Accredited Standards Committee X3 Doc No: X3J16/95- 0056 W21/ NO656
I nformati on Processing Systens Dat e: March 3, 1995 Page 1 of 4
Operating under the procedures of Project: Programm ng Language C++
Ameri can National Standards Institute Ref Doc:
Reply to: Josee Lajoie
(j osee@net.ibmcom

Shoul d the formof the copy constructor and assi gnment operator be:
1. X(const X&), operator=(const X&)

or

2. X(const volatile X&), operator=(const volatile X&)

?

Sol ution 1.

John Skal | er has been arguing strongly in favor of 1. He states that
only users should be able to declare a constructor or an assignnent
operator accepting a volatile reference paraneter and further argues
that a constructor accepting a volatile reference paraneter is not a
copy constructor and an assi gnnent operator accepting a volatile

ref erence paraneter is not a copy assignment operator.

[ John Skaller in core-5214 ]:

T volatile vt;
Tt = T(vt);

this code is ill-formed unless either
T(T vol atile&)
or
T(T const volatil e&)
has been defined by the user or unless T is not a class type. The code

Tt = vt;

is well defined if, and only if, one of the above constructors exists
and the copy constructor for T exists:

T(const T&)
That is,

T(T volatile constg&);
T(T volatile &);

are implicit conversions (unless marked "explicit") but they are NOT
copy constructors and the presence of their declaration in the class
nmenber |ist does not prevent the inplenmentation fromproviding a copy
constructor for T.






———————— X3J16/95- 0056 - W21/ NO656 -- Lajoie:d ass Copy/volatile - Page
| can see two ways not to break C conpatibility:

1. Have a special rule for objects of POD class types.
That is, an inmplicitly-declared copy operator for a POD class
type is always of the form

X(const volatile X&, operator=(const volatile X&)
while the one for non-POD class type is of the form

X(const X&), operator=(const X&)
or
X( X&), operator=(X&)

2. Adopt solution 2 for all classes.

Sol ution 2.

The copy operator may have anyone of the follow ng forns:
X(const volatile X&), operator=(const volatile X&)
X(const X&), operator=(const X&)

X(volatile X&), operator=(volatile X&)

X( X&), operator=(X&)

OO0 TYD

If a class does not have a user-decl ared copy constructor (copy
assi gnment operator), one is inplicitly declared.

What is the formof an inplicitly-declared copy operator?
2.1 Only one kind of inplicitly-declared copy operator
If all bases and nmenbers have copy operators that can accept a const
vol atile paraneter, the inplicitly-declared copy operators have the
form
X(const volatile X&), operator=(const volatile X&
otherwi se, the inplicitly-declared copy operators have the form
X( X&), operator=(X&)

2.2. Two kinds of inplicitly-declared copy operators are provided

[ Fergus Henderson, core-5301 ]:

The problemwith option 2.1 is efficiency. It could be very
inefficient to use volatile semantics all the time for the copy
oper at ors.

A possible solution is for the inplenmentation to provide two
inmplicitly-declared copy operators, one that supports volatile
semantics, and one that does not:



———————— X3J16/95- 0056 - W21/ NO656 -- Lajoie:d ass Copy/volatile - Page

X(const volatile X&, operator=(const volatile X&)
X(const X&), operator=(const X&)

This solution assunes that the proper copy operator is selected
using the overl oad resol ution rul es.

This solution nakes it a bit nmore tricky to describe the formof the
inmplicitly-declared copy operators if a class has bases and nenbers
wi th user-decl ared copy operators.
What if a class T has a base with copy operators of the form
X(const X&), operator=(const X&)
and a nmenmber with copy operators of the form
X(volatile X&), operator=(volatile X&)
whi ch copy-operators are inplicitly decl ared?
T(T&) , operator=(T& 7??
[ Gavin Koch, core-5311 ]:

In cases where the foll owing copy constructors are inplicitly-declared
(when the class has no user-declared copy constructors):

X:: X( const X&) or Xt X( X&)

the vol atile version of these constructors are also inplicitly
decl ar ed:

X::X( volatile const X&) or X::X( volatile X&)
[ something sinmilar need to be done for assignment operators ]

When these functions need to be inplicitly-defined, it is an error
if they can’'t be (for the sane kinds of reasons the "const" versions
m ght not be inmplicitly-define-able).

This nmeans that for volatile objects, volatile semantics are use, and
for non-vol atile objects non-volatile semantics are used. |f the copy
constructor is user-declared, then the user deci des whether to handl e
vol atile or not.



