partially specialized, the partial

specializations apply to all instances generated from the enclosing class template.

2. When the primary template is specialized for a given instance of the enclosing class,

none of the partial specializations of the original primary template are carried over.

template <class T> struct A {

template <class T2> struct B {}; // #1

template <class T2> struct B<T2*> {}; // #2

};

template <> template <class T2> struct A<short>::B {}; // #3

A<char>::B<int*> abcip; // uses #2

A<short>::B<int*> absip; // uses #3

3. When the primary template is not specialized, the individual partial specializations

of the primary template may be specialized (but additional partial specializations

cannot be added).

template <class T> struct A {

template <class T2> struct B {}; // #1

template <class T2> struct B<T2*> {}; // #2

};

template <> template <class T2> struct A<short>::B<T2*> {}; // #3

A<short>::B<int> absi; // uses #1

A<short>::B<int*> absip; // uses #3

Version added: 17

Version updated: 17

6.54 Array/function decay in template parameter/argument lists.

Status: Open

Sean Cor�eld, in c++std-ext-3734 raised the issue of whether the handling of nontype

array parameters in the WP is correct.

The WP speci�es that type decay (array to pointer and function to pointer) does not

occur for template nontype parameters (this was speci�ed by issue 2.12 in revision 6 of

this paper), but seems to suggest that the decay takes place on the template argument

side.

The decay should either take place on both sides or on neither side. As things now stand,

you can declare a nontype parameter of array type, but you can't actually supply an array

argument.

After investigating what a number of existing compilers do in this situation, my recommen-

dation is that they decay should occur on both the parameter and argument side. EDG,



97-0011/N1049 - Template Issues and Proposed Resolutions - Revision 17 7

g++, Microsoft, Sun, and Watcom all do the decay on both sides. Borland does the decay

on the argument side, but only when the template parameter is a pointer type. cfront does

the decay on the argument side, but does not allow template parameters of array type.

To summarize, all of the compilers to which I have access do the decay on the argument

side in some or all cases. Most also do the decay on the parameter side.

Answer:

Version added: 17

Version updated: 17

Member Template Issues

8.3 Question: Can a member function template be used as a copy constructor or copy assign-

ment operator?

Status: Approved in Kona

struct A {

A();

template <class T> A(const T&);

template <class T> operator =(const T&);

};

int main()

{

A a1;

A a2(a1); // Implicitly generated copy or template?

a1 = a2; // Implicitly generated assignment or template?

}

Answer: No, a member function template cannot be used as a copy constructor or copy

assignment operator. The copy constructor and copy assignment are special operations,

and the existence of a template that could potentially generate such a function should

not be taken to mean that the user wants the template version to be used in place of the

implicitly generated function.

If the user wants the template to be used, an explicitly written function that calls the

template version must be written.

If we were to decide that the templates could be used for this purpose, there would be no

way for a user to request that the implicitly generated function should be used in place of

the template.

Version added: 15

Version updated: 15

8.10 Question: What kind of entity can appear in a template friend declaration?

Status: Open

The purpose of this issue is to clarify the rules regarding the matching of a template friend

declaration with a prior declaration of a template.



97-0011/N1049 - Template Issues and Proposed Resolutions - Revision 17 8

Answer: A template friend declaration that refers to a member function template must

match the previous declaration of the template. It is not possible to have a \partial friend"

declaration in which some of the template parameters are bound to speci�c types.

template <class T> struct A {

template <class T2> void f(T2);

};

template <class U> class B {

template <class T>

template <class T2> friend void A<T>::f(T2); // okay

template <class T>

template <class T2> friend void A<T2>::f(T); // error

template <>

template <class T2> friend void A<U>::f(T2); // error

template <>

template <class T2> friend void A<int>::f(T2); // error

};

Version added: 17

Version updated: 17


