
X3J16/93-0123
WG21/N0330

Template Issues and Proposed Resolutions
Revision 3

John H. Spicer
Edison Design Group, Inc.

jhs@edg.com

September 28, 1993

Revision History

Version 1 { March 5, 1993: Distributed in Portland and in the post-Portland mailing.
Version 2 { May 28, 1993: Distributed in pre-Munich mailing. Re
ects tentative decisions
made in Portland and additional issues added after the Portland meeting. In Portland, the
extensions working group reviewed most of the issues from 1.1 to 2.8 and also reviewed 6.3.
Version 3 { September 28, 1993: Distributed in pre-San Jose mailing. Re
ects decisions made
in Munich. No new issues were added in this revision.

Introduction

This document attempts to clarify a number of template issues that are currently either un-
de�ned or incompletely speci�ed. In general, this document addresses smaller issues and only
touches on some of the more global issues such as name binding, and avoids altogether issues
such as managing function instantiations across separate compilation units. Many of these
issues are discussed in Bjarne Stroustrup's paper \Major Template Issues" (93-0081/N0288).

Of the issues that are addressed, some are covered in far more detail than others. Some of
the resolutions represent solid proposals while others are more like trial balloons. The more
tentative proposals are so designated in the body of the document.

Even those resolutions that represent fairly solid proposals are only proposals. This doc-
ument is not intended as a formal proposal of any speci�c language changes. Rather, it is
intended as to be used as a framework for discussion of these issues. Hopefully this will ulti-
mately result in formal proposals for language changes.

Organization of the Document

The document is organized in sections. Each section consists of a list of questions. Each
question has an answer, a status, the version number of the �rst version of this document that
included the question, and the version number of the last change in the question. This allows
the reader to skip over questions that have not changed since the last time he or she read the
document.

93-0123/N0330 - Template Issues and Proposed Resolutions - Revision 3 2

Acknowledgements

I would like to thank Bjarne Stroustrup who contributed greatly by providing issues, reviewing
and improving upon proposed resolutions, and providing insights into other language changes
that may impact templates.

Summary of Issues

Because this is a rather long document this summary is provided to allow the reader to quickly
�ne issues in which he or she may be interested.

Template Parameters

1.1 Can template parameters have default arguments?

1.2 Where can default arguments for template parameters be speci�ed?

1.3 Can a type parameter be used in the type declaration of a nontype parameter?

1.4 Can a nontype parameter as used above have a default argument?

1.5 Should it be possible to redeclare a template parameter name to mean something
else inside a template de�nition?

1.6 Can the name of a nontype parameter be omitted?

1.7 Can the name of a type parameter be omitted?

1.8 Can a typedef appear in a template declaration?

1.9 Can a nontype parameter have a reference type?

1.10 Are quali�ers allowed on nontype parameters?

1.11 May a template parameter have the same name as the class template with which it
is associated?

Class Template References

2.1 Can a nontype parameter that is not a reference be used as an lvalue or have its
address taken?

2.2 Can the class template name be used as a synonym for the current instantiation
inside a class template?

2.3 Can a class template have a template parameter as a base class?

2.4 Can a local type be used as a type argument of a class template?

2.5 Can a character string be a nontype argument?

93-0123/N0330 - Template Issues and Proposed Resolutions - Revision 3 3

2.6 Can any conversions be done on nontype actual arguments of class templates?

2.7 What causes a template class to be instantiated?

2.8 How can a class template name be used within the de�nition of the template?

2.9 The previous rule makes possible runaway recursive instantiations. How should an
implementation prevent this?

2.10 At what point are names injected?

2.11 Does an array parameter decay to a pointer type?

2.12 What can be used as an actual argument for a parameter that is a reference?

2.13 Can template parameters be used in elaborated type speci�ers?

2.14 Can a class template or function template be declared as a friend of a class?

2.15 Can template arguments be supplied in explicit destructor calls?

Function Templates

3.1 Can function templates have default function parameters?

3.2 Can the parameters with default arguments involve template parameters in their
types?

3.3 Can a local type be used as a type argument of a template function?

3.4 Can any conversions be done when matching arguments to function templates?

3.5 The WP requires that every template parameter be used in an argument type of
a function template. What constitutes a \use" of a template parameter in an
argument type?

3.6 Can unnamed types be used as template arguments?

3.7 Can template parameters be used in quali�ed names in function template declara-
tions?

3.8 Can a noninline function template be instantiated when referenced?

3.9 A proposal to allow Derived<T> to Base<T> conversions in function template calls.

Member Function Templates

4.1 Are inline member functions that are not used by a given class template instance
instantiated?

4.2 Can a noninline member function or a static data member be instantiated when
referenced?

93-0123/N0330 - Template Issues and Proposed Resolutions - Revision 3 4

4.3 Must the template parameter names in a member function de�nition match the
names used in the class de�nition?

4.4 What are the rules regarding use of the inline keyword in member function decla-
rations?

4.5 How are default arguments for parameters of member functions of class templates
handled?

Class Template Speci�c Declarations and De�nitions

5.1 Can you create a speci�c de�nition of a class template for which only a declaration
has been seen?

5.2 Can you declare an incompletely de�ned object type that is a speci�c de�nition of
a class template?

5.3 Can the class template name be used as a synonym for the current speci�c de�nition
inside the speci�c de�nition?

5.4 Can a speci�c de�nition of a class template be a local class?

Other Issues

6.1 Should classes used as template arguments have external linkage?

6.2 When must errors in template de�nitions be issued and when must they not be
issued?

6.3 What kinds of types may be used in a function template declaration while still being
able to deduce the template argument types?

6.4 Can a static data member of a class template be declared with an incomplete array
type?

6.5 How should template arguments that contain \>" be parsed?

6.6 Can template versions of operator new and operator delete be declared?

6.7 How can a name that is unde�ned at the point of its use in a template declaration
be determined to be a type or nontype?

Nontype Parameters for Function Templates

A proposal for nontype parameters for function templates as required by the Bitset class.

93-0123/N0330 - Template Issues and Proposed Resolutions - Revision 3 5

Template Parameters

1.1 Question: Can template parameters have default arguments?

template <class T, int I = 1> struct A {}; // OK

template <class T = int> struct B {}; // OK

Answer: Defaults are allowed for parameters of class templates but not function templates.
If all of the template parameters have default arguments it is possible for a template class
reference to have an empty argument list. In such cases the syntax A<> must be used. The
<> may not be omitted.

Rationale: Defaults are allowed for nontype parameters based on the current syntax. De-
faults are not needed for function templates because the template arguments of function
templates are deduced from the types of the arguments with which the function is called.

Status: Support for default arguments for nontype parameters was tentatively approved by
the extensions working group in Portland. Subsequently objections were raised regarding
the omission of defaults for type parameters. The proposed resolution has been modi�ed
to include type parameters. This issue will be revisited by the extensions working group.

Version added: 1
Version updated: 2

1.2 Question: Where can default arguments for template parameters be speci�ed?

template <int i, int j, int k = 1> class A; // OK

template <int i, int j = 1, int k> class A { // OK

void f();

};

Answer: Default arguments for template parameters may be speci�ed in a class template
declaration or de�nition.

After merging the default argument information from the various possible sources, a pa-
rameter with a default argument may not be followed by a parameter that has no default
argument.

Status: Tentatively approved by the extensions working group in Portland.

Version added: 1
Version updated: 3

1.3 Question: Can a type parameter be used in the type declaration of a nontype parameter?

Answer: Yes.

template <class T, T t> class A {

public:

T a;

A(T init_val = t) { a = init_val; }

};

template <class T, T (*fp)(T)> struct B {

T t;

B() { (*fp)(t); }

};

93-0123/N0330 - Template Issues and Proposed Resolutions - Revision 3 6

Remarks: This introduces some cases where type checking for certain parts of a function
template declaration must be deferred until a type is created for an instance of the template.
For example,

template <class T, T t> class A {};

template <class T> A<T, 10> f(T); // 10 cannot be type-checked yet

There are several di�erent types of instantiations that can be done depending on whether
the template actual arguments are \normal" types and constants or whether they are the
template parameters of another template declaration. For purposes of this discussion let
us de�ne an instantiation in which none of the arguments are template parameters as a
\real" instantiation (e.g., A<int, 1>) and an instantiation in which any argument is a
template parameter as a \nonreal" instantiation (e.g., A<T,I>). In a nonreal instantiation
a nontype argument whose type is a template parameter cannot be type checked until the
template associated with the parameter (function template f(T) in the example above) is
instantiated.

Status: Tentatively approved by the extensions working group in Portland.

Version added: 1
Version updated: 2

1.4 Question: Can a nontype parameter as used above have a default argument?

Answer: Yes { for example, this should be legal:

template <class T> T f(T){}

int xyz(int){}

template <class T, T (*fp)(T) = f, class U = T> struct C {

T t;

C() { (*fp)(t); }

};

C<int> c;

C<int, xyz, float> c2;

Remarks: This is similar to the previous example; type checking for the default argument
cannot be done until a real instantiation of class template C is generated.

Status: Tentatively approved by the extensions working group in Portland.

Version added: 1
Version updated: 3

1.5 Question: Should it be possible to redeclare a template parameter name to mean something
else inside a template de�nition?

Answer: Redeclaration of a template parameter name anywhere within the scope of a
class template, function template, or member function of a class template is prohibited.
Redeclaration in a scope within one of these scopes is also prohibited.

Rationale: The redeclaration rules should be consistent so that a given usage is either al-
ways permitted or always prohibited. The following four cases should be handled similarly:

93-0123/N0330 - Template Issues and Proposed Resolutions - Revision 3 7

1. Class templates and classes nested within class templates should follow the same rules.
It is now possible to de�ne a nested class outside of the enclosing class and, as with
member functions described below, it is important that nested classes declared inside
a class declaration be handled the same way as those declared outside. Redeclaration
of T should be disallowed (or allowed) in both of the following cases:

template <class T> class A {

class B {

int T; // Error

};

};

template <class T> class A {

class B;

};

template <class T> class A<T>::B {

int T; // Error

};

2. Member functions de�ned in the body of a class template should follow the same rules
as member functions de�ned outside of the class template. Redeclaration of T should
be disallowed (or allowed) in both of the following cases:

template <class T> class A {

void f()

{

int T; // Error

}

};

template <class T> class A {

void f();

};

template <class T> void A<T>::f()

{

int T; // Error

}

3. Function templates should follow the same rules as member functions of class tem-
plates. Redeclaration of T should be disallowed (or allowed) in both of the following
cases:

template <class T> class A {

void f();

};

template <class T> void A<T>::f()

{

int T; // Error

}

template <class T> void g(T)

93-0123/N0330 - Template Issues and Proposed Resolutions - Revision 3 8

{

int T; // Error

}

4. Local classes of function templates and local classes of member functions of class
template classes should follow the same rules as nested classes of class templates.
Otherwise there is likely to be confusion about the di�erence in handling between
nested classes and local classes.

template <class T> class A {

class B {

int T; // Error

};

};

template <class T> void f(T)

{

class A {

int T; // Error

};

}

The result of these \meta-rules" is that redeclarations are prohibited everywhere except a
block scope within a function template or member function. Even use in this context (block
scopes) is likely to be error-prone. So, rather than have a single exception (block scopes) the
proposed rule is to prohibit redeclaration of template parameter names anywhere within
the scope of a class template, function template, or member function of a class template.

This, of course, has the disadvantage that some \benign" redeclarations are prohibited.
For example, inadvertent use of name that is also a template parameter name in a block
scope in a macro would now cause an error. There are problems caused by a decision to
either allow or disallow redeclarations in nested scope. The proposed resolution provides
a simple and consistent rule that was considered to be the better of the alternatives.

template <class T> class A {

int T; // Error

// Member function

void f();

class B {

int T; // Error

void f(){}

class C {

int T; // Error

};

};

};

template <class T> void A<T>::f()

{

int T; // Error

93-0123/N0330 - Template Issues and Proposed Resolutions - Revision 3 9

{

int T; // Error

}

class C {

int T; // Error

};

}

Status: Tentatively approved by the extensions working group in Portland.

Version added: 1
Version updated: 2

1.6 Question: Can the name of a nontype parameter be omitted?

template <class T, int> struct A {};

Answer: Yes.

Status: Tentatively approved by the extensions working group in Portland.

Version added: 1
Version updated: 2

1.7 Question: Can the name of a type parameter be omitted?

template <class, int T> struct A {};

Answer: No

Status: Tentatively approved by the extensions working group in Portland.

Version added: 1
Version updated: 2

1.8 Question: Can a typedef appear in a template declaration?

template <class T> typedef struct A {} B;

Answer: No { a typedef is used to create a synonym for a type and a class template name
is not a type name.

Status: Open

Version added: 1
Version updated: 1

1.9 Question: Can a nontype parameter have a reference type?

template <int& I> struct A {};

Answer: Yes (see next section for information about actual arguments of reference param-
eters).

Status: Tentatively approved by the extensions working group in Portland.

Version added: 1
Version updated: 2

93-0123/N0330 - Template Issues and Proposed Resolutions - Revision 3 10

1.10 Question: Are quali�ers allowed on nontype parameters?

template <const int i, volatile int j> struct A {};

Answer: Quali�ers are allowed. Note that because template arguments must be con-
stant values or addresses \top level" quali�ers have no e�ect. Other quali�ers, such as
const int* in the following example, are useful.

template <const int i> struct A {} // const has no effect

template <const int* i> struct B {} // const does have effect

Status: Tentatively approved by the extensions working group in Portland.

Version added: 1
Version updated: 2

1.11 Question: May a template parameter have the same name as the class template with which
it is associated?

Answer: No.

template <class T> class T {}; // Error

template <class T> class T; // Error

Rationale: In a de�nition this usage would be error prone (because the template parameter
name would be used when the user wanted to use the class template name. The same danger
does not exist in a declaration without a de�nition but is prohibited for consistency.

Status: Open

Version added: 2
Version updated: 2

Class Template References

2.1 Question: Can a nontype parameter that is not a reference be used as an lvalue or have
its address taken?

Answer: No.

template <int I> struct A {

void f() {I = 1;} // Error

void g() {int* p = &I;} // Error

void h() { const int& j = I;} // OK - temporary created

};

int main()

A<10> a;

a.f();

a.g();

a.h();

}

Remarks: When a reference parameter has its address taken or is used as an lvalue the
address used is the address of the object bound to the reference. In the following example
A<x>::f sets x to one while A<x>::g assigns the address of x to p.

93-0123/N0330 - Template Issues and Proposed Resolutions - Revision 3 11

template <int& I> struct A {

void f() {I = 1;}

void g() {int* p = &I;}

};

int x;

int main()

A<x> a;

a.f();

a.g();

}

Status: Tentatively approved by the extensions working group in Portland.

Version added: 1
Version updated: 2

2.2 Question: Can the class template name be used as a synonym for the current instantiation
inside a class template?

Answer: Yes { the following two examples are equivalent

Example 1:

template <class T> struct B {

B(){};

~B(){};

int B::* pmi;

B* bp;

B f1(B& b);

B f2(B& b) {B b2 = b;return b2;}

struct C {

int B::C::* pmi;

B::C* bp;

B::C f2(B::C& b) {B::C b2 = b;return b2;}

};

friend B g(B& b);

};

template <class T> B<T> B<T>::f1(B& b) {B b2 = b; return b2;}

Example 2:

template <class T> struct B {

B<T>(){}; // Allowed - change from WP

~B<T>(){}; // Allowed - change from WP

int B<T>::* pmi;

B<T>* bp;

B<T> f1(B<T>& b);

B<T> f2(B<T>& b) {B<T> b2 = b;return b2;}

struct C {

int B<T>::C::* pmi;

B<T>::C* bp;

B<T>::C f2(B<T>::C& b) {B<T>::C b2 = b;return b2;}

93-0123/N0330 - Template Issues and Proposed Resolutions - Revision 3 12

};

friend B<T> g(B<T>& b);

};

template <class T> B<T> B<T>::f1(B<T>& b) {B<T> b2 = b; return b2;}

Note that member functions de�ned in the class body and member functions de�ned outside
of the class are handled equivalently.

The template arguments may not be supplied in the declarator of the class template as
illustrated below.

template <class T> struct A {}; // OK

template <class T> struct A<T> {}; // Error

Status: Tentatively approved by the extensions working group in Portland.

Version added: 1
Version updated: 2

2.3 Question: Can a class template have a template parameter as a base class?

template <class T> struct A : public T {};

Answer: Yes. The actual argument used to instantiate the class must, of course, be a class.

Remarks: See 6.7 for issues regarding explicit designation of type names.

Status: Tentatively approved by the extensions working group in Portland.

Version added: 1
Version updated: 2

2.4 Question: Can a local type be used as a type argument of a class template?

template <class T> struct A {};

void f()

{

class B {};

A a; // Legal?

}

Answer: No. See also 3.3.

Rationale: Class templates and the classes generated from the template are global scope
entities and cannot refer to local scope entities.

Status: Tentatively approved by the extensions working group in Portland.

Version added: 1
Version updated: 2

2.5 Question: Can a character string be a nontype argument?

template <char* c> struct A {};

A<"hello"> a;

93-0123/N0330 - Template Issues and Proposed Resolutions - Revision 3 13

Answer: No|a character string does not have external linkage. Furthermore, di�erent
instances of the same string in a given compilation unit may or may not refer to the same
address.

Remarks: A similar result may be achieved as follows:

template <char* c> struct A {};

char hello_string[] = "Hello";

A<hello_string> a1;

Status: Approved by the extensions working group in Portland as an editorial issue.

Version added: 1
Version updated: 2

2.6 Question: Can any conversions be done on nontype actual arguments of class templates?

Answer: Yes.

Trivial conversions, promotions, and standard conversions should be allowed. Narrowing
conversions are not permitted. The following are examples of allowed conversions:

template <long I> struct A {};

const short si = 1;

const char ci = 1;

const int ii = 1;

A<si> asi; // short -> long

A<ci> aci; // char -> long

A<ii> aii; // int -> long

template <char* C> struct B {};

char c[10];

B<c> bc; // array to pointer

B<0> bnull; // 0 to null pointer

struct Base {};

struct Derived : public Base {};

template <Base& B> struct C {};

Derived d;

C<d> cd; // Derived to base

template <int Derived::* dpm> struct D {};

D<&Base::i> dbi; // Base to derived pointer-to-member

template <const int I> struct E {};

E<1> e; // int -> const int

93-0123/N0330 - Template Issues and Proposed Resolutions - Revision 3 14

Remarks: The current rule that no conversions are allowed is considered to be too re-
strictive. Any proposals to allow overloading of class templates would need to take these
conversions into account.

Status: Open

Version added: 1
Version updated: 1

2.7 Question: What causes a template class to be instantiated?

Answer:

There are two important consequences of how this issue is resolved. First, programmers
will want to know what kinds of usage will cause instantiations and which won't. In
this example it is clear that de�nitions are required for A<int>::i and A<int>::f, but
are de�nitions required for A<char>::i and A<char>::f? The programmer must supply
speci�c de�nitions of i and f for each instance of class template A that is instantiated.
The programmer will need to be able to predict which instances are required.

template <class T> struct A {

static int i;

virtual void f();

};

void main()

{

A<int> ai;

A<char>* ac;

}

void A<int>::f(){}

int A<int>::i = 1;

Second, there are situations which, depending on the resolution of this issue, can result in
circular instantiation problems in which a set of mutually dependent class templates exists.
This example causes problems for some compilers. Interestingly, for those compilers, this
example can be made to work by removing the de�nition of class template B.

template <class T> class B;

template <class T> class C;

template <class T> class A {

B<T> *b;

};

// Remove this definition and this will work on compilers that

// would otherwise complain of circular template references.

template <class T> class B {

C<T> c;

};

93-0123/N0330 - Template Issues and Proposed Resolutions - Revision 3 15

template <class T> class C {

A<T> a;

};

A<int> a;

The resolution of this issue requires that we distinguish between two types of instantiations:
instantiations of incompletely de�ned object types and instantiations of completely de�ned
object types.

To clarify the terms being used, the following example illustrates the declaration of a
incompletely de�ned object type and a completely de�ned object type as the terms apply
to nontemplate classes.

struct X; // Incompletely defined object type

struct Y {}; // Completely defined object type

When a template is referenced in a context that allows an incompletely de�ned object
type, and the template has not yet been instantiated, an incompletely de�ned object type
will be instantiated. In other words

template <class T> struct A {};

A<char>* ac;

is equivalent to

template <class T> struct A;

A<char>* ac;

If ac is later used in a context that requires a completely de�ned object type, such as
ac->f(), a completely de�ned object type is instantiated. Note that the kind of instanti-
ation that is done (complete or incomplete) is independent of whether or not a complete
de�nition of the template exists. If only an incomplete instantiation is required then only
an incomplete instantiation will be done even if a full instantiation could be done. If a
full instantiation is required and only an incomplete de�nition of the template has been
declared then an error will be issued.

Assuming that the standard de�nes where completely de�ned object types and incom-
pletely de�ned object types can be used, this allows programmers to predict whether or
not template de�nitions need to be supplied for certain types.

This also solves the circular instantiation problem because, in the example above, B<T>* b

no longer requires an instantiation of a completely de�ned object type. This has the
additional bene�t that the behavior of the example is no longer a�ected by the removal of
the de�nition of class template B.

There is one instance in which a completely de�ned object type is not required but an
instantiation of a completely de�ned object type must still be done if possible. When a
pointer to a derived class is used as a function argument it may be necessary to instantiate
a completely de�ned object type for overload resolution to work properly (a derived to base
conversion may be required and a completely de�ned object type is needed to determine
the base classes of a type).

93-0123/N0330 - Template Issues and Proposed Resolutions - Revision 3 16

Status: Tentatively approved by the extensions working group in Portland.

Version added: 1
Version updated: 2

2.8 Question: How can a class template name be used within the de�nition of the template?

Is it permitted for a class template to refer to an instance of itself? For example:

template <class T> class A {

struct B {};

A* p1; // OK

A<T>* p2; // OK

A<T*>* p3; // OK (infinite instantiation without

// previous rule)

A<int>* p4; // OK

int A::* pm1; // OK

int A<T>::* pm2; // OK

int A<T*>::* pm3; // OK (infinite instantiation without

// previous rule)

int A<int>::* pm4; // OK

A mem1; // Error - incomplete type

A<T> mem2; // Error - incomplete type

A<T*> mem3; // OK (possible infinite instantiation)

A<int> mem4; // Error unless specific definition

// exists

A::B* pb1; // OK

A<T>::B* pb2; // OK

A<T*>::B* pb3; // OK - but requires designation as type

A<int>::B* pb4; // OK - but requires designation as type

};

A and A<T> refer to the class template and may be used anywhere a class name can normally
be used within its class de�nition. This is signi�cant because, using the de�nitions of \free"
and \bound" symbols from 92-0133/N0209, A is a free symbol as is A<T> even though it
may appear to be a bound symbol. A<T> always refers to an instance of the class template
and consequently may be used in ways that the bound symbols A<T*> and A<int> cannot,
because they may refer to speci�c de�nitions of A.

A<T*> refers to a nonreal instantiation (an instantiation of a template with an argument
that contains a template parameter type). Nonreal instantiations can be used as completely
de�ned object types in the scanning of a class template but they cannot be used in a
context that requires any knowledge of the type's properties because it is not possible to
know which de�nition of A will be used (i.e., a speci�c de�nition could be supplied later).
Consequently, use of names such as A<T*>::B must be explicitly designated as types (this
requirement may be revised when specialization issues are reviewed).

A<int> refers to a instance of the template (either generated or a speci�c de�nition). If
A<int> refers to a generated instance it will be treated as a nonreal instantiation like

93-0123/N0330 - Template Issues and Proposed Resolutions - Revision 3 17

A<T*>, which means that references such as A<int>::B must be explicitly designated as a
type. If A<int> refers to a speci�c de�nition supplied before the template de�nition then
it may be used in the class de�nition with no restrictions. For example,

template <class T> class A;

class A<int> {};

template <class T> class A {

A<int> a; // OK

};

This rule is also derived from 92-0133/N0209. Until the complete class template has been
de�ned, the only instantiations that are possible are instantiations of incompletely de�ned
object types (because the instantiation is considered to take place immediately following
the class template de�nition). Consequently, generated instances may only be used within
the class template in contexts that permit incomplete object types.

Status: Tentatively approved by the extensions working group in Munich. To be revisited
when specialization issues are reviewed.

Version added: 1
Version updated: 3

2.9 Question: The previous rule makes possible runaway recursive instantiations. How should
an implementation prevent this?

Answer: The standard should specify a that an implementation may issue an error when
a certain recursion depth has been reached. A programmer could then be assured that
a program that employed recursive instantiation (but not in�nite) would be standard
conforming (whatever we decide that means) as long as it doesn't make use of more than
N levels of recursive instantiation.

Remarks: I don't know whether or not their are legitimate uses for recursive template class
references. But it is possible to write a recursive reference that does terminate at some
point, such as the following example.

template <int I> struct A {

A<I+1> a;

};

struct A<10> {};

A<0> a;

The ability to terminate a recursive instantiation at some point is needed to prevent simple
program errors from causing in�nite instantiations that might otherwise result in compiler
crashes. The following example illustrates how a misplaced *" can result in a recursive
instantiation.

template <class T> struct A {

A<T*> a1; // Oops - recursive instantiation

A<T>* a2; // This is what was intended

};

A<int> a;

93-0123/N0330 - Template Issues and Proposed Resolutions - Revision 3 18

Status: Open

Version added: 1
Version updated: 1

2.10 Question: At what point are names injected?

// Name injection

template <class T> struct A {

friend void f(A<T>){}

friend void f2(struct X* x);

};

void main()

{

void* fp;

X* x; // Error - X is undefined

fp = f; // Error - f is undefined

f2(x); // Error - f2 is undefined

A<int> a;

X* x2; // OK - X defined during instantiation of A<int>

fp = f; // OK - only one instance of f

A<char> ac;

fp = f; // Error - f is now overloaded

}

Answer: Nothing is injected when the class template is scanned. X, f(A<int>), and f2 are
injected into the global scope when A<int> is instantiated. When A<char> is instantiated,
f(A<char>) is injected into the global scope. X already exists so nothing else is done with
X.

Status: Open|To be reviewed after name binding is resolved.

Version added: 1
Version updated: 1

2.11 Question: Does an array parameter decay to a pointer type?

template <int a[5]> struct S {};

int *p;

S<p> x; // Error

Answer: No. The decay of arrays to pointers is largely a carryover from C for compatibility.
There is no compatibility issue when using template parameters so this is not needed.

Status: Open

Version added: 1
Version updated: 1

2.12 Question: What can be used as an actual argument for a parameter that is a reference?

Answer: A reference parameter references the address of the actual argument. The actual
argument may only be an object or function with external linkage as already de�ned in
WP 14.2. A temporary cannot be generated for a reference argument.

93-0123/N0330 - Template Issues and Proposed Resolutions - Revision 3 19

template <int& I> struct A {};

int x;

static int y;

A<x> a1; // OK

A<1> a2; // Error - temporary required

A<y> a3; // Error - y does not have external linkage

Status: Open

Version added: 1
Version updated: 1

2.13 Question: Can template parameters be used in elaborated type speci�ers?

Answer: Yes. This is needed to support usage such as:

template <class T> class A1 {

friend class T;

class T* p; // OK

class T; // Error - redeclaration of T

};

template <class T> class A2 {

friend union T;

};

struct B {};

union C {};

A1 a1; // OK

A2<C> a2; // OK

A1<C> a3; // Error - C is not a struct/class

A1<int> a4; // Error - int is not a struct/class

For consistency, template parameter names may be used in elaborated type speci�ers in
the declarations of class templates, function templates, and member functions of class
templates.

Status: Tentatively approved by the extensions working group in Munich.

Version added: 2
Version updated: 3

2.14 Question: Can a class template or function template be declared as a friend of a class?

Answer: Yes. In this example all instances, both generated and user supplied speci�c
de�nitions, of class template B and of void f(T) are friends of class A. Class A may itself
be a class template. A template may �rst be declared by a friend declaration in a class or
in a class template. A template may not be de�ned in a friend declaration.

class A {

template <class T> friend class B;

template <class T> friend void f(T);

template <class T> friend class C {}; // Error

};

93-0123/N0330 - Template Issues and Proposed Resolutions - Revision 3 20

Status: Tentatively approved by the extensions working group in Munich (access control
issues to be revisited when specialization is reviewed).

Version added: 2
Version updated: 3

2.15 Question: Can template arguments be supplied in explicit destructor calls?

Answer: Yes. This example illustrates the ways in which a destructor may be explicitly
called. See also 2.2 and 5.3.

template <class T> struct A {

~A();

};

void main()

{

A<int>* p;

p->~A();

p->A<int>::~A();

p->A<int>::~A<int>();

}

Status: Open

Version added: 2
Version updated: 2

Function Templates

3.1 Question: Can function templates have default function parameters?

Answer: Yes.

template <class T> void f(T, int i = 1){} // OK

Status: Open

Version added: 1
Version updated: 1

3.2 Question: Can the parameters with default arguments involve template parameters in their
types?

template <class T> void f(T, T* = new T){}

Answer: Yes.

If a template parameter is only used in function template parameters that have default
arguments there may be instances in which it is not possible to deduce the template
parameter types from a given function call. For example,

93-0123/N0330 - Template Issues and Proposed Resolutions - Revision 3 21

template <class T> void f(int, T* = new T){}

void main()

{

int i;

f(i); // Error - what is type of T?

}

The call must supply enough of the function arguments to infer the complete list of tem-
plate parameters. This could be a�ected by the proposal to allow explicit quali�cation of
template function arguments.

An alternative would be to require that every template parameter be used in the argument
type of at least one function parameter that has no default argument. Using this rule the
example above would cause an error would be issued on the declaration of function template
f because T is only used in the type of a function argument with a default argument. This
rule would eliminate the possibility of encountering a call in which it is not possible to
deduce a template parameter.

Status: Open

Version added: 1
Version updated: 1

3.3 Question: Can a local type be used as a type argument of a template function?

Answer: No. See also 2.4.

template <class T> void f(T){}

void main()

{

class A {};

A a;

enum E {e1, e2};

E e;

f(a); // Error

f(e); // Error

}

Status: Open

Version added: 1
Version updated: 1

3.4 Question: Can any conversions be done when matching arguments to function templates?

Answer: Yes. Trivial conversions can be done on all arguments. On arguments that don't
involve template types, base to derived conversions can be done.

It would also be possible to allow the complete set of conversions for arguments whose
types do not involve template arguments. Should this be allowed?

This subject requires further investigation.

Status: Open

93-0123/N0330 - Template Issues and Proposed Resolutions - Revision 3 22

Version added: 1
Version updated: 1

3.5 Question: The WP requires that every template parameter be used in an argument type
of a function template. What constitutes a \use" of a template parameter in an argument
type?

Answer: Every template parameter must be used in the argument types of a function
template in a context in which, for any given actual argument the resulting function will
be distinguishable for overload resolution purposes from the function generated for other
actual arguments.

A template parameter used only in a default argument, a sizeof, or in the array bounds of
the �rst array dimension are not considered to be used in the type. A type used in the
return value of a function template is not considered to be used, but a type used as the
return type of a function pointer argument is considered to be used.

template <class T> void f(int a[sizeof(T)]){} // Not used

template <class T> T f(){} // Not used

template <class T> void f(T* (*fp)()){} // Used

Status: Clari�cation of WP|not yet reviewed

Version added: 1
Version updated: 1

3.6 Question: Can unnamed types be used as template arguments?

struct {} a;

static union {} b;

template <class T> void f(T){}

void main()

{

f(a); // Error

f(b); // Error

}

Answer: No.

Status: Open

Version added: 1
Version updated: 1

3.7 Question: Can template parameters be used in quali�ed names in function template dec-
larations?

template <class T> void f(T::A, T::B){}

Answer: Yes|but names that are types must be explicitly designated as types by whatever
mechanism is invented to accomplish this (see 6.7).

Status: Open

Version added: 1
Version updated: 1

93-0123/N0330 - Template Issues and Proposed Resolutions - Revision 3 23

3.8 Question: Can a noninline function template be instantiated when referenced?

Answer: No. A speci�c de�nition of the function may be supplied in a separate �le or even
in a library supplied at link time. Furthermore, the template version of the function may
not be able to be instantiated with a given set of actual template arguments.

This requires a more detailed description. In some environments it may be possible for
a compiler to instantiate an instance of a function template and
ag it in such a way
that the linker will ignore the template de�nition in favor of a speci�c de�nition when the
program is linked. As long as the compiler can suppress errors for instances that cannot be
successfully generated, then such an environment would behave as if the required template
instances were generated at link time.

Status: Clari�cation of WP|not yet reviewed (specialization issues are still under discus-
sion).

Version added: 1
Version updated: 1

3.9 A proposal to allow Derived<T> to Base<T> conversions in function template calls.

This example attempts to implicitly convert a D<T> to a B<T>:

template <class T> struct B { };

template <class T> struct D : public B<T> {};

template <class T> void f(B<T>&) {}

void main() {

B<int> b;

D<int> d;

func(b);

func(d); // OK? -- requires D<T> -> B<T> conversion

}

This is prohibited by the current WP but is required to support polymorphic template
functions. The importance of this feature is demonstrated by the fact that is has been
implemented by many compilers. Of the compilers to which I have access that support
templates, three of four implement this feature (of course no two implement it in exactly
the same way).

Allowing this sort of conversion requires that the overload resolution rules for template
functions and other functions of the same name (WP 14.4) be revised. Recall that the
current rules are:

1. Look for an exact match (WP 13.2) on functions; if found, call it.

2. Look for a function template from which a function that can be called with an exact
match can be generated; if found call it.

3. Try ordinary overloading resolution (WP 13.2) for the functions; if a function is found,
call it.

93-0123/N0330 - Template Issues and Proposed Resolutions - Revision 3 24

The current rules for overload resolution require that arguments to template functions ex-
actly match the corresponding parameter types. Not even trivial conversions are allowed.
Most implementations have decided that the restriction on trivial conversions is too strict
and have extended the search for a matching template function to include trivial conver-
sions. The existing rules can be adapted to include trivial conversions of template function
arguments with acceptable results.

In contrast, adding the Derived<T> to Base<T> conversion requires, for the �rst time,
that template functions and nontemplate functions be considered side by side for overload
resolution purposes. Rule #3 must be modi�ed to consider both template functions and
nontemplate functions where it previously was only required to deal with nontemplate
functions.

The proposal is to eliminate the existing rules described in WP 14.4 and to extend the
general overload resolution in WP 13.2 to handle template functions. The new rules, in
essence, include template functions in the normal overload resolution process (although
they allow only a subset of the normal conversion operations) and use the fact that a
function is or is not a template function as a tie-breaker to prefer nontemplate functions
if all other conditions are equal.

In more precise terms, the proposed overload resolution algorithm is:

1. Determine how well the actual arguments match each function. For template func-
tions, each argument match is rated as usual but no matches other than exact matches
and standard conversions involving a conversion from a derived class to a base class
are considered.

2. Find the intersection of the sets of functions that best match on each argument.

3. Added step: If the best-match set contains both template functions and nontemplate
functions, eliminate the function templates. That is, all other things being equal, a
function template is considered a worse match than a nontemplate function.

4. If the best-match set contains more than one function, the call is ambiguous. If it con-
tains no functions, the call is illegal. If it contains exactly one function, the function
must be a strictly better match for at least one argument than every other possible
function (but not necessarily the same argument for each function). Otherwise, the
call is illegal.

The following examples may be helpful to illustrate why the rules are required and how
they would work:

struct B { };

struct D : public B { };

struct F : public D { };

template <class T> void f(T, B*) {}

template <class T> void g(T, D*) {}

void f(int, D*);

void g(int, B*);

void m () {

F *p = new F;

f(0, p); // Nontemplate f chosen

93-0123/N0330 - Template Issues and Proposed Resolutions - Revision 3 25

g(0, p); // Template g chosen

}

The nontemplate f should be chosen because on the second argument (which does not
involve a template parameter type) the template f requires a standard conversion (F*)
B*) that is less desirable than the one for the nontemplate f (F*) D*). Likewise, the
template g should be chosen because on the second argument the nontemplate g requires
a standard conversion (F*) B*) that is less desirable than the one for the template g (F*
) D*).

template <class T> struct B { };

template <class T> struct D : public B<T> {};

struct F : public D<int> { };

template <class T> void f(B<T>&) {}

void f(D<int>&) {}

template <class T> void g(D<T>&) {}

void g(B<int>&) {}

void m() {

F x;

f(x); // Nontemplate f chosen

g(x); // Template g chosen

}

The nontemplate f should be chosen because on the argument (which does involve a
template parameter type) the template f requires a standard conversion (F*) B<int>*)
that is less desirable than the one for the nontemplate f (F*) D<int>*). Likewise, the
template g should be chosen because nontemplate g requires a standard conversion (F*)
B<int>*) that is less desirable than the one for the template g (F*) D<int>*).

The proposed rules do introduce a case that may be handled di�erently by the new rules
than it is by existing implementations. I say \may" because it depends on whether the
implementation extends exact matches of template functions to include trivial conversions.
In the following example existing implementations diagnose this call of f as ambiguous.
Under the new rules the algorithm would consider the conversion from int to const int&

to be one of the \less desirable" exact matches and would therefore select the other tem-
plate. This is the only case known where the generalized algorithm would yield a di�erent
result than the WP algorithm extended to allow trivial conversions, but it seems that even
this change is desirable because it makes the template overloading rules more consistent
with the nontemplate rules.

template <class T> void f(T) {}

template <class T> void f(const T&) {}

int main()

{

int i;

f(i);

}

93-0123/N0330 - Template Issues and Proposed Resolutions - Revision 3 26

Member Function Templates

4.1 Question: Are inline member functions that are not used by a given class template instance
instantiated?

Answer: No|inline member functions are instantiated when they are �rst used.

Status: Open

Version added: 1
Version updated: 1

4.2 Question: Can a noninline member function or a static data member be instantiated when
referenced?

Answer: No. A speci�c de�nition of the member function or static data member may be
supplied in a separate �le or even in a library supplied at link time. Furthermore, the
template version of the member function or static data member may not be able to be
instantiated with a given set of actual template arguments.

This requires a more detailed description. See the note regarding instantiation of noninline
function templates (3.8) above.

Status: Clari�cation of WP|not yet reviewed

Version added: 1
Version updated: 1

4.3 Question: Must the template parameter names in a member function de�nition match the
names used in the class de�nition?

template <class T1, class T2> struct A {

void f1();

void f2();

};

template <class T2, class T1> void A<T2, T1>::f1(){} // OK

template <class T2, class T1> void A<T1, T2>::f2(){} // error

Answer: No|di�erent names may be used but the template parameters must be used in
the template argument list of the function declarator in the same sequence in which they
were declared in the template parameter list.

Status: Open

Version added: 1
Version updated: 1

4.4 Question: What are the rules regarding use of the inline keyword in member function
declarations?

Answer: If a member function is declared inline in the class template then the template
de�nition and any speci�c de�nitions will also be inline (even if the inline keyword is
not present in the template de�nition or speci�c de�nition). If the member function is
not declared inline in the class template then the template de�nition and any speci�c

93-0123/N0330 - Template Issues and Proposed Resolutions - Revision 3 27

de�nitions may or may not be declared inline. This is simply an extension of the current
rules for inline functions of classes extended to address class templates.

It should be noted that if the template de�nition is declared inline outside of the class
template and a noninline speci�c de�nition is provided, the noninline speci�c de�nition
cannot be called from a �le that includes the inline template de�nition. In example B,
there is no way to indicate that a speci�c de�nition of A<int>::f has been supplied in
another �le and that the inline version should not be generated.

example A:

template <class T> struct A {

void f();

};

A<int> a;

template <class T> inline void A<T>::f(){}

void A<int>::f(){} // Not inline

example B:

template <class T> struct A {

void f();

};

template <class T> inline void A<T>::f(){}

void x()

{

A<int> a;

a.f(); // Calls template version not specific definition

}

Status: Open

Version added: 1
Version updated: 1

4.5 Question: How are default arguments for parameters of member functions of class tem-
plates handled?

Answer: They are handled similarly to the nontemplate case. Additional default arguments
can be supplied on subsequent declarations and de�nitions of the functions.

When a class template member function is de�ned outside of the class any additional
default arguments are added to the class template and are also added to the generated
instantiations that have been created so far.

template <class T> struct A {

void f(int i, int j);

};

A<float> af;

A<int> ai;

void A<int>::f(int i, int j = 1){}

93-0123/N0330 - Template Issues and Proposed Resolutions - Revision 3 28

// The next line updates the default argument information for

// A<T>::f, A<float>::f, and A<int>::f. An error will be

// issued because A<int>::f already has a default argument

// for argument j.

template <class T> void A<T>::f(int i = 1, int j = 0){}

void A<char>::f(int i, int j = 1){} // Redeclaration of default?

void main()

{

af.f(1); // OK

}

Status: Open

Version added: 1
Version updated: 1

Class Template Speci�c Declarations and De�nitions

5.1 Question: Can you create a speci�c de�nition of a class template for which only a decla-
ration has been seen?

Answer: Yes.

Remarks: This may be a�ected by the outcome of the discussions of the rules for creating
speci�c de�nitions of class templates. For example, there may be a requirement that a
complete template de�nition be available so that the speci�c de�nition may be compared
with the template to ensure that it conforms to certain consistency requirements.

template <class T> struct A;

struct A<int> {}; // OK

Status: Open

Version added: 2
Version updated: 2

5.2 Question: Can you declare an incompletely de�ned object type that is a speci�c de�nition
of a class template?

Answer: Yes. In this example struct A<int>; declares an incompletely de�ned object
type called A<int>. It does not cause an instantiation to be generated from class template
A.

template <class T> struct A {};

struct A<int>;

A<int> a; // Error - A<int> is an incomplete type

Status: Open

Version added: 2
Version updated: 2

93-0123/N0330 - Template Issues and Proposed Resolutions - Revision 3 29

5.3 Question: Can the class template name be used as a synonym for the current speci�c
de�nition inside the speci�c de�nition?

Answer: Yes|the following two examples are equivalent. See also 2.2.

Example 1:
struct B<int> {

B<int>(){}; // Allowed - change from WP

~B<int>(){}; // Allowed - change from WP

int B<int>::* pmi;

B<int>* bp;

B<int> f1(B<int>& b);

B<int> f2(B<int>& b) {B<int> b2 = b;return b2;}

struct C {

int B<int>::C::* pmi;

B<int>::C* bp;

B<int>::C f2(B<int>::C& b)

{

B<int>::C b2 = b;return b2;

}

};

friend B<int> g(B<int>& b);

};

B<int> B<int>::f1(B<int>& b) {B<int> b2 = b; return b2;}

Example 2:
struct B<int> {

B(){};

~B(){};

int B::* pmi;

B* bp;

B f1(B& b);

B f2(B& b) {B b2 = b;return b2;}

struct C {

int B::C::* pmi;

B::C* bp;

B::C f2(B::C& b)

{

B::C b2 = b;return b2;

}

};

friend B g(B& b);

};

B<int> B<int>::f1(B& b) {B b2 = b; return b2;}

Note that member functions de�ned in the class body and member functions de�ned outside
of the class are handled equivalently.

Status: Open

Version added: 2
Version updated: 2

93-0123/N0330 - Template Issues and Proposed Resolutions - Revision 3 30

5.4 Question: Can a speci�c de�nition of a class template be a local class?

Answer: No. A class template declaration declares a set of global scope classes. Speci�c
de�nitions of members of that set of classes must also be declared and de�ned at global
scope.

template <class T> struct A {};

int main()

{

struct A<int> {}; // Error

}

Status: Open

Version added: 2
Version updated: 2

Other Issues

6.1 Question: Should classes used as template arguments have external linkage?

Answer: Yes { by inference from the prohibition against using the address of an object
or function with internal linkage as a template argument (14.2), it would seem that \used
as a template argument" should be added to the list of attributes that force a class to be
externally linked (3.3).

Status: Open

Version added: 1
Version updated: 1

6.2 Question: When must errors in template de�nitions be issued and when must they not be
issued?

Answer: If a template contains errors that make it impossible for any valid instance to be
generated an error may be issued when the template de�nition is processed. An imple-
mentation is not required to issue errors at this point, however. Errors may be deferred
until an instantiation is required.

When processing a template that can be instantiated with certain arguments but not with
others, an error must not be issued unless the o�ending instantiation is required.

template <class T> struct A {

int a;

char a; // Always an error -- may be issued when the

// template is scanned or at instantiation

};

A<int> a; // Previous error may be issued here

template <class T> struct B {

T a[10];

93-0123/N0330 - Template Issues and Proposed Resolutions - Revision 3 31

void f() { T a[10]; }

};

B<int&> b; // Error instantiating class B -- array of reference

B<char&>* b2; // No error - does not cause complete

// instantiation of B<char&>

void main()

{

b.f(); // Error instantiating B<int&>::f

// array of reference

}

If the call of b.f() were eliminated, the error must not be issued. What if only the b2 is
declared? This does not require an instantiation of a completely de�ned object type and
so an error should not be generated.

Remarks: There are those that would like the draft to specify that certain errors must be
diagnosed in a template even in the absence of any instantiations of that template. We
cannot currently require compilers to parse arbitrary template de�nitions in the absence of
an instantiation because some templates cannot be parsed without additional information
about which names are or are not types. This is one of the template issues that must be
resolved|but without a resolution of this issue we cannot require compilers to perform a
certain level of analysis of unreferenced templates.

Even when the type/nontype issue is solved providing a speci�cation of which errors must
be diagnosed while scanning unreferenced templates is an extremely di�cult job. Doing
so would require that we

� specify which errors are required to be issued in an unreferenced template and which
errors are not;

� specify the conditions under which certain errors are or are not required to cause
errors to be issued (certain errors can only be detected in contexts that do not involve
template parameters or names from a base class that is speci�ed using a template
parameter).

This information is not yet speci�ed for the language as a whole, so we are certainly not
in a position to attempt to specify this for template de�nitions.

I would propose that the recommendation made above be adopted and that the issue not
be revisited until we have some implementation experience with whatever mechanism is
used to specify whether a name is a type or nontype.

Status: Open

Version added: 1
Version updated: 2

6.3 Question: What kinds of types may be used in a function template declaration while still
being able to deduce the template argument types?

93-0123/N0330 - Template Issues and Proposed Resolutions - Revision 3 32

When a call to an instance of a function template is scanned the compiler is required to
infer the types of the template arguments from the types of the function arguments.

In this example the compiler must infer from the call of function f that the type of T1 is
char* and the type of T2 is int.

template <class T> struct A {};

template <class T1, class T2> void f(A<T1>, void (*f)(T2)) {}

void xyz(int){}

void main()

{

A<char*> a;

f(a, xyz);

}

Answer: Each function template parameter type may comprise any combination of the
following elements:

T

cv-list T

T*

T&

T::member-type-name // Must be explicitly designated as a type

T[integer-constant]

class-template-name<T>

type (*)(T)

T class-name::*

type T::* T (*)()

Status: Tentatively approved by the extensions working group in Portland.

Version added: 1
Version updated: 2

6.4 Question: Can a static data member of a class template be declared with an incomplete
array type?

In the following example when is the size of the static data member i known?

template <class T> struct A {

enum { xxx = sizeof(T) };

static int i[]; // Error

};

template <class T> int A<T>::i[xxx] = {1};

int A<double>::i[xxx] = {1};

int main()

{

A<int> a;

93-0123/N0330 - Template Issues and Proposed Resolutions - Revision 3 33

A<double> a;

int i = sizeof A<int>::i; // Error - size unknown

int j = sizeof A<double>::i; // OK

}

Answer: No|A static data member in a class template may not have an incomplete array
size.

Rationale: In the example above the size of A<int>::i cannot be known because a speci�c
de�nition may be provided in another �le. The size of A<double>::i is known after its
speci�c de�nition has been seen. Users are likely to be confused by the di�erence in the
way these two examples would have to be handled. Rather than introduce a confusing rule
the suggestion is to specify that a static data member in a class template may not have an
incomplete array size.

The alternative is to specify that the size of a static data member whose array size is
incompletely de�ned by its class de�nition is only known if a speci�c de�nition of the
static data member has been seen in the compilation being processed.

This would make implementation more complex. When an implementation instantiates
A<int>::i, it may do so as part of a process that includes the instantiation of other
functions. If one of the other functions references the size of A<int>::i it should cause an
error to be issued indicating that the size of A<int>::i is unknown even though at that
point the size might actually be known. This error would need to be issued to ensure that
a program is handled equivalently regardless of the sequence in which its templates are
instantiated.

This is related to the issue of requiring a certain level of consistency between a class
template and its speci�c de�nitions.

Status: Open until specialization issues are reviewed.

Version added: 2
Version updated: 2

6.5 Question: How should template arguments that contain \>" be parsed?

Answer: The �rst > in a template argument terminates the template argument list. To use
a > in a template argument the argument must be in parentheses, brackets, or to terminate
a nested template reference. This is equivalent to the handling of comma operators in the
context of a function argument list.

template <int I> struct A {};

int main()

{

A< 1 > 2 > a1; // Error

A< (1>2) > a2; // OK

}

Nesting of template references is allowed as illustrated in this example:

template <int I> struct A {};

template <class T> struct B {};

93-0123/N0330 - Template Issues and Proposed Resolutions - Revision 3 34

int main()

{

B< A<1> > a1; // OK

}

Status: Tentatively approved by the extensions working group in Munich.

Version added: 2
Version updated: 3

6.6 Question: Can template versions of operator new and operator delete be declared?

Answer: Only the multiple argument version of operator new may be declared.

template <class T> void* operator new(T); // Error

template <class T> void operator delete(T); // Error

template <class T> void* operator new(size_t, T); // OK

Rationale: De�ning the single operand version of new or deletewith a template is pointless
because there is only one valid signature. Furthermore, unless the template de�nition were
declared inline there is no way that the template version would ever be used|the library
supplied version would be viewed as a speci�c de�nition that would be used in preference
to the template de�ned version.

Note that this is not an issue for class speci�c operator new functions because member
templates do not exist.

Status: Tentatively approved by the extensions working group in Munich.

Version added: 2
Version updated: 3

6.7 Question: How can a name that is unde�ned at the point of its use in a template declaration
be determined to be a type or nontype?

Answer: An unknown name is considered to be a nontype unless explicitly designated as
a type (as has previously been proposed by Bjarne and others).

There are two possible means of explicit designation. The �rst is to use the keyword class
and the second is to add a new keyword such as typename.

Using the class keyword to distinguish types from nontypes create an ambiguity between
an explicit type designation and a forward declaration of a nested or local class as illustrated
in the following example:

template <class T> struct A : public T {

xyz a; // Error - xyz is not a type

T::xyz a; // Error - xyz is not a type

class B; // Ambiguous

class T::abc; // OK - T::abc is a type

};

The ambiguity can be avoided by constraining the kinds of names that may be used in an
explicit type designation. We could require that the name in an explicit type designation be
a quali�ed name, such as T::abc in the example above. A consequence of this requirement
would be that global names could not be explicitly designated using this mechanism.

93-0123/N0330 - Template Issues and Proposed Resolutions - Revision 3 35

template <class T> struct A : public T {

class B; // Forward decl. of nested class

class T::abc; // OK - T::abc is a type

// No way to designate a global name as a type

};

Another potential problem with using the class keyword is the potential for confusion
between the use of class to mean \type" and use of class as an elaborated type speci�er.

An alternative is to use a new keyword such as typename. The example would then be
rewritten as:

template <class T> struct A : public T {

class B; // Forward decl. of nested class

typename T::abc; // OK - T::abc is a type

typename ::X; // OK - ::X is a type

};

The disadvantage of this approach is, of course, that it requires a new keyword which has
the potential of a�ecting existing programs that use the keyword as an identi�er.

It has been suggested that we should select the best possible keyword even if it may a�ect
a larger number of programs. The keyword that was suggested was type.

A �nal alternative is to use the typedef keyword to indicate that a name is a type. The
example would then be rewritten as:

template <class T> struct A : public T {

class B; // Forward decl. of nested class

typedef T::abc; // OK - T::abc is a type

typedef ::X; // OK - ::X is a type

};

This has the disadvantage that typedef x currently means that x is a synonym for int.
To use the typedef keyword we would have to eliminate the current default int be-
havior or introduce some new syntax. The suggestion has been made that the syntax
typedef ... xxx be used.

If a keyword other than class is used it has been suggested that the new keyword also be
used in the declaration of template type parameters.

In summary, the alternatives are:

template <class T> class A : public T { class B; B b; };

template <typename T> class A : public T { typename B; B b; };

template <type T> class A : public T { type B; B b; };

template <typedef T> class A : public T { typedef B; B b; };

template <typedef T> class A : public T { typedef ... B; B b; };

Note: This is an extension.

Status: Open

Version added: 1
Version updated: 3

93-0123/N0330 - Template Issues and Proposed Resolutions - Revision 3 36

Nontype Parameters for Function Templates

In Portland the Bitset class was voted into the draft. The Bitset class requires that function
templates be allowed to have nontype parameters.

This is a proposal of a minimal set of facilities required to provide the necessary support for
nontype parameters. Nontype parameters of function templates di�er from nontype parameters
of class templates because they must be deduced from the actual arguments of the functions
where class template parameters are explicitly speci�ed. The minimal set of facilities is designed
to avoid situations in which it is di�cult or impossible to deduce the appropriate value for a
nontype parameter.

Nontype parameters of a function template may only be used to specify the nontype ar-
guments of a class template or as an array bound. As with type parameters, every nontype
parameter must be used in at least one function parameter type declaration. For example,

template <int I> void f(A<I>); // OK

template <int I> A<I> f(); // Error - I not used in a parameter type

template <int I> A<I> f(B<I>); // OK

template <int I> void f(int array[10][I]); // OK

template <int I> void f(int array[I][10]); // Error - major array bound

// not part of parameter type

Nontype parameters may not be used in expressions in the function declaration. The type
of the function template parameter must match the type of the class template parameter.

template <int I> void f(A<I+1>); // Error - expressions not allowed

template <char C> class A {};

template <int I> void f(A<I>); // Error - conversion not allowed

Nontype parameters may not have default arguments. Because function template param-
eters are deduced from the function arguments there is no need to allow defaults on both the
function parameters and the template parameters. The name of a nontype parameter may not
be omitted because there would be no way of deducing the value of the omitted parameter.

Status: Open

Version added: 2
Version updated: 2

Other Issues|Without Resolutions

These are, in general, some of the larger and more intractable of the template issues. Most of
these are discussed in Bjarne Stroustrup's paper \Major Template Issues" (93-0081/N0288).

1. Constraints on actual arguments.

2. Name binding|including operators

3. Instantiation of noninline template functions, member functions of template classes and
static data members of template classes

93-0123/N0330 - Template Issues and Proposed Resolutions - Revision 3 37

4. Template overloading

5. Explicit quali�cation of template function calls

6. Specializations.

