
Document Numbers: X3J16/95-0044
WG21/N0644

Date: January 31, 1995
Reply To: Bill Gibbons

bgibbons@taligent.com

Pointer to Member Cast Issues

Introduction

There are two related pointer to member cast issues which have not yet
been resolved.

The first is casting across virtual inheritance; that is, casting a
pointer to member such that the class of
the pointer to member is virtual base class, or virtually derived from,
the previous class. The current
working paper requires this to work, and some compilers support it. But
it’s potentially expensive,
and it makes pointers to members larger than they would otherwise need to
be.

The second is casting to a base class of the class containing the
original member. The ARM was
unclear on whether this should work. The issue was discussed in
94-0101/N0488 and at the
Kitchener meeting. Although there was considerable support for allowing
this cast, it was clear that
the issue had not been discussed enough for a vote. Since the existing
wording was unclear, the
committee voted to clarify the wording in a way that did not support the
proposed casts, pending
further discussion.

Virtual Base Classes

In the following program:

struct B { void f(); };

struct D : virtual B { };

void g(D *d) {
void (D::*pf)() = &B::f; // implicit downcast
(d->*pf)(); // call

}

The call through the pointer to member must, using only information
stored in the pointer to member
itself, cast the pointer “d” from “D*” to “B*”, in
order to provide the correct “this” parameter for B::f.
Of course the relative position of B to D isn’t fixed, since a class
derived from D may place B at a
different offset.

So pointers to members must contain enough information to perform this
upcast; this makes them
larger than would otherwise be necessary. And when a pointer to member
is dereferenced, the code
must check whether to do the upcast (it isn’t always needed), and
perform the upcast if needed.

The check and the upcast can sometimes be optimized out if there are no
virtual base classes. The
memory for the description of how to upcast cannot be optimized out,
since it’s possible to declare a
pointer to member using a incomplete class.

X3J16/95-0044 WG21/N0644 Page 1

The problem is even worse with indirect virtual inheritance:

struct V { int a; };

struct X : virtual V { };

struct Y : virtual X { };

int X::*pxa = &V::x; // implicit downcast

int Y::*pya = pxa; // implicit downcast

The “pxa” pointer to member contains a description of how to cast
from X* to V*. The second
implicit downcast must somehow modify this description so that it works
for casting from Y* to V*.

This is a potentially expensive operation.

There are two common implementations of virtual base classes. In the
design used by cfront, derived
classes contain pointers to their virtual base classes. So the
description of how to cast to a virtual base
must be the offset to the virtual base pointer within the derived
object.

The second downcast must somehow map the offset to the V locator within
an X object to the offset to
a V locator within a Y object. There is no simple relationship between
these two offset values. All the
compiler knows is that the offset value in pxa is one of the virtual
base offsets in X. For each of these
offset values, there is a corresponding offset value in Y. But there is
no simple mapping.

One implementation actually generates a helper function containing a
switch statement which switches
on the old offset, with a case for each possible value, and returns the
corresponding new value. All
this to implement what appears to be a simple static cast.

In the other common design, each object (of a class with virtual
bases) contains a pointer to a table of
offsets to the virtual base classes. The content of these tables depends
on the actual relative positions
of the virtual base classes in the complete object. So like virtual
function tables, they must be
initialized by the complete class and their contents are not known to
the class which uses them.

In this model, each pointer to member contains an ordinal within the
virtual base class offset table for
the member’s class. Once again these ordinals must be mapped when a
pointer to member is cast
across virtual inheritance; but since the ordinals are dense, a simple
mapping table suffices.

With either implementation, there is extra space in the pointer to
member and extra overhead for
performing a simple static cast.

Is this feature important enough to justify the overhead? I suggest
that it is not. I propose that pointer
to member casts across virtual inheritance be ill-formed.

Upcasts Beyond the Member’s Class

Central to the concept of polymorphism in C++ is the ability to store
a pointer to any of a set of
concrete object types in a pointer to a common more abstract type, i.e.
a base class. In the general
case, this concept does not extend to pointer to members. But in an
important specific case it does.

In many situations it is useful to construct a pair consisting of an
object pointer and a pointer to
member which can be dereferenced with that object. This pair represents
a deferred action on the
object, and so is a very convenient form for handling callbacks, remote
procedure calls, container

Page 2 X3J16/95-0044 WG21/N0644

classes, etc.

There is a natural representation of a hierarchy of such pairs, namely
the class hierarchy itself. It
should be possible to cast the pair up to a base class, and dereference
the pair in the context of the base
class.

There is no problem casting the pointer half of the pair up the
hierarchy to a base class.

But when we try to cast the pointer to member half of the pair, we hit
some limitations.

struct A { };

struct B : A { virtual void f(); };

struct C : A { virtual void g(); };

void h() {
// base class pointer to derived object
A *objptr = new C;

// base class member pointer to derived member
void (A::*memptr)() = (void (A::*)()) &C::g;

// ... handled as a pair ...
// ... eventually dereferenced as a pair ...
(objptr->*memptr)();

}

Many compilers do not completely support upcasting a pointer to member
beyond the class containing
the original member, i.e. to a class that does not contain or inherit the
original member. There is no
conceptual problem with such a cast; after all, we cast the object
pointer to a class in which the
member did not exist either. Yet the member is still there; it simply
isn’t visible using the static type of
the pointer.

Similarly, when a pointer to member is upcast beyond the class containing
the original member, it still
refers to the original member. It should be possible to dereference
the pointer to member with an
object which contains the member.

When an object pointer is downcast, the author of the code must be
certain that the object really is of
the derived type. Similarly, when a pointer to member is upcast, the
author of the code must be
certain that any dereference of the pointer to member is done with an
object of the derived type. In
both cases the cast must be explicit because it is impossible to
statically check its validity.

In the special case of upcasting a paired object pointer and pointer to
member, it is easy to verify the
program’s validity because the pointer always refers to an object
suitable for use with the pointer to
member.

This is a very useful technique, largely because of its implicit safety.
 Although there are alternatives,
they are not as clean and simple as this more obvious technique.

How difficult is it for compilers to support these upcasts? It’s
trivial - because they already support
them. If a pointer to member is sufficiently general to handle multiple
inheritance and virtual
functions, it is already general enough to handle the proposed
upcasts.

X3J16/95-0044 WG21/N0644 Page 3

The only reason these upcasts fail with working compilers today is that
some compilers optimize out
one or both of these parts of a pointer to member dereference:

• Multiple inheritance offset adjustments

• Virtual function calls

If a pointer to member’s class does not use multiple inheritance,
some compilers assume there will be
no offset adjustment. This is a very small optimization; it usually
saves only one instruction.

If a pointer to member’s class does not contain or inherit virtual
functions, some compilers assume
that a pointer to member dereference will never be a virtual function
call. This is a noticeable
optimization on machines which inline virtual function calls, but only
for nonpolymorphic classes.
On machines where virtual calls are done with calling thunks there is no
optimization at all.

Even on compilers which do these optimizations, it’s possible to get
pointer to member upcasts to
work by defeating the optimizations. For example, by adding a dummy
non-primary base class with a
dummy virtual function (to add multiple inheritance and virtual
functions.)

These upcasts are useful. They are obvious. They are impossible to
check for at compile time, and
they mostly work in existing compilers. So they will be used, whether
the standard supports them or
not. Given that the cost is so small, it seems reasonable to require
that these casts work.

Upcasting Across Virtual Inheritance

These two issues intersect when we consider upcasting a pointer to
member beyond the class
containing the original member, to a virtual base of that class.

This is a problem because dereferencing the pointer to member would
require casting the object pointer
down across virtual inheritance - which is a very expensive operation,
as it requires a dynamic cast. It
would be unreasonable to require an implicit dynamic cast in this
context.

So there are two limitations on upcasting pointers to members:

• They must only be dereferenced with objects containing the original
member.

• They may not be cast to a virtual base of the class containing the
original member.

The second limitation would be subsumed by a rule which disallowed all
pointer to member casts
across virtual inheritance.

Proposals

1. Disallow casting pointers to members across virtual inheritance. Change 5.2.8/8

from:
... may be converted to ... where B is a base class of D ...

to:
... may be converted to ... where B is a nonvirtual base class of D
...

Page 4 X3J16/95-0044 WG21/N0644

2. Allow upcasts of pointers to members beyond the original member’s
class. Change 5.2.8/8

from:
... and class B does not contain or inherit the original member,
...

to:
... and class B is neither a base nor derived class of the class
containing the original
member, or class B is a virtual base of the class containing the
original member, ...

Add to 5.5:

The dynamic type of the object must contain the member to which the
pointer refers.

3. Both of the above. The wording is a little simpler. Change 5.2.8/8:

from:
... may be converted to ... where B is a base class of D ...
... and class B does not contain or inherit the original member,
...

to:
... may be converted to ... where B is a nonvirtual base class of D
...
... and class B is neither a base nor derived class of the class
containing the original
member, ...

Add to 5.5:

The dynamic type of the object must contain the member to which the
pointer refers.

X3J16/95-0044 WG21/N0644 Page 5

