
WG21/N1011 X3J16/96-0193 1

Status of allocators in the present WP

Matthew Austern (austern@sgi.com)

November 13, 1996

1 Introduction

The September '96 working paper still has many unresolved issues related to
allocators. Resolving these issues one at a time might be possible, but it will
certainly require many small �xes and at least a few large �xes. This paper
simply lists some of the problems, so that people can get an idea of how much
work would be involved in �xing them. I do not claim to have identi�ed every
important issue.

Many of the problems relate to the fact that the generic allocator require-
ments are seriously underspeci�ed. This is not a trivial matter: generic pro-
gramming is only possible if the requirements for a generic concept are speci�c
enough so that clients (in this case, containers) can be written using no assump-
tions other than the ones in the requirements table. Nor is it an easy matter
to �x: even for a relatively simple generic concept, such as Forward Iterator,
it takes a great deal of thought to write down requirements that are stringent
enough so that they provide all necessary operations, but weak enough so that
they do not rule out useful implementations. Many apparently simple issues in
lists of generic requirements have very far-reaching rami�cations, some of which
are not immediately obvious.

Some of these issues, but not all, were previously listed in my reector mes-
sage c++std-lib-4879.

2 Problems related to nested typedefs

Allocators de�ne the nested types pointer, const pointer, reference, and
const reference. The semantics of these types are seriously underspeci�ed,
and not completely consistent.

2.1 Reference types

� It is impossible to de�ne a user-de�ned type that has the same seman-
tics as T&: in particular, C++ does not provide any way to overload
\operator.", the member selection operator. The only possible de�ni-
tion for Allocator<T>::reference within the C++ type system is T&.



WG21/N1011 X3J16/96-0193 2

� Generalized references will not work as arguments to function templates
whose arguments are T& or const T&: even if there is a conversion from
Allocator<T>::reference to T&, the conversion will not be used for the
purposes of template type deduction. And, of course, a declaration of the
form

template<class Allocator, class T> void f(Allocator<T>::reference);

is not legal C++.

� The requirements table doesn't say whether or not reference is guaran-
teed to be a POD type.

� The requirements table doesn't say whether or not Allocator<T>::reference
is convertible to Allocator<T>::const reference.

� The requirements table doesn't provide any way of converting an
Allocator<T>::const reference to an Allocator<T>::reference. That
is, it provides no equivalent of const cast.

� If class D is derived from class B, then the requirements table doesn't say
whether or not Allocator<D>::reference is convertible to
Allocator<B>::reference. Additionally, it does not provide any mech-
anism for conversions in the other direction. That is, it provides no
equivalents of derived-to-base conversion, static cast, dynamic cast, or
reinterpret cast.

� The requirements table says that Allocator<T>::reference is convert-
ible to T&, but doesn't say whether or not T& is convertible to
Allocator<T>::reference.

� If r is of type Allocator<T>::reference, the requirements table doesnt't
say whether or not &r is a valid expression. Assuming that it is a valid
expression, the requirement table doesn't say what its type is. (Reasonable
options include T* and Allocator<T>::pointer.)

2.2 Pointer types

2.2.1 Semantics of pointer and const pointer

� If p is of type Allocator<T>::pointeror Allocator<T>::const pointer

and n is of type Allocator<T>::difference type, then the require-
ments table doesn't say whether or not the expressions p++, ++p, p--, --p,
p + n, p - n, n + p, n - p, *p, p[n], and n[p] are valid expressions. If
they are valid, it does not de�ne their return type or their semantics.

� The requirements table implies, but does not actually say, that p1 - p2 is
a valid expression whose return type is Allocator<T>::difference type.
In any case, it does not de�ne the semantics or preconditions of this op-
eration.



WG21/N1011 X3J16/96-0193 3

� The requirements table doesn't say whether or not Allocator<T>::size type

and Allocator<T>::difference type are guaranteed to be the same
for every specialization of Allocator, nor does it say whether or not
sizeof(Allocator<T1>::pointer) == sizeof(Allocator<T2>::pointer).

� The requirements table doesn't guarantee that operator-> is de�ned for
Allocator<T>::pointer if T is a class type.

� Pointers to member are entirely missing from the requirements table.

� If p1 and p2 are of type Allocator<T>::pointer, the requirements table
doesn't say whether or not the expressions p1 == p2, p1 != p2, p1 < p2,
p1 > p2, p1 <= p2, and p1 >= p2 are valid exprssions. If they are valid,
it does not de�ne their semantics. (The issue about semantics is highly
nontrivial: consider the case where p1 and p2 are returned by di�erent
invocations of A.allocate(), or where one is returned by A1.allocate()
and the other by A2.allocate(). It's not obvious what the behavior of
operator== ought to be.)

� Ordinary pointers can be used as iterators; in particular, iterator traits<T*>

is guaranteed to be de�ned. However, there is no such guarantee for
iterator traits<Allocator<T>::pointer>.

� The requirements table doesn't say whether or not Allocator<T>::pointer
is guaranteed to be a POD type. This has implications for unions, static
versus dynamic initialization, and other issues.

� The requirements table doesn't say whether or not Allocator<T>::pointer
is convertible to Allocator<T>::const pointer.

� The requirements table doesn't provide any way of converting an
Allocator<T>::const pointer to an Allocator<T>::pointer. That is,
it provides no equivalent of const cast.

� If class D is derived from class B, then the requirements table doesn't say
whether or not Allocator<D>::pointer is convertible to
Allocator<B>::pointer. Additionally, it does not provide any mech-
anism for conversions in the other direction. That is, it provides no
equivalents of derived-to-base conversion, static cast, dynamic cast, or
reinterpret cast.

� The requirements table doesn't say whether or not values of type
Allocator<T>::pointer and Allocator<T>::const pointer satisfy the
invariant p == &*p. (It's not even possible to tell whether p and &*p

necessarily have the same types.)



WG21/N1011 X3J16/96-0193 4

2.2.2 Conversions from pointer to T*

The requirement that Allocator<T>::pointer be convertible to T* and void*

raises many unanswered questions. It also prohibits many potentially useful
types of allocators. Note that eliminating this requirement, however, would re-
quire changes to several parts of the WP: it is used by Allocator<T>::operator
new, Allocator<T>::construct, Allocator<T>::destroy, the specialized al-
gorithms in x20.4.4, basic string (Clause 21), and possibly other library com-
ponents.

� The requirements table says that Allocator<T>::pointer is convertible
to T*, but doesn't say whether or not T* is convertible to
Allocator<T>::pointer.

� If p is of type Allocator<T>::pointer, the requirements table doesn't say
whether or not static cast<void*>(static cast<T*>(p)) is the same
as static cast<void*>(p), or whether
static cast<T*>(static cast<void*>(p)) is the same as
static cast<T*>(p).

� The requirements table doesn't say how the conversion interacts with
pointer arithmetic. For example, if p is of type Allocator<T>::pointer
and n is of type Allocator<T>::difference type, the requirements ta-
ble doesn't say whether or not static cast<T*>(p) + n is guaranteed to
be the same as static cast<T*>(p + n). Note that this issue has far-
reaching implications: an a�rmative answer to it means that converting a
single pointer from Allocator<T>::pointer to T* automatically results
in the conversion of every pointer in the array that the pointer belongs to.
This would be a very signi�cant implementation constraint. A negative
answer, however, would break basic string.

� The requirements table doesn't say whether or not the mapping is one-
to-one. That is, if p1 and p2 are of type Allocator<T>::pointer and p1

!= p2, it doesn't say whether it's guaranteed that static cast<T*>(p1)

!= static cast<T*>(p2);

� The requirements table doesn't say whether or not pointers belonging to
di�erent allocator types must convert to unequal pointers. That is: if p1 is

of type Allocator1<T1>::pointerand p2 is of type Allocator2<T2>::pointer,
it doesn't say whether or not it is guaranteed that static cast<void*>(p1)

!= static cast<void*>(p2). (This is an extraordinarily strong guaran-
tee. Nevertheless, some allocator clients seem to implicitly rely on it.)

� The requirements table doesn't say whether or not static cast<T*>(p)

== static cast<T*>(p). That is, if you convert the same
Allocator<T>::pointer twice, possibly separated by intervening opera-
tions, it doesn't say whether or not the two conversions yield the same T*
value.



WG21/N1011 X3J16/96-0193 5

� The requirements table doesn't say what the lifetime is of the pointer re-
turned by static cast<T*>(p). (The end of the enclosing full-expression?
The lifetime of p? The local scope?)

3 Interaction with other parts of the library

� An object allocated using a.allocate() must be deallocated using
a.deallocate(). The auto ptr template, however, has no provision for
an allocator instance. This means that auto ptr can't be used for pointers
allocated using allocators, which, in turn, means that auto ptr can't be
used for implementing containers.

� The container adaptors stack, queue, and priority queue have con-
structors that take an Allocator argument. The container requirements,
however (Table 75) do not provide a way to construct a container from
an allocator. (Possible �x: change the container adaptor constructors so
that they take a container instead of an allocator; all containers must have
copy constructors.)

� The basic string template is parameterized by an allocator, so its un-
derlying memory is pointed to by some Allocator<charT>::pointer.
However, all of basic string's primitive operations use char traits,
and char traits's members take arguments of type charT* rather than
Allocator<charT>::pointer. (This is necessarily the case, since the
allocator and traits classes are two separate and unrelated template pa-
rameters.) This means that basic string must rely very heavily on the
conversion from Allocator<charT>::pointer to charT*. Unless that
conversion obeys some very strong constraints, basic string is broken.

� There is no mechanism for get temporary buffer to use allocators. (Foot-
note 200 (on page 20-18) says that there is such a mechanism, but that
footnote doesn't make sense. It's left over from an earlier allocator design.)

� The valarray template makes no provision for allocators. It would be
easy to parameterize them with respect to an allocator class, but making
them deal with allocator instances would be more ambitious.

4 Allocator instances

The fundamental problem is that it's very hard to specify the semantics of con-
tainers while taking the possibility of multiple allocator instances into account,
and it's hard to write containers that are robust under this possibility. This is
an especially serious problem in the case of user-de�ned containers.

� The allocator requirements table doesn't explicitly say that an alloca-
tor is guaranteed to have a default constructor. However, note that



WG21/N1011 X3J16/96-0193 6

vector<int, my alloc> doesn't satisfy the container requirements un-
less my alloc has a default constructor.

� Allocating a container with allocator placement new yields counterintu-
itive results, since the container components aren't allocated with the
argument that was passed to placement new, but with either the default
allocator or the allocator associated with the initializer. There are no
good workarounds for this problem, which is especially serious in the case
of pair. How, for example, do you use a shared memory allocator to
allocate a pair consisting of a 10 MB �xed size array and a character?

� Constructing nested containers (e.g. list<vector<int, my alloc>, my alloc>)
is di�cult. The default constructor for vector<int, my alloc> uses the
default allocator instance my alloc, rather than the instance associated
with the containing list. The only workaround is to create a \prototype"
instance of the nested container (e.g. vector) �rst, and to avoid any op-
erations, such as certain versions of insert, that use vector's default
constructor. This is clumsy and may be expensive. It will ensure that
most code will not be robust for multiple allocator instances, because it's
much easier to write code that isn't.

� The WP doesn't explicitly say that basic string::append uses the left-
hand-side allocator. Assuming that this is the intended requirement, how-
ever, it prohibits any implementation that performs lazy concatenation.
This implementation constraint e�ectively requires ine�cient code. Simi-
lar considerations apply to basic string::replace, and to other string
operations.

� The WP de�nes an assignment operator as part of the allocator require-
ments, but it is insu�ciently explicit about the semantics of assignment.
In particular, it doesn't say what happens to memory that was allocated
using the allocator on the left hand side of the assignment. This is espe-
cially signi�cant in the case of allocators that are associated with system
resources, such as allocators that implement persistence or shared memory.

� The WP doesn't specify whether or not memory allocated using a partic-
ular allocator instance can outlive that instance's duration. For example,
is this code valid?

{

my_alloc<int>::pointer p;

{

my_alloc<int> a;

p = a.allocate(1);

*p = 3;

}

cout << *p << endl;

}



WG21/N1011 X3J16/96-0193 7

� The WP doesn't say whether
basic string::operator= (const basic string& S) copies S's alloca-
tor, or whether it leaves the left-hand operand's allocator unchanged.

� In general, the WP is silent on the question of whether a container's
allocator is �xed at compile time or whether there are any circumstances
under which it is permitted to change. (The former seems to be the
intention, but it is nowhere stated.)

� Avoiding the extra space overhead to store an allocator in every container
requires a tricky hack; it's uncertain whether, with today's compiler tech-
nology, this hack will work in real code. This is an especially serious
problem if, as has been suggested on the reector, each list node is re-
quired to carry its own allocator instance.

� Many container operations must be performed di�erently depending on
whether or not two allocator instances compare equal; this requires more
complicated member functions. In the case of alocators whose instances
always compare equal, it isn't clear whether this extra code is actually
removed by the compiler.

� There is no reasonable way to specify the allocator used by the binary
string concatenation operator+. In principle it ought to behave like a
constructor and take an allocator parameter, but it can't, because it's a
binary operator. The WP isn't explicit about which allocator is used,
but it implies that x + "a" and "a" + x are allocated using di�erent
allocators. This problem generalizes to binary operations on user-de�ned
containers.

� The WP is silent about how list::splice and list::merge work in the
case of unequal allocators. Reector discussion shows that there is no
consensus about the appropriate semantics.

� To allocate a complete data structure through an allocator instance, it
will often be necessary to allocate pieces of it with an operator new

that uses an allocator instance. This requires placement new. But place-
ment operator new[] is essentially broken in the current WP. There is no
portable way to deallocate an array allocated using placement operator

new[].

� Consider sorting the vector V, where V is declared as vector<vector<int,
alloc1>, alloc2>. Each of the vectors contained within V may have a
distinct allocator instance. What is the semantics of sort(V.begin(),
V.end())? Note that specifying the semantics of swap and operator= is
insu�cient, since it is unspeci�ed which of those primitives, if either, is
used by sort. Not also that this issue is not unique to sort: it also applies
to rotate, reverse, stable partition, and many other algorithms.


