
X3J16/94-0200
WG21/N0587

Template Issues and Proposed Resolutions
Revision 9

John H. Spicer
Edison Design Group, Inc.

jhs@edg.com

November 5, 1994

Revision History

Version 1 { March 5, 1993: Distributed in Portland and in the post-Portland mailing.
Version 2 { May 28, 1993: Distributed in pre-Munich mailing. Re
ects tentative decisions
made in Portland and additional issues added after the Portland meeting. In Portland, the
extensions working group reviewed most of the issues from 1.1 to 2.8 and also reviewed 6.3.
Version 3 { September 28, 1993: Distributed in pre-San Jose mailing. Re
ects decisions made
in Munich. No new issues were added in this revision.
Version 4 { November 24, 1993: Distributed in post-San Jose mailing. Re
ects decisions made
in San Jose. Note that issues that have been closed as a result of formal motions in San Jose
will be omitted from subsequent versions of this paper. In San Jose the extensions working
group identi�ed a number of issues that required additional work. These issues have not been
addressed in this paper but will be addressed in the next revision.
Version 5 { January 25, 1994: Distributed in the Pre-San Diego mailing. The 41 closed issues
have been removed, 20 have been added, and a few existing ones have been updated.
Version 6 { March 25, 1994: Distributed in the Post-San Diego mailing. Re
ects decisions
made in San Diego. Note that issues that have been closed as a result of formal motions in
San Diego will be omitted from subsequent versions of this paper. In San Diego the extensions
working group identi�ed a number of issues that required additional work. These issues have
not been addressed in this paper but will be addressed in the next revision.
Version 7 { June 1, 1994: Distributed in the Pre-Waterloo mailing. The 24 issues closed in
version 6 have been removed and 16 new issues have been added.
Version 8 { November 3, 1994: Distributed in Valley Forge and in the post-Valley Forge mailing.
Re
ects decisions made in Waterloo. This version contains only issues closed in Waterloo.
Version 9 will be distributed at the same time as version 8 and will contain the open issues and
new issues.
Version 9 { November 5, 1994: Distributed in Valley Forge and in the post-Valley Forge mailing.
Issues closed in version 8 have been removed and new issues have been added.

Introduction

This document attempts to clarify a number of template issues that are currently either unde-
�ned or incompletely speci�ed. In general, this document addresses smaller issues.



94-0200/N0587 - Template Issues and Proposed Resolutions - Revision 9 2

Of the issues that are addressed, some are covered in far more detail than others. Some of
the resolutions represent solid proposals while others are more like trial balloons. The more
tentative proposals are so designated in the body of the document.

Even those resolutions that represent fairly solid proposals are only proposals. This doc-
ument is not intended as a formal proposal of any speci�c language changes. Rather, it is
intended as to be used as a framework for discussion of these issues. Hopefully this will ulti-
mately result in formal proposals for language changes.

Organization of the Document

The document is organized in sections. Each section consists of a list of questions. Each
question has an answer, a status, the version number of the �rst version of this document that
included the question, and the version number of the last change in the question. This allows
the reader to skip over questions that have not changed since the last time he or she read the
document.

Acknowledgements

I would like to thank Bjarne Stroustrup who contributed greatly by providing issues, reviewing
and improving upon proposed resolutions, and providing insights into other language changes
that may impact templates.

Summary of Issues

Because this is a rather long document this summary is provided to allow the reader to quickly
�nd issues in which he or she may be interested. Note that closed issues have been removed
from the body of the paper. Please refer to a previous version of the paper for additional
information on these issues.

Template Parameters

1.1 Can template parameters have default arguments? (closed in version 4)

1.2 Where can default arguments for template parameters be speci�ed? (closed in
version 4)

1.3 Can a type parameter be used in the type declaration of a nontype parameter?
(closed in version 4)

1.4 Can a nontype parameter as used above have a default argument? (closed in version
4)

1.5 Should it be possible to redeclare a template parameter name to mean something
else inside a template de�nition? (closed in version 4)

1.6 Can the name of a nontype parameter be omitted? (closed in version 4)



94-0200/N0587 - Template Issues and Proposed Resolutions - Revision 9 3

1.7 Can the name of a type parameter be omitted? (closed in version 4)

1.8 Can a typedef appear in a template declaration? (closed in version 4)

1.9 Can a nontype parameter have a reference type? (closed in version 4)

1.10 Are quali�ers allowed on nontype parameters? (closed in version 4)

1.11 May a template parameter have the same name as the class template with which it
is associated? (closed in version 4)

Class Template References

2.1 Can a nontype parameter that is not a reference be used as an lvalue or have its
address taken? (closed in version 4)

2.2 Can the class template name be used as a synonym for the current instantiation
inside a class template? (closed in version 4)

2.3 Can a class template have a template parameter as a base class? (closed in version
4)

2.4 Can a local type be used as a type argument of a class template? (closed in version
4)

2.5 Can a character string be a nontype argument? (closed in version 4)

2.6 Can any conversions be done on nontype actual arguments of class templates?
(closed in version 6)

2.7 What causes a template class to be instantiated? (closed in version 4)

2.8 How can a class template name be used within the de�nition of the template?
(closed in version 6)

2.9 The previous rule makes possible runaway recursive instantiations. How should an
implementation prevent this? (closed in version 5)

2.10 At what point are names injected? (closed in version 6)

2.11 Does an array parameter decay to a pointer type? (closed in version 6)

2.12 What can be used as an actual argument for a parameter that is a reference? (closed
in version 4)

2.13 Can template parameters be used in elaborated type speci�ers? (closed in version
4)

2.14 Can a class template or function template be declared as a friend of a class? (closed
in version 6)

2.15 Can template arguments be supplied in explicit destructor calls? (closed in version
4)



94-0200/N0587 - Template Issues and Proposed Resolutions - Revision 9 4

2.16 What happens if the same name is used for a template parameter of an out-of-class
de�nition of a member of a class template and a member of the class? (closed in
version 6)

2.17 What happens if the name of a template parameter of a class template is also the
name of a member of one of its base classes? (closed in version 6)

2.18 When must a type used within a template be completed? (closed in version 6)

2.19 Must a specialization declaration precede the use of a class template in a context
that requires only an incomplete type? (closed in version 6)

2.20 Proposal to defer error checking for operator ->. (closed in version 6)

2.21 When are names considered known in a template dependent base class? (closed in
version 6)

2.22 Proposed revision to rules for explicit instantiation of all class members. (closed in
version 8)

2.23 How does name injection interact with the semantics of friend declarations?

Function Templates

3.1 Can function templates have default function parameters? (closed in version 4)

3.2 Can the parameters with default arguments involve template parameters in their
types? (closed in version 5)

3.3 Can a local type be used as a type argument of a template function? (closed in
version 4)

3.4 Can any conversions be done when matching arguments to function templates?
(closed in version 5)

3.5 The WP requires that every template parameter be used in an argument type of
a function template. What constitutes a \use" of a template parameter in an
argument type? (closed in version 4)

3.6 Can unnamed types be used as template arguments? (closed in version 4)

3.7 Can template parameters be used in quali�ed names in function template declara-
tions?

3.8 Can a noninline function template be instantiated when referenced? (closed in
version 4)

3.9 A proposal to allow conversions in function template calls. (closed in version 6)

3.10 What happens when the explicit speci�cation of function template arguments results
in an invalid type? (closed in version 6)



94-0200/N0587 - Template Issues and Proposed Resolutions - Revision 9 5

3.11 How do default arguments work when using new explicit specialization declarations?
(closed in version 6)

3.12 How do old style specialization declarations interact with new style ones? (closed
in version 6)

3.13 Revisiting default arguments.

3.14 What are the rules regarding use of the inline keyword in function template decla-
rations?

3.15 How may elaborated type speci�ers be used in function template declarations?
(closed in version 8)

3.16 Clari�cation of template parameter deduction rules. (closed in version 8)

3.17 How may an overloaded function name be used as a function template argument in
a context that requires parameter deduction? (closed in version 8)

3.18 Must a function template declaration be visible when an instance of the template is
called? (closed in version 8) item[3.19] What are the rules regarding the deduction
of template template parameters? (closed in version 8)

3.20 How are type/expression ambiguities resolved in explicitly quali�ed function tem-
plate calls?

Member Function Templates

4.1 Are inline member functions that are not used by a given class template instance
instantiated? (closed in version 4)

4.2 Can a noninline member function or a static data member be instantiated when
referenced? (closed in version 4)

4.3 Must the template parameter names in a member function de�nition match the
names used in the class de�nition? (closed in version 4)

4.4 What are the rules regarding use of the inline keyword in member function decla-
rations? (closed in version 6)

4.5 How are default arguments for parameters of member functions of class templates
handled? (closed in version 4)

4.6 Can a class template member function be redeclared outside of the class? (closed
in version 6)

4.7 Can a member function of a class specialization be instantiated from a member
function of the class template? (closed in version 8)

4.8 Can a template member function be declared in a specialization declaration? (closed
in version 8)

4.9 Can a member function de�ned in a class template de�nition be specialized? (closed
in version 8)



94-0200/N0587 - Template Issues and Proposed Resolutions - Revision 9 6

Class Template Speci�c Declarations and De�nitions

5.1 Can you create a speci�c de�nition of a class template for which only a declaration
has been seen? (closed in version 4)

5.2 Can you declare an incompletely de�ned object type that is a speci�c de�nition of
a class template? (closed in version 4)

5.3 Can the class template name be used as a synonym for the current speci�c de�nition
inside the speci�c de�nition? (closed in version 4)

5.4 Can a speci�c de�nition of a class template be a local class? (closed in version 4)

Other Issues

6.1 Should classes used as template arguments have external linkage? (closed in version
4)

6.2 When must errors in template de�nitions be issued and when must they not be
issued? (closed in version 4)

6.3 What kinds of types may be used in a function template declaration while still being
able to deduce the template argument types? (closed in version 4)

6.4 Can a static data member of a class template be declared with an incomplete array
type? (closed in version 4)

6.5 How should template arguments that contain \>" be parsed? (closed in version 4)

6.6 Can template versions of operator new and operator delete be declared? (closed
in version 4)

6.7 How can a name that is unde�ned at the point of its use in a template declaration
be determined to be a type or nontype? (closed in version 4)

6.8 May template declarations be given a linkage speci�cation other than C++. (closed
in version 6)

6.9 Should there be a translation limit that speci�es a minimum depth of recursive
instantiation that must be supported? (closed in version 6)

6.10 Can a single template declaration declare more than one thing? (closed in version
6)

6.11 Can a storage class be speci�ed in a template parameter declaration? (closed in
version 6)

6.12 Can an incomplete type be used as a template argument? (closed in version 6)

6.13 Can a template nontype parameter have a void type? (closed in version 6)

6.14 Can a nontype parameter be a 
oating point type? (closed in version 6)



94-0200/N0587 - Template Issues and Proposed Resolutions - Revision 9 7

6.15 What kind of expressions may be used as nontype template arguments?

6.16 Can a template parameter be used in an explicit destructor call? (closed in version
6)

6.17 Can pointer to member types be used as nontype parameters? (closed in version 8)

6.18 Issues regarding declarations of specializations.

6.19 Clari�cation of explicit designation of a name as a type. (closed in version 8)

6.20 Template compilation model proposal. (withdrawn - last in version 7)

6.21 How is a dependent name known to be a template?

6.22 Interaction of templates and namespaces.

6.23 Floating point template parameters revisited.

6.24 May function types be used as template parameters?

6.25 WP clari�cation: overloaded functions as template arguments

6.26 WP clari�cation: access checking an template arguments

Nontype Parameters for Function Templates

A proposal for nontype parameters for function templates as required by the Bitset class.
(closed in version 4)

Class Template References

2.23 Question: How does name injection interact with the semantics of friend declarations?

The semantics of friend declarations in class templates are not clear. Prior to adoption
of the \no injection" rule, most implementations seem to treat a function declared in a
friend declaration in a manner similar to the equivalent declaration appearing outside of
the template. The declaration, in addition to granting friendship, also a�ected overload
resolution. In the following example f(A<int>,int) is injected from the instantiation of
A<int>. As a result, the call of f(ai, 'c') is treated di�erently than the call of f(1, 'c')

because the former allows conversions of its arguments while the latter does not1.

template <class T> void f(T, int);

template <class T> struct A {

friend void f(A<T>, int);

};

1This example is written using the \old" rules that permitted name injection and also the rules that prohibited

conversion of function template arguments. Under the new conversion rules, the conversion of char to int would

be allowed even for the function template call.



94-0200/N0587 - Template Issues and Proposed Resolutions - Revision 9 8

int main()

{

A<int> ai;

f(ai, 'c'); // Calls f(A<int>,int) with conversion

f(ai, 1); // Calls f(A<int>,int)

f(1, 'c'); // Error - no matching function

f(1, 1); // Calls f(int,int)

}

The motivation for the \no injection" rule was to avoid the silent introduction of declara-
tions that a�ect overload resolution, so clearly the old semantics of friend declarations are
made obsolete by the no injection rule. But what are the new semantics?

Proposal one: A friend declaration in a template class conveys friendship, but does noth-
ing more. It has no e�ect on overload resolution or on the source of the de�nition. A
specialization declaration may not be used in a friend declaration. A class specialization
is treated as a normal class declaration for purposes of injection.

This proposal has a number of unfortunate consequences. A friend declaration in a class
template is unlike any other declaration in the language. Furthermore, when selecting
rules for class specializations one must choose between the normal class rules and the class
template rules. Either choice results in some kind of inconsistency. Either it is impossible
to write a class specialization whose semantics duplicate those of the class template or it
is impossible to write a class specialization (or class template) whose semantics duplicate
those of a normal class.

template <class T> void f(T, int);

struct A {

friend void f(A, int); // Friendship & overload resolution

friend void f<>(A int); // ???

};

template <class T> struct B {

friend void f(B<T>, int); // Friendship only

friend void f<>(B<T>, int); // ???

};

void f(B<int>, int); // Affects only overload resolution

void f<>(B<char>, int); // Affects only source of definition

Proposal two: Proposal two is a proposal to bring back name injection. John Barton and
Lee Nackman of IBM have a paper in the pre-Waterloo mailing arguing that injection
from templates is an important facility. As a consequence of the Barton/Nackman paper
the injection issue may be revisited. Should the committee's previous decision regarding
injection be reversed I want to have an equivalent clari�cation of friend semantics available
as part of such a resolution.

The �rst part of this proposal is a description of the proposed name injection rules (this
was the original version of issue 2.10 from revision 1 through revision 4 of this paper).

// Name injection

template <class T> struct A {



94-0200/N0587 - Template Issues and Proposed Resolutions - Revision 9 9

friend void f(A<T>){}

friend void f2(struct X* x);

};

void main()

{

void* fp;

X* x; // Error - X is undefined

fp = f; // Error - f is undefined

f2(x); // Error - f2 is undefined

A<int> a;

X* x2; // OK - X defined during instantiation of A<int>

fp = f; // OK - only one instance of f

A<char> ac;

fp = f; // Error - f is now overloaded

}

Nothing is injected when the class template is scanned. X, f(A<int>), and f2 are in-
jected into the global scope when A<int> is instantiated. When A<char> is instantiated,
f(A<char>) is injected into the global scope. X already exists so nothing else is done with
X.

The second part of the proposal clari�es the sematics of friend declaration in template
classes.

A friend declaration in a template class, as in other classes, conveys friendship and injects
a declaration into the enclosing scope that a�ects overload resolution. A specialization
declaration may not appear in a friend declaration.

The advantage of this proposal is that normal classes, class temlates, and class specializa-
tions are all handled in the same way.

Status: Open

Version added: 7
Version updated: 7

Function Templates

3.7 Question: Can template parameters be used in quali�ed names in function template dec-
larations?

template <class T> struct A {

struct B {

friend B& operator +(const B&, const B&);

};

};

template <class T> A<T>::B& operator +

(const A<T>::B& b1, const A<T>::B& b2){}



94-0200/N0587 - Template Issues and Proposed Resolutions - Revision 9 10

template <class T> void f(A<T>, A<T>::B){}

int main()

{

A<int> a;

A<int>::B b1;

A<int>::B b2;

A<int>::B b3;

f(a, b1);

b1 = b2 + b3;

}

There are two issues involved here

1. how does one specify that a name like A<T>::B is a type?

2. can T in A<T>::B be deduced?

The �rst issue is discussed, and a proposal made in 94-0191/N0578 \Major Template Issues,
Revision 0", and will not be discussed here.

The remainder of this discussion focuses on the type deduction issue. This deduction has
deadlocked in the past, partially on the lack of substantial justi�cation for this feature.

I have discussed this issue with Alex Stepanov who informed me that not only it it impor-
tant for STL, but the current implementation of STL has had to use member functions
where friend operator functions are really needed, because the compiler being used to
develop STL does not support this feature.

The question really boils down to \can nested types be used in function template declara-
tions". The arguments for supporting this kind of usage are the same as the arguments for
providing nested types at all. In my opinion, it should be possible to take just about any
class and convert it into a template. Banning nested types in function template declara-
tions would make it impossible to convert many kinds of classes into template equivalents.

There are at least two compilers (IBM and EDG) that currently support this feature.

Note that now that nontype template parameters may be used in function templates, the
same principle applies to nontype parameters. For example,

template <int I> struct A {

struct B {};

};

template <int I> void f(A<I>, A<I>::B){}

One concern that has been expressed regarding this feature is that in a construct such as
T::A, T is the class in which A is declared and not strictly a type attribute of A. While this
is true, it does not change the fact that what is being deduced is in fact a type (or nontype
in the case of nontype parameters). The question is whether the class of which a type is a
member can be used as information from which type (or nontype) information is deduced.



94-0200/N0587 - Template Issues and Proposed Resolutions - Revision 9 11

In other words, we are not adding a new kind of deduction, we are simply expanding the
kind of information that can be used by the deduction process.

Answer: Yes, this kind of deduction is allowed.

Note that the type of the actual argument must be a nested type (class/struct, union, or
enum). A typedef is simply a synonym for another type and cannot be used.

This proposed resolution suggests that a compiler should be able to determine that names
used in this context are types. An alternative would be to require explicit designation as
a type. The current facility for such designation (using typedef) is not well suited for this
kind of construct, so some change to the current facility would probably be required.

template <class T> struct A {

typedef T::X;

T::X x;

T::X f();

friend void g(T::X);

friend void g(T::X2); // Error

template <class U> void h(U::Y); // OK

};

template <class T> T::X A<T>::f(){} // OK

template <class T> void g(T::X); // OK

Status: Open

Version added: 1
Version updated: 7

3.13 Revisiting default arguments.

I would like to recommend that we revisit the proposed rules for default arguments to
specify that the default arguments for a given specialization be locked in at the point that
name binding occurs.

This is motivated by examples such as the following. If it is possible to add default
arguments to a function template with template parameters that depend on other template
parameters, then the new default argument would need to be type-checked for each of the
instantiations that have already been generated { a process which has the potential of
yielding new errors for the already generated instantiations.

While this is possible to do, I think it would be more confusing to users than simply saying
that the default argument information is locked in when the �rst instance of the template
is referenced. I would recommend the same for member functions.

template <class T> void f(T, T, T*);

void g1()

{

int i;

f(i,i,&i); // Default arg information locked here

}



94-0200/N0587 - Template Issues and Proposed Resolutions - Revision 9 12

template <class T>

void f(T, T, T* = new T); // Error - default arguments modified

// after the first use

void g2()

{

int i;

f(i,i); // Without this rule, is this legal?

char c;

f(c,c); // How about this?

}

In the following example, a default argument is provided that is only valid for certain
instantiations. How would the behavior of this program change if the default argument
declaration (currently declared at point #2) were moved to either #1 or #3?

If the declaration were at point #1, an error would be issued at the call labeled #4 because
the default argument is incompatible with the parameter type.

If the declaration were at point #2, should an error be issued at point #2 because the
default argument is invalid for an existing instantiation? Or, should the error only be
issued if the default argument value is actually used in an invalid call?

Unless we adopt a rule that prohibits changing the default arguments once name binding
has occurred, we introduce a situation in which the legality of one call depends on whether
or not a previous call of the same function has been seen. I think this is undesirable.

template <class T> void f(T, T);

struct A {};

// template <class T> void f(T, T = 1); // #1

void g1()

{

int i;

A a;

f(i,i);

f(a,a); // #4

}

template <class T> void f(T, T = 1); // #2

void g2()

{

int i;

A a;

f(i);

f(a,a); // Is this an error?

f(a); // Error: default argument has wrong type

}



94-0200/N0587 - Template Issues and Proposed Resolutions - Revision 9 13

// template <class T> void f(T, T = 1); // #3

Status: Open

Version added: 5
Version updated: 7

3.14 Question: What are the rules regarding use of the inline keyword in function template
declarations?

Answer: Whether a function template is declared as being inline or static has no e�ect on
specializations. If a specialization is to be inline it must be declared inline regarless of how
the template was declared.

template <class T> void f(T) {}

template <class T> inline void g(T) {}

inline void f<>(int){} // OK

void g<>(int){} // OK (not inline)

Declarations of any given template or specialization must be consistent with previous
declarations (using the same rules that apply to nontemplate functions).

template <class T> void f(T) {} // Defaults to noninline

template <class T> inline void f(T); // Error: conflicts with

// previous declaration

template <class T> inline void g(T) {}

template <class T> void g(T); // OK - defaults to previous

// declaration

Status: Open

Version added: 7
Version updated: 7

3.20 Question: How are type/expression ambiguities resolved in explicitly quali�ed function
template calls?

template <class T> void f(){}

template <int I> void f(){}

int main()

{

f<int()>(); // which f?

}

Answer: As with other cases in the language, the ambiguity between a type-id and an
expression is resolved as a type-id.

Status: Open

Version added: 9
Version updated: 9



94-0200/N0587 - Template Issues and Proposed Resolutions - Revision 9 14

Other Issues

6.18 Issues regarding declarations of specializations.

The language was recently revised to require that a specialization be declared before it is
used. For example,

template <class T> void f(T){}

void f<>(int); // Declares that a specialization of

// f(int) will be provided

While this usage is clear for normal template functions, it is problematic for members of
template classes. In the nonmember case shown above, the template argument list makes
it clear that the function is a specialization. In the member function, only the argument
list of the class is present, making the purpose of the declaration less clear. For static data
members the problem is even worse because the syntax for the specialization is already
used to mean a de�nition for which no speci�c value is provided.

template <class T> struct A {

void f();

static int i;

};

void A<int>::f(); // Is this a specialization declaration?

int A<int>::i; // This is a definition, not a declaration

I propose that a keyword be added to designate a declaration as a specialization and that
the current syntax for specializations be eliminated. The following are some of the possible
keywords:

template <class T> struct A {

static int i;

};

specialize int A<int>::i;

specialise int A<int>::i;

specific int A<int>::i;

specialism int A<int>::i; // Yes, specialism is a real word

Of these, I personally prefer specialize because it matches the wording used in the
working paper. If specialize is not acceptable because it is spelled di�erently in some
countries, then specific would probably be my second choice.

Status: Open

Version added: 7
Version updated: 7

6.21 Question: How is a dependent name known to be a template?

This issue was raised by Erwin Unruh in c++std-ext-2239.

In the following example from Erwin's posting, the f on the indicated line refers to an
integer data member in A<B>, and to a function template in A<C>.



94-0200/N0587 - Template Issues and Proposed Resolutions - Revision 9 15

template <class T> class A : public T {

void foo(){

T t;

f < 1 > (t,t); // critical line

}

};

class B {

int f;

};

int operator> (B, bool);

A<B> ab;

class C {};

template <int I, class T> void f(T, C);

A<C> ac;

In another example from Erwin's posting, a variation of the problem using member tem-
plates is illustrated.

struct A { int x; };

struct B { template<int> void x(int); };

template <class T> struct C : public T {

void foo(){

x < 1 > (2); // critical line #1

}

};

C<A> ca; // #1 is double comparison

C<B> cb; // #1 is template function

Answer: We currently have a means of designating that a given name is a type for use when
a type will be de�ned in a template dependent base class. I propose a similar mechanism
for templates. A name will be assumed not to be a template unless explicitly designated
as one.

template <class T> class A : public T {

template f; // May be placed here

void foo(){

T t;

template f; // or may be placed here

f < 1 > (t,t);

}

};

The second example would be modi�ed as follows:

struct A { int x; };

struct B { template<int> void x(int); };



94-0200/N0587 - Template Issues and Proposed Resolutions - Revision 9 16

template <class T> struct C : public T {

template T::X; // May be placed here

void foo(){

template T::X; // or may be placed here

x < 1 > (2); // critical line #1

}

};

C<A> ca; // #1 is double comparison (now made invalid)

C<B> cb; // #1 is template function

The identi�er following the template keyword must either have no quali�er or have a
quali�er that begins with either a template parameter or a template class name.

If this proposal is adopted, I believe we should modify one of the existing uses of the
keyword template. It is currently used for template declarations and for explicit instanti-
ation requests. I believe that using it for both explicit instantiation requests and for explicit
template designation would be confusing. I propose that a new keyword instantiate be
added for use in explicit instantiation requests and that the keyword template no longer
be supported in that context.

Status: Open

Version added: 7
Version updated: 7

6.22 Interaction between templates and namespaces

The September 20, 1994 Working Paper contains a new section (with an editorial box) that
speci�es that an instantiation caused by a template reference within a namespace is done
within the namespace that contains the reference. Prior to this change the WP speci�ed
that the instantiation was done at the global scope.

The new WP description does not address what happens if the template itself was de�ned
in a namespace.

namespace N {

void g(int);

template <class T> void h(T);

void i(int);

template <class T> void f(T t)

{

g(t);

h(t);

i(t);

}

};

namespace X {

void g(int);

void h(int);



94-0200/N0587 - Template Issues and Proposed Resolutions - Revision 9 17

// Effective instantiation point of f(int)

void m()

{

f(1); // which g(int) should be called when f(int)

// is instantiated? Which version of h(int)?

}

};

In the example above, the new WP wording would tend to suggest that the instantiation is
done at the point indicated, suggesting that X::g(int) and X::h(int) should be called.
Selecting that instantiation point would also suggest that the call of i(int) would be
invalid because there is no function i in scope at the speci�ed point.

If the indicated point is truly the e�ective instantiation point, we need additional name
lookup rules so that names from the namespace in which the template was de�ned can be
available when the instantiation is done.

There seem to be four possible alternatives:

1. Look �rst in the template de�nition namespace, then in the referencing namespace.
In the example above, look �rst in namespace N, then in namespace X.

2. Look �rst in the referncing namespace, then in the template de�nition namespace. In
the example above, look �rst in namespace X, then in namespace N.

3. Look in both namespaces and allow overloading of names between the two namespaces.

4. Look in both namespaces, if the name is found in both namespaces the program is ill
formed.

Answer: Unknown

Status: Open

Version added: 9
Version updated: 9

6.23 Floating point template parameters revisited.

template <double D> struct A {};

A<1.0> a1;

A<2.0> a2;

In San Diego we voted to disallow 
oating point template parameters. The rationale for
doing so was the absence in the language of 
oating point constant expressions. Since then
we have added \arithmetic constant expressions" which include 
oating point constant
expressions. Consequently, the issue of banning 
oating point template parameters should
be reconsidered.

A<1.0/3.0> a_one_third;

A<.33333333333333333> another_third;



94-0200/N0587 - Template Issues and Proposed Resolutions - Revision 9 18

Answer: For consistency, 
oating point template parameters should be allowed unless there
is a compelling reason not to do so. There are compilers that support them now (Microsoft
and EDG, possibly others).

One unusual property of 
oating point numbers is the fact that it is di�cult to know
whether, on a given implementation, two 
oating point expressions will evaluate to exactly

the same value. Consequently, it is impossible to know whether, on a given implementation,
a_one_third and another_third have the same type. This should not come as a surprise
to anyone familiar with the use of 
oating point numbers, however.

Status: Open

Version added: 9
Version updated: 9

6.24 Question: May function types be used as template parameters?

The use of function types as template parameters is problematic. It can result in something
that looks like an object changing into a function declaration. Note that it is not possible
to de�ne a member such that it could be instantiated as either an object or a function.

template <class T> struct A {

static T t;

};

A<int()> a1; // Oops! A<int()>::t is now a function!

Likewise, a functiontype inherited from a template dependent base class can create the
same problem.

template <class X> struct A : public X {

typename X::T;

static X::T t;

};

struct B {

typedef int(T)();

};

A<B> a1; // Oops! A<B>::t is now a function!

Answer: A function type may not be used as a template parameter. A type named in a
typename directive may not refer to a function type.

Status: Open

Version added: 9
Version updated: 9

6.25 WP clari�cation: overloaded functions as template arguments

Section 14.7 says that overloaded functions may not be used as template arguments. This
is an unnecessary restriction and a change that was never voted on.

Because there are no conversions allowed on function pointers, and because the type of
the template parameter is known, there is no problem in selecting a member from a set of
overloaded functions as illusrated in the following example.



94-0200/N0587 - Template Issues and Proposed Resolutions - Revision 9 19

void f(int);

void f(char);

template <void (*fp)(int)> struct A {};

A<&f> af; // Should be OK

Status: Open

Version added: 9
Version updated: 9

6.26 WP clari�cation: access checking an template arguments

Section 14.7 describes access checking with respect to template arguments, and says, in
e�ect, that the access checking of a template argument depends on how it is used within
the template.

Accessibility of a type used as a template argument should be done the same way as all
other access checking. Speci�cally, it should be done where the name is referenced (i.e.,
when scanning the template arguments), not inside the instantiation of the template. The
reference of Y::S should be illegal even if the template never used the parameter T. Access
checking of names like T::Z, of course, needs to be done within the template.

Another way of saying this is that the validity of an instantiation (as far as access checking
is concerned) should not depend on which point of instantiation is used.

template <class T> struct X {

T t;

};

class Y {

private:

struct S {};

X<S> xs; // OK

};

X<Y::S> xs2; // Error - S is not accessible

Status: Open

Version added: 9
Version updated: 9


