

Doc No: X3J16/95-0056 WG21/N0656 Accredited Standards Committee X3
Date: March 3, 1995 Page 1 of 4 Information Processing Systems
Project: Programming Language C++ Operating under the procedures of

 American National Standards Institute Ref Doc:
Reply to: Josee Lajoie

(josee@vnet.ibm.com)

 +---------------------------------------+
 | The class copy operators and volatile |
 +---------------------------------------+

 Should the form of the copy constructor and assignment operator be:
 1. X(const X&), operator=(const X&)
 or
 2. X(const volatile X&), operator=(const volatile X&)
 ?

 Solution 1.

 John Skaller has been arguing strongly in favor of 1. He states that
 only users should be able to declare a constructor or an assignment
 operator accepting a volatile reference parameter and further argues
 that a constructor accepting a volatile reference parameter is not a
 copy constructor and an assignment operator accepting a volatile
 reference parameter is not a copy assignment operator.

 [John Skaller in core-5214]:

T volatile vt;
T t = T(vt);

 this code is ill-formed unless either

T(T volatile&)
 or

T(T const volatile&)

 has been defined by the user or unless T is not a class type. The code

T t = vt;

 is well defined if, and only if, one of the above constructors exists
 and the copy constructor for T exists:

T(const T&)

 That is,

T(T volatile const&);
T(T volatile &);

 are implicit conversions (unless marked "explicit") but they are NOT
 copy constructors and the presence of their declaration in the class
 member list does not prevent the implementation from providing a copy
 constructor for T.

-------- X3J16/95-0056 - WG21/N0656 -- Lajoie:Class Copy/volatile - Page 3

 I can see two ways not to break C compatibility:

 1. Have a special rule for objects of POD class types.
 That is, an implicitly-declared copy operator for a POD class
 type is always of the form:

X(const volatile X&), operator=(const volatile X&)

 while the one for non-POD class type is of the form:

X(const X&), operator=(const X&)
 or

X(X&), operator=(X&)

 2. Adopt solution 2 for all classes.

 Solution 2.

 The copy operator may have anyone of the following forms:
 a. X(const volatile X&), operator=(const volatile X&)
 b. X(const X&), operator=(const X&)
 c. X(volatile X&), operator=(volatile X&)
 c. X(X&), operator=(X&)

 If a class does not have a user-declared copy constructor (copy
 assignment operator), one is implicitly declared.

 What is the form of an implicitly-declared copy operator?

 2.1 Only one kind of implicitly-declared copy operator

 If all bases and members have copy operators that can accept a const
 volatile parameter, the implicitly-declared copy operators have the
 form:

X(const volatile X&), operator=(const volatile X&)

 otherwise, the implicitly-declared copy operators have the form:

X(X&), operator=(X&)

 2.2. Two kinds of implicitly-declared copy operators are provided

 [Fergus Henderson, core-5301]:

The problem with option 2.1 is efficiency. It could be very
inefficient to use volatile semantics all the time for the copy
operators.

A possible solution is for the implementation to provide two
implicitly-declared copy operators, one that supports volatile
semantics, and one that does not:

-------- X3J16/95-0056 - WG21/N0656 -- Lajoie:Class Copy/volatile - Page 4

X(const volatile X&), operator=(const volatile X&)
X(const X&), operator=(const X&)

This solution assumes that the proper copy operator is selected
using the overload resolution rules.

 This solution makes it a bit more tricky to describe the form of the
 implicitly-declared copy operators if a class has bases and members
 with user-declared copy operators.

 What if a class T has a base with copy operators of the form:

X(const X&), operator=(const X&)

 and a member with copy operators of the form:

X(volatile X&), operator=(volatile X&)

 which copy-operators are implicitly declared?

T(T&), operator=(T&) ??

 [Gavin Koch, core-5311]:

 In cases where the following copy constructors are implicitly-declared
 (when the class has no user-declared copy constructors):

X::X(X&)X::X(const X&) or

 the volatile version of these constructors are also implicitly
 declared:

X::X(volatile const X&) or X::X(volatile X&)

 [something similar need to be done for assignment operators]

 When these functions need to be implicitly-defined, it is an error
 if they can’t be (for the same kinds of reasons the "const" versions
 might not be implicitly-define-able).

 This means that for volatile objects, volatile semantics are use, and
 for non-volatile objects non-volatile semantics are used. If the copy
 constructor is user-declared, then the user decides whether to handle
 volatile or not.

