
 Doc. No.: X3J16/96-0199
 WG21/N1017
 Date: November 7, 1996
 Project: Programming Language C++
 Reply To: Sandra Whitman
 Digital Equipment Corporation
 whitman@tle.enet.dec.com

Clause 18 (Language Support Library) Issues List - Version 6

Revision History

Version 1 - February 1, 1995: Distributed in pre-Austin mailing.
Version 2 - May 30, 1995: Distributed in pre-Monterey mailing.
Version 3 - September 26, 1995: Distributed in pre-Tokyo mailing.
 Closed issues are compressed to save paper.
Version 4 - May 22, 1996: Distributed in pre-Stockholm mailing.
Version 5 - July 15, 1996: Distributed in post-Stockholm mailing.
Version 6 - November 7, 1996: Distributed in pre-Hawaii mailing.

Introduction

This document is a summary of the issues identified in Clause 18. For
each issue the status, a short description, and pointers to relevant
reflector messages and papers are given.

Active Issues

Work Group: Library Clause 18
Issue Number: 18-030
Title: Should operator new and delete be defined within the
 namespace std ?
Sections: 18.4 Dynamic memory management [lib.support.dynamic]
Status: active
Description: Bill Gibbons in c++std-lib-4823

 >17.3.1.1/2 says:
 >
 > All library entities shall be defined within the namespace std.
 >
 >Shouldn't this say "except operator new and operator delete"?
 >
 >And since this includes "size_t", the declarations of "operator new"
 >in section 18.4 need to qualify "size_t", i.e.
 >
 > size_t => std::size_t

Proposed Resolution: Exclude operator new and operator delete from
 namespace std and change 17.3.1.1/2 to say: All library entities
 except operator new and operator delete shall be defined within the
 namespace std.

 If this is the case then size_t needs to be qualified as
 std::size_t in 18.4, 18.4.1.1-18.4.1.3.

Requestor: Bill Gibbons
Owner: Sandra Whitman
Emails: c++std-lib-4823
Papers: None

Work Group: Library Clause 18

Issue Number: 18-031
Title: Signals and Exception Handling
Sections: 18.7 Other runtime support [lib.support.runtime]
Status: active
Description: Erwin Unruh in c++std-lib-4963

 >A few days ago I got the question of whether signal handling and
 >exceptions work together. The usual answer is 'no', but the question
 >triggered a little more.
 >
 >In C there is a big restriction of what you can do inside a signal
 >handler. You cannot call any library function (with 3 exceptions) and
 >you may not access or modify any global variable (except with type
 >'volatile sig_atomic_t').
 >
 >These restrictions were needed to allow optimizers to ignore the
 >possibility of signals.
 >
 >In C++ we have inherited the signal function. So we have to check what
 >restrictions are needed in C++. Regarding the common subset of C and
 >C++ we can adopt the rules of C.
 >
 >I first tried to get a list of things which are possible/not possible
 >inside a signal handler. After some internal discussion I realized
that
 >even some very basic C++ constructs are critical. Two examples:
 >
 >Constructing a class object may put the address of the vtbl into the
 >object. The equivalent code would not be strictly conforming in C.
 >
 >Declaring a variable with a destructor. In usual code this needs some
 >adjustment so that the destructor will be called when an exception is
 >encountered. In a portable implementation this would be done by
pushing a
 >description object on a global stack.
 >
 >A second thought was whether we need to restrict only executed code or
 >also potential executed code. As an optimizer may bundle all
descriptions
 >for EH into a single object even that may be critical.
 >
 >So I would like to have a rule along the lines of:
 >
 >A function registered as a signal handler may only do what it is
entitled
 >to do in the C standard. A function which uses (even potentially) a
 >language or library feature not in C will cause undefined behaviour.
 >[Note: This also covers very minor additions!
 >[Example:
 >
 > inline void f(){} // inline is no C
 > void g(int) { if (0) f(); } // g uses a non-C feature
 >
 > signal(SIGINT, &g); // undefined behaviour
 >]
 >Although f is never called, activating a SIGINT causes undefined
 >behaviour.
 >
 >Note that using exception handling or RTTI would most probably cause
 >problems on some machines.]
 >
 >I know this rule is overly restrictive. On the other hand trying to
figure
 >out what really is possible inside a signal handler will need too much

 >time. In C the rule is: The only thing you can portably do is setting
 >a global flag. My rule will keep that rule and allow an
implementation
 >to mostly ignore the possibility of signals.
 >
 >I think -core is the right group to discuss this because we mostly
have to
 >judge language features. (Besides, I don't read -lib :-)
 >
 >The result of this discussion should go into another paragraph in
section
 >[lib.support.runtime] 18.7. Even if this topic is seemed to be too
late
 >for the Hawaii meeting I would like to get a technical responce. In
 >my view this is important enough to come up as a NB comment. I would
 >rather like to raise a NB comment which was already agreed on
 >technically.

Proposed Resolution:

 Add a rule to section 18.7 [lib.support.runtime] describing
 the behavior of signal handlers in C++. The rule would be
 something like:

 A function registered as a signal handler may only do what it is
entitled
 to do in the C standard. A function which uses (even potentially) a
 language or library feature not in C will cause undefined behaviour.

 [Note:
 [Example:

inline void f(){} // inline is not C
void g(int) { if (0) f(); } // g uses a non-C feature

signal(SIGINT, &g); // undefined behaviour
]
 Although f is never called, activating a SIGINT causes undefined
behaviour.
]

Requestor: Erwin Unruh, erwin.unruh@mch.sni.de
Owner: Sandra Whitman
Emails: c++std-lib-4963, c++std-core-7122-c++std-core-7124
Papers: None

Work Group: Library Clause 18
Issue Number: 18-032
Title: Macros as reserved words
Sections: 18.1 [lib.support.types], 18.7 [lib.support.runtime]
Status: active
Description: Nathan Myers in c++std-lib-4892

 In general this is a Clause 17 issue. Since some of the macros
 in question are described in Clause 18 I added it here as well.

 In response to reflector mail c++std-lib-4799-c++std-lib-4804
 discussing whether errno is a reserved word or not, Nathan
 wrote:

 >About errno: most readers don't seem to realize that it is
 >not only permitted, but required, for errno to be a macro (17.3.1.2).

 >I recognize that this doesn't apply to Fergus's question,
 >because the macro is (formally, if not practically) defined
 >only if <errno.h> or <cerrno> is #included.
 >
 >Therefore, any object named "errno", or likewise "assert", "setjmp",
 >"offsetof", "va_start", "va_end", or "va_arg", would be a big
 >mistake, because real programs #include all kinds of things.
 >
 >We should probably claim all of these as reserved words in all
 >contexts, and be done with it.

Proposed Resolution:

 Add text to 18.1 [lib.support.types] and 18.7 [lib.support.runtime] or
 Clause 17 if that is more appropriate indicating that "assert",
 "setjmp", "offsetof", "va_start", "va_end" and "va_arg" are reserved
 words.

Requestor: Nathan Myers, ncm@mill.cantrip.org
Owner: Sandra Whitman
Emails: c++std-lib-4892, c++std-lib-4799-c++std-lib-4804
Papers: None

Work Group: Library Clause 18
Issue Number: 18-033
Title: direct calls to terminate() and unexpected()
Sections: 18.6 [lib.support.exception]
Status: active
Description: Jonathan Schilling in c++std-lib-5116

 >The question of whether direct user calls to terminate() and
unexpected()
 >should be allowed was settled in the affirmative in Stockholm, by
closing
 >library issue 18-015 with no action. But because some WP wording
implies
 >that they are only called by the implementation, and because the
semantics
 >of direct-called unexpected() aren't defined, I think some WP changes
are
 >necessary.
 >
 >An implementation-called unexpected() must either throw an exception,
 >which the implementation will either let through or turn into
 >bad_exception (depending on the violated exception specification), or
 >terminate the program. What should the restrictions be on a
 >direct-called unexpected()? Since the main purpose of direct calls is
 >for simulated testing of possible error conditions, it seems to me
that
 >direct-called unexpected() should be allowed to throw any exception,
or
 >must terminate the program. An alternative would be to only allow it
to
 >throw bad_exception or terminate, but that gives less flexibility
 >for testing. Of course if a direct-called unexpected() tries a
rethrow,
 >terminate() will get called, as no throw is active. (To simulate a
 >rethrow, a manual throw of bad_exception can be made from
unexpected()).
 >
 >Accordingly, I propose the WP changes attached.
 (see Proposed Resolution:)

Proposed Resolution:

 18.6.2.2 Type unexpected_handler [lib.unexpected.handler]

<change first bullet in `Required behavior' to>

 --throw an exception that satisfies the exception specification
 (however, if the call to unexpected() is from the program rather than
 from the implementation, any exception may be thrown);

 18.6.2.4 unexpected [lib.unexpected]

<replace existing section with>

 void unexpected();

1 Called by the implementation when a function exits via an exception not
 allowed by its exception-specification (_except.unexpected_). May also
 be called directly by the program.

 Effects:
 Calls the unexpected_handler function in effect immediately after
 evaluating the throw-expression (_lib.unexpected.handler_), if called
 by the implementation, or calls the current unexpected_handler
function,
 if called by the program.

 18.6.3.3 terminate [lib.terminate]

<replace existing section with>

 void terminate();

1 Called by the implementation when exception handling must be abandoned
 for any of several reasons (_except.terminate_). May also be called
 directly by the program.

 Effects:
 Calls the terminate_handler function in effect immediately after
 evaluating the throw-expression (_lib.terminate.handler_), if called
 by the implementation, or calls the current terminate_handler function,
 if called by the program.

Requestor: Jonathan Schilling, jls@sco.com
Owner: Sandra Whitman
Emails: c++std-lib-5116,c++std-lib-4918,c++std-core-7086,
 c++std-core-7088
Papers: None
ˇ
Closed Issues

Issue Number: 18-001
Title: Typedef typedef void fvoid_t(); not used anywhere
Last Doc.: N0784=95-0184

Issue Number: 18-002
Title: Redundant typedefs
Last Doc.: N0784=95-0184

Issue Number: 18-003

Title: Call to set_new_handler() with null pointer
Last Doc.: N0784=95-0184

Issue Number: 18-004
Title: Inherited members explicitly mentioned
Last Doc.: N0784=95-0184

Issue Number: 18-005
Title: Call to set_terminate() or set_unexpected() with null pointer
Last Doc.: N0784=95-0184

Issue Number: 18-006
Title: <stdarg.h> and references
Last Doc.: N0784=95-0184

Issue Number: 18-007
Title: denormal_loss member to the numeric_limits class
Last Doc.: N0784=95-0184

Issue Number: 18-008
Title: global operator new
Last Doc.: N0784=95-0184

Issue Number: 18-009
Title: whither exception?
Last Doc.: N0784=95-0184

Issue Number: 18-010
Title: Exception specifications for class numeric_limits
Last Doc.: N0784=95-0184

Issue Number: 18-011
Title: Exception specifications for set_new_handler()
Last Doc.: N0784=95-0184

Issue Number: 18-012
Title: Exception specifications for set_unexpected() and
set_terminate()
Last Doc.: N0784=95-0184

Issue Number: 18-013
Title: deleting a pointer obtained by a nothrow version of
 "operator new"
Last Doc.: N0784=95-0184

Issue Number: 18-014
Title: nothrow versions of "operator delete"
Last Doc.: N0784=95-0184
ˇ
Issue Number: 18-015
Title: Should terminate() and unexpected() be in <exception> ?
Last Doc.: N0935R1=96-0117R1
Resolution: closed, no action (Stockholm)

Issue Number: 18-016
Title: numeric_limits and LIA-1/WG14/C Compliance
Last Doc.: N0935R1=96-0117R1
Resolution: closed, no action (Stockholm)

Issue Number: 18-017
Title: Run-time Dependent traps in numeric_limits
Last Doc.: N0935R1=96-0117R1
Resolution: closed, no action (Stockholm)

Issue Number: 18-018
Title: Run-time Dependent Rounding in numeric_limits
Last Doc.: N0935R1=96-0117R1
Resolution: closed, no action (Stockholm)

Issue Number: 18-019
Title: Extra Denorm Members in numeric_limits in Support of IEC 559
Last Doc.: N0935R1=96-0117R1
Resolution: closed, no action (Stockholm)

Issue Number: 18-020
Title: numeric_limits static const int/bool Members Must be
 Constant Expressions.
Last Doc.: N0935R1=96-0117R1
Resolution: accepted proposal (Stockholm)

Issue Number: 18-021
Title: Correction to nothrow in <new>
Last Doc.: N0935R1=96-0117R1
Resolution: accepted proposal 3 with modifications (Stockholm)

Issue Number: 18-022
Title: Make nothrow a Type Instead of a Value.
Last Doc.: N0935R1=96-0117R1
Resolution: accepted as editorial change (Stockholm)

Issue Number: 18-023
Title: Array Form of Operator delete[] Added to 18.4.1.2
Last Doc.: N0935R1=96-0117R1
Resolution: accepted as editorial change (Stockholm)

Issue Number: 18-024
Title: Are Some numeric_limits static const Members Really Dynamic ?
Last Doc.: N0935R1=96-0117R1
Resolution: closed, no action (Stockholm)

Issue Number: 18-025
Title: Make references to throw references to throw() in 18.2.1
Last Doc.: N0935R1=96-0117R1
Resolution: accepted as editorial change (Stockholm)

Issue Number: 18-026
Title: type_info from 95-0195/N0795
Last Doc.: N0935R1=96-0117R1
Resolution: rejected, no longer true (Stockholm)
ˇ
Issue Number: 18-027
Title: Describe rounding error
Last Doc.: N0935R1=96-0117R1
Resolution: accepted as editorial change (Stockholm)

Issue Number: 18-028
Title: Type float_round_style edits
Last Doc.: N0935R1=96-0117R1
Resolution: accepted as editorial change (Stockholm)

Issue Number: 18-029
Title: numeric_limits specializations example editorial changes
Last Doc.: N0935R1=96-0117R1
Resolution: accepted as editorial change (Stockholm)

