Document #: WG21/N
X3J16/92-0133
Date: November 1992

Proposed Revisions to the Template Specification

Bjarne Stroustrup
Martin J. O'Riordan
Andrew Koenig

Jonathan Shopiro

Introduction

This paperaddresses some dhe unresolved quoorly defined issuexoncerning the template
specification. Specificalljthe paper addresses thsues concerninthe generation of needed templates.
However, there are many other issues whiehintended to be addressed in a further paper, including the
determination of the term "needed" and other loosely specified parts.

Since the generation of templates is fundamental to the understanding of what templates are, this paper is
intended to define the groundwonlecessary for fully specifyingll of the othelopen issues concerning
templates.

Most ofthe background of this paperdsrived from a lengthy discussion by the authorMay 1992,

and subsequent electronic communication which discussetreworkedthe original summary dhat
meeting. The intenvas to clarifymuch of themystery oftemplatesand tospecify aset of rules and
interpretations whiclgrant as mucliiexibility to templates as possible, without compromisisiter the
programmer, or the rest of the programming language C++. Simultaneously, the discussions kept in mind
issues of implementation in order to ensthat areasonable implementation of templatesuld not

prove to be a major technical hurdle to implementors.

Consistent Terminology

Much of the argumerand disagreement to date, hesen with respect tthe terminologysed in the
chapter describing templates. Most frequessbeenthe varying application ofunction-templateand
‘template-functionto express different ideas and intents. Since no consisterihg is applied, theesult

is confusion and argument.

For the purposes dhis document, as proposal for formal adoption bype committee imiscussions
about templatesand for the purposes of clarifying the documentatiorprdpose we adopt the
formalisation that a trailing-templaté describes a set of types or functions describedtésnplate. And
that a leadingtémplate; is used to describine template definition of part of demplaté such as a

‘template-member-functionThus :-

‘function-template

‘class-template

‘template-function

‘template-class

'member-function-templdte

A set of functions described by a template, parametric on
some typenformation provided as argumenttteattemplate.
For example :-

template<class T> int nullcheck(T* pT)
{ return (pT !=0); }

A set of classes described by a template, parametriome
typeinformation provided as argument tfeat template. For
Example :-

template<class T> class S {

int i;

public:
int sep_member();
int imm_member()
{return 2;}

2

This term is no longer permitted.
This term is not permitted.

This term is not permitted, as describes a property not
currently supported by the template definition. Using the
aboveterminology conventiorthis would describe a member
of a non-class-template, whosaefinition was itself a
template. For example :-

class Normal { public:
template<class T> int foo(T*pT)
{ return (pT ==0); }
2

However,since templates are currently limited to tgiebal
scope, such a template is invalid.

‘template-static-member-function

‘template-member-functibn
'template-static-membler

‘template-static-data-member

Proposed Revisions to the Template Specification Page 2

‘template-membér Alternative terms forthe definition of a member appearing
separate to theclass-templateto which it belongs. For
example :-

template<class T> int S<T>::sep_member()
{returni; }

In addition, terminology is necessary to desctibe various ‘instancing' of class-templates, function-
templatesand themembers of a class-template. Since trasethe "Specializations" of a template, a
trailing -specializatiohindicates thespecificinstance of a template. This is farn comprised of two
types ofspecialization, théUser Specialisationandthe"Generated" specialization. It is suggesteat

the explicituse ofthe term'User Defined Specialization" be used to distinguisiaaslator generated
specialisation from one which is explicitly provided by the programmer.

‘class-specialization Specialization of a complete class-template.

‘function-specialization Specialization of a non-member function-template..

'static-member-function-specialization

'member-function-specializatibn

'static-member-specialization

'static-data-member-specialization

'member-specialization Alternative terms forthe specialization definition of a
member of a class-template.

For example, a user specialization of a member could be :-

int S<char* p>::sep_member()
{ return strlen(p); }

Similarly, a user specialization of a class-template could be :-

class S<char*> {

public:
int sep_member();
int imm_member()
{return7;}

2

And a user specialization of a function-template could be :-

int nullcheck(char* pc)
{ return (pc == (char*)-1); }

Scope Of Definition

One of the most open areas in the current paper, is the determination of where a teatplkeeded is
generated. The problem stems from thet that atemplate definition can appear in many translation
units. Typically, class-templateand inlinefunction-templates will appear in header filemd by
inclusion will appear in many of the translation units of a given program. On thehathéfunction-
templatesand specializations of templates (especially function-templatas)likely to appear in single
translation units, and complicate the tieedetevaluation.

This section deals strictly with the determination of where a needed template should be generated, and
what theeffect ofthe multiplescopes possiblpresent are othat definition. Followingthe proposed

Proposed Revisions to the Template Specification Page 3

interpretation, aresections which provide examplasd rationalesupporting the reasoning behind the
proposed interpretation.

Therewere several goals ithe original template specificatioand it is intendeevherever possible to
preserve these goals. The gdadfefly are toprovide a parameterisdgpe language facilitythat would
permit automatic generation of required templgqges and functions; that would be suitable for the
separate compilation of template declaratiowd definition; that would facilitate earlyrather thanlate
detection of programmer errorfhat was not subject to ambiguoumterpretation by programmer or
translator.

The Suggested Resolution

* When an instance of a template is required, then the definititrabinstance can lgenerated, as if
it had occurred immediately after the definition of the corresponding template. If the template
definition appears in morthan one translatiomnit, thenany translatiorunit which contains the
definition may be used to gener#ite required instance. For each type-argument, if the definition of
the correspondingype required by the template instance appears in ni@eone translatiounit,
thenany one of the definition®ay be used to providee informationfor generating the template
instance dependent upon that type.

« Both of the above are direct derivatives of tbmé& Definition Rulé That is, since the definition of a
given class must be identical across the set of translation units which comprise the program, it is
sufficient to select any one of these to genetiage template instance involvirthat type. If the
program differs as a result of selectingype ortemplate definition from different translations units,
then thatclass or template is said to be in violation of @BR, and assuch specifies an undefined
program.

» Parsing, Binding and Type-Checking

* There are several types of elements present in a template defimittegach must be associated with
a consistent and meaningful scope These are :-

'‘bound-symbols which are thesymbols explicitly associateslith the type-argument to the
template, through the membselection operators”, ->', '* ' and *>* ';
through declaration involving the type-arguments; or through explicit
qualification involving the type-arguments. These gpe-checked and
bound to thescope ofthe type-arguments, when the template instance is
generated. Such bindingvolves the standard member-nateekup
rules, anddoesnot otherwisenvolve symbolspresent in thescope in
which the type-argument definition occurs.

Proposed Revisions to the Template Specification Page 4

‘free-symbols all symbolsother than bound-symbols Of these there arevo forms;
thosethatinvolve the template type-argumengs)dthosethat do not. All
free-symbolsare bound to thescope ofthe template definition. Afree-
symbols associatedith the type-arguments to the template #ype-
checked whernthe template instance is generated. fagé-symbols not
associated witlthe type-arguments, ab®undandtype-checked when the
template definition is processed the translator. This hadfectthat the
following program fragment is not valid :-

template<class T> int key(T t)
{ f(); return O; }

Since theftee-symbdl'f ' has nobeen declared ithe scope inwhich the
template definition occurs. Ithis way, templates do nobehave in a
MACRO-like fashion. Since MACROS daot honour the semantics of
scope or the ODR, it is seen as being necessary to outlaw programs such as
this, in order tospecify a stricter definition for templateghat is
unambiguous, reliable, more comprehensibled does not inherently
violate the ODR.

'implicit-operations Including implicit conversion operators, constructarsl destructors, and
infix-operators. Whenever an expression in a template definition is
dependent in someay onthe type-arguments to the templaten the
implicit operations involved ithatexpression mawot befully bound. If
this is thecasethen the parts of thexpression so affectedrebound and
type-checked wherthe template specialization is generated. Other
expressions, not so constrained, amind and type-checked when the
template definition is first processed. For example :-

template<class T> T& min(T& |, T& r)
{ if(I>r) returnr; else return |; }

Here,the infix operator>" which is used to compaithe two objects is
associated witlthe parametritypes tothe function-templateand assuch,
cannot be bound to immediatelyHowever, inthe following template
example :-

class W { public:
int operator >(const W&) const;
2

template<class T> T& xmin(T<, T&rt, W&Iw,W&rw)
{ if(it>rt)
if(lw>rw) return O; else return 1;
else
if(lw>rw) return 2; else return 3;

The first infix operator >' is associated withthe parameters to the
template,and asuch cannot be bound or checked immediately. But the
subsequent infix operators''comparing lw' and tw' are in no way
associated withthe parametritypes, and arebound and checked
immediately.

Proposed Revisions to the Template Specification Page 5

 Members definedvithin a class-template definition ai®und and type-checked wheihe class-
template specialization is generated. Specializations of members of a class-template, which are
defined separate to the class-template defindi@n generatedioundand type-checked, only ifhat
member function is needed by the programhis provides a model consistent withe behavior of
non-parametric classes. For example :-

/l Header #1; template definition
template <class T> class X {
int foo () { return T.member; }
char* bar ();

Il File #2; template member function definition
#include "Header #1"
template <class T> char* X<T>::bar () { return T.member; }

Il File #2

#include "Header #1"; template use
class Okay { public:

static int member;

2
X<Okay> noProblem; /I Okay, no conflict
noProblem.bar(); /I Causes an error when the

/I generated specialization of
/I 'bar' is done

class Error { public:
static char* member;

h

X<Error> aProblem; /I Causes immediate error, since
/I 'foo' has a return type mismatch

e The name of a template-type-argumemiay not be used toompose aqualified-name. This
eliminates several unresolvalgarsingproblems with templates. Thus tfidlowing example is not
permitted :-

template<class T> class X { public:
void f) { T::a*p; ... }

h

Since there is nway ofknowing whether or nof::a 'is a type-name or a non-type-name. To get
around this limitation, it is necessary to in some way, attribute the amme''with typeness onon-
typeness as appropriate

SUBSEQUENT TOWRITING THE ABOVE FURTHER DISCUSSION INDICATES AN ALTERNATIVE POSSIBLRULING. THIS FOLLOWS
DISCUSSIONS WHICH TOOKPLACE AT THEBOSTON92 MEETING. THIS DISCUSSION INDICATED THAT MANYPEOPLE WERE INFAVOR

lCurrently there is no language wayspecifyingthat a given identifiespecifies a type-name, or a non-type-name. We behatsome
syntax for expressing this is necessary, in order to permit more flexible application of templates without introducing ambiguity.

Proposed Revisions to the Template Specification Page 6

OF PERMITTING THE NAME'T::A' ABOVE TO BE INTERPRETED AS A NON'YPENAME, AND THAT THE ABOVE EXAMPLEWOULD
THEREFORE BE VALID IN ADDITION, IT WAS SUGGESTEDTHAT A NAME CAN BE EXPLICITLY DECLARED TO BE A TYPENAMEUSING
THE 'CLASS NOTATION, FOR EXAMPLE:-

class T::a; /l The name 'T::a' is a type name

THIS ALLOWS THE TEMPLATE DEFINITION TO KNOW THETYPENESSOF A GIVEN NAME, AND TO DETERMINE THE CORRECT PARSE OF
THAT TEMPLATE DEFINITION WITH THIS KNOWLEDGE THE DEFAULT IS THAT THE NAME ISNOT A TYPENAME FROM THIS, THE
ABOVE EXAMPLE BECOMESVALID, AND THE NAME 'T::A' REFERS TO A NONTYPENAME, SO THE STATEMENT IS AMULTIPLY,
INSTEAD OF A DECLARATION OF A POINTER

IF DURING THE SPECIALISATION OFTHE TEMPLATE THE NAME RESOLVES TO BEING DIFFERENT IN TYPENESS TIMAT IMPLIED,
THEN THE SPECIALISATION IS IN ERRORAND MUST BE DIAGNOSED AS SUCH FOR EXAMPLE :-

class W { public: class a{}; };
X<W> XofW; /I Specialization of 'X<W>::f is in error
/I 'T::a' must be a non-typename

* The definition of any classsed athe base-class of a class-template, must obetorethe definition
of the class-template occurs, unlélsatbase-class is a type-argumenthe class-template. This is
consistent with the usual rulés classesthat require thdase-class definition to be available when
the derived-class definition occurs. Thus :-

template<class T>class S: A{... };
template<class T> class W : V<T>{ ... };

are not valid, as the definition of thase clas#\' has nolyet beerseen, nor has the definition of the
class-template/. However, the following are legal code fragments :-

classA{... };

template<class T>class S: A{... };
template<class T>classU: T {... };
template<class T> class W : S<T>{ ... };

* When a class-template is itself used as a base-claaadther class-templatdenspecializations of
that base class-template, on which the derived class-template depagpdst change thetypeness
of any symbolswhich appear in the template class definitiohhat is, asymbol maynot have its
meaning changed from tgpe to a non-type, or viceersa. This eliminateseveral unresolvable
parsing problems with templates during derivation. For example :-

template<class T> class B { public:
int foo ();
typedef int VALUE;

3

class B<char*> { public:

int bar ();
int VALUE;
2
class B<float> { public:
typedef double VALUE;

3

template<class T> class D : B<T> {
VALUE getValue();
2

D<float> df;
D<long> dl;

Proposed Revisions to the Template Specification Page 7

All of the aboveare valid, since the specialization Bf with ‘char* ' is not involved as base-class
of 'D, and thespecialization ofB' with 'float' doesnot violate changthe typeness ofVALUE. But
the following is invalid :-

D<char*> dpc; /I Error. Specialization changes typeness
/I of 'VALUE'

Proposed Revisions to the Template Specification Page 8

Rationale

Using the ODR wasfundamental to understanding amesolving the complicated interactions of
templates, scopes and multiple translation units. After examining many program fragmeritging to
determine a set oM/hat if scenarios, thaffect onthe program reliabilitand consistency becameery
unstable in the absence of the ODR. As a result, the propasalerived largely from going back to first
principles, and rigorously enforcing the ODR in subsequent interpretations.

This hasmany beneficial effects. The program integrity is not compromised Ibyp-holes in the
language. The intent amgbal of providing an automatic paramettype extension to C++ is achieved,
while still permitting separate compilation without compromistowever,there aresomethings which
are possibleusing MACRO like PT, which are nopossibleunder thisscheme. These constraints are
considered by the authors to be a snhadis when measuredgainst the strengths of treaggested
changes.

Function-Templates

Function-templates provide a good starting point for describing the effects of these rules aasahsyy
describedand illustrated with sma#xamples. Consider th®ollowing program, consisting of 4
translation units. This exampfgovides a good reference fibre problems of establishing teeope of
template instance generation :-

EXAMPLE #1
/I Unit #1
int a;
class W {
public:
W(int=a) {}
2

/I Unit #2

template<class T> int foo(T&);
class W;

extern W aW;

extern int bar();

int main () {
(void)bar();
return foo(aw);

}

//Unit #3

template<class T> int foo(T&) {
TaT(7);
return 7;

}

I/ Unit #4
extern int a;
class W {
public:
W(int=a) {}
3

template<class T> int foo(T&);
W aw,

Proposed Revisions to the Template Specification Page 9

int bar () {
return foo(aw);
}

There areseveral problems here. Using the current wordamgl thevarious interpretations available to
date, there are several possible programs described.

Assume (althouglthis is not the intent of thARM) that the generation of thfeanction-template must
occur inthe unit which determined theed for a given instance. his casethe units #2 and #dave a
need for a function with the signature :-

extern int foo(W&);

however,the definition of the templat@ccurs inunit #3, andsuch an interpretatiowould render the

aboveprogram invalid. The design of the templd#eility for C++, was intended to permit such
programs involving the separate compilation of template declaradimhtemplate definitions. For this
reason, it is necessary to involve the context of translation unit #3, in the generation of the function.

This also presents a problem, singeit #3, knows nothing of theclass W ' which is involved in the
generation of the instance. Consequently, fiteisessary to involvihe contexthat sgcifies W with the
context that specifies the function-templéte "'

Further assumthat thefirst translation unit to determine thaeed for a template instance, establishes
the context in which the instance is created.

If the first translation unit to determine theetd is unit #2, then thaéype W is incompleteand the
declarationT aT(7) 'in the template definition is in error. Yet, if the first translatioit to determine
need is translation unit #4, then the definitionis complete, and the template instance is possible.

This is an undesirablproperty, since the program's correctnessild be determined by an arbitrary
ordering of the translation units. By tDR, we already knowhat thedefinitions of thetype tlass

W in all translation units must agre&inceall definitions of W must agree, the translatisgstem may
choose any definition fow, without affecting the outcome. For this reason piteposal statethatwhen
generating the template instance, the definition of the type-argumanbe selected from any context in
which its definition occurs. According to tl@DR, therecan only be one definitionalthoughtypical
implementations may replicatine definition using the '#include' mechanismd it is a non-trivial
exercise to determine whether or toé replication actuallyiolatesthe ODR. However, grogram
"Behaves" as if a functiomas multiple definitions, then it @early in violation otthe ODR, andsuch an
implementation is in error.

The effect ofthe proposed changes, is to matke program validand independent of translation unit

ordering, and the translation unit containing the definition of either the template or the types on which the
specialization is parametric.

Proposed Revisions to the Template Specification Page 10

Effects of Information in the Scope of Generation

While theaboveexample may be satisfactorily demonstrated to be consistdmthe ODR, and support

the full intent of the separate compilation goal of templatefdsnot address the fudlffect of scopes on
the decision to usine ODR andscopebinding rules proposed lifiis document. Théollowing examples
help illustrate the rationale :-

EXAMPLE #2a

void f(int);

template<class T> void g(T x)

{ f(x); } /I Calls 'f(int)'
void h() {g(2.5);} // Calls 'f(int)" indirectly
void f(double);

void k() {g(2.5);} // Also calls 'f(int)' indirectly
EXAMPLE #2b

/I Unit #1

void f(int);

template<class T> void g(T x)

{ f(x); } Il Calls 'f(int)'

/I Unit #2

template<class T> void g(T);

voidh () {g(2.5);} /I Calls 'f(int)" indirectly
void f(double);
void k() {g(2.5);} /I Also calls 'f(int)" indirectly

The wording of the current document, statiest the instance isreated immediatelypeforethe point
where it is first neededThis rulehowever leaves clear opportunity for violatiortted ODR, and assuch
needs to be abolished as fiolowing argument illustrates. In Example #2a, it is first needed by the
function h', which requires a function with the signature :-

extern void g(double);

and on instancing th&unction, the functionf" on which §' is dependent is NOT overloadezhd is
'void f(int) '. Thus the functiorvbid g(double) ', causeghe functionvoid f(int) ' to be
called. The samnd functionk" also needs the function-template instance with the signatoick '
g(double) ', but since it has already been generated, it will use the first instance.

However, removéehe functionH' from the exampleand thefirst function to need the instanoeoid
g(double) 'is the functionK'. At this time, the functiorf ' is overloadedand the instancwill select
'void f(double) '. This is further aggravated if the functiohsand §' appear in separate translation
units.

This isclearly in violation ofthe ODR, since it is possible fahe function with the signatureoid
g(double) 'to have different definitions, depending on the point of generation of the function-template
'g'. Thus the rule which states that the 'instance is generated immeb@tegthe point where it is first
needed' must be retracted.

The Exampleé#2b was provided as an alternativédite same program, but where the template definition

is placed in a separate translationit. Apartfrom thepossibility of violatingthe ODR, it would bevery
surprising if the functionvbid f(double) ' was ever selected fgeneratingd', since there is no such

Proposed Revisions to the Template Specification Page 11

function apparent where the template definition appeard, the programmaevould rightly expect the
function Void f(int) ' to be selected.

This isone of the reasorthat a singleconsistent context of generation was determined to be necessary.
The only place that the scope could be guaranteed consistent, is at the template definition itself. Thus, the
point of instance definition is said to occur immediately dfter definition of the template. TI@DR,

comes backnto play forthe template definition itself. If the template definition is slightigdified as

follows :-

EXAMPLE #3

/I Unit #1

void f(int);

template<class T> inline void g(T x)

{f(x);} /I Calls 'f(int)’

void h() {g(2.5);} // Calls 'f(int)" indirectly

/I Unit #2

void f(int);

void f(double);

template<class T> inline void g(T x)

{f(x);} /I Calls 'f(int)' or 'f(double)'

void k() {g(2.5);} [/ Calls'f(double)" indirectly
it becomeslearthat thefunction void g(double) " as caused by Unit #1, is differenttte function
'void g(double) ' as caused by Unit #2. Since theamonly be one definition fothe functionvoid

g(double) ' the progranctlearly violategshe ODR. The reason iviolatesthe ODR, isthat the binding
of the template definition in each of the translation units is dependent oscape ofthe template
definition itself.

For this reason, th®DR isapplied to the template definitidno, ensuring that programsuch as the
aboveare invalidated. By requiring th@DR, and the binding ofree-symbols tdhe scope inwhich the

template appears, it is possible to write safe, consistent proghahwill provide template instanceabat

arereproducibleandverifiable. Thus it is nohecessary to be concerned whicdmslation unit igicked

to provide the template definition, as by the ODR, they must all specify the same template.

Verifying the ODR itself is of course wery different problem,and placing théurden of specifying
correct templates falls into the domain of B®R. However, it reducetemplate specification to a
phenomenon which, although difficult to enforce, is relatively well understood.

NOTE: Templates is NOT a macro expansion mechanism, although parts of the implementation of
templates may use macro-like expansioechanisms. The design of Templates intentionally
tries to escape from the context sensitive dependencies inherent in macros.

Importing Versus Union of Scopes

One of the more difficult issues, is bringing togethkrof thetype andscopeinformation from theype-
arguments, with thecopeinformation of the template itself. It igery unspecified howthis might be
done. This proposal restricts the information known about a type provided as argurthexttytich can
be determined through member-lookup rules.

The reason for this is fairly straight forward. Treblem really boils down to whethtire scopes should

be merged (union afcopes), or importethrough the arguments. Tipgoblem with merging, ishat it
introduces two principal problems.

Proposed Revisions to the Template Specification Page 12

The first of these is the introduction of unwanted and unexpected overloadthgpssiblyambiguity and
silent contentions which can radically alter the intended meaning of a program. Aexadhiple
illustrates :-

EXAMPLE #4

/I Unit #1

void foo(int);

class A { public: operator float (); };

class B;

template<class S, class T> int grot(S&, T&);
extern B b;

int bar () {
Aa;
return grot(a, b);

}

/I Unit #2

void foo(float);

class B { public: operator short (); };
template<class S, class T> int grot(S&, T&);

/I Unit #3

template<class S, class T> int grot (S&rS, T&) {
foo(rS); /I Call foo(float)'
return rS; // Call 'rS.operator int()'

}

Presumehat thescope visible tohe template instancesasthe union of thescope visible tahe function-
template definitionand thescope visible tahe definition of the type-argumenthen the union of the
scopes causes botfod(int) ' and foo(float) ' to be visible forthe duration of the instance
generation of the functioint grot(A&,B&) '. The programmer ikely to expectthat when the
instance is generated, the expressifmo((int)a.operator float()) " will be generated.
However, because t¢fhe union of thescopes provided bglass A ' and tlass B ', the expression
'foo((float)a.operator float()) " will be generated. This is a silent change in ghabable
intent of the program.

In addition to preventing implicit violations of tli@DR, for reasons of program readabildéyd tocause
least surprise; thiproposal prevents thebovefrom happening, by requirinthat the free-symbdl'foo '

be visible to the template definition, and that the binding take place with resjecitas eliminates the
possibility of interference occurringetweenthe scopes inseparate translation units as a result of a
template generation. Thigoblems is magnified as mayge parameters causarger unions ocope to

be involved, further increasing the risk of unwanted inter-translation unit interference.

The seond problem which isloselyrelated (that minor changes ¢xample #4 will illustrate), ishat

allowing the union ofscopescan alsccause violations ofthe ODR; because ithe scopes visible for
imported classes differ, evéhoughthey are notinvolved inthe classbwn definitions, thegan cause
different programs, depending on which translationit the definitions areselected from. Avery

dangerous and undesirable property.

Proposed Revisions to the Template Specification Page 13

Class-templates as Base-Classes

While theaboveillustrates theeffects ofthe proposal on function-templates, its impact on class-templates
is less cleargspecially when specializatioage involved. The problem manifests itself wherclass-
template itself involves a class-template as a base-class. For example :-

EXAMPLE #5

/I Unit #1

int x ();

template<class T> struct A,

struct A<int> {
typedef short x;

/I Unit #2

template<class T> struct A
static T x ();

2

template<class T>
struct B : A<T> {
int a;
void f () {
x(a);

h

The problem ighat it is notpossible to determinthe meaning ok' in the member functiorf *. If
A<int> is not a specialization, then the functibhis in error, since it attempts to call the statiember
function in itsbase claswith an argument, when ffiact it takes no arguments. If ittise specialization,
then the functiorf" is valid, since it declares an object of tygleoit ' called &'.

This was considered kiyie authors to be contrary to the spnitd intent ofemplates, it preventsven
minimal parsing, binding andhecking of the template definitiomnd would make verification of a
general purpose template definition impossible. To couhigr theproposal restricts specializations of
such base-classes, actually involvedthie formation of a template-derived-class, from changing the
'typenessof symbolswvhich appear in the definition of the template-base-classt is, if asymbol in the
base class is some sort of class-naan@m-name or typedef-nantbe specializatiomay not re-specify

the samesymbol as dunction, object orenumerator, if thaspecialised class is used as a base-class for a
derived class-template. Similarly, if symbol in the base-class is some sort albject, function or
enumerator name, the specializatioray not re-specifythe symbol as aclass-name, enum-name or
typedef-name. Sinddhis is constrainednly tothe set of actudlase class-templates involved in such a
derivation, the detection of violations must occur when the deriving instance is generated.

Proposed Revisions to the Template Specification Page 14

The restriction thatype

