
X3J16/95-0183
WG21/N0783

Namespace Issues and Proposed Resolutions

John H. Spicer

Edison Design Group, Inc.

jhs@edg.com

September 26, 1995

Revision History

Version 1 (95-0183/N0783) { September 26, 1995: Distributed in the pre-Tokyo mailing.

Introduction

This document attempts to clarify a number of namespace issues that are currently either

unde�ned or incompletely speci�ed.

This document is not intended as a formal proposal of any speci�c language changes. Rather,

it is intended as to be used as a framework for discussion of these issues. Hopefully this will

ultimately result in formal proposals for language changes.

Organization of the Document

The document is organized in sections. Each section consists of a list of questions. Each

question has an answer, a status, the version number of the �rst version of this document that

included the question, and the version number of the last change in the question. This allows

the reader to skip over questions that have not changed since the last time he or she read the

document.

Summary of Issues

Friend Issues

1.1 Under what circumstances does a friend function declaration refer to a previously declared

function? Where are friend functions injected?

1.2 Under what circumstances does a friend class declaration refer to a previously declared

class?

1.3 Proposal to allow global quali�ers on friend declarations.



95-0183/N0783 - Namespace Issues and Proposed Resolutions 2

Quali�ed Lookup Issues

2.1 Clari�cation of quali�ed lookup rules.

2.2 Clari�cation of 1.5 namespace rules in quali�ed namespace lookup

2.3 Do the new operator lookup rules for namespaces apply to the global namespace?

2.4 Do the new quali�ed lookup rules apply to globally quali�ed names?

Other Issues

3.1 Clari�cation of unnamed namespace semantics.

3.2 Can a using-declaration reference a member of the current namespace?

3.3 Can member using-declarations refer to constructors, destructors, and operator= func-

tions?

3.4 Rules for looking up names in declarators.

3.5 How are names looked up in contexts that require a namespace name?

3.6 What is the linkage of members of unnamed namespaces?

Friend Issues

1.1 Question: Under what circumstances does a friend declaration refer to a previously declared

function?

Status: Open

example

The WP currently says that a friend function that has not previously been declared (in

any enclosing scope) declares a function in the nearest enclosing namespace. This means

that the meaning of friend declarations within a namespace depends on declarations in the

scopes that enclose the namespace.

The following example illustrates that it is essential that a set of friend declarations for a

given name should all declare entities in the same scope. If they declare entities in di�erent

scopes, one entity will end up hiding others during name lookup.

As illustrated below, once A::f is injected, ::f is hidden and can only be called using

explicit global quali�cation.

void f(char);

namespace A {

class B {

friend void f(char); // ::f(char) is a friend

friend void f(int); // A::f(int) is a friend



95-0183/N0783 - Namespace Issues and Proposed Resolutions 3

void bf();

};

void B::bf()

{

f(1); // calls A::f(int)

f('x'); // also calls A::f(int) because ::f is hidden

}

}

Note: When a friend declaration (in which the declarator is not a quali�ed name) the

function is looked up in a set of scopes. If the function is found, the declaration is considered

to refer to that previous declaration. If it not found, the declaration is considered to declare

a new function and that declaration is \injected" into some enclosing scope. The issue here

is which set of scopes is searched to �nd a previous declaration.

So, from this example we have our �rst rule:

All friend declarations for a given name must declare entities in one particular scope.

So the question is, which scope to they declare entities in? There are two possibilities,

either

1. When looking for a previous declaration of the function, look until the nearest en-

closing namespace is reached, or

2. When looking for a previous declaration, look in all enclosing scopes for the name of

the function that was declared. If a previous use of the name is found, the declaration

is injected into that scope. If no previous use of the name is found the friend is injected

into the nearest enclosing namespace scope.

Rule #2 would mean that the presence of any function called f in an enclosing scope,

whether or not the types match, would be enough to cause a friend declaration to inject

into that scope.

I believe that rule #2 is clearly unacceptable. A friend declaration in a namespace would

be a�ected by any global declaration of that name. Consider what this would mean for

operator functions! The presence of any operator+ function in the global scope would

force all friend operator+ operators to appear in the global scope too! The presence of a

template in the global scope would have the same e�ect.

After all, the whole idea of namespaces is to isolate code so that it is not a�ected, and

does not a�ect, code in other namespaces.

Answer: When looking for a previous declaration of a friend function the search terminates

at the nearest enclosing namespace scope.

Note: This proposal only concerns friend declarations in which the declarator is not a

quali�ed name.

Version added: 1

Version updated: 1

1.2 Question: Under what circumstances does a friend class declaration refer to a previously

declared class?

Status: Open



95-0183/N0783 - Namespace Issues and Proposed Resolutions 4

namespace N {

class A { void f(); };

}

using namespace N;

namespace M {

class B {

friend class A; // Without this rule

// makes N::A a friend

B();

};

class A { void f(); };

}

void N::A::f() { M::B b; } // A friend under current rules

void M::A::f() { M::B b; } // A friend under proposed rules

Answer: As with friend functions, when looking for a previous declaration of a friend class

the search terminates at the nearest enlosing namespace scope. If no previous declaration

is found, the class is injected into the nearest enclosing nonclass scope.

Note: The behavior of elaborated type speci�ers in other contexts would not be a�ected

by this change.

struct A; // Always introduces A into the current scope

struct B* b; // Searches all active scopes for a previous

// declaration. Injects in the nearest nonclass

// scope if none found.

Version added: 1

Version updated: 1

1.3 Proposal to allow global quali�ers on friend declarations.

Status: Open

The existence of namespaces in general makes it necessary to sometimes use a global

quali�er in friend declarations. This is even more necessary if issue 1.1 is adopted as

proposed.

void f(int);

void g(int);

namespace A {

void f(int);

class B {

friend void ::f(int); // can't currently be done

friend void g(int); // injects A::g as

// proposed in 1.1

};

}



95-0183/N0783 - Namespace Issues and Proposed Resolutions 5

The proposal is that a global quali�er be permitted on the declarator in friend declarations.

If the return type is an identi�er, the declarator must be enclosed in parentheses.

struct X {};

X f(int);

namespace A {

class B {

friend X (::f)(int);

};

}

Version added: 1

Version updated: 1

1.4 Question: Can friend functions be de�ned using quali�ed names?

Status: Open

class X1 {

void f();

};

class X2 {

friend void X1::f(){} // Already prohibited

};

namespace A {

typedef int J;

void f(J);

}

namespace B {

class C {

friend void A::f(J) { /* allowed? */ }

};

}

Answer: The equivalent class case is already prohibited to avoid the need to specify the

name lookup rules for cases like this (or so I'm told). There is no reason to allow the

namespace case. The function must already be declared in the namespace so there is no

reason why the de�nition can't be there as well. De�nitions in friend functions are only

useful in cases where injection is taking place.

Note: Name lookup is a�ected because when scanning a declarator in which the declarator-

id is a quali�ed name, the scope of the declarator must be reactivated before scanning the

rest of the declarator. For more information, see issue 3.4.

Version added: 1

Version updated: 1



95-0183/N0783 - Namespace Issues and Proposed Resolutions 6

Quali�ed Lookup Issues

2.1 Clari�cation of quali�ed lookup rules.

Status: Open

The rules for performing a quali�ed lookup in the presence of using-directives need clari-

�cation.

The rules make it clear that when you say A::i in a program like the following, you stop

searching once you've found that there is an i in namespace A. It is also clear that if a

nonfunction of a given name is in both B and C, then the name is ambiguous.

The rules don't make it clear what happens if the names are present at di�erent points in

a using directive \hierarchy".

D E

\ /

B C

\ /

A

namespace E { int l; void f(); }

namespace D { int j, l; void g(double); }

namespace C { int k; void g(char); using namespace E; }

namespace B { int j; void g(int); using namespace D; }

namespace A { int i; void f(); using namespace B;

using namespace C;}

int main()

{

int i;

i = A::i;

i = A::j;

i = A::k;

i = A::l; // Ambiguous -- D::l or E::l

A::f();

A::g(1); // B::g(int)

A::g('x'); // C::g

A::g(2.0); // ambiguous (B::g or C::g. D::g is hidden)

}

The result of a lookup such as A::j should be the equivalent of merging the results of a

lookup of B::j and C::j.

The lookup of B::j would �nd the j in B and would stop there. The lookup of C::j would

�nd nothing. So the end result would be B::j. D::j would not be considered because the

lookup would never reach namespace D.

Likewise, when constructing an overload set for a lookup of A::g, the result would be the

merged lookups of B::g and C::g. The lookup of B::g would be the function B::g(int).

D::g(double) would not be included in the overload set because the lookup of B::g would



95-0183/N0783 - Namespace Issues and Proposed Resolutions 7

stop once the g in \verbB| is found. The lookup of C::g would result in the function

C::g(char). The final result of the \verbA::g| lookup would be the overload set

of B::g(int) and C::g(char). Note that D::g(double) would not be visible.

Version added: 1

Version updated: 1

2.2 Clari�cation of 1.5 namespace rules in quali�ed namespace lookup

Status: Open

In Bjarne Stroustrup's \Relaxation of Quali�ed Lookup" (N0745R1) the following rules

are given to describe the result of the new quali�ed namespace lookup that follows using

directives in the namespace:

If the set of entities found is empty, the program is ill-formed. If that set has exactly

one member, X::m refers to that member. Otherweise, if that set has more than one

member, the program is well formed if the use of the name is one that allows a unique

member to be chosen, such as overload resolution (13.2 [over.match]) or resolution

between class names and non-class names (9.1 [class.name]). Otherwise, the program

is ill-formed.

The issue concerns the sentence that says \or resolution between class names and non-class

names".

The wording from Bjarne's paper permits a nontype name from one namespace to hide

a class name from another namespace. This is in conict with a clari�cation that was

decided upon by the core-3 group in Monterey for nonquali�ed lookup.

The rationale for the decision in Monterey was that 3.3.6 [basic.scope.hiding] de�nes the

class/nonclass hiding rule as:

A class name (9.1) or enumeration name (7.2) can be hidden by the name of an object,

function, or enumerator declared in the same scope.

The discussion in core-3 endorsed the position in editorial box 35 which says \The original

namespace proposal indicated that the C struct hack does not apply across namespaces.

A rule in this subclause should make this more explicit:"

In the following example the two di�erent i's are de�ned in di�erent scopes so one cannot

hide the other, except by the new quali�ed lookup rules:

namespace A {

int i;

}

namespace B {

struct i {};

}

namespace C {

using namespace A;

using namespace B;

int j = sizeof(i); // Ambiguous

int k = sizeof(C::i); // okay by rules from N0745R1

}



95-0183/N0783 - Namespace Issues and Proposed Resolutions 8

The quali�ed namespace lookup rules should be modi�ed so that the class/nonclass name

hiding only applies to names in the same scope, as is the case everywhere else in the

language.

When this was posted on the reector, Bjarne commented in core-6077:

My intent when I wrote the wording above was for X::m to obey \the usual rules"

as de�ned in 9.1. There was no intent to extend the scope (sic) of the structure tag

hack. I think the two sizeof()s in the example should behave identically. Outlawing

both is �ne with me and - given Motion 15 - editorial (as far as I can see).

Version added: 1

Version updated: 1

2.3 Question: Do the new operator lookup rules for namespaces apply to the global namespace?

Status: Open

13.3.1.2 [over.match.expr] says:

For a type T whose fully-quali�ed name is ::N1::...::Nn::C1::...::Cm::T where

each Ni is a namespace name and each Ci is a class name, the fully-quali�ed namespace

name ::N1::...::Nn is called the namespace of the type T. To look up X in the

context of the namespace of the type T means to perform the quali�ed name lookup

of ::N1::...::Nn::X (13.3.1.1.1).

I believe this needs to be clari�ed to correctly handle classes de�ned in the global scope.

Global classes need to have the new namespace operator lookup rules applied too. Oth-

erwise, global types used within other namespaces (that also have that operator de�ned)

will fail to �nd the correct operators.

struct A { };

A operator+(A,A);

namespace B {

struct B {};

B operator+(B,B);

void f()

{

A a1,a2;

a1+a2; // only works with new operator lookup rules

}

}

We need to add something along the lines of the following:

For a type T whose fully-quali�ed name is ::C1::...::Cm::T where each Ci is a class

name, to look up X in the context of the namespace of the type T means to perform

the quali�ed name lookup of ::X.

Note that the new rules, when applied to global scope classes, can result in changes in

behavior. But the new behavior is consistent with how the same code would behave if

de�ned in a namespace, so I think this is what we want.

An example where the behavior changes is as follows:



95-0183/N0783 - Namespace Issues and Proposed Resolutions 9

struct A {};

A operator+(A, double);

int main()

{

A a1;

A operator+(A, int);

a1 + 1;

a1 + 1.0; // now calls operator+(A, double), previously called

// operator+(A, int);

}

Version added: 1

Version updated: 1

2.4 Question: Do the new quali�ed lookup rules apply to globally quali�ed names?

Status: Open

The new rules for quali�ed lookup in a namespace specify that if the name is not found

in the namespace, and the namespace contains using directives, that the name should be

sought in the namespaces named in the using directives.

Does this rule apply to the global namespace?

namespace N {

int i;

}

using namespace N;

int j = i; // okay

int k = ::i; // but is this okay?

Answer: Yes.

Version added: 1

Version updated: 1

Other Issues

3.1 Clari�cation of unnamed namespace semantics.

Status: Open

The WP de�nes the semantics of an unnamed namespace as being equivalent to:

namespace UNIQUE {

// namespace body

}

using namespace UNIQUE;



95-0183/N0783 - Namespace Issues and Proposed Resolutions 10

This is incorrect because it makes the code in an unnamed namespace dependent on

whether the code is in an original namespace or a namespace extension.

namespace {} // If you remove this line, the

// use of ::f below is invalid

namespace {

void f()

{

using ::f;

}

}

The WP should be changed to de�ne an unnamed namespace as being equivalent to:

namespace UNIQUE {}

using namespace UNIQUE;

namespace UNIQUE {

// namespace body

}

Version added: 1

Version updated: 1

3.2 Question: Can a using-declaration reference a member of the current namespace?

Status: Open

There is no reason to allow this kind of usage. An error would bene�t users as the presence

of such a using-declaration is most certainly a mistake.

namespace A {

void f();

using A::f; // allowed?

}

Answer: No.

Version added: 1

Version updated: 1

3.3 Question: Can member using-declarations refer to operator= functions, constructors, and

destructors?

Status: Open

Answer: Member using-declarations are used to a�ect the way inherited members may be

used in a base class. Constructors and destructors are not inherited it seems unnecessary

to permit them in using-declarations. Furthermore, if they were permitted we would have

to specify what such using-declarations would mean. When the issue came up on the

reector there were a variety of di�erent semantics that such declarations were assumed

to have.

operator= can be used in a using-declaration, but the copy assignment operator of the

base class will not be included in the set of functions brought in from the base class. In

other words, if the base class has only a copy assignment operator, a using-declaration



95-0183/N0783 - Namespace Issues and Proposed Resolutions 11

that refers to the operator= for the base class is ill-formed. If the base class has a set of

overloaded operator= functions, the copy assignment operator will not be included in the

set brought into the derived class.

Version added: 1

Version updated: 1

3.4 Rules for looking up names in declarators.

Status: Open

In Monterey, the core-3 group discussed whether or not an entity declared in a namespace

could be de�ned using a name that did not fully specify the quali�er, but rather relied on

a using directive to implicitly provide part of the quali�ed name. For example:

namespace A {

namespace B {

void f1(int);

}

namespace C {

void f1(int);

}

}

using namespace A;

void B::f1(int){} // okay

void C::f1(int){} // okay

it was decided by the group that this was permitted and that there was no reason to make

a change.

The group did not discuss a somewhat similar case that can now arise as a consequence of

the new quali�ed namespace lookup rules that were adopted in Monterey.

This was discussed on the reector, and there seems to be agreement that the new quali�ed

namespace lookup rules must not be used when looking up the �nal component of a

declarator that is a quali�ed-name.

To understand why this is necessary, recall that when scanning a function declarator such

as

void A::f(X,Y,Z)

the scope of A is \reactivated" before the rest of the declarator is scanned. In other words,

the remaining names in the declarator (X, Y, and Z, in this example) are looked up in the

scope of A. Clearly, in order to look names up in the scope of A, you need to know what

scope you are dealing with when you hit the \::".

In the case below, the type of T in the de�nition of the function cannot be determined

because you don't know which scope to look in.

namespace A {

namespace B {



95-0183/N0783 - Namespace Issues and Proposed Resolutions 12

typedef int T;

void f1(T);

void f2(T);

}

namespace C {

typedef char T;

void f1(T);

void f2(T);

}

using namespace B;

using namespace C;

}

void A::B::f1(T){} // okay

void A::C::f1(T){} // okay

// In a declarator, you need to look up all names after the :: in

// the scope of the qualifier that precedes the ::. If the new

// qualifier lookup were allowed in the declarator, you can't

// know what scope the qualifier refers to until you've determined

// the type of the function being declared!

void A::f2(T){} // error

void A::f2(T){} // error

Answer: When looking up the �nal component of a quali�ed-id in a declarator the �-

nal component of the quali�ed name must name an immediate member of the class or

namespace speci�ed by the quali�ed-name.

Version added: 1

Version updated: 1

3.5 Question: How are names looked up in contexts that require a namespace name?

In other words, in contexts in which a namespace name is required (using-directives and

namespace alias de�nitions) are only namespace names considered in the lookup?

Status: Open

namespace N1 { }

namespace M {

int N1;

}

using namespace M;

using namespace N1; // okay or ambiguous?

namespace my_N1 = N1; // okay or ambiguous?



95-0183/N0783 - Namespace Issues and Proposed Resolutions 13

Answer: Only namespace names are considered (i.e., the examples above are okay).

Version added: 1

Version updated: 1

3.6 Question: What is the linkage of members of unnamed namespaces?

Status: Open

When namespaces were �rst introduced, members of unnamed namespace were said to have

no linkage. Later, as a \simpli�cation", this was changed so that members of unnamed

namespaces have external linkage, you just don't know their name, so you can't really refer

to them from anywhere else.

Although this simpli�ed some things, I think it complicates a number of others, and I

think we should go back to the original description.

Unnamed namespaces are supposed to be the replacement for static variables and functions

(but not static members). One of the important bene�ts of static entities is that they

are local to a translation unit and don't clutter the externally visible namespace. The

new de�nition of the unnamed namespace eliminates this advantage. Worse, it makes it

necessary for implementations to come up with names for things that are guaranteed to

be unique { something that is very di�cult to do.

Many of the problems arise when using templates in unnamed namespaces.

template <class T> struct A {

void f(T);

};

namespace {

class B {};

A<B> ab; // #1

};

Under the original rules (where members of unnamed namespaces had no linkage), decla-

ration #1 was illegal, because as speci�ed in 3.5 [basic.link], names that have no linkage

cannot be used to declare entities with linkage. Under the new rules, this is allowed, but

what is the mangled name of A<B>::f(B)?

Assume that some other �le de�nes the member function f(T) as

template <class T> void A<T>::f(T) { /* ... */ }

Generating an instantiation of this function requires that information about <unnamed>::B

be passed from the translation unit in which it was de�ned to the context in which the

instantiation is done. So the things in unnamed namespaces have to be in the externally

visible namespace and have to be given unique names, thus eliminating one of the important

properties of static entities.

Answer: Members of unnamed namespaces have internal linkage.

The changes needed to make this change are:

� Specify that entities that have external linkage when declared in named namespaces

have internal linkage when declared in unnamed namespaces. (Entities that have



95-0183/N0783 - Namespace Issues and Proposed Resolutions 14

internal or no linkage in named namespaces retain that linkage in unnamed names-

paces)

� modify the rule in 3.5 to say

A name with no linkage or internal linkage shall not be used to declare an entity

with external linkage. A name with no linkage shall not be used to declare an

entity with internal linkage.

Version added: 1

Version updated: 1


