C++ Standard Library Defect Report List

Doc.no. J16/01-0032 = WG2N1318
Date: 11 Sep2001
Project: Programming Languagé++

Replyto: Matt Austern<austern@research.att.com>

C++ Standard Library Defect Report List (Revision 19)
Reference ISO/IEC 134882:1998(E)

Also see:

Table ofContentdor all library issues.
Index bySectionfor all library issues.
Index byStatusfor all library issues.
Library Active Issued.ist

Library Closed Issuelsist

This document contains only library issues which have been closed by the Library Working Group (LWG) after
being found to be defects in the standard. That is, issues which have a 93 6f or RR. See thé.ibrary

Closed Issuekist for issues closed as non-defects. Sed.ithary Active Issued.ist for active issues and more
information. The introductory material in that document also applies tddhignent.

RevisionHistory

® R19: Pre-Redmond mailing. Added new issB23335

® R18: Post-Copenhagen mailing; reflects actions taken in Copenhagen. Added ne®1i2Qi&sand
discussed new issugg1-314 Changed status of issESJTIA3q15I1691 7183 184[189[18d214221
[23423724324925125225q26026 1269263269264 to DR. Changed status of iss#8s109117 182228
230232235238241242250259264266267271272273275281284285286288292295297298301
303306307308312to Ready. Closed issu&$1277279287289293302313314as NAD.

® R17: Pre-Copenhagen mailing. Converted issues list to XML. Added proposed resolutions fet9sa6exl,
235, 250, 267. Added new issuez78311

e R16: post-Toronto mailing; reflects actions taken in Toronto. Added new [B88&37. Changed status of
issueqd (8@ [19 26 31} (67 [63 [84 [108 [L113 [114 113 [123 127 129 [134 [137 [147 [144 [14q [L47 [159 [164
[L70 [£87 [199 208 [209 210 217 [217 [2173 220 [227 [223 224 2270 "DR". Reopened issi&8. Reopened
issuel87. Changed issuésand4 to NAD. Fixed a typo in issy&7j Fixed issufQ signature should be
changed both places it appears. Fixed i€k previous version didn't fix the bug in enough places.

® RI15: pre-Toronto mailing. Added issug33-264. Some small HTML formatting changes so that we pass
Weblint tests.

® R14: post-Tokyo Il mailing; reflects committee actions taken in Tokyo. Added i228d¢s 232
(00-0019R1/N1242)

e R13: pre-Tokyo Il updated: Added iss{&] to227

e R12: pre-Tokyo Il mailing: Added issu@89to[21] Added "and paragraph 5" to the proposed resolution of
issug29 Add further rationale to issue’8

® R11: post-Kona mailing: Updated to reflect LWG and full committee actions in Kona (99-0048/N1224). Note
changed resolution of issuésnd3g Added issue$96to 198 Closed issues list split into "defects" and
"closed" documents. Changed the proposed resolution of4d¢sudAD, and changed the wording of proposed
resolution of issug

e R10: pre-Kona updated. Added proposed resolugd@{gg 91, 92, 109 Added issue$90to[195
(99-0033/D1209, 14 Oct 99)

C++ Standard Library Defect Report List

® R9: pre-Kona mailing. Added issu#40to[189 Issues list split into separate "active" and "closed" documents.
(99-0030/N1206, 25 Aug 99)

® R8: post-Dublin mailing. Updated to reflect LWG and full committee actions in Dublin. (99-0016/N1193, 21
Apr 99)

e R7: pre-Dublin updated: Added issu0, 131,[133 [133 [134 135 [13§ [137 138[139(31 Mar 99)

e RG6: pre-Dublin mailing. Added issu@g7 128 and123 (99-0007/N1194, 22 Feb 99)
e R5: update issuE)3 [113 added issudsl4to[12§ Format revisions to prepare for making list public. (30
Dec 98)
® R4: post-Santa Cruz Il updated: Issié§ 111,[113 113added, several issues corrected. (22 Oct 98)
® R3: post-Santa Cruz Il: Issu@dto 109 added, many issues updated to reflect LWG consensus (12 Oct 98)
® R2: pre-Santa Cruz II: Issu@8 to 93 added, issy@&7 updated. (29 Sep 98)
e R1: Correction to issygg resolution[6d code formafg4title. (17 Se®8)
DefectReports

1. Clibrary linkage editing oversight
Section:; 17.4.2.7lib.using.linkage] Status: DR Submitter: Beman Dawedate: 16 Nov1997

The change specified in the proposed resolution below did not make it into the Standard. This change was accepted
in principle at the London meeting, and the exact wording below was accepted at the Mormristting.

Proposedresolution:
Change 17.4.2.2 paragraplr@m:

It is unspecified whether a name from the Standard C library declared with external linkage has either extern
"C" or extern "C++'linkage.

to:

Whether a name from the Standard C library declared with external linkage has extern "C" or extern "C++"
linkage is implementation defined. It is recommended that an implementation use extern "C++" linkage for this
purpose.

3. Atexit registration during atexit() call is not described
Section: 18.3[lib.support.start.term|Status: DR Submitter: Steve Clamagéate: 12 Dec1997

We appear not to have covered all the possibilities of exit processing with respect to atexit registration.
Example 1: (C an@€++)

#include <stdlib.h>
void f1() { }
void f2() { atexit(f1); }

int main()

{
atexit(f2); // the only use of f2
return 0; // for C compatibility

}

C++ Standard Library Defect Report List

At program exit, f2 gets called due to its registration in main. Running f2 causes f1 to be newly registered during the
exit processing. Is this a valid program? If so, what aseitsantics?

Interestingly, neither the C standard, nor the C++ draft standard nor the forthcoming C9X Committee Draft says
directly whether you can register a function with atexit duringmxitessing.

All 3 standards say that functions are run in reverse order of their registration. Since f1 is registered last, it ought to
be run first, but by the time it is registered, it is too late tbrbe

If the program is valid, the standards are self-contradictory abaarnitantics.

Example 2: (C+-only)

void F() { static T t; } // type T has a destructor
int main()

atexit(F); // the only use of F
}

Function F registered with atexit has a local static variable t, and F is called for the first time during exit processing.
A local static object is initialized the first time control flow passes through its definition, and all static objects are
destroyed during exit processing. Is the code valid? If so, what aenientics?

Section 18.3 "Start and termination" says that if a function F is registered with atexit before a static object t is
initialized, F will not be called until after t's destructmmpletes.

In example 2, function F is registered with atexit before its local static object O could possibly be initialized. On that
basis, it must not be called by exit processing until after O’s destructor completes. But the destructor cannot be run
until after F is called, since otherwise the object could not be constructed in tpéafiest

If the program is valid, the standard is self-contradictory aboséiteantics.

| plan to submit Example 1 as a public comment on the C9X CD, with a recommendation that the results be
undefined. (Alternative: make it unspecified. | don’t think it is worthwhile to specify the case where f1 itself
registers additional functions, each of which registers still fuoretions.)

I think we should resolve the situation in the whatever way the C committee decides.
For Example 2, | recommend we declare the resulttefined.

[See reflector message lib-6500 for furtlkscussion.]

Proposedresolution:

Change section 18.3f6om:

First, objects with static storage duration are destroyed and functions registered by calling atexit are called.
Objects with static storage duration are destroyed in the reverse order of the completion of their constructor.
(Automatic objects are not destroyed as a result of calling exit().) Functions registered with atexit are called in
the reverse order of their registration. A function registered with atexit before an object obj1 of static storage
duration is initialized will not be called until obj1’s destruction has completed. A function registered with atexit
after an object obj2 of static storage duration is initialized will be called before obj2’s deststation

to:

C++ Standard Library Defect Report List

First, objects with static storage duration are destroyed and functions registered by calling atexit are called.
Non-local objects with static storage duration are destroyed in the reverse order of the completion of their
constructor. (Automatic objects are not destroyed as a result of calling exit().) Functions registered with atexit
are called in the reverse order of their registration, except that a function is called after any previously
registered functions that had already been called at the time it was registered. A function registered with atexit
before a non-local object objl of static storage duration is initialized will not be called until obj1’s destruction
has completed. A function registered with atexit after a non-local object obj2 of static storage duration is
initialized will be called before obj2’s destruction starts. A local static object obj3 is destroyed at the same time
it would be if a function calling the obj3 destructor were registered with atexit at the completion of the obj3
constructor.

Rationale:

See 99-0039/N1215, October 22, 1999, by Stephen D. Clamage for the analysis supporting to the proposed
resolution.

5. String::compare specificationquestionable
Section: 21.3.6.glib.string::compare]Status: DR Submitter: Jack Reeve®ate: 11 Dec1997

At the very end of the basic_string class definition is the signature: int compare(size_type posl, size_type nl, const
charT* s, size_type n2 = npos) const; In the following text this is defined as: returns
basic_string<charT,traits,Allocator>(*this,posl,nl).compare(basic_string<charT,traits,Allocator>(s,n2);

Since the constructor basic_string(const charT* s, size_type n, const Allocator& a = Allocator()) clearly requires
that s = NULL and n < npos and further states that it throws length_error if n == npos, it appears the compare()
signature above should always throw length error if invoked like so: str.compare(1, str.size()-1, s); where 's’ is some
null terminated character array.

This appears to be a typo since the obvious intent is to allow either the call above or something like: str.compare(1,
str.size()-1, s, strlen(s)-1);

This would imply that what was really intended was two signatures int compare(size_type posl, size_type nl, const
charT* s) const int compare(size_type posl, size_type nl, const charT* s, size_type n2) const; each defined in terms
of the corresponding constructor.

Proposedresolution:

Replace the compare signature in 21.3 (at the very end of the basic_string synopsisyaudsich

int compare(size_type posl, size_type ni,
const charT* s, size_type n2 = npos) const;
with:
int compare(size_type pos1, size_type ni,
const charT* s) const;
int compare(size_type pos1, size_type ni,
const charT* s, size_type n2) const;

Replace the portion of 21.3.6.8 paragraphs 5 and 6 wbach

int compare(size_type pos, size_type ni,
charT * s, size_type n2 = npos) const;

Returns:

basic_string<charT,traits,Allocator>(*this, pos, nl).compare(
basic_string<charT,traits,Allocator>(s, n2))

C++ Standard Library Defect Report List

with:

int compare(size_type pos, size_type ni,
const charT * s) const;

Returns:

basic_string<charT,traits,Allocator>(*this, pos, nl).compare(
basic_string<charT traits,Allocator>(s)

int compare(size_type pos, size_type ni,
const charT * s, size_type n2) const;

Returns:

basic_string<charT,traits,Allocator>(*this, pos, nl).compare(
basic_string<charT,traits,Allocator>(s, n2))

Editors please note that in addition to splitting the signature, the third argument becomes const, matching the
existingsynopsis.

Rationale:

While the LWG dislikes adding signatures, this is a clear defect in the Standard which must be fixed. The same
problem was also identified in issues 7 (item 5) 8nd

7. String clause minorproblems
Section: 21 [lib.strings] Status: DR Submitter: Matt AusternDate: 15 Dec1997

(1) In 21.3.5.4 , the description of template <class Inputlterator> insert(iterator, Inputlterator, Inputlterator) makes
no sense. It refers to a member function that doesn’t exist. It also talks about the return value of a void function.

(2) Several versions of basic_string::replace don't appear in the class synopsis.

(3) basic_string::push_back appears in the synopsis, but is never described elsewhere. In the synopsis its argument is
const charT, which doesn’t makes much sense; it should probably be charT, or possible const charT&.

(4) basic_string::pop_back is missing.

(5) int compare(size_type pos, size_type nl, charT* s, size_type n2 = npos) make no sense. First, it's const charT*
in the synopsis and charT* in the description. Second, given what it says in RETURNS, leaving out the final
argument will always result in an exception getting thrown. This is paragraphs 5 and 6 of 21.3.6.8

(6) In table 37, in section 21.1.1 , there’s a note for X::move(s, p, n). It says "Copies correctly even where pisin [s,
s+n)". This is correct as far as it goes, but it doesn’t go far enough; it should also guarantee that the copy is correct
even where s in in [p, p+n). These are two orthogonal guarantees, and neither one follows from the other. Both
guarantees are necessary if X::move is supposed to have the same sort of semantics as memmove (which was clearly
the intent), and both guarantees are necessary if X::move is actually supposed to be useful.

Proposedresolution:

ITEM 1: In 21.3.5.4 [lib.string::insert], change paragraph 16 to
EFFECTS: Equivalent to insert(p - begin(), basic_string(fast)).
ITEM 2: Not a defect; the Standard is clear.. There are ten versions of replace() in the synopsis, and ten versions in
21.3.5.4lib.string::replace].
ITEM 3: Change the declaration of push_back in the string synopsis (21.3, [lib.basic.fiwimg])

void push_back(consharT)
to
voidpush_back(charT)
Add the following text immediately after 21.3.5.2 [lib.string::append], paragt@ph

C++ Standard Library Defect Report List

void basic_string::push_back(chan)f

EFFECTS: Equivalent to append(static_cast<size type)(1),
ITEM 4: Not a defect. The omission appears to have tekiperate.
ITEM 5: Duplicate; see issue 5 (a8d).
ITEM 6: In table 37Replace:

"Copies correctly even where p is ingsn)."
with:

"Copies correctly even where the ranges [p, p+n) and [spseriap."

8. Locale::globallacks guarantee
Section:; 22.1.1.5lib.locale.statics]Status: DR Submitter: Matt AusternDate: 24 Dec1997

It appears there's an important guarantee missing from clause 22. We're told that invoking locale::global(L) sets the
C locale if L has a name. However, we're not told whether or not invoking setlocale(s) sets the global C++ locale.

The intent, | think, is that it should not, but | can’t find any such words anywhere.
Proposedresolution:
Add a sentence at the end of 22.1.1.5 , paragraph 2:

No library function other thalocale::global() shall affect the value returned lmgale()

9. Operator new(0) calls should not yield the samgointer
Section: 18.4.1]lib.new.delete] Status: DR Submitter: Steve Clamagéate: 4 Jan1998

Scott Meyers, in a comp.std.c++ posting: | just noticed that section 3.7.3.1 of CD2 seems to allow for the possibility
that all calls to operator new(0) yield the same pointer, an implementation technique specifically prohibited by ARM
5.3.3.Was this prohibition really lifted? Does the FDIS agree with CD2 in the regard? [Issues list maintainer’'s note:
the IS is thesame.]

Proposedresolution:
Change the last paragraph of 3.ffdn:

Any allocation and/or deallocation functions defined in a C++ program shall conform to the semantics
specified in 3.7.3.1 angl7.3.2.

to:

Any allocation and/or deallocation functions defined in a C++ program, including the default versions in the
library, shall conform to the semantics specified in 3.7.3.13an@8.2.

Change 3.7.3.1/2, next-to-last sentence, from
If the size of the space requested is zero, the value returned shall not be a null pointéri@®lue
to:

Even if the size of the space requested is zero, the request can fail. If the request succeeds, the value returned
shall be a non-null pointer value (4.10) pO different from any previously returned value p1, unless that value p1
was since passed to an operatelete.

C++ Standard Library Defect Report List

5.3.4/7 currentlyeads:

When the value of the expression in a direct-new-declarator is zero, the allocation function is called to allocate
an array with no elements. The pointer returned by the new-expression is non-null. [Note: If the library
allocation function is called, the pointer returned is distinct from the pointer to anyobjget.]

Retain the first sentence, and deleterdmainder.
18.4.1 currently has no text. Add tfelowing:

Except where otherwise specified, the provisions of 3.7.3 apply to the library versions of operator new and
operatordelete.

To 18.4.1.3, add the followintgxt:
The provisions of 3.7.3 do not apply to these reserved placement forms of operator new anddaeteator
Rationale:

See 99-0040/N1216, October 22, 1999, by Stephen D. Clamage for the analysis supporting to the proposed
resolution.

11. Bitsetminor problems
Section: 23.3.5[lib.template.bitset]Status: DR Submitter: Matt AusternDate: 22 Jan1998
(1) bitset<>::operator[] is mentioned in the class synopsis (23.3.5), but it is not documented in 23.3.5.2.

(2) The class synopsis only gives a single signature for bitset<>::operator(], reference operator[](size_t pos). This
doesn’t make much sense. It ought to be overloaded on const. reference operator[](size_t pos); bool operator[](size_t
pos) const.

(3) Bitset’s stream input function (23.3.5.3) ought to skip all whitespace before trying to extract 0Os and 1s. The
standard doesn'’t explicitly say that, though. This should go in the Effecise.

Proposedresolution:

ITEMS 1 AND 2:
In the bitset synopsis (23.3.5), replace the member function
reference operator[](size_t pos);

with the two membefunctions
bool operator[](size_t pos) const;
reference operator[](size_t pos);
Add the following text at the end of 23.3.5.2 , immediately after paragiph

bool operator[](size_t pos) const;

Requires: pos igalid

Throws:nothing

Returnstest(pos)

bitset<N>::reference operator[](size_t pos);

Requires: pos igalid

Throws:nothing

Returns: An object of typeitset<N>::reference such thag*this)[pos] ==

this->test(pos) , and such thdtthis)[pos] = val is equivalent tahis->set(pos, val);

C++ Standard Library Defect Report List

Rationale:

The LWG believes Item 3 is not a defect. "Formatted input" implies the desired semantics. See.27.6.1.2

13. Eosrefuses todie
Section: 27.6.1.2.3lib.istream::extractors]Status: DR Submitter: William M. Miller Date: 3 Mar1998

In 27.6.1.2.3, there is a reference to "eos", which is the only one in the whole draft (at least using Acrobat search), so
it's undefined.

Proposedresolution:

In 27.6.1.2.3, replace "eos" witbharT()"

14. Locale::combineshould beconst
Section:; 22.1.1.3lib.locale.members]Status: DR Submitter: Nathan MyersDate: 6 Aug1998

locale::combine is the only member function of locale (other than constructors and destructor) that is not const.
There is no reason for it not to be const, and good reasons why it should have been const. Furthermore, leaving it
non-const conflicts with 22.1.1 paragraph 6: "An instance of a locale is immutable."

History: this member function originally was a constructor. it happened that the interface it specified had no
corresponding language syntax, so it was changed to a member function. As constructors are never const, there was
no "const" in the interface which was transformed into member "combine”. It should have been added at that time,
but the omission was not noticed.

Proposedresolution:
In 22.1.1 and also in 22.1.1.3 , add "const" to the declaration of member combine:

template <class Facet> locale combine(const locale& other) const;

15. Locale::namerequirement inconsistent
Section: 22.1.1.3lib.locale.members]Status: DR Submitter: Nathan MyersDate: 6 Aug1998

locale::name() is described as returning a string that can be passed to a locale constructor, but there is no matching
constructor.

Proposedresolution:

In 22.1.1.3 , paragraph 5, replddecale(hame()) " with "locale(name().c_str())

16. Badctype byname<char>decl
Section: 22.2.1.4lib.locale.ctype.byname.specia§tatus: DR Submitter: Nathan MyersDate: 6 Aug1998

The new virtual members ctype_byname<char>::do_widen and do_narrow did not get edited in properly. Instead,
the member do_widen appears four times, with wrong argument lists.

C++ Standard Library Defect Report List

Proposedresolution:

The correct declarations for the overloaded memibersarrow anddo_widen should be copied from 22.2.1.3

17. Badbool parsing
Section: 22.2.2.1.7lib.facet.num.get.virtualsjStatus: DR Submitter: Nathan MyersDate: 6 Aug1998

This section describes the process of parsing a text boolean value from the input stream. It does not say it recognizes
either of the sequences "true" or "false" and returns the corresponding bool value; instead, it says it recognizes only
one of those sequences, and chooses which according to the received value of a reference argument intended for
returning the result, and reports an error if the other sequence is found. (!) Furthermore, it claims to get the names
from the ctype<> facet rather than the numpunct<> facet, and it examines the "boolalpha” flag wrongly; it doesn’t
define the value "loc"; and finally, it computes wrongly whether to use numeric or "glarsg.

| believe the correct algorithm is "as if":

/l'in, err, val, and str are arguments.
err =0;
const numpunct<charT>& np = use_facet<numpunct<charT> >(str.getloc());
const string_type t = np.truename(), f = np.falsename();
bool tm = true, fm = true;
size_t pos = 0;
while (tm && pos < t.size() || fm && pos < f.size()) {
if (in == end) { err = str.eofbit; }
bool matched = false;
if (tm && pos < t.size()) {
if (lerr && t[pos] == *in) matched = true;
else tm = false;
}
if (fm && pos < f.size()) {
if (lerr && f[pos] == *in) matched = true;
else fm = false;

if (matched) { ++in; ++pos; }
if (pos > t.size()) tm = false;
if (pos > f.size()) fm = false;

}

if (tm == fm || pos == 0) { err |= str.failbit; }
else {val =tm;}

return in;

Notice this works reasonably when the candidate strings are both empty, or equal, or when one is a substring of the
other. The proposed text below captures the logic of the ainalee.

Proposedresolution:
In 22.2.2.1.2 , in the first line of paragraph 14, change "&&'&b
Then, replace paragraphs 15 and 1fhsws:

Otherwise target sequences are determined "as if" by calling the mdaibename() andtruename()

of the facet obtained hyse_facet<numpunct<charT> >(str.getloc()) . Successive characters in

the rangdin,end) (see [lib.sequence.regmts]) are obtained and matched against corresponding positions in
the target sequences only as necessary to identify a unique match. The inputrteiatmmpared tend

only when necessary to obtain a character. If and only if a target sequence is uniquely waltcisesget to

the correspondingalue.

C++ Standard Library Defect Report List

Thein iterator is always left pointing one position beyond the last character successfully mateakedslf

set, then err is set &ir.goodbit ; or tostr.eofbit if, when seeking another character to match, it is
found that(in==end) . If val is not set, theprr is set tostr.failbit ;orto

(str.failbit|str.eofbit) if the reason for the failure was tiai==end) . [Example: for targets
true :"a" andfalse :"abb", the input sequence "a" yieldsl==true = anderr==str.eofbit ; the input
sequence "abc" yield=r=str.failbit , Within ending at the 'c’ element. For targétse :"1" and

false :"0", the input sequence "1" yieldsl==true anderr=str.goodbit . For empty targets ("), any
input sequence yieldsr==str.failbit . --endexample]

18. Get(...bool&)omitted
Section:; 22.2.2.1.lib.facet.num.get.membersptatus: DR Submitter; Nathan MyersDate: 6 Aug1998

In the list of num_get<> non-virtual members on page 22-23, the member that parses bool values was omitted from
the list of definitions of non-virtual members, though it is listed in the class definition and the corresponding virtual
is listed everywhere appropriate.

Proposedresolution:

Add at the beginning of 22.2.2.1.1 another get member for bool&, copied from the entry in 22.2.2.1

19. "Noconv" definition too vague
Section: 22.2.1.5.7lib.locale.codecvt.virtualsjStatus: DR Submitter: Nathan MyersDate: 6 Aug1998

In the definitions of codecvt<>::do_out and do_in, they are specified to return noconv if "no conversion is needed".
This definition is too vague, and does not say normatively what is done wiihftees.

Proposedresolution:
Change the entry for noconv in the table under paragraph 4 in section 22.2.(ea® to

noconv :internT andexternT are the same type, and input sequence is identical to conseceéence.
Change the Note in paragraph 2 to normative tefdlksvs:

If returnsnoconv , internT andexternT are the same type and the converted sequence is identical to the
input sequencfrom,from_next) .to_next is set equal tto , the value obtate is unchanged, and
there are no changes to the valuegdn to_limit)

20. Thousands_sepeturns wrong type
Section: 22.2.3.1.7lib.facet.numpunct.virtualsjStatus: DR Submitter: Nathan MyersDate: 6 Aug1998

The synopsis for numpunct<>::do_thousands_sep, and the definition of numpunct<>::thousands_sep which calls it,
specify that it returns a value of type char_type. Here it is erroneously described as returning a "string_type".

Proposedresolution:

In 22.2.3.1.2 , above paragraph 2, change "string_type" to "char_type".

-10 -

C++ Standard Library Defect Report List

21. Codecvt_byname> instantiations
Section:22.1.1.1.7lib.locale.category]Status: DR Submitter: Nathan MyersDate: 6 Aug1998

In the second table in the section, captioned "Required instantiations", the instantiations for codecvt_byname<>
have been omitted. These are necessary to allow users to construct a locale by name from facets.

Proposedresolution:
Add in 22.1.1.1.1 to the table captioned "Required instantiations”, in the category "ctype" the lines

codecvt_byname<char,char,mbstate_t>,
codecvt_byname<wchar_t,char,mbstate_t>

22. Memberopen vsflags
Section: 27.8.1.7lib.ifstream.membersfStatus: DR Submitter: Nathan MyersDate: 6 Aug1998

The description of basic_istream<>::0pen leaves unanswered questions about how it responds to or changes flags in
the error status for the stream. A strict reading indicates that it ignores the bits and does not change them, which
confuses users who do not expect eofbit and failbit to remain set after a successful open. There are three reasonable
resolutions: 1) status quo 2) fail if fail(), ignore eofbit 3) clear failbit and eofbit on call to open().

Proposedresolution:
In 27.8.1.7 paragraph 8ndin 27.8.1.10 paragraph 3, under open() effects, dddtaote:

A successful open does not change the staie.

24. "do_convert" doesn’texist
Section: 22.2.1.5.7lib.locale.codecvt.virtuals]Status: DR Submitter: Nathan MyersDate: 6 Aug1998

The description of codecvt<>::do_out and do_in mentions a symbol "do_convert" which is not defined in the
standard. This is a leftover from an edit, and should be "do_in and do_out".

Proposedresolution:

In 22.2.1.5, paragraph 3, change "do_convert" to "do_in or do_out". Also, in 22.2.1.5.2 , change "do_convert()" to
"do_in or do_out".

25. String operator<< uses width() valuenrong
Section: 21.3.7.9lib.string.io] Status: DR Submitter: Nathan MyersDate: 6 Aug1998

In the description of operator<< applied to strings, the standard says that uses the smaller of os.width() and str.size(),
to pad "as described in stage 3" elsewhere; but this is inconsistent, as this allows no possibility of space for padding.

Proposedresolution:

Change 21.3.7.9 paragrapffrdm:
"... wheren is the smaller obs.width() andstr.size() -
to:
"... wheren is the larger obs.width() andstr.size() -

-11 -

C++ Standard Library Defect Report List

26. Badsentry example
Section: 27.6.1.1.7lib.istream::sentry]Status: DR Submitter: Nathan MyersDate: 6 Aug1998
In paragraph 6, the code in the example:

template <class charT, class traits = char_traits<charT> >
basic_istream<charT traits>::sentry(
basic_istream<charT traits>& is, bool noskipws = false) {

int_type c;
typedef ctype<charT> ctype_type;
const ctype_type& ctype = use_facet<ctype_type>(is.getloc());
while ((c = is.rdbuf()->snextc()) != traits::eof()) {
if (ctype.is(ctype.space,c)==0) {
is.rdbuf()->sputbackc (c);
break;
}
}

\

fails to demonstrate correct use of the facilities described. In particular, it fails to use traits operators, and specifies
incorrect semantics. (E.g. it specifies skipping over the first character in the sequence without examining it.)

Proposedresolution:
Remove the example above from 27.6.1.1.2 paradiaph
Rationale:

The originally proposed replacement code for the example was not correct. The LWG tried in Kona and again in
Tokyo to correct it without success. In Tokyo, an implementor reported that actual working code ran over one page
in length and was quite complicated. The LWG decided that it would be counter-productive to include such a
lengthy example, which might well still contaénrors.

27. String::erase(range)yields wrongiterator
Section: 21.3.5.5lib.string::erase]Status: DR Submitter: Nathan MyersDate: 6 Aug1998

The string::erase(iterator first, iterator last) is specified to return an element one place beyond the next element after
the last one erased. E.g. for the string "abcde", erasing the range ['b’..’d’) would yield an iterator for element 'e’,
while 'd’ has not been erased.

Proposedresolution:
In 21.3.5.5, paragraph 10, change:

Returns: an iterator which points to the element immediately following _last prior to the element being erased.
to read

Returns: an iterator which points to the element pointed to by _last_ prior to the other elements being erased.

-12 -

C++ Standard Library Defect Report List

28. Ctype<char>is ambiguous
Section: 22.2.1.3.7lib.facet.ctype.char.member§tatus: DR Submitter: Nathan MyersDate: 6 Aug1998

The description of the vector form of ctype<char>::is can be interpreted to mean something very different from what
was intended. Paragraph 4 says

Effects: The second form, for all *p in the range [low, high), assigns vec[p-low] to table()[(unsigned char)*p].
This is intended to copy the value indexed from table()[] into the place identified in vec]].
Proposedresolution:
Change 22.2.1.3.2 , paragraph 4, to read

Effects: The second form, for all *p in the range [low, high), assigns into vec[p-low] the value
table()[(unsigned char)*p].

29. los_base::initdoesn’texist
Section: 27.3.1]lib.narrow.stream.objectsptatus: DR Submitter: Nathan MyersDate: 6 Aug1998

Sections 27.3.1 and 27.3.2 mention a function ios_base::init, which is not defined. Probably they mean
basic_ios<>::init, defined in 27.4.4.1 , paragraph 3.

Proposedresolution:
[R12: modified to include paragrapt]
In 27.3.1 paragraph 2 and 5, change
ios_base::init
to
basic_ios<char>::init
Also, make a similar change in 27.3.2 except it should read

basic_ios<wchar_t>::init

30. Wrong header forLC_*
Section: 22.1.1.1.7lib.locale.category]Status: DR Submitter: Nathan MyersDate: 6 Aug1998

Paragraph 2 implies that the C macros LC_CTYPE etc. are defined in <cctype>, where they are in fact defined
elsewhere to appear in <clocale>.

Proposedresolution:

In22.1.1.1.1, paragraph 2, change "<cctype>" to read "<clocale>".

-13-

C++ Standard Library Defect Report List

31. Immutable localevalues
Section:22.1.1]lib.locale] Status: DR Submitter: Nathan MyersDate: 6 Aug1998

Paragraph 6, says "An instancdarfale isimmutable once a facet reference is obtained from it, ...". This has
caused some confusion, because locale variables are manifestly assignable.

Proposedresolution:
In 22.1.1 replace paragraph

An instance ofocale is immutable; once a facet reference is obtained from it, that reference remains usable
as long as the locale value itsekists.

with

Once a facet reference is obtained from a locale object by calling use_facet<>, that reference remains usable,
and the results from member functions of it may be cached and re-used, as long as some locale object refers to
thatfacet.

32. Pbackfaildescription inconsistent
Section: 27.5.2.4.4lib.streambuf.virt.pback]Status: DR Submitter: Nathan MyersDate: 6 Aug1998

The description of the required state before calling virtual member basic_streambuf<>::pbackfail requirements is
inconsistent with the conditions described in 27.5.2.2.4 [lib.streambuf.pub.pback] where member sputbackc calls it.
Specifically, the latter says it calls pbackfail if:

traits::eq(c,gptr()[-1]) is false
where pbackfail claims to require:
traits::eq(*gptr(),traits::to_char_type(c)) returns false
It appears that the pbackfail description is wrong.
Proposedresolution:
In 27.5.2.4.4 , paragraph dhange:
"traits::eq(*gptr(),traits::to_char_type(c) "
to
"traits::eq(traits::to_char_type(c),gptr()[-1])
Rationale:

Note deliberate reordering of arguments for clarity in addition to the correction of the argatnent

33. Codecvk> mentionsfrom_type

Section:; 22.2.1.5.7lib.locale.codecvt.virtuals]Status: DR Submitter: Nathan MyersDate: 6 Aug1998

-14 -

C++ Standard Library Defect Report List

In the table defining the results from do_out and do_in, the specification for theeresuftays
encountered a from_type character it could not convert
but from_type is not defined. This clearly is intended to be an externT for do_in, or an internT for do_out.
Proposedresolution:
In 22.2.1.5.2 paragraph 4, replace the definition in the table for the case of _error_ with

encountered a character{from,from_end) that it could not convert.

34. True/falsename()not in ctype<>
Section: 22.2.2.2.7lib.facet.num.put.virtuals]Status: DR Submitter: Nathan MyersDate: 6 Aug1998

In paragraph 19, Effects:, members truename() and falsename are used from facet ctype<charT>, but it has no such
members. Note that this is also a problem in 22.2.2.1.2, addressed in (4).

Proposedresolution:

In 22.2.2.2.2 , paragraph 19, in the Effects: clause for member put(...., bool), replace the initialization of the
string_type value s as follows:

const numpunct& np = use_facet<numpunct<charT> >(loc);
string_type s = val ? np.truename() : np.falsename();

35. Nomanipulator unitbuf in synopsis
Section: 27.4[lib.iostreams.baseptatus: DR Submitter: Nathan MyersDate: 6 Aug1998

In 27.4.5.1 , we have a definition for a manipulator named "unitbuf". Unlike other manipulators, it's not listed in
synopsis. Similarly for "nounitbuf".

Proposedresolution:
Add to the synopsis for <ios> in 27.4 , after the entry for "nouppercase”, the prototypes:

ios_base& unitbuf(ios_base& str);
ios_base& nounitbuf(ios_base& str);

36. Iword & pword storage lifetime omitted
Section: 27.4.2.5lib.ios.base.storageptatus: DR Submitter: Nathan MyersDate: 6 Aug1998

In the definitions for ios_base::iword and pword, the lifetime of the storage is specified badly, so that an
implementation which only keeps the last value stored appears to conform. In particular, it says:

The reference returned may become invalid after another call to the object’s iword member with a different index ...
This is not idle speculation; at least one implementation was done this way.

Proposedresolution:

-15 -

C++ Standard Library Defect Report List

Add in 27.4.2.5 , in both paragraph 2 and also in paragraph 4, replace the sentence:

The reference returned may become invalid after another call to the object’s iword [pword] member with a
different index, after a call to its copyfmt member, or when the object is destroyed.

with:

The reference returned is invalid after any other operations on the object. However, the value of the storage
referred to is retained, so that until the next call to copyfmt, calling iword [pword] with the same index yields
another reference to the same value.

substituting "iword" or "pword" as appropriate.

37. Leftover"global" reference
Section: 22.1.1]lib.locale] Status: DR Submitter: Nathan MyersDate: 6 Aug1998
In the overview of locale semantics, paragraph 4, is the sentence

If Facet is not present in a locale (or, failing that, in the global locale), it throws the standard exception
bad_cast.

This is not supported by the definition of use_facet<>, and represents semantics from an old dratft.
Proposedresolution:
In 22.1.1 , paragraph 4, delete the parenthesized expression

(or, failing that, in the global locale)

38. Facetdefinition incomplete
Section: 22.1.2[lib.locale.global.templatesptatus: DR Submitter: Nathan MyersDate: 6 Aug1998

It has been noticed by Esa Pulkkinen that the definition of "facet" is incomplete. In particular, a class derived from
another facet, but which does not define a mertheannot safely serve as the arguntetda use_facet<F>(loc),
because there is no guarantee that a reference to the facet instance kiolisdsafely convertible t6.

Proposedresolution:

In the definition of std::use_facet<>(), replace the text in paragraph 1 which reads:
Get a reference to a facet of a locale.

with:

Requiresfacet is a facet class whose definition contains the public static madchbas defined in 22.1.1.1.2

[Kona: strike as overspecification the text "(not inherits)" from the original resolution, which read "... whose
definition contains (not inherits) the public static memiber.."]

-16 -

C++ Standard Library Defect Report List

39. istreambuf_iterator<>:.operator++(int) definition garbled
Section: 24.5.3.4lib.istreambuf.iterator::op++|Status: DR Submitter: Nathan MyersDate: 6 Aug1998

Following the definition of istreambuf_iterator<>::operator++(int) in paragraph 3, the standard contains three lines
of garbage text left over from a previous edit.

istreambuf_iterator<charT,traits> tmp = *this;
sbuf_->sbumpc();
return(tmp);

Proposedresolution:

In 24.5.3.4 , delete the three lines of code at the end of paragraph 3.

40. Meaninglessnormative paragraph in examples
Section: 22.2.8[lib.facets.examplesBtatus: DR Submitter: Nathan MyersDate: 6 Aug1998

Paragraph 3 of the locale examples is a description of part of an implementation technique that has lost its referent,
and doesn’t mean anything.

Proposedresolution:

Delete 22.2.8 paragraph 3 which begins "This initialization/identification system depends...", or (at the editor’s
option) replace it with a place-holder to keep the paragraph numbering the same.

41. los_baseeeds clear()exceptions()
Section: 27.4.2[lib.ios.base] Status: DR Submitter: Nathan MyersDate: 6 Aug1998

The description of ios_base::iword() and pword() in 27.4.2.4 , say that if they fail, they "set badbit, which may throw
an exception". However, ios_base offers no interface to set or to test badbit; those interfaces are defined in
basic_ios<>.

Proposedresolution:

Change the description in 27.4.2.5 in paragraph 2, and also in paragraph 4, asRafiace
If the function fails it sets badbit, which may throweaeption.

with

If the function fails, andthis is a base sub-object obasic_ios<> object or sub-object, the effect is
equivalent to callindpasic_ios<>::setstate(badbit) on the derived object (which may throw
failure).

[Kona: LWG reviewed wording; setstate(failbit) changeddtstate(badbit).]

42. String ctors specify wrong defaultallocator

Section: 21.3[lib.basic.string] Status: DR Submitter: Nathan MyersDate: 6 Aug1998

-17 -

C++ Standard Library Defect Report List

The basic_string<> copy constructor:

basic_string(const basic_string& str, size_type pos = 0,
size_type n = npos, const Allocator& a = Allocator());

specifies an Allocator argument default value that is counter-intuitive. The natural choice for a the allocator to copy
from is str.get_allocator(). Though this cannot be expressed in default-argument notation, overloading suffices.

Alternatively, the other containers in Clause 23 (deque, list, vector) do not have this form of constructor, so it is
inconsistent, and an evident source of confusion, for basic_string<> to have it, so it might better be removed.

Proposedresolution:
In 21.3, replace the declaration of the copy constructor as follows:
basic_string(const basic_string& str);
basic_string(const basic_string& str, size_type pos, size_type n = npos,
const Allocator& a = Allocator());
In 21.3.1, replace the copy constructor declaration as above. Add to paradeéphts;
In the first form, the Allocator value used is copied fretmget_allocator()
Rationale:
The LWG believes the constructor is actually broken, rather than just an unfortunatectegign
The LWG considered two other possibdsolutions:
A. In 21.3, replace the declaration of the copy constructfwilasvs:
basic_string(const basic_string& str, size_type pos = 0,
size_type n = npos);
basic_string(const basic_string& str, size_type pos,
size_type n, const Allocator& a);

In 21.3.1, replace the copy constructor declaration as above. Add to paragraph 5, Effects:

When noAllocator argument is provided, the string is constructed using the value
str.get_allocator()

B.In 21.3, and also in 21.3.1, replace the declaration of the copy constructor as follows:

basic_string(const basic_string& str, size_type pos = 0,
size_type n = npos);

The proposed resolution reflects the original intent of the LWG. It was also noted by Pete Becker that this fix "will
cause a small amount of existing code to now veorkectly."

[Kona: issue editing snafu fixed - the proposed resolution now correctly reflects the LWG corjsensus.

46. Minor Annex D errors

Section: D.7 [depr.str.strstreamsPtatus: DR Submitter: Brendan KehoeDate: 1 Jun1998

-18 -

C++ Standard Library Defect Report List

See lib-6522 anddit-814.

Proposedresolution:

Change D.7.1 (since streambuf is a typedef of basic_streambuf<éioean>)
virtual streambuf<char>* setbuf(char* s, streamsize n);

to:
virtual streambuf* setbuf(char* s, streamsize n);

In D.7.4 insert the semicolon now missing after type:

namespace std {

class strstream
. public basic_iostream<char> {

public:
/I Types
typedef char char_type;
typedef typename char_traits<char>::int_type int_type
typedef typename char_traits<char>::pos_type pos_type;

47. Imbue() and getloc() Returns clauseswapped
Section: 27.4.2.3lib.ios.base.localesbtatus: DR Submitter: Matt AusternDate: 21 Jun1998

Section 27.4.2.3 specifies how imbue() and getloc() work. That section has two RETURNS clauses, and they make
no sense as stated. They make perfect sense, though, if you swap them. Am | correct in thinking that paragraphs 2
and 4 just got mixed up kgccident?

Proposedresolution:

In 27.4.2.3 swap paragraphs 2 a@nd

48. Useof non-existent exceptiorconstructor
Section: 27.4.2.1.]lib.ios::failure] Status: DR Submitter: Matt AusternDate: 21 Jun1998

27.4.2.1.1, paragraph 2, says that class failure initializes the base class, exception, with exception(msg). Class
exception (see 18.6.1) has no saohstructor.

Proposedresolution:
Replace 27.4.2.1.1 , paragrapiwi&h

EFFECTS: Constructs an object of cléstire

50. Copyconstructor and assignment operator ofos_base

Section: 27.4.2[lib.ios.base] Status: DR Submitter: Matt AusternDate: 21 Jun1998

-19 -

C++ Standard Library Defect Report List

As written, ios_base has a copy constructor and an assignment operator. (Nothing in the standard says it doesn’t
have one, and all classes have copy constructors and assignment operators unless you take specific steps to avoid
them.) However, nothing in 27.4.2 says what the copy constructor and assignment operator do.

My guess is that this was an oversight, that ios_base is, like basic_ios, not supposed to have a copy constructor or an
assignmenbperator.

Jerry Schwarz comments: Yes, its an oversight, but in the opposite sense to what you're suggesting. At one point
there was a definite intention that you could copy ios_base. It's an easy way to save the entire state of a stream for
future use. As you note, to carry out that intention would have required a explicit description of the semantics (e.g.
what happens to the iarray and pasayff).

Proposedresolution:
In 27.4.2 , class ios_base, specify the copy constructor and operator= members psviaggng
Rationale:

The LWG believes the difficulty of specifying correct semantics outweighs any benefit of allowing ios_base objects
to becopyable.

51. Requirementto not invalidate iterators missing
Section; 23.1[lib.container.requirementsptatus: DR Submitter: David VandevoordeDate: 23 Jun1998

The std::sort algorithm can in general only sort a given sequence by moving around values. The list<>::sort()
member on the other hand could move around values or just update internal pointers. Either method can leave
iterators into the list<> dereferencable, but they would point to different things.

Does the FDIS mandate anywhere which method should be udesti<fer.sort()?
Matt Austerncomments:
| think you've found an omission in the standard.

The library working group discussed this point, and there was supposed to be a general requirement saying that list,
set, map, multiset, and multimap may not invalidate iterators, or change the values that iterators point to, except
when an operation does it explicitly. So, for example, insert() doesn’t invalidate any iterators and erase() and
remove() only invalidate iterators pointing to the elements that are being erased.

I looked for that general requirement in the FDIS, and, while | found a limited form of it for the sorted associative
containers, | didn't find it for list. It looks like it just got omitted.

The intention, though, is that list<>::sort does not invalidate any iterators and does not change the values that any
iterator points to. There would be no reason to have the member fuoittewise.

Proposedresolution:
Add a new paragraph at the end28f1:

Unless otherwise specified (either explicitly or by defining a function in terms of other functions), invoking a
container member function or passing a container as an argument to a library function shall not invalidate
iterators to, or change the values of, objects within that container.

Rationale:

-20 -

C++ Standard Library Defect Report List

This was US issue CD2-23-011; it was accepted in London but the change was not made due to an editing oversight.
The wording in the proposed resolution below is somewhat updated from CD2-23-011, particularly the addition of
the phrase "or change the valués

52. Smalll/O problems

Section: 27.4.3.7lib.fpos.operations]Status: DR Submitter: Matt AusternDate: 23 Jun1998

First, 27.4.4.1 , table 89. This is pretty obvious: it should be titled "basic_ios<>() effects", not "ios_base() effects".
[The second item is a duplicate; see i@ resolution.]

Second, 27.4.3.2 table 88 . There are a couple different things wrong with it, some of which I've already discussed
with Jerry, but the most obvious mechanical sort of error is that it uses expressions like P(i) and p(i), without ever
defining what sort of thing "ifs.

(The other problem is that it requires support for streampos arithmetic. This is impossible on some systems, i.e. ones
where file position is a complicated structure rather than just a number. Jerry tells me that the intention was to
require syntactic support for streampos arithmetic, but that it wasn't actually supposed to do anything meaningful
except on platforms, like Unix, where genuine arithmetic is possible.)

Proposedresolution:

Change 27.4.4.1 table 89 title from "ios_base() effects" to "basic_ios<>() effects".

53. Basic_ioglestructor unspecified
Section: 27.4.4.1]lib.basic.ios.cons]Status: DR Submitter: Matt AusternDate: 23 Jun1998

There’s nothing in 27.4.4 saying what basic_ios’s destructor does. The important question is whether
basic_ios::~basic_ios() destraybuf().

Proposedresolution:
Add after 27.4.4.1 paragragh

virtual ~basic_ios();

Notes The destructor does not destrapuf()
Rationale:

The LWG reviewed the additional question of whether ordioaf(0) may sebadbit . The answer is clearly

yes; it may be set videar() . See 27.4.4.2 , paragraph 6. This issue was reviewed at length by the LWG, which
removed from the original proposed resolution a footnote which incorrectiyrdhiof(0) does not set

badbit ".

54. Basic_streambuf'sdestructor
Section: 27.5.2.1]lib.streambuf.cons]Status: DR Submitter: Matt AusternDate: 25 Jun1998

The class synopsis for basic_streambuf shows a (virtual) destructor, but the standard doesn’t say what that destructor
does. My assumption is that it does nothing, but the standard should say so explicitly.

-21 -

C++ Standard Library Defect Report List

Proposedresolution:
Add after 27.5.2.1 paragragh
virtual ~basic_streambuf();

Effects: None.

55. Invalid stream position isundefined
Section: 27 [lib.input.output] Status: DR Submitter: Matt AusternDate: 26 Jun1998

Several member functions in clause 27 are defined in certain circumstances to return an "invalid stream position", a
term that is defined nowhere in the standard. Two places (27.5.2.4.2, paragraph 4, and 27.8.1.4, paragraph 15)
contain a cross-reference to a definition in _lib.iostreams.definitions_, a nonexistent section.

| suspect that the invalid stream position is just supposed to be pos_type(-1). Probably best to say explicitly in (for
example) 27.5.2.4.2 that the return value is pos_type(-1), rather than to use the term "invalid stream position", define
that term somewhere, and then put in a cross-reference.

The phrase "invalid stream position" appears ten times in the C++ Standard. In seven places it refers to a return
value, and it should be changed. In three places it refers to an argument, and it should not be changed. Here are the
three places where "invalid stream position" should nahlamged:

27.7.1.3, paragrapht
27.8.1.4 , paragraph
D.7.1.3, paragraph 1lib.stringbuf.virtuals]

Proposedresolution:

In 27.5.2.4.2 , paragraph 4, change "Returns an object of class pos_type that stores an invalid stream position
(_lib.iostreams.definitions_)" to "Returpss_type(off_type(-1)) "

In 27.5.2.4.2 , paragraph 6, change "Returns an object of class pos_type that stores an invalid stream position" to
"Returnspos_type(off_type(-1)) "

In 27.7.1.3 , paragraph 13, change "the object stores an invalid stream position” to "the return value is
pos_type(off_type(-1)) "

In 27.8.1.4 , paragraph 13, change "returns an invalid stream position (27.4.3)" to "returns
pos_type(off_type(-1)) "

In 27.8.1.4 , paragraph 15, change "Otherwise returns an invalid stream position (_lib.iostreams.definitions_)" to
"Otherwise returnpos_type(off_type(-1)) "

In D.7.1.3, paragraph 15, change "the object stores an invalid stream position" to "the return value is
pos_type(off_type(-1)) "

In D.7.1.3, paragraph 18, change "the object stores an invalid stream position" to "the return value is
pos_type(off_type(-1)) "

-22 -

C++ Standard Library Defect Report List

56. Showmanyc’'seturn type
Section: 27.5.2lib.streambuf] Status: DR Submitter: Matt AusternDate: 29 Jun1998

The class summary for basic_streambuf<>, in 27.5.2, says that showmanyc has return type int. However, 27.5.2.4.3
says that its return type is streamsize.

Proposedresolution:

Changeshowmanyc's return type in the 27.5.2 class summargtteamsize

57. Mistakein char _traits
Section: 21.1.3.7lib.char.traits.specializations.wchar §tatus: DR Submitter: Matt AusternDate: 1 Jul1998

21.1.3.2, paragraph 3, says "The types streampos and wstreampos may be different if the implementation supports
no shift encoding in narrow-oriented iostreams but supports one or more shift encodings in wide-oriented streams".

That's wrong: the two are the same type. The <iosfwd> summary in 27.2 says that streampos and wstreampos are,
respectively, synonyms for fpos<char_traits<char>::state_type> and fpos<char_traits<wchar_t>::state_type>, and,
flipping back to clause 21, we see in 21.1.3.1 and 21.1.3.2 that char_traits<char>::state_type and
char_traits<wchar_t>::state_type must both be mbstate _t.

Proposedresolution:

Remove the sentence in 21.1.3.2 paragraph 3 which begins "The types streampos and wstreampos may be
different..." .

59. Ambiguity in specification ofgbump
Section: 27.5.2.3.]lib.streambuf.get.areaftatus: DR Submitter: Matt AusternDate: 28 Jul1998
27.5.2.3.1 says that basic_streambuf::gbump() "Advances the next pointer for the input sequence by n."

The straightforward interpretation is that it is just gptr() += n. An alternative interpretation, though, is that it behaves
as if it calls sbumpc n times. (The issue, of course, is whether it might ever call underflow.) There is a similar
ambiguity in the case of pbump.

(The "classic" AT&T implementation used the fornrgerpretation.)
Proposedresolution:
Change 27.5.2.3.1 paragraph 4 gbump effieots:

Effects: Advances the next pointer for the input sequence by
to:

Effects: Addsn to the next pointer for the inpséquence.

Make the same change to 27.5.2.3.2 paragraph 4 péfieqps.

-23-

C++ Standard Library Defect Report List

60. Whatis a formatted input function?
Section: 27.6.1.2.Jlib.istream.formatted.regmtsptatus: DR Submitter: Matt AusternDate: 3 Aug1998

Paragraph 1 of 27.6.1.2.1 contains general requirements for all formatted input functions. Some of the functions
defined in section 27.6.1.2 explicitly say that those requirements apply ("Behaves like a formatted input member (as
described in 27.6.1.2.1)"), but others don't. The question: is 27.6.1.2.1 supposed to apply to everything in 27.6.1.2,
or only to those member functions that explicitly say "behaves like a formatted input member"? Or to put it
differently: are we to assume that everything that appears in a section called "Formatted input functions" really is a
formatted input function? | assume that 27.6.1.2.1 is intended to apply to the arithmetic extractors (27.6.1.2.2), but |
assume that it is not intended to apply to extractors like

basic_istream& operator>>(basic_istream& (*pf)(basic_istream&));
and
basic_istream& operator>>(basic_streammbuf*);
There is a similar ambiguity for unformatted input, formatted output, and unformatted output.

Comments from Judy Ward: It seems like the problem is that the basic_istream and basic_ostream operator <<()'s
that are used for the manipulators and streambuf* are in the wrong section and should have their own separate
section or be modified to make it clear that the "Common requirements” listed in section 27.6.1.2.1 (for
basic_istream) and section 27.6.2.5.1 (for basic_ostream) do not apply to them.

Additional comments from Dietmar Kihl: It appears to be somewhat nonsensical to consider the functions defined
in 27.6.1.2.3 paragraphs 1 to 5 to be "Formatted input function" but since these functions are defined in a section
labeled "Formatted input functions" it is unclear to me whether these operators are considered formatted input
functions which have to conform to the "common requirements" from 27.6.1.2.1 : If this is the case, all
manipulators, not justs, would skip whitespace unlessskipws is set (... but settingoskipws using the
manipulator syntax would also skip whitespage

It is not clear which functions are to be considered unformatted input functions. As written, it seems that all
functions in 27.6.1.3 are unformatted input functions. However, it does not really make much sense to construct a
sentry object fogcount() ,sync() , ... Alsoitis unclear what happens to goaunt() if eg.gcount()

putback() ,unget() ,orsync() is called: These functions don't extract characters, some of them even
"unextract" a character. Should this still be reflectegciount() ? Of course, it could be read as if after a call to
gcount() gcount() returnO (the last unformatted input functioggount() , didn’t extract any character) and
after a call tqoutback() gcount() returns-1 (the last unformatted input functiputback() did "extract"

back into the stream). Correspondingly doiget() . Is this what is intended? If so, this should be clarified.
Otherwise, a corresponding clarification shouldubed.

Proposedresolution:

In 27.6.1.2.2 [lib.istream.formatted.arithmetic], paragraph 1. Change the beginning of the second sentence from
"The conversion occurs" to "These extractors behave as formatted input functions (as described in 27.6.1.2.1). After
a sentry object is constructed, the conversicturs"

In 27.6.1.2.3, [lib.istream::extractors], before paragraph 1. Add an effects clause. "Effects: None. This extractor does
not behave as a formatted input function (as describ2d.t1.2.1).

In 27.6.1.2.3, [lib.istream::extractors], paragraph 2. Change the effects clause to "Effects: Calls pf(*this). This
extractor does not behave as a formatted input function (as describe8.ih2.1).

In 27.6.1.2.3, [lib.istream::extractors], paragraph 4. Change the effects clause to "Effects: Calls pf(*this). This
extractor does not behave as a formatted input function (as describe6.in2.1).

-24 -

C++ Standard Library Defect Report List

In 27.6.1.2.3, [lib.istream::extractors], paragraph 12. Change the first two sentences from "If sb is null, calls
setstate(failbit), which may throw ios_base::failure (27.4.4.3). Extracts characters from *this..." to "Behaves as a
formatted input function (as described in 27.6.1.2.1). If sb is null, calls setstate(failbit), which may throw
ios_base::failure (27.4.4.3). After a sentry object is constructed, extracts charactetbiforh

In 27.6.1.3, [lib.istream.unformatted], before paragraph 2. Add an effects clause. "Effects: none. This member
function does not behave as an unformatted input function (as described in 27.6.1.3, pajdgraph

In 27.6.1.3, [lib.istream.unformatted], paragraph 3. Change the beginning of the first sentence of the effects clause
from "Extracts a character" to "Behaves as an unformatted input function (as described in 27.6.1.3, paragraph 1).
After constructing a sentry object, extractsharacter”

In 27.6.1.3, [lib.istream.unformatted], paragraph 5. Change the beginning of the first sentence of the effects clause
from "Extracts a character" to "Behaves as an unformatted input function (as described in 27.6.1.3, paragraph 1).
After constructing a sentry object, extractsharacter"

In 27.6.1.3, [lib.istream.unformatted], paragraph 5. Change the beginning of the first sentence of the effects clause
from "Extracts characters" to "Behaves as an unformatted input function (as described in 27.6.1.3, paragraph 1).
After constructing a sentry object, extractaracters”

[No change needed in paragraph 10, because it refers to paradraph

In 27.6.1.3, [lib.istream.unformatted], paragraph 12. Change the beginning of the first sentence of the effects clause
from "Extracts characters" to "Behaves as an unformatted input function (as described in 27.6.1.3, paragraph 1).
After constructing a sentry object, extractaracters"

[No change needed in paragréiih]

In 27.6.1.3, [lib.istream.unformatted], paragraph 17. Change the beginning of the first sentence of the effects clause
from "Extracts characters" to "Behaves as an unformatted input function (as described in 27.6.1.3, paragraph 1).
After constructing a sentry object, extrackaracters"

[No change needed in paragra&th]

In 27.6.1.3, [lib.istream.unformatted], paragraph 24. Change the beginning of the first sentence of the effects clause
from "Extracts characters" to "Behaves as an unformatted input function (as described in 27.6.1.3, paragraph 1).
After constructing a sentry object, extractaracters”

In 27.6.1.3, [lib.istream.unformatted], before paragraph 27. Add an Effects clause: "Effects: Behaves as an
unformatted input function (as described in 27.6.1.3, paragraph 1). After constructing a sentry object, reads but does
not extract the current inpaharacter."”

In 27.6.1.3, [lib.istream.unformatted], paragraph 28. Change the first sentence of the Effects clause from "If !good()
calls" to Behaves as an unformatted input function (as described in 27.6.1.3, paragraph 1). After constructing a
sentry object, if !good(galls”

In 27.6.1.3, [lib.istream.unformatted], paragraph 30. Change the first sentence of the Effects clause from "If lgood()
calls" to "Behaves as an unformatted input function (as described in 27.6.1.3, paragraph 1). After constructing a
sentry object, if !good(alls”

In 27.6.1.3, [lib.istream.unformatted], paragraph 32. Change the first sentence of the Effects clause from "If Igood()
calls..." to "Behaves as an unformatted input function (as described in 27.6.1.3, paragraph 1). After constructing a
sentry object, if Igood() calls..." Add a new sentence to the end of the Effects clause: "[Note: this function extracts
no characters, so the value returned by the next call to gcoudf) is

In 27.6.1.3, [lib.istream.unformatted], paragraph 34. Change the first sentence of the Effects clause from "If !good()
calls" to "Behaves as an unformatted input function (as described in 27.6.1.3, paragraph 1). After constructing a
sentry object, if !good() calls". Add a new sentence to the end of the Effects clause: "[Note: this function extracts no

-25-

C++ Standard Library Defect Report List

characters, so the value returned by the next call to gcouft{) is

In 27.6.1.3, [lib.istream.unformatted], paragraph 36. Change the first sentence of the Effects clause from "If Irdbuf()
is" to "Behaves as an unformatted input function (as described in 27.6.1.3, paragraph 1), except that it does not
count the number of characters extracted and does not affect the value returned by subsequent calls to gcount().
After constructing a sentry object, if rdbuig)

In 27.6.1.3, [lib.istream.unformatted], before paragraph 37. Add an Effects clause: "Effects: Behaves as an
unformatted input function (as described in 27.6.1.3, paragraph 1), except that it does not count the number of
characters extracted and does not affect the value returned by subsequent calls to gcount()." Change the first
sentence of paragraph 37 from "if fail()" to "after constructing a sentry objéat()if.

In 27.6.1.3, [lib.istream.unformatted], paragraph 38. Change the first sentence of the Effects clause from "If fail()"
to "Behaves as an unformatted input function (as described in 27.6.1.3, paragraph 1), except that it does not count
the number of characters extracted and does not affect the value returned by subsequent calls to gcount(). After
constructing a sentry object fil()

In 27.6.1.3, [lib.istream.unformatted], paragraph 40. Change the first sentence of the Effects clause from "If fail()"
to "Behaves as an unformatted input function (as described in 27.6.1.3, paragraph 1), except that it does not count
the number of characters extracted and does not affect the value returned by subsequent calls to gcount(). After
constructing a sentry object fil()

In 27.6.2.5.2 [lib.ostream.inserters.arithmetic], paragraph 1. Change the beginning of the third sentence from "The
formatting conversion" to "These extractors behave as formatted output functions (as described in 27.6.2.5.1). After
the sentry object is constructed, the conversiurs"”.

In 27.6.2.5.3 [lib.ostream.inserters], before paragraph 1. Add an effects clause: "Effects: None. Does not behave as a
formatted output function (as describe®in6.2.5.1).".

In 27.6.2.5.3 [lib.ostream.inserters], paragraph 2. Change the effects clause to "Effects: calls pf(*this). This extractor
does not behave as a formatted output function (as descriB@dbia.5.1).".

In 27.6.2.5.3 [lib.ostream.inserters], paragraph 4. Change the effects clause to "Effects: calls pf(*this). This extractor
does not behave as a formatted output function (as descriB@dbia.5.1).".

In 27.6.2.5.3 [lib.ostream.inserters], paragraph 6. Change the first sentence from "If sb" to "Behaves as a formatted
output function (as described in 27.6.2.5.1). After the sentry object is construsted, if

In 27.6.2.6 [lib.ostream.unformatted], paragraph 2. Change the first sentence from "Inserts the character" to
"Behaves as an unformatted output function (as described in 27.6.2.6, paragraph 1). After constructing a sentry
object, inserts theharacter".

In 27.6.2.6 [lib.ostream.unformatted], paragraph 5. Change the first sentence from "Obtains characters" to "Behaves
as an unformatted output function (as described in 27.6.2.6, paragraph 1). After constructing a sentry object, obtains
characters".

In 27.6.2.6 [lib.ostream.unformatted], paragraph 7. Add a new sentence at the end of the paragraph: "Does not
behave as an unformatted output function (as described in 27.6.2.6, padgdraph

Rationale:

See J16/99-0043==WG21/N1219, Proposed Resolution to Library Issue 60, by Judy Ward and Matt Austern. This
proposed resolution is section VI of thwaper.

-26 -

C++ Standard Library Defect Report List

61. Ambiguity in iostreams exceptiomolicy
Section: 27.6.1.3lib.istream.unformatted|Status: DR Submitter: Matt AusternDate: 6 Aug1998

The introduction to the section on unformatted input (27.6.1.3) says that every unformatted input function catches all
exceptions that were thrown during input, sets badbit, and then conditionally rethrows the exception. That seems
clear enough. Several of the specific functions, however, such as get() and read(), are documented in some
circumstances as setting eofbit and/or failbit. (The standard notes, correctly, that setting eofbit or failbit can
sometimes result in an exception being thrown.) The question: if one of these functions throws an exception
triggered by setting failbit, is this an exception "thrown during input" and hence covered by 27.6.1.3, or does
27.6.1.3 only refer to a limited class of exceptions? Just to make this concrete, suppose you have the following
shippet.

char buffer[N];
istream is;

is.exceptions(istream::failbit); // Throw on failbit but not on badbit.
is.read(buffer, N);

Now suppose we reach EOF before we've read N characters. What iostate bits can we expect to be set, and what
exception (if any) will be thrown?

Proposedresolution:

In 27.6.1.3, paragraph 1, after the sentence that begins "If an exception is thrown...", add the following parenthetical
comment: "(Exceptions thrown frobasic_ios<>::clear() are not caught aethrown.)"

Rationale:

The LWG looked to two alternative wordings, and choose the proposed resolution estéadi@dese.

62.Sync’s return value
Section: 27.6.1.3lib.istream.unformatted|Status: DR Submitter: Matt AusternDate: 6 Aug1998

The Effects clause for sync() (27.6.1.3, paragraph 36) says that it "calls rdbuf()->pubsync() and, if that function
returns -1 ... returns traits::eof()."

That looks suspicious, because traits::eof() is of type traits::int_type while the return type of sync() is int.
Proposedresolution:

In 27.6.1.3 , paragraph 36, change "retarags::eof() "to "returns-1 ".

63. Exception-handlingpolicy for unformatted output
Section: 27.6.2.4lib.ostream.unformattedptatus: DR Submitter: Matt AusternDate: 11 Aug1998

Clause 27 details an exception-handling policy for formatted input, unformatted input, and formatted output. It says
nothing for unformatted output (27.6.2.6). 27.6.2.6 should either include the same kind of exception-handling policy
as in the other three places, or else it should have a footnote saying that the omission is deliberate.

-27 -

C++ Standard Library Defect Report List

Proposedresolution:

In 27.6.2.6, paragraph 1, replace the last sentence ("In any case, the unformatted output function ends by destroying
the sentry object, then returning the value specified for the formatted output function.") with the foleizing

If an exception is thrown during output, thes::badbit is turned on [Footnote: without causing an

ios::failure to be thrown.] irfthis ’s error state. Ifexceptions() & badbit) != 0 then the
exception is rethrown. In any case, the unformatted output function ends by destroying the sentry object, then,
if no exception was thrown, returning the value specified for the formatted éumyation.

Rationale:

This exception-handling policy is consistent with that of formatted input, unformatted input, and foougited

64. Exceptionhandling in
basic_istream::operator>>(basic_streambuf*)

Section: 27.6.1.2.3lib.istream::extractors]Status: DR Submitter: Matt AusternDate: 11 Aug 1998

27.6.1.2.3, paragraph 13, is ambiguous. It can be interpreted two different ways, depending on whether the second
sentence is read as an elaboration of the first.

Proposedresolution:

Replace 27.6.1.2.3 , paragraph 13, which begins "If the function inserts no charactsfs ..."

If the function inserts no characters, it caktstate(failbit) , which may throw

ios_base::failure (27.4.4.3). If it inserted no characters because it caught an exception thrown while
extracting characters froeb andfailbit is on inexceptions() (27.4.4.3), then the caught exception is
rethrown.

66. Strstreambuf::setbuf
Section: D.7.1.3[depr.strstreambuf.virtualsftatus: DR Submitter: Matt AusternDate: 18 Aug1998

D.7.1.3, paragraph 19, says that strstreambuf::setbuf "Performs an operation that is defined separately for each class
derived from strstreambuf". This is obviously an incorrect cut-and-paste from basic_streambuf. There are no classes
derived from strstreambuf.

Proposedresolution:

D.7.1.3, paragraph 19, replace the setbuf effects clause which currently says "Performs an operation that is defined
separately for each class derived from strstreamitifi: [depr.strstreambuf.virtuals]

Effects: implementation defined, except tisatbuf(0,0) has nceffect.

68. Extractors for char* should store null atend
Section: 27.6.1.2.3lib.istream::extractors]Status: DR Submitter: Angelika LangerDate: 14 Jul1998

Extractors for char* (27.6.1.2.3) do not store a null character after the extracted character sequence whereas the
unformatted functions like get() do. Whytfgs?

-28 -

C++ Standard Library Defect Report List

Comment from Jerry Schwarz: There is apparently an editing glitch. You'll notice that the last item of the list of
what stops extraction doesn’t make any sense. It was supposed to be the line that saidtanedll is

Proposedresolution:
27.6.1.2.3, paragraph 7, change the last list ftem: [lib.istream::extractors]

A null byte(charT()) in the next position, which may be the first position if no charactersexéi@cted.
to become a new paragraph whielads:

Operator>> then stores a null bytlarT()) in the next position, which may be the first position if no
characters werextracted.

69. Must elements of a vector beontiguous?
Section: 23.2.4[lib.vector] Status: DR Submitter: Andrew Koenig Date: 29 Jul1998
The issue is this: Must the elements of a vector be in contigneosry?

(Please note that this is entirely separate from the question of whether a vector iterator is required to be a pointer; the
answer to that question is clearly "no," as it would rule out debud@uioigmentations)

Proposedresolution:
Add the following text to the end of 23.2.4 , paragraph 1.

The elements of a vector are stored contiguously, meaning that ivedta<T, Allocator> where T
is some type other thdol , then it obeys the identi&v[n] == &v[0] + nforall0<=n<
v.size()

Rationale:

The LWG feels that as a practical matter the answer is clearly "yes". There was considerable discussion as to the
best way to express the concept of "contiguous”, which is not directly defined in the standard. Disutisdieai

® An operational definition similar to the above proposed resolution is already used for valarray (26.3.2.3).

® There is no need to explicitly consider a user-defined operator& because elements must be copyconstructible
(23.1 para 3) and copyconstructible (20.1.3) specifies requirements for operatoré&.

® There is no issue of one-past-the-end because of langulage

70. Uncaught_exception(Jnissing throw() specification

Section: 18.6[lib.support.exception]18.6.4[lib.uncaught] Status: DR Submitter: Steve Clamage
Date: Unknown

In article 3E04@pratique.fr, Valentin Bonnard writes:
uncaught_exception() doesn’t have a thepecification.

It is intentional ? Does it means that one should be prepared to handle exceptions thrown from uncaught_exception()
?

uncaught_exception() is called in exception handling contexts where exception safetyrigoetant.

-29-

C++ Standard Library Defect Report List

Proposedresolution:

In 15.5.3 , paragraph 1, 18.6 , and 18.6.4 , add "throwQh¢aught_exception().

71. Do_get_monthnameynopsis missingargument
Section: 22.2.5.1]lib.locale.time.get] Status: DR Submitter: Nathan MyersDate: 13 Aug1998

The locale facet membé&me_get<>::do_get_monthname is described in 22.2.5.1.2 with five arguments,
consistent with do_get_weekday and with its specified use by member get_monthname. However, in the synopsis, it
is specified instead with four arguments. The missing argument is the "end" alatr

Proposedresolution:
In 22.2.5.1, add an "end" argument to the declaration of member do_monthrfaltenas

virtual iter_type do_get_monthname(iter_type s, iter_type end, ios_baseg&,
ios_base::iostate& err, tm* t) const;

74. Garbledtext for codecvt::do_max_length
Section: 22.2.1.5.7lib.locale.codecvt.virtualsjStatus: DR Submitter: Matt AusternDate: 8 Sepl998

The text ofcodecvt::do_max_length 's "Returns” clause (22.2.1.5.2, paragraph 11) is garbled. It has
unbalanced parentheses and a spumous

Proposedresolution:

Replace 22.2.1.5.2 paragraph 11 withftiilowing:

Returns: The maximum value thalo_length(state, from, from_end, 1) can return for any
valid ranggfrom, from_end) andstateT valuestate . The specializationodecvt<char,
char, mbstate_t>::do_max_length() returnsl.

75. Contradiction in codecvt::length 'S argumenttypes

Section: 22.2.1.5lib.locale.codecvt]Status: DR Submitter: Matt AusternDate: 18 Sepl998

The class synopses for classedecvt<> (22.2.1.5) andodecvt_byname<> (22.2.1.6) say that the first
parameter of the member functideagth anddo_length is of typeconst stateT& . The member function
descriptions, however (22.2.1.5.1, paragraph 6; 22.2.1.5.2, paragraph 9) say that thetdigbsis . Either the
synopsis or the summary must be changed.

If (as | believe) the member function descriptions are correct, then we must also add text sayiogléogth
changes itstateT argument.

Proposedresolution:

In22.2.1.5, and also in 22.2.1.6 , changestageeT argument type on both membength() and member
do_length() from

const stateT&

-30-

C++ Standard Library Defect Report List

to
stateT&
In 22.2.1.5.2 , add to the definition for memHder length aparagraph:

Effects: The effect on th&tate argument is “as if” it calleddo_in(state, from, from_end,
from, to, to+max, to) forto pointing to a buffer of at leastax elements.

78. Typo:event_call_back

Section: 27.4.2[lib.ios.base] Status: DR Submitter: Nico JosuttisDate: 29 Sepl998
typo: event_call_back should be event_callback

Proposedresolution:

In the 27.4.2 synopsis change "event_call_back" to "event_callback".

79. Inconsistentdeclaration of polar()

Section: 26.2.1]lib.complex.synopsis]26.2.7[lib.complex.value.ops]Status: DR Submitter: Nico Josuttis
Date: 29 Sepl998

In 26.2.1 polar is declared fdlows:

template<class T> complex<T> polar(const T&, const T&);
In 26.2.7 it is declared dsllows:

template<class T> complex<T> polar(const T& rho, const T& theta = 0);
Thus whether the second parameter is optional is not clear.
Proposedresolution:
In 26.2.1change:

template<class T> complex<T> polar(const T&, const T&);
to:

template<class T> complex<T> polar(const T& rho, const T& theta = 0);

80. Global Operators of complex declaredwice

Section: 26.2.1]lib.complex.synopsis]26.2.2[lib.complex] Status: DR Submitter: Nico JosuttisDate: 29 Sep
1998

Both 26.2.1 and 26.2.2 contain declarations of global operators for class complex. This redundancy should be
removed.

Proposedresolution:

-31-

C++ Standard Library Defect Report List

Reduce redundancy according to the general style of the standard.

83. String::nposvs.string::max_size()
Section; 21.3[lib.basic.string] Status: DR Submitter: Nico JosuttisDate: 29 Sepl998

Many string member functions throw if size is getting or exceeding npos. However, | wonder why they don’t throw
if size is getting or exceeding max_size() instead of npos. May be npos is known at compile time, while max_size()
is known at runtime. However, what happens if size exceeds max_size() but not npos, then? It seems the standard
lacks some clarificationisere.

Proposedresolution:
After 21.3 paragraph 4 ("The functions described in this clause...") add panagraph:

For any string operation, if as a result of the operatime() would exceednax_size() then the
operation throwsength_error

Rationale:

The LWG believes length_error is the correct exceptidhrimw.

86. String constructors don’t describeexceptions
Section: 21.3.1]lib.string.cons] Status: DR Submitter: Nico JosuttisDate: 29 Sepl998
The constructor from eange:

template<class Inputlterator>
basic_string(Inputlterator begin, Inputlterator end,
const Allocator& a = Allocator());

lacks a throws clause. However, | would expect that it throws according to the other constructors if the numbers of
characters in the range equals npos (or exceeds max_size(), see above).

Proposedresolution:
In 21.3.1, Strike throws paragraphs for constructors which say "Throws: length_errorripos=
Rationale:

Throws clauses for length_error if n == npos are no longer needed because they are subsumed by the general
wording added by the resolution for is@g

90. Incorrect description of operator >> for strings
Section: 21.3.7.9lib.string.io] Status: DR Submitter: Nico JosuttisDate: 29 Sepl998
The effect of operator >> for strings contain the followitegn:

isspace(c,getloc()) is true for the next available input charaater

-32-

C++ Standard Library Defect Report List

Heregetloc() has to be replaced lg.getloc()
Proposedresolution:

In 21.3.7.9 paragraph 1 Effects clausplace:

isspace(c,getloc()) is true for the next available input charaater
with:
isspace(c,is.getloc()) is true for the next available input charaater

103. set::iteratoris required to be modifiable, but this allows
modification of keys

Section: 23.1.2[lib.associative.regmtsptatus: DR Submitter: AFNOR Date: 7 Oct1998

Set::iterator is described as implementation-defined with a reference to the container requirement; the container
requirement says that const_iterator is an iterator pointing to const T and iterator an iterator pdinting to

23.1.2 paragraph 2 implies that the keys should not be modified to break the ordering of elements. But that is not
clearly specified. Especially considering that the current standard requires that iterator for associative containers be
different from const_iterator. Set, for example, has the following:

typedef implementation defined iterator,;
/I See _lib.container.requirements_

23.1 actually requires that iterator type pointing to T (table 65). Disallowing user modification of keys by changing
the standard to require an iterator for associative container to be the same as const_iterator would be overkill since
that will unnecessarily significantly restrict the usage of associative container. A class to be used as elements of set,
for example, can no longer be modified easily without either redesigning the class (using mutable on fields that have
nothing to do with ordering), or using const_cast, which defeats requiring iterator to be const_iterator. The proposed
solution goes in line with trusting user knows what he is ddlifsgcontainer.requirements]

Other Options Evaluated:

Option A. In 23.1.2 , paragraph 2, after first sentence, and before "In addition,...", diheé.one
Modification of keys shall not change their strict weak ordering.

Option B. Add three new sentences to 23:1.2

At the end of paragraph 5: "Keys in an associative container are immutable." At the end of paragraph 6: "For
associative containers where the value type is the same as the key tyjierdioth and

const_iterator are constant iterators. It is unspecified whether oitexattor and

const_iterator are the samgype."

Option C. To 23.1.2, paragraph 3, which currergbds:

The phrase “equivalence of keys” means the equivalence relation imposed by the comparison and not the
operator== on keys. That is, two keys k1 and k2 in the same container are considered to be equivalent if for the
comparison object comp, comp(kl, k2) == false && comp(k2, kljatse.

add thdollowing:

-33-

C++ Standard Library Defect Report List

For any two keys k1 and k2 in the same container, comp(k1, k2) shall return the same value whenever it is
evaluated. [Note: If k2 is removed from the container and later reinserted, comp(k1, k2) must still return a
consistent value but this value may be different than it was the first time k1 and k2 were in the same container.
This is intended to allow usage like a string key that contains a filename, where comp compares file contents; if
k2 is removed, the file is changed, and the same k2 (filename) is reinserted, comp(k1, k2) must again return a
consistent value but this value may be different than it was the previous time k2 wasont#ieer.]

Proposedresolution:
Add the following to 23.1.2 at the indicatkxtation:

At the end of paragraph 3: "For any two keys k1 and k2 in the same container, calling comp(k1, k2) shall
always return the samalue."

At the end of paragraph 5: "Keys in an associative containémaratable."

At the end of paragraph 6: "For associative containers where the value type is the same as the key type, both

iterator andconst_iterator are constant iterators. It is unspecified whether oitexattor and
const_iterator are the samgype."
Rationale:

Several arguments were advanced for and against allowing set elements to be mutable as long as the ordering was
not effected. The argument which swayed the LWG was one of safety; if elements were mutable, there would be no
compile-time way to detect of a simple user oversight which caused ordering to be modified. There was a report that
this had actually happened in practice, and had been painful to diagnose. If users need to modify elements, it is
possible to use mutable membersaonst_cast.

Simply requiring that keys be immutable is not sufficient, because the comparison object may indirectly (via
pointers) operate on values outside ofkbgs.

The typesterator andconst_iterator are permitted to be different types to allow for potential future work

in which some member functions might be overloaded between the two types. No such member functions exist now,
and the LWG believes that user functionality will not be impaired by permitting the two types to be the same. A
function that operates on both iterator types can be defineoifist_iterator alone, and can rely on the

automatic conversion froiterator toconst_iterator

[Tokyo: The LWG crafted the proposed resolution aaitbnale.]

106. Numericlibrary private members are implementationdefined
Section: 26.3.5[lib.template.slice.arrayStatus: DR Submitter: AFNOR Date: 7 Oct1998

This is the only place in the whole standard where the implementation has to document sqrie#ting
Proposedresolution:

Remove the comment which says "// remainder implementation defiosal’

® 26.3.5[lib.template.slice.array]
® 26.3.7[lib.template.gslice.array]
® 26.3.8[lib.template.mask.array]
® 26.3.9[lib.template.indirect.array]

-34-

C++ Standard Library Defect Report List

108. Lifetime of exception::what() return unspecified
Section: 18.6.1]lib.exception] Status: DR Submitter: AFNOR Date: 7 Oct1998

In 18.6.1, paragraphs 8-9, the lifetime of the return value of exception::what() is left unspecified. This issue has
implications with exception safety of exception handling: some exceptions should nob#doalloc.

Proposedresolution:
Add to 18.6.1 paragraph 9 (exception::what notes claussgtiience:

The return value remains valid until the exception object from which it is obtained is destroyed or a non-const
member function of the exception objectadled.

Rationale:

If an exception object has non-const members, they may be used to set internal state that should affect the contents
of the string returned byhat()

110. istreambuf _iterator::equal not const

Section: 24.5.3[lib.istreambuf.iterator] 24.5.3.5lib.istreambuf.iterator::equalptatus: DR Submitter: Nathan
Myers Date: 15 Oct1998

Member istreambuf_iterator<>::equal is not declared "const", yet 24.5.3.6 says that operator==, which is const, calls
it. This is contradictory.

Proposedresolution:

In 24.5.3 and also in 24.5.3.8eplace:
bool equal(istreambuf_iterator& b);

with:

bool equal(const istreambuf_iterator& b) const;

112. Minor typo in ostreambuf_iterator constructor
Section:; 24.5.4.1]lib.ostreambuf.iter.consBtatus: DR Submitter: Matt AusternDate: 20 Oct1998

Therequires clause forostreambuf_iterator ’s constructor from anstream_type (24.5.4.1, paragraph
1) reads'sis not null". Howeversis a reference, and references can’t be null.

Proposedresolution:
In24.5.4.1:

Move the current paragraph 1, which reads "Requires: s is not null.", from the first constructor to the second
constructor.

Insert a new paragraph 1 Requires clause for the first constreatbng:

-35-

C++ Standard Library Defect Report List

Requires s.rdbuf() is notnull.

114. Placemenforms example in errortwice
Section: 18.4.1.3lib.new.delete.placementptatus: DR Submitter: Steve Clamagédate: 28 Oct1998
Section 18.4.1.3 contains the following example:

[Example: This can be useful for constructing an object at a known address:
char place[sizeof(Something)];
Something* p = new (place) Something();

-end example]

First code line: "place" need not have any special alignment, and the following constructor could fail due to
misaligneddata.

Second code line: Aren'’t the parens on Something() incorrect? [Dublin: the LWG believes the()eats]
Examples are not normative, but nevertheless should not show code that is invalid or féiely to
Proposedresolution:

Replace théirst line of codein the example in 18.4.1\8ith:

void* place = operator new(sizeof(Something));

115. Typoin strstream constructors
Section: D.7.4.1[depr.strstream.consbtatus: DR Submitter: Steve Clamagéate: 2 Nov1998
D.7.4.1 strstream constructors paragraph 2 says:

Effects: Constructs an object of class strstream, initializing the base class with iostream(& sb) and initializing
sb with one of the two constructors:

- If mode&app==0, then s shall designate the first element of an array of n elements. The constructor is
strstreambuf(s, n, s).

- If mode&app==0, then s shall designate the first element of an array of n elements that contains an NTBS
whose first element is designated by s. The constructor is strstreambsf(stdnstrien(s)).

Notice the second condition is the same as the first. | think the second condition should be "If mode&app==app", or
"mode&app!=0", meaning that the append bgés.

Proposedresolution:

In D.7.3.1 paragraph 2 and D.7.4.1 paragraph 2, change the first cond{tiood®e&app)==0 and the second
condition to(mode&app)!=0

118.basic_istream uses nonexistenhum_get memberfunctions

Section: 27.6.1.2.7lib.istream.formatted.arithmetichtatus: DR Submitter: Matt AusternDate: 20 Nov1998

-36 -

C++ Standard Library Defect Report List

Formatted input is defined for the typa®ort , unsigned short ,int ,unsigned int ,long , unsigned
long ,float ,double ,long double ,bool , andvoid* . According to section 27.6.1.2.2, formatted input of a
valuex is done as if by the following code fragment:

typedef num_get< charT,istreambuf_iterator<charT,traits> > numget;
iostate err = 0;

use_facet< numget >(loc).get(*this, 0, *this, err, val);

setstate(err);

According to section 22.2.2.1.1 , howevaum_get<>::get() is only overloaded for the typésol , long
unsigned short ,unsigned int ,unsigned long ,unsigned long ,float ,double ,long

double , andvoid* . Comparing the lists from the two sections, we find that 27.6.1.2.2 is using a nonexistent
function for typeshort andint .

Proposedresolution:
In 27.6.1.2.2 Arithmetic Extractors, remove the two lines (1st and 3rd) \ndach

operator>>(short& val);

operator>>(int& val);
And add the following at the end of that section (27.6.1:2.2)
operator>>(short& val);

The conversion occurs as if performed by the following code fragment (using the same notation as for the
preceding codéagment):

typedef num_get< charT,istreambuf_iterator<charT,traits> > numget;
jostate err = 0;

long lval;
use_facet< numget >(loc).get(*this, 0, *this, err, Ival);
if (err==0

&& (Ival < numeric_limits<short>::min() || numeric_limits<short>::max() < Ival))
err = ios_base::failbit;
setstate(err);

operator>>(int& val);

The conversion occurs as if performed by the following code fragment (using the same notation as for the
preceding codéagment):

typedef num_get< charT ,istreambuf_iterator<charT,traits> > numget;
iostate err = 0;

long Ival;
use_facet< numget >(loc).get(*this, O, *this, err, lval);
if (err==0

&& (lval < numeric_limits<int>:min() || numeric_limits<int>::max() < lval))
err = ios_base::failbit;
setstate(err);

[Post-Tokyo: PJP provided the abowerding.]

119. Shouldvirtual functions be allowed to strengthen the exception
specification?

-37 -

C++ Standard Library Defect Report List

Section: 17.4.4.glib.res.on.exception.handlingptatus: DR Submitter: Judy WardDate: 15 Dec1998
Section 17.4.4.8 states:
"An implementation may strengthen the exception-specification for a function by removing listed exceptions."

The problem is that if an implementation is allowed to do this for virtual functions, then a library user cannot write a
class that portably derives from that class.

For example, this would not compile if ios_base::failure::~failure had an empty exception specification:

#include <ios>
#include <string>

class D : public std::ios_base::failure {
public:
D(const std::string&);
~D(); /I error - exception specification must be compatible with
/I overridden virtual function ios_base::failure::~failure()

%
Proposedresolution:
Change Section 17.4.4i&m:
"may strengthen the exception-specification flumation”
to:

"may strengthen the exception-specification for a non-virtual function”.

122. streambuf/wstreambufdescription should not say they are
specializations

Section: 27.5.2[lib.streambuf] Status: DR Submitter: Judy WardDate: 15 Dec1998
Section 27.5.2 describes the streambuf classes this way:
The class streambuf is a specialization of the template class basic_streambuf specialized for the type char.
The class wstreambuf is a specialization of the template class basic_streambuf specialized for the type wchar_t.
This implies that these classes must be template specializations, not typedefs.
It doesn’t seem this was intended, since Section 27.5 has them declared as typedefs.
Proposedresolution:
Remove 27.5.2 paragraphs 2 and 3 (the above two sentences).
Rationale:

Thestreambuf synopsis already has a declaration for the typedefs and that is sufficient.

-38 -

C++ Standard Library Defect Report List

124. ctype_byname&charT>::do_scan_is & do_scan_not return type
should be constharT*

Section: 22.2.1.7lib.locale.ctype.bynameptatus: DR Submitter: Judy WardDate: 15 Dec1998

In Section 22.2.1.2 ctype_byname<charT>::do_scan_is() and do_scan_not() are declared to return a const char* not
a const charT*.

Proposedresolution:

Change Section 22.2.1d» scan_is() anddo_scan_not() to return a&onst charT* .

125. valarray<T>:.operator!() return type is inconsistent
Section: 26.3.2[lib.template.valarray]Status: DR Submitter: Judy WardDate: 15 Dec1998

In Section 26.3.2 valarray<T>::operator!() is declared to return a valarray<T>, but in Section 26.3.2.5 it is declared
to return a valarray<bool>. The latter appears to be correct.

Proposedresolution:

Change in Section 26.3.2 the declarationmdrator!() so that the return type v&larray<bool>

126. typosin Effects clause oftype::do_narrow()
Section: 22.2.1.1.7lib.locale.ctype.virtuals]Status: DR Submitter: Judy WardDate: 15 Dec1998
Typos in 22.2.1.1.2 need to fired.
Proposedresolution:
In Section 22.2.1.1.2 change:
do_widen(do_narrow(c),0) == ¢
to:
do_widen(do_narrow(c,0)) == ¢
andchange:
(is(M,c) || 'ctc.is(M, do_narrow(c),dfault))
to:

(is(M,c) || 'ctc.is(M, do_narrow(c,dfault)))

127. auto_ptK> conversionissues
Section: 20.4.5[lib.auto.ptr] Status: DR Submitter: Greg Colvin Date: 17 Febh1999

There are two problems with the curranto_ptr wording in the standard:

-39 -

C++ Standard Library Defect Report List

First, theauto_ptr_ref definition cannot be nested becaasé_ptr<Derived>::auto_ptr_ref is
unrelated t@uto_ptr<Base>::auto_ptr_ref . Also submitted by Nathan Myers, with the same proposed
resolution.

Second, there is reuto_ptr assignment operator taking aato_ptr_ref argument.

| have discussed these problems with my proposal coauthor, Bill Gibbons, and with some compiler and library
implementors, and we believe that these problems are not desired or desirable implications of the standard.

25 Aug 1999: The proposed resolution now reflects changes suggested by Dave Abrahams, with Greg Colvin's
concurrence; 1) changed "assignment operator” to "public assignment operator”, 2) changed effects to specify use of
release(), 3) made the conversion to auto_ptr_ref const.

2 Feb 2000: Lisa Lippincott comments: [The resolution of] this issue states that the conversion from auto_ptr to
auto_ptr_ref should be const. This is not acceptable, because it would allow initialization and assignment from
_any_const auto_ptr! It also introduces an implementation difficulty in writing this conversion function -- namely,
somewhere along the line, a const_cast will be necessary to remove that const so that release() may be called. This
may result in undefined behavior [7.1.5.1/4]. The conversion operator does not have to be const, because a
non-const implicit object parameter may be bound to an rvalue [13.3.3.1.4/3] [13.3.1/5].

Tokyo: The LWG removed the following from the proposesblution:

In 20.4.5 , paragraph 2, and 20.4.5.3 , paragraph 2, make the conversion to autaqgutst.ref
template<class Y> operator auto_ptr_ref<Y>() const throw();

Proposedresolution:

In 20.4.5 , paragraph 2, move thato_ptr_ref definition to namespacEope.

In 20.4.5 , paragraph 2, add a public assignment operator dotieptr definition:
auto_ptr& operator=(auto_ptr_ref<X> r) throw();

Also add the assignment operator to 20.4.5.3 :
auto_ptr& operator=(auto_ptr_ref<X>r) throw()

Effects: Callsreset(p.release()) for theauto_ptr p thatr holds a reference.
Returns: *this

129. Neecerror indication from seekp() andseekg()

Section: 27.6.1.3lib.istream.unformatted27.6.2.4]lib.ostream.seeksBtatus: DR Submitter: Angelika Langer
Date: 22 Feb1999

Currently, the standard does not specify how seekg() and seekp() indicate failure. They are not required to set failbit,
and they can’t return an error indication because they must return *this, i.e. the stream. Hence, it is undefined what
happens if they fail. And thesanfail, for instance, when a file stream is disconnected from the underlying file
(is_open()==false) or when a wide character file stream must perform a state-dependent code conversion, etc.

The stream functions seekg() and seekp() should set failbit in the stream state irfaihge.of

Proposedresolution:

-40 -

C++ Standard Library Defect Report List

Add to the Effects: clause of seekg() in 27.6.1.3 and to the Effects: clause of seekp() in 27.6.2.4 :
In case of failure, the function caliststate(failbit) (which may throwos_base::failure).
Rationale:

Setting failbit is the usual error reporting mechanisnsframs

132. list::resizedescription uses random accesterators
Section; 23.2.2.7lib.list.capacity] Status: DR Submitter: Howard HinnantDate: 6 Mar1999
The descriptiomeads:

-1- Effects:

if (sz > size())
insert(end(), sz-size(), ¢);
else if (sz < size())
erase(begin()+sz, end());
else
; // do nothing

Obviously list::resize should not be specified in terms of random aiteessrs.
Proposedresolution:

Change 23.2.2.2 paragraplol

Effects:

if (sz > size())
insert(end(), sz-size(), c);
else if (sz < size())
{
iterator i = begin();
advance(i, sz);
erase(i, end());

}

[Dublin: The LWG asked Howard to discuss exception safety offline with David Abrahams. They had a discussion
and believe there is no issue of exception safety with the propss#dtion.]

133. mapmissingget_allocator()

Section: 23.3.1]lib.map] Status: DR Submitter: Howard HinnantDate: 6 Mar1999
The title says iall.

Proposedresolution:

Insert in 23.3.1, paragraph 2, after operator= in thedrafaration:

allocator_type get_allocator() const;

-41 -

C++ Standard Library Defect Report List

134. vectorconstructors overspecified
Section: 23.2.4.1]lib.vector.cons] Status: DR Submitter: Howard HinnantDate: 6 Mar1999

The complexity description says: "It does at most 2N calls to the copy constructor of T and logN reallocations if
they are just input iterators".

This appears to be overly restrictive, dictating the precise memory/performance tradeoffipié¢hgentor.
Proposedresolution:
Change 23.2.4.1 , paragrapioi

-1- Complexity: The constructor template <class Inputlterator> vector(Inputlterator first, Inputlterator last) makes
only N calls to the copy constructor of T (where N is the distance between first and last) and no reallocations if
iterators first and last are of forward, bidirectional, or random access categories. It makes order N calls to the copy
constructor of T and order logN reallocations if they are just iiguattors.

Rationale:

"at most 2N calls" is correct only if the growth factor is greater than or eqRal to

136. seekpseekg setting wrongstreams?
Section: 27.6.1.3lib.istream.unformatted|Status: DR Submitter: Howard HinnantDate: 6 Mar1999

| may be misunderstanding the intent, but should not seekg set only the input stream and seekp set only the output
stream? The description seems to say that each should set both input and output streams. If that's really the intent, |
withdraw thisproposal.

Proposedresolution:
In section 27.6.1.8hange:

basic_istream<charT ,traits>& seekg(pos_type pos);
Effects: If fail() != true, executes rdbuf()->pubseekpos(pos).

To:

basic_istream<charT traits>& seekg(pos_type pos);
Effects: If fail() != true, executes rdbuf()->pubseekpos(pos, ios_base::in).

In section 27.6.1.8hange:

basic_istream<charT traits>& seekg(off type& off, ios_base::seekdir dir);
Effects: If fail() != true, executes rdbuf()->pubseekoff(off, dir).

To:

basic_istream<charT,traits>& seekg(off_type& off, ios_base::seekdir dir);
Effects: If fail() != true, executes rdbuf()->pubseekoff(off, dir, ios_base::in).

In section 27.6.2.4, paragrapliti2ange:

-2- Effects: If fail() != true, executes rdbuf()->pubseekpos(pos).

- 42 -

C++ Standard Library Defect Report List

To:

-2- Effects: If fail() != true, executes rdbuf()->pubseekpos(pos, ios_base::out).
In section 27.6.2.4, paragrapltidange:

-4- Effects: If fail() != true, executes rdbuf()->pubseekoff(off, dir).

To:

-4- Effects: If fail() != true, executes rdbuf()->pubseekoff(off, dir, ios_base::out).

[Dublin: Dietmar Kihl thinks this is probably correct, but would like the opinion of more iostream experts before
takingaction.]

[Tokyo: Reviewed by the LWG. PJP noted that although his docs are incorrect, his implementation already
implements the Proposé&ksolution.]

[Post-Tokyo: Matt Austernomments:

Is it a problem with basic_istream and basic_ostream, or is it a problem with basic_stringbuf? We could resolve the
issue either by changing basic_istream and basic_ostream, or by changing basic_stringbuf. | prefer the latter
change (or maybe both changes): | don’t see any reason for the standard to require that std::stringbuf
s(std::string("foo"), std::ios_base::in); s.pubseekoff(0, std::ios_base::beg); failist

This requirement is a bit weird. There’s no similar requirement for basic_streambuf<>::seekpos, or for
basic_filebuf<>::seekoff obasic_filebuf<>::seekpos.]

137. Douse_facet and has_facet look in the globkdcale?
Section:; 22.1.1]lib.locale] Status:DR Submitter: Angelika LangerDate: 17 Mar1999
Section 22.1.5ays:

-4- In the call to use_facet<Facet>(loc), the type argument chooses a facet, making available all members of the
named type. If Facet is not present in a locale (or, failing that, in the global locale), it throws the standard exception
bad_cast. A C++ program can check if a locale implements a particular facet with the template function
has_facet<Facet>().

This contradicts the specification given in section 22.1.2 :

template <class Facet> const Facet& use_facet(const locale& loc);

-1- Get a reference to a facet of a locale.

-2- Returns: a reference to the corresponding facet of loc, if present.

-3- Throws: bad_cast if has_facet<Facet>(loc) is false.

-4- Notes: The reference returned remains valid at least as long as any copgxisdtioc

Proposedresolution:
Remove the phrase "(or, failing that, in the global locale)" from section 22.1.1.
Rationale:

Needed for consistency with the way locales are handled elsewheresiarttiard.

-43-

C++ Standard Library Defect Report List

139. Optional sequence operation table descriptioannclear
Section: 23.1.1]lib.sequence.regmts$tatus: DR Submitter: Andrew Koenig Date: 30 Mar1999
The sentence introducing the Optional sequence operation table (23.1.1 paragraph 12piuddeims:

A. It says “The operations in table 68 are provided only for the containers for which they take donstéant

That could be interpreted in two ways, one of them being “Even though table 68 shows particular operations as
being provided, implementations are free to omit them if they cannot implement them in ciimst&dnt

B. That paragraph says nothing about amortized constant time,sodilid.

Proposedresolution:
Replace the wording in 23.1.1 paragraph 12 which begins “The operations in table 68 are provideditniy..."

Table 68 lists sequence operations that are provided for some types of sequential containers but not others. An
implementation shall provide these operations for all container types shown in the “container” column, and
shall implement them so as to take amortized constaat

141. basic_string::find_last_offind_last not of say pos instead ofpos

Section: 21.3.6.4lib.string::find.last.of] 21.3.6.4lib.string::find.last.not.of] Status: DR Submitter: Arch
Robison Date: 28 Apr1999

Sections 21.3.6.4 paragraph 1 and 21.3.6.6 paragraph 1 surely have misprints wisang they
<Xpos <= pos andpos < size();

Surely the document meant to Saxpos < size() " in both places.
[Judy Ward also sent in this issue for 21.3.6.4 with the same propesadtion.]
Proposedresolution:

Change Sections 21.3.6.4 paragraph 1 and 21.3.6.6 paragraph 1, the lingeytich
<Xpos <= pos andpos < size();

to:

<Xpos <= pos andxpos < size();

142. lexicographical _compareomplexity wrong
Section: 25.3.8[lib.alg.lex.comparison]Status: DR Submitter: Howard HinnantDate: 20 Jun1999
The lexicographical_compare complexity is specifisd

"At most min((lastl - firstl), (last2 - first2)) applications of the corresporatimgparison.”

The best | can do is twice thatpensive.

Nicolai Josuttis comments in lib-6862: You mean, to check for equality you have to check both < and >? Yes, IMO
you are right! (and Matt states this complexity inthosk)

Proposedresolution:

Change 25.3.8 complexity:

- 44 -

C++ Standard Library Defect Report List

At most2*min((lastl - firstl), (last2 - first2)) applications of the corresponding
comparison.

Change the example at the end of paragrapréaii

[Example:
for (; firstl = lastl && first2 1= last2 ; ++firstl, ++first?)
if (*firstl < *first2) returntrue;
if (*first2 < *firstl) returnfalse;

}
return firstl == lastl && first2 4ast2;

--end example]

144. Dequeconstructor complexity wrong
Section: 23.2.1.1]lib.deque.cons]Status: DR Submitter: Herb SutterDate: 9 May 1999

In 23.2.1.1 paragraph 6, the deque ctor that takes an iterator range appears to have complexity requirements which
are incorrect, and which contradict the complexity requirements for insert(). | suspect that the text in question,
below, was taken fromector:

Complexity: If the iterators first and last are forward iterators, bidirectional iterators, or random access iterators
the constructor makes only N calls to the copy constructor, and performs no reallocations, where N is last -
first.

The word "reallocations" does not really apply to deque. Further, all of the following appeasptibes:
It makes at most 2N calls to the copy constructor of T and log N reallocations if they aitenapoits.1)

1) The complexity is greater in the case of input iterators because each element must be added individually: it is
impossible to determine the distance between first abd last before doouapifieg.

This makes perfect sense for vector, but not for deque. Why should deque gain an efficiency advantage from
knowing in advance the number of elementmsert?

Proposedresolution:

In 23.2.1.1 paragraph 6, replace the Complexity description, including the footnote, with the following text (which
also corrects the "abdypo):

Complexity: Makes last - first calls to the copy constructdr.of

146. complexT> Inserter and Extractor needsentries
Section: 26.2.6[lib.complex.ops] Status: DR Submitter: Angelika LangerDate: 12 May1999

Theextractorfor complex numbers is specified:

template<class T, class charT, clas#s>
basic_istream<charTraits>&
operator>>(basic_istream<charT, traits>& is, complex<P>&

Effects: Extracts a complex number x of the form: u, (u), or (u,v), where u is the real part and v is the imaginary
part(lib.istream.formatted).

- 45 -

C++ Standard Library Defect Report List

Requires: The input values be convertible to T. If bad input is encountered, calls is.setstate(ios::failbit) (which
may throw ios::failurdlib.iostate.flags).
Returns: is

Is it intended that the extractor for complex numbers does not skip whitespace, unlike all other extractors in the
standard library do? Shouldn't a sentryused?
Theinserterfor complex numbers is specified:

template<class T, class charT, clas#s>
basic_ostream<charTraits>&

operator<<(basic_ostream<charT, traits>& o, const complex<{)>&
Effects: inserts the complex number x onto the stream o as if it were implemefukoves
template<class T, class charT, clas#s>
basic_ostream<charTraits>&

operator<<(basic_ostream<charT, traits>& o, const complex<{)>&
{

basic_ostringstream<charT, traits>

s.flags(o.flags());

s.imbue(o.getloc());

s.precision(o.precision());

s << ’'(" << x.real() << "," << x.imag() <¥’;

return o <<s.str();

}

Is it intended that the inserter for complex numbers ignores the field width and does not do any padding? If, with the
suggested implementation above, the field width were set in the stream then the opening parentheses would be
adjusted, but the rest not, because the field width is reset to zero afterseation.

| think that both operations should use sentries, for sake of consistency with the other inserters and extractors in the
library. Regarding the issue of padding in the inserter, | don’t know what thewasnt

Proposedresolution:
After 26.2.6 paragraph 14 (operator>>), add a Nogasse:

Notes: This extraction is performed as a series of simpler extractions. Therefore, the skipping of whitespace is
specified to be the same for each of the simgénactions.

Rationale:
For extractors, the note is added to make it clear that skipping whitespace follows an "all-gugone"

For inserters, the LWG believes there is no defect; the standard is comeitteas

147. Library Intro refers to global functions that aren’t global
Section: 17.4.4.3lib.global.functions] Status: DR Submitter: Lois Goldthwaite Date: 4 Jun1999
The library had many global functions until 17.4.1.1 [lib.contents] paragraph 2 was added:

All library entities except macros, operator new and operator delete are defined within the namespace std or
namespaces nested within namespace std.

It appears "global function" was never updated in the following:

- 46 -

C++ Standard Library Defect Report List

17.4.4.3 - Global functiondib.global.functions]

-1- It is unspecified whether any global functions in the C++ Standard Library are defined as inline
(dcl.fct.spec).

-2- A call to a global function signature described in Clauses lib.language.support through lib.input.output
behaves the same as if the implementation declares no additional global feiggtadnres.*

[Footnote: A valid C++ program always calls the expected library global function. An implementation may also
define additional global functions that would otherwise not be called by a valid C++ program.feeteite]

-3- A global function cannot be declared by the implementation as taking additional defauients.

17.4.4.4 - Member functiorfib.member.functions]

-2- An implementation can declare additional non-virtual member function signatures within a class:

-- by adding arguments with default values to a member function signature; The same latitude does not
extend to the implementation of virtual or global functions, however.

Proposedresolution:
Change "global" to "global or non-membar?

17.4.4.3 [lib.global.functions] sectiditle,

17.4.4.3 [lib.global.functions] pathg

17.4.4.3 [lib.global.functions] para 2 in 2 places plus 2 places ifotiteote,
17.4.4.3 [lib.global.functions] pai&

17.4.4.4 [lib.member.functions] pa?a

Rationale:

Because operator new and delete are global, the proposed resolution was changed from "non-member" to "global or
non-member.

148. Functionsin the example facet BoolINames should m®nst
Section; 22.2.8[lib.facets.examplesBtatus: DR Submitter: Jeremy SiekDate: 3 Jun1999

In 22.2.8 paragraph 13, the do_truename() and do_falsename() functions in the example facet BoolINames should be
const. The functions they are overriding in numpunct_byname<char> are const.

Proposedresolution:
In 22.2.8 paragraph 13, insert "const" in talaces:

string do_truename() const { return "Oui Oui!"; }
string do_falsename() const { return "Mais Non!"; }

150. Find_first_of says integer instead of iterator

Section: 25.1.4[lib.alg.find.first.of] Status: DR Submitter: Matt McClure Date: 30 Jun1999
Proposedresolution:

Change 25.1.4 paragraptirgm:

Returns: The first iterator i in the range [firstl, lastl) such that for gaewgerj in the range [first2, last2).

- 47 -

C++ Standard Library Defect Report List

to:

Returns: The first iterator i in the range [firstl, lastl) such that for some iterator j in the range [first2, last2)

151. Can’tcurrently clear() empty container
Section: 23.1.1]lib.sequence.regmtshtatus: DR Submitter: Ed Brey Date: 21 Jun1999

For both sequences and associative containers, a.clear() has the semantics of erase(a.begin(),a.end()), which is
undefined for an empty container since erase(ql,92) requires that q1 be dereferenceable (23.1.1,3 and 23.1.2,7).
When the container is empty, a.begin() isderteferenceable.

The requirement that g1 be unconditionally dereferenceable causes many operations to be intuitively undefined, of
which clearing an empty container is probably the rdst

Since g1 and g2 are only referenced in the range [gl, g2), and [q1, g2) is required to be a valid range, stating that q1
and g2 must be iterators or certain kinds of iteratousimecessary.

Proposedresolution:
In 23.1.1, paragraph 8hange:

p and g2 denote valid iterators to anmggl denote valid dereferenceable iterators to a, [q1, q2) denotes a valid
range

to:

p denotes a valid iterator to a, g denotes a valid dereferenceable iterator to a, [q1, g2) denotesgamlal
In 23.1.2, paragraph ¢hange:

p and g2 are valid iterators to aagdql are valid dereferenceable iterators to a, [g1, g2) is a raige
to

p is a valid iterator to a, q is a valid dereferenceable iterator to a, [q1, 2) is a valithtaage

152. Typoin scan_is() = semantics
Section: 22.2.1.1.7lib.locale.ctype.virtuals]Status: DR Submitter: Dietmar Kiihl Date: 20 Jul1999

The semantics afcan_is() (paragraphs 4 and 6) is not exactly described because there is no figfction
which only takes a character as argument. Also, in the effects clause (paragraph 3), the semantic isadsekept

Proposedresolution:
In 22.2.1.1.2 paragraphs 4 and 6, change the returns tlaose
"...such thats(*p) would..."

to: "... such thais(m, *p) would...."

- 48 -

C++ Standard Library Defect Report List

153. Typoin narrow() semantics
Section: 22.2.1.3.7lib.facet.ctype.char.member§tatus: DR Submitter: Dietmar Kiihl Date: 20 Jul1999

The description of the array versionrafrrow() (in paragraph 11) is flawed: There is no member
do_narrow() which takes only three arguments because in addition to the range a default charaetigds

Additionally, for bothwiden andnarrow we have two signatures followed byRaturns clause that only
addresses one tifiem.

Proposedresolution:
Change the returns clause in 22.2.1.3.2 paragrajort0
Returns: do_widen(low, higto).
to:
Returns: do_widen(c) or do_widen(low, high, tespectively.
Change 22.2.1.3.2 paragraph 10 andram:

char narrow(char c, char /*dfault*/) const;
const char* narrow(const char* low, const char* high,
char /*dfault*/, char* to) const;

Returns: do_narrow(low, high, to).
to:

char narrow(char c, char dfault) const;
const char* narrow(const char* low, const char* high,
char dfault, char* to) const;

Returns: do_narrow(c, dfault) or
do_narrow(low, high, dfault, to), respectively.

[Kona: 1) the problem occurs in additional places, 2) a user defined version coditfdyent.]

[Post-Tokyo: Dietmar provided the above wording at the request of the LWG. He could find no other places the
problem occurred. He asks for clarification of the Kona "a user defined version..." comment above. Perhaps it was a
circuitous way of saying "dfault" needed tolrecommented?]

[Post-Toronto: the issues list maintainer has merged in the proposed resolution frord0Zswhich addresses the
sameparagraphs.]

154. Missingdouble specifier for do_get()
Section: 22.2.2.1.7lib.facet.num.get.virtualsjStatus: DR Submitter: Dietmar Kuhl Date: 20 Jul1999

The table in paragraph 7 for the length modifier does not list the length mbditidye applied if the type is
double . Thus, the standard asks the implementation to do undefined things whescasiffy (the missing
length modifier forscanf() when scannindouble s is actually a problem | found quite often in production
code,too).

- 49 -

C++ Standard Library Defect Report List

Proposedresolution:

In 22.2.2.1.2 , paragraph 7, add a row in the Length Modifier table to say thdaufde a length modifiet is to
beused.

Rationale:

The standard makes an embarrassing beginmastske.

155. Typoin naming the class defining the clasknit
Section: 27.3[lib.iostream.objects]Status: DR Submitter: Dietmar Kihl Date: 20 Jul1999

There are conflicting statements about where the biéiss is defined. According to 27.3 paragraph 2 it is defined
asbasic_ios::Init , according to 27.4.2 it is defined ias_base::Init

Proposedresolution:
Change 27.3 paragraph 2 frdtmasic_ios::Init" to"ios_base::Init"
Rationale:

Although not strictly wrong, the standard was misleading enough to warraritahge.

156. Typoin imbue() description
Section: 27.4.2.3lib.ios.base.localesBtatus: DR Submitter: Dietmar Kiihl Date: 20 Jul1999

There is a small discrepancy between the declaratiansboie() :in 27.4.2 the argument is passedoasile
const& (correct), in 27.4.2.3 it is passedi@sale const (wrong).

Proposedresolution:

In 27.4.2.3 change thimbue argument fronilocale const" to "locale const&".

158. Underspecifiedsemantics forsetbuf()
Section:; 27.5.2.4.7lib.streambuf.virt.buffer]Status: DR Submitter: Dietmar Kihl Date: 20 Jul1999

The default behavior afetbuf() is described only for the situation tlegdtr() != 0 && gptr() !=
egptr() : namely to do nothing. What has to be done in other situations is not described although there is actually
only one reasonable approach, namely to do nottoing,

Since changing the buffer would almost certainly mess up most buffer management of derived classes unless these
classes do it themselves, the default behavisetifuf() should always be to dwthing.

Proposedresolution:

Change 27.5.2.4.2 , paragraph 3, Default behavior, to: "Default behavior: Does nothing. tRettirns

-50 -

C++ Standard Library Defect Report List

159. Strangeuse ofunderflow()
Section: 27.5.2.4.3lib.streambuf.virt.get]Status: DR Submitter: Dietmar Kihl Date: 20 Jul1999

The description of the meaning of the resulslwbwmanyc() seems to be rather strange: It uses calls to
underflow() . Usingunderflow() is strange because this function only reads the current character but does
not extract ituflow() would extract the current character. This should be fixed tshusapc() instead.

Proposedresolution:

Change 27.5.2.4.3 paragraptstipwmanyc() returns clause, by replacing the word "supplied" with the words
"extracted from thetream".

160. Typo: Use of non-existing functiorexception()
Section: 27.6.1.1]lib.istream] Status: DR Submitter: Dietmar Kihl Date: 20 Jul1999

The paragraph 4 refers to the functeeption() which is not defined. Probably, the referred function is
basic_ios<>::exceptions()

Proposedresolution:

In27.6.1.1, 27.6.1.3 , paragraph 1, 27.6.2.1 , paragraph 3, and 27.6.2.5.1 , paragraph "lexdepigm()"
to "exceptions()"

[Note to Editor: "exceptions” with an "s" is the corresgtelling.]

161. Typo:istream_iterator vs.istreambuf _iterator
Section: 27.6.1.2.7lib.istream.formatted.arithmetichtatus: DR Submitter: Dietmar Kihl Date: 20 Jul1999

The note in the second paragraph pretends that the first argument is an objecistieignme iterator . This
is wrong: It is an object of tygstreambuf_iterator

Proposedresolution:
Change 27.6.1.2 ffom:

The first argument provides an object of the istream_itecédss...
to

The first argument provides an object of the istreambuf_itecidss...

164. do_put()has apparently unused fillargument
Section; 22.2.5.3.7lib.locale.time.put.virtuals]Status: DR Submitter: Angelika LangerDate: 23 Jul1999

In 22.2.5.3.2 the do_put() function is specified as taking a fill character as an argument, but the description of the
function does not say whether the character is used at all and, if so, in which way. The same holds for any format
control parameters that are accessible through the ios_base& argument, such as the adjustment or the field width. Is
strftime() supposed to use the fill character in any way? In any case, the specification of time_put.do_put() looks
inconsistent tane.

Is the signature of do_put() wrong, or is the effects claemamplete?

-51-

C++ Standard Library Defect Report List

Proposedresolution:
Add the following note after 22.2.5.3.2 paragraph

[Note: thefill argument may be used in the implementation-defined formats, or by derivations. A space
character is a reasonable default for this argument. Nete]

Rationale:

The LWG felt that while the normative text was correct, users need some guidance on what to pafi$ for the
argument since the standard doesn’t say howasts.

165.xsputn() , pubsync() never called bybasic_ostream
members?

Section: 27.6.2.1]lib.ostream] Status: DR Submitter: Dietmar Kiihl Date: 20 Jul1999

Paragraph 2 explicitly states that none oflihsic_ostream functions falling into one of the groups "formatted
output functions" and "unformatted output functions" calls any stream buffer function which might call a virtual
function other thaoverflow() . Basically this is fine but this implies theputn() (this function would call the
virtual functionxsputn()) is never called by any of the standard output functions. Is this really intended? At
minimum it would be convenient to cabputn() for strings... Also, the statement tloaerflow() is the only
virtual member obasic_streambuf called is in conflict with the definition dflush() which calls
rdbuf()->pubsync() and thereby the virtual functiamync() (flush() s listed under "unformatted output
functions").

In addition, | guess that the sentence starting with "They may use other public menhiasis_afstream
probably was intended to start with "They may use other public membeasiof streamuf ..." although the
problem with the virtual members exists in bo#ses.

| see two obviousesolutions:

1. state in a footnote that this means tkegutn() will never be called by any ostream member and that this is
intended.

2. relax the restriction and allow calliroyerflow() andxsputn() . Of course, the problem wiftush()
has to be resolved in somay.

Proposedresolution:
Change the last sentence of 27.6.2.1 (lib.ostream) paragfeqih:2

They may use other public members of basic_ostream except that they do not invoke any virtual members of
rdbuf() excepoverflow().

to:

They may use other public members of basic_ostream except that they shall not invoke any virtual members of
rdbuf() except overflow(), xsputn(), asginc().

[Kona: the LWG believes this is a problem. Wish to ask Jerry or PJP why the standard is writteaythis

[Post-Tokyo: Dietmar supplied wording at the request of the LWG. He comments: The rules can be made a little bit
more specific if necessary be explicitly spelling out what virtuals are allowed to be called from what functions and
eg to state specifically that flush() is allowed to call sync() while other functiomate

-52 -

C++ Standard Library Defect Report List

168. Typo:formatted vs. unformatted
Section: 27.6.2.4lib.ostream.unformattedptatus: DR Submitter: Dietmar Kihl Date: 20 Jul1999

The first paragraph begins with a descriptions what has to be dorenmttedoutput functions. Probably this is a
typo and the paragraph really want to describe unformatted dutymiitons...

Proposedresolution:
In 27.6.2.6 paragraph 1, the first and last sentences, change the word "formatiattrtoatted":

"Eachunformatted output function begins."
"... value specified for thenformatted outputfunction.”

169. Badefficiency ofoverflow() mandated
Section: 27.7.1.3lib.stringbuf.virtuals] Status: DR Submitter: Dietmar Kuhl Date: 20 Jul1999

Paragraph 8, Notes, of this section seems to mandate an extremely inefficient way of buffer handling for
basic_stringbuf , especially in view of the restriction tHadsic_ostream member functions are not
allowed to usexsputn() (see 27.6.2.1): For each character to be inserted, a new buffer icréatesl.

Of course, the resolution below requires some handling of simultaneous input and output since it is no longer
possible to updategptr() wheneveepptr() is changed. A possible solution is to handle this in
underflow()

Proposedresolution:
In 27.7.1.3 paragraph 8, Notes, insert the words "at least" asfilltvaing:

To make a write position available, the function reallocates (or initially allocates) an array object with a
sufficient number of elements to hold the current array object (if any)apleastone additional write
position.

170. Inconsistentdefinition of traits_type
Section; 27.7.4[lib.stringstream] Status: DR Submitter: Dietmar Kiihl Date: 20 Jul1999

The classebasic_stringstream (27.7.4) pbasic_istringstream (27.7.2), and
basic_ostringstream (27.7.3) are inconsistent in their definition of the tyaés_type : For
istringstream , this type is defined, for the other two it is not. This shoulddrsistent.

Proposedresolution:
Proposedresolution:
To the declarations dfasic_ostringstream (27.7.3) andbasic_stringstream (27.7.4)add:

typedef traits traits_type;

-B3-

C++ Standard Library Defect Report List

171. Strangeseekpos() semantics due to joinfosition
Section: 27.8.1.4lib.filebuf.virtuals] Status:DR Submitter: Dietmar Kihl Date: 20 Jul1999
Overridden virtual functionseekpos()

In 27.8.1.1 paragraph 3, it is stated that a joint input and output position is maintabesidyilebuf . Still,

the description ofeekpos() seems to talk about different file positions. In particular, it is unclear (at least to me)
what is supposed to happen to the output buffer (if there is one) if only the input position is changed. The standard
seems to mandate that the output buffer is kept and processed as if there was no positioning of the output position
(by changing the input position). Of course, this can be exactly what you want if tiesflagse::ate is set.
However, | think, the standard should say somethinglilee

e If (which & mode) == 0 neither read nor write position is changed and the call fails. Otherwise, the joint
read and write position is altered to corresponspto

e If there is an output buffer, the output sequences is updated and any unshift sequence is written before the
position is altered.

e If there is an input buffer, the input sequence is updated after the poséiterésl.

Plus the appropriate error handling, tisat

Proposedresolution:

Change the unnumbered paragraph in 27.8.1.4 (lib.filebuf.virtuals) before paragfeqin:14
pos_type seekpos(pos_type sp, ios_base::openmode = ios_base: lm$e::out);
Alters the file position, if possible, to correspond to the position stored in sp (as debetihed
- if (which&ios_base::in)!=0, set the file position to sp, then update the ssputence

- if (which&ios_base::out)!=0, then update the output sequence, write any unshift sequence, and set the file
position tosp.

to:
pos_type seekpos(pos_type sp, ios_base::openmode = ios_béce: lim$e::out);

Alters the file position, if possible, to correspond to the position stored in sp (as described below). Altering the
file position performs afollows:

1. if (om & ios_base::out)!=0, then update the output sequence and write any secphéihce;

2. set the file position tep;

3. if (om & ios_base::in)!=0, then update the inpequence;

where om is the open mode passed to the last call to open(). The operation fails if is_open{alsturns
[Kona: Dietmar is working on a proposedsolution.]

[Post-Tokyo: Dietmar supplied the abowerding.]

-54 -

C++ Standard Library Defect Report List

172. Inconsistenttypes for basic_istream::ignore()

Section: 27.6.1.3lib.istream.unformatted|Status: DR Submitter: Greg Comeau, Dietmar Kutbate: 23 Jul
1999

In 27.6.1.1 the functioignore() gets an object of typgreamsize as first argument. However, in 27.6.1.3
paragraph 23 the first argument is of typie

As far as | can see this is not really a contradiction because everything is consistealriize is typedef to be
int . However, this is almost certainly not what was intended. The same thing happened to
basic_filebuf::setbuf() , as described in iss[l€3

Darin Adler also submitted this issue, commenting: Either 27.6.1.1 should be modified to show a first parameter of
type int, or 27.6.1.3 should be modified to show a first parameter of type streamsize and use
numeric_limits<streamsize>::max.

Proposedresolution:

In 27.6.1.3 paragraph 23 and 24, change both uses oin the description afjnore() to streamsize

173. Inconsistenttypes for basic_filebuf::setbuf()
Section: 27.8.1.4lib.filebuf.virtuals] Status: DR Submitter: Greg Comeau, Dietmar Kiibate: 23 Jul1999

In 27.8.1.1 the functiosetbuf() gets an object of typgreamsize as second argument. However, in 27.8.1.4
paragraph 9 the second argument is of tgpe.

As far as | can see this is not really a contradiction because everything is conss¢teatriSize is typedef to be
int . However, this is almost certainly not what was intended. The same thing happened to
basic_istream::ignore() , as described in iss[l§3

Proposedresolution:

In 27.8.1.4 paragraph 9, change all usestof in the description a$etbuf() to streamsize

174. Typo:OFF_Tvs.POS_T
Section: D.6 [depr.ios.membersBtatus: DR Submitter: Dietmar Kihl Date: 23 Jul1999

According to paragraph 1 of this sectistreampos is the typeOFF_T, the same type adreamoff . However,
in paragraph 6 thstreampos gets the typ®0OS_T

Proposedresolution:

Change D.6 paragraph 1 frdttypedef OFF_T streampos; "to"typedef POS T streampos;

175. Ambiguity for basic_streambuf::pubseekpos() and a few
other functions.

Section: D.6 [depr.ios.membersBtatus: DR Submitter: Dietmar Kihl Date: 23 Jul1999

-B55 -

C++ Standard Library Defect Report List

According to paragraph 8 of this section, the methiadsc_streambuf::pubseekpos() ,

basic_ifstream::open() , andbasic_ofstream::open "may" be overloaded by a version of this

function taking the typ@®s_base::open_mode as last argument argument instead of

ios_base::openmode (ios_base::open_mode is defined in this section to be an alias for one of the

integral types). The clause specifies, that the last argument has a default argument in three cases. However, this
generates an ambiguity with the overloaded version because now the arguments are absolutely identical if the last
argument is naspecified.

Proposedresolution:

In D.6 paragraph 8, remove the default argumentbdsic_streambuf::pubseekpos() ,
basic_ifstream::open() , andbasic_ofstream::open().

176.exceptions() inios_base ...?
Section: D.6 [depr.ios.membersBtatus: DR Submitter: Dietmar Kihl Date: 23 Jul1999

The "overload" for the functioexceptions() in paragraph 8 gives the impression that there is another function
of this function defined in classs_base . However, this is not the case. Thus, it is hard to tell how the semantics
(paragraph 9) can be implemented: "Call the corresponding member function specified in clause 27

Proposedresolution:

In D.6 paragraph 8, move the declaration of the funetiaeptions() into classhasic_ios

181. make_pair()unintendedbehavior
Section: 20.2.2lib.pairs] Status: DR Submitter: Andrew Koenig Date: 3 Aug1999
The claim has surfaced in Usenet that expressionsasuch
make_pair("abc", 3)
are illegal, notwithstanding their use in examples, because template instantiation tries to bind the first template

parameter t@onst char (&)[4] , which type isuncopyable.
| doubt anyone intended thaghavior...

Proposedresolution:
In 20.2 , paragraph 1 change the following declarationake_pair():
template <class T1, class T2> pair<T1,T2> make_pair(const T1&, const T2&);
to:
template <class T1, class T2> pair<T1,T2> make_pair(T1, T2);
In 20.2.2 paragraph 7 and the line befategnge:

template <class T1, class T2>
pair<T1, T2> make_pair(const T1& X, const T2& y);

to:

template <class T1, class T2>
pair<T1, T2> make_pair(T1 x, T2 y);

-56 -

C++ Standard Library Defect Report List

and add the following footnote to the effeclause:

According to 12.8 [class.copy], an implementation is permitted to not perform a copy of an argument, thus
avoiding unnecessanopies.

Rationale:

Two potential fixes were suggested by Matt Austern and Dietmar Kuhl, respectively, 1) overloading with array
arguments, and 2) use of a reference_traits class with a specialization for arrays. Andy Koenig suggested changing
to pass by value. In discussion, it appeared that this was a much smaller change to the standard that the other two
suggestions, and any efficiency concerns were more than offset by the advantages of the solution. Two
implementors reported that the proposed resolution passed thsiritest

183. I/0 stream manipulators don’t work for wide character streams
Section:; 27.6.3[lib.std.manip] Status: DR Submitter: Andy SawyerDate: 7 Jul1999
27.6.3 paragraph 3 says (clause numbering addexpasition):[lib.std.manip]

Returns: An object s of unspecified type such that if [1] out is an (instance of) basic_ostream then the
expression out<<s behaves as if f(s) were called, and if [2] in is an (instance of) basic_istream then the
expression in>>s behaves as if f(s) were called. Where f can be defined as: ios_base& f(ios_base& str,
ios_base::fmtflags mask) { // reset specified flags str.setf(ios_base::fmtflags(0), mask); return str; } [3] The
expression out<<s has type ostreamé& and value out. [4] The expression in>>s has type istreamé& amd value

Given the definitions [1] and [2] for out and in, surely [3] should read: "The expression out << s has type
basic_ostream& ..." and [4] should read: "The expression in >> s has type basic_istréamé&

If the wording in the standard is correct, | can see no way of implementing any of the manipulators so that they will
work with wide charactestreams.

e.g. wcout << setbase(16
Must have value 'wcout’ (which makes sense) and type 'ostreamé&’ (vamebn't).

The same "cut'n’paste” type also seems to occur in Paras 4,5,7 and 8. In addition, Para 6 [setfill] has a similar error,
but relates only tostreams.

I'd be happier if there was a better way of saying this, to make it clear that the value of the expression is "the same
specialization of basic_ostreamad"&

Proposedresolution:
Replace section 27.6.3 except paragraph 1 witfotleving:

2- The type designated smanip in each of the following function descriptions is implementation-specified and
may be different for eadiunction.
smanip resetiosflags(ios_base::fmtflags mask);
-3- Returns: An object s of unspecified type such that if out is an instance of basic_ostream<charT ,traits> then
the expression out<<s behaves as if f(s, mask) were called, or if in is an instance of basic_istream<charT ,traits>
then the expression in>>s behaves as if f(s, mask) were called. The function f can beadefined
[Footnote: The expression cin >> resetiosflags(ios_base::skipws) clears ios_base::skipws in the format flags
stored in the basic_istream<charT,traits> object cin (the same as cin >> noskipws), and the expression cout <<
resetiosflags(ios_base::showbase) clears ios_base::showbase in the format flags stored in the
basic_ostream<charT,traits> object cout (the same as cout << noshowbase)footrend]

ios_baseé& f(ios_base& str, ios_base::fmtflags mask)

{

-57 -

C++ Standard Library Defect Report List

/I reset specified flags
str.setf(ios_base::fmtflags(0), mask);
return str;

}

The expression out<<s has type basic_ostream<charT,traits>& and value out. The expression in>>s has type
basic_istream<charT ,traits>& and valae
smanip setiosflags(ios_base::fmtflags mask);
-4- Returns: An object s of unspecified type such that if out is an instance of basic_ostream<charT,traits> then
the expression out<<s behaves as if f(s, mask) were called, or if in is an instance of basic_istream<charT,traits> then
the expression in>>s behaves as if f(s, mask) were called. The function f can beakefined
ios_base& f(ios_base& str, ios_base::fmtflags mask)
{
/I set specified flags
str.setf(mask);
return str;
}
The expression out<<s has type basic_ostream<charT,traits>& and value out. The expression in>>s has type
basic_istream<charT ,traits>& and valae
smanip setbase(int base);
-5- Returns: An object s of unspecified type such that if out is an instance of basic_ostream<charT,traits> then
the expression out<<s behaves as if f(s, base) were called, or if in is an instance of basic_istream<charT,traits> then
the expression in>>s behaves as if f(s, base) were called. The function f can beadefined

ios_base& f(ios_base& str, int base)
{
Il set basefield

str.setf(base == 8 ? ios_base::oct
base == 10 ? ios_base::dec
base == 16 ? ios_base::hex

ios_base::fmtflags(0), ios_base::basefield);
return str;
}

The expression out<<s has type basic_ostream<charT,traits>& and value out. The expression in>>s has type
basic_istream<charT ,traits>& and valae

smanip setffill(char_type c);

-6- Returns: An object s of unspecified type such that if out is (or is derived from) basic_ostream<charT traits>
and c has type charT then the expression out<<s behaves as if f(s, ¢) were called. The function f can &g defined

template<class charT, class traits>
basic_ios<charT traits>& f(basic_ios<charT,traits>& str, charT c)
{
/I set fill character
str.fill(c);
return str;
}
The expression out<<s has type basic_ostream<charT,traits>& andualue
smanip setprecision(int n);

-7- Returns: An object s of unspecified type such that if out is an instance of basic_ostream<charT,traits> then
the expression out<<s behaves as if f(s, n) were called, or if in is an instance of basic_istream<charT,traits> then the
expression in>>s behaves as if f(s, n) were called. The function f can be defined

ios_baseé& f(ios_base& str, int n)
{
I set precision
str.precision(n);
return str;
}

The expression out<<s has type basic_ostream<charT traits>& and value out. The expression in>>s has type
basic_istream<charT ,traits>& and valne

- 58 -

C++ Standard Library Defect Report List

smanip setw(int n);
-8- Returns: An object s of unspecified type such that if out is an instance of basic_ostream<charT,traits> then
the expression out<<s behaves as if f(s, n) were called, or if in is an instance of basic_istream<charT traits> then the
expression in>>s behaves as if f(s, n) were called. The function f can be dafined

ios_base& f(ios_base& str, int n)

{
Il set width
str.width(n);
return str;
}
The expression out<<s has type basic_ostream<charT,traits>& and value out. The expression in>>s has type
basic_istream<charT,traits>& and valae

[Kona: Andy Sawyer and Beman Dawes will work to improve the wording of the prapesédion.]
[Tokyo - The LWG noted that issR&6 involves the samgaragraphs.]

[Post-Tokyo: The issues list maintainer combined the proposed resolution of this issue with the proposed resolution
for issue216 as they both involved the same paragraphs, and were so intertwined that dealing with them separately
appear fraught with error. The full text was supplied by Bill Plauger; it was cross checked against changes supplied
by Andy Sawyer. It should be further checked by W&.]

184. numeric_limits<bool> wording problems
Section: 18.2.1.5lib.numeric.special]Status: DR Submitter: Gabriel Dos ReiDate: 21 Jul1999

bools are defined by the standard to be of integer types, as per 3.9.1 paragraph 7. However "integer types" seems to
have a special meaning for the author of 18.2. The net effect is an unclear and confusing specification for
numeric_limits<bool> as evidenceelow.

18.2.1.2/7 says numeric_limits<>::digits is, for built-in integer types, the number of non-sign bits in the
representation.

4.5/4 states that a bool promotes to int ; whereas 4.12/1 says any non zero arithmetical value ctvoeerts to

| don't think it makes sense at all to require numeric_limits<bool>::digits and numeric_limits<bool>::digits10 to be
meaningful.

The standard defines what constitutes a signed (resp. unsigned) integer types. It doesn’t categorize bool as being
signed or unsigned. And the set of values of bool type has onlgléneents.

| don’t think it makes sense to require numeric_limits<bool>::is_signed rtiecebaingful.
18.2.1.2/18 for numeric_limits<integer_type>::radiays:
For integer types, specifies the base ofrépresentation.186)

This disposition is at best misleading and confusing for the standard requires a "pure binary numeration system” for
integer types as p&9.1/7

The footnote 186) says: "Distinguishes types with base other than 2 (e.g BCD)." This also erroneous as the standard
never defines any integer types with base representation othé. than

-59 -

C++ Standard Library Defect Report List

Furthermore, numeric_limits<bool>::is_modulo and numeric_limits<bool>::is_signed have siraliégms.
Proposedresolution:
Append to the end of 18.2.1.5

The specialization for bool shall be provideda@kws:

namespace std {
template<> class numeric_limits<bool> {
public:
static const bool is_specialized = true;
static bool min() throw() { return false; }
static bool max() throw() { return true; }

static const int digits = 1;

static const int digits10 = 0;

static const bool is_signed = false;

static const bool is_integer = true;

static const bool is_exact = true;

static const int radix = 2;

static bool epsilon() throw() { return O; }
static bool round_error() throw() { return 0; }

static const int min_exponent = 0O;
static const int min_exponent10 = 0;
static const int max_exponent = 0O;
static const int max_exponent10 = 0;

static const bool has_infinity = false;

static const bool has_quiet_NaN = false;

static const bool has_signaling_NaN = false;

static const float_denorm_style has_denorm = denorm_absent;
static const bool has_denorm_loss = false;

static bool infinity() throw() { return 0; }

static bool quiet_NaN() throw() { return 0; }

static bool signaling_NaN() throw() { return 0; }

static bool denorm_min() throw() { return 0; }

static const bool is_iec559 = false;
static const bool is_bounded = true;
static const bool is_modulo = false;

static const bool traps = false;
static const bool tinyness_before = false;
static const float_round_style round_style = round_toward_zero;
h
}

[Tokyo: The LWG desires wording that specifies exact values rather than more general wording in the original
proposedesolution.]

[Post-Tokyo: At the request of the LWG in Tokyo, Nico Josuttis provided thevatiamieg.]

-60 -

C++ Standard Library Defect Report List

185. Questionablause of term"inline"
Section: 20.3[lib.function.objects] Status: DR Submitter: UK Panel Date: 26 Jul1999
Paragraph 4 of 208ays:

[Example: To negate every element of a: transform(a.begin(), a.end(), a.begin(), negate<double>()); The
corresponding functions will inline the addition and the negationerarhple]

(Note: The "addition" referred to in the above is in para 3) we can find no other wording, except this
(non-normative) example which suggests that any "inlining" will take place inabés

Indeedboth:

17.4.4.3 Global Functions [lib.global.functions] 1 It is unspecified whether any global functions in the C++
Standard Library are defined as inlifvel.2).

and

17.4.4.4 Member Functions [lib.member.functions] 1 It is unspecified whether any member functions in the
C++ Standard Library are defined as inl{i@el.2).

take care to state that this may indeed NOT bedbke.
Thus the example "mandates” behavior that is explicitly not reqgeisetvhere.
Proposedresolution:
In 20.3 paragraph 1, remove thentence:
They are important for the effective use of libeary.
Remove 20.3 paragraph 2, whigads:

Using function objects together with function templates increases the expressive power of the library as well as
making the resulting code much mefécient.

In 20.3 paragraph 4, remove thentence:
The corresponding functions will inline the addition andrtegation.
[Kona: The LWG agreed there waslafect.]

[Tokyo: The LWG crafted the proposegsolution.]

186. bitset::set()second parameter should bé&ool
Section: 23.3.5.7lib.bitset. members]Status: DR Submitter: Darin Adler Date: 13 Aug1999

In section 23.3.5.2 , paragraph 13 defines the bitset::set operation to take a second parameter of type int. The
function tests whether this value is non-zero to determine whether to set the bit to true or false. The type of this
second parameter should be bool. For one thing, the intent is to specify a Boolean value. For another, the result type
from test() is bool. In addition, it's possible to slice an integer that's larger than an int. This can’t happen with bool,
since conversion to bool has the semantic of translating O to false and any non-zerotuadue to

-61-

C++ Standard Library Defect Report List

Proposedresolution:
In 23.3.5 Para Replace:

bitset<N>& set(size_t pos, int val = true);
With:

bitset<N>& set(size_t pos, bool val = true);
In 23.3.5.2 Para 12(.Replace:

bitset<N>& set(size _t pos, intval=1);
With:

bitset<N>& set(size_t pos, bool val = true);
[Kona: The LWG agrees with the description. Andy Sawyer will work on bettevdrting.]
[Post-Tokyo: Andy provided the abowerding.]
Rationale:

bool is a better choice. It is believed that binary compatibility is not an issue, because this member function is
usually implemented asline , and because it is already the case that users cannot rely on the type of a pointer to
a nonvirtual member of a standard libratgss.

189. setprecision(not specifiedcorrectly
Section: 27.4.2.7lib.fmtflags.state] Status: DR Submitter: Andrew Koenig Date: 25 Aug1999

27.4.2.2 paragraph 9 claims that setprecision() sets the precision, and includes a parenthetical note saying that it is
the number of digits after the decinpalint.

This claim is not strictly correct. For example, in the default floating-point output format, setprecision sets the
number of significant digits printed, not the number of digits after the depiviratl

| would like the committee to look at the definition carefully and correct the statenZhti.2

Proposedresolution:

Remove from 27.4.2.2 , paragraph 9, the text "(number of digits after the dpointl.

193. Heapoperations descriptionincorrect
Section: 25.3.6[lib.alg.heap.operations$tatus: DR Submitter: Markus MauhartDate: 24 Sepl999

25.3.6 [lib.alg.heap.operations] states two key properties of a heap [a,b), the first @f them
(1) *a is the largestlement"
I think this is incorrect and should be changed to the wording in the propessgdtion.

Actually there are two independeitanges:

A-"part of largest equivalence class" instead of "largest”, cause 25.3 [lib.alg.sorting] asserts "strict weak
ordering" for all its sulzlauses.

-62 -

C++ Standard Library Defect Report List

B-Take 'an oldest’ from that equivalence class, otherwise the heap functions could not be used for a priority
queue as explained in 23.2.3.2.2 [lib.priqgueue.members] (where | assume that a "priority queue" respects priority
AND time).

Proposedresolution:

Change 25.3.6 property (ftpm:
(1) *a is the largestlement

to:

(1) There is no element greater than

195. Shouldbasic_istream::sentry 'S constructor ever seteofbit?
Section:; 27.6.1.1.7lib.istream::sentry]Status: DR Submitter: Matt AusternDate: 13 Oct1999

Suppose thas.flags() & ios_base::skipws is nonzero. What should

basic_istream<>::sentry 's constructor do if it reaches eof while skipping whitespace? 27.6.1.1.2/5

suggests it should set failbit. Should it set eofbit as well? The standard doesn’t seem to anquesttbat

On the one hand, nothing in 27.6.1.1.2 sayshibaic _istream<>::sentry should ever set eofbit. On the
other hand, 27.6.1.1 paragraph 4 says that if extraction feireambuf "returnstraits::eof() , then the
input function, except as explicitly noted otherwise, completes its actions ansedstase(eofbit)" . So the
guestion comes down to whethmasic_istream<>::sentry 's constructor is an inpditinction.

Comments from Jerrgchwarz:

It was always my intention that eofbit should be set any time that a virtual returned something to indicate eof,
no matter what reason iostream code had for callingithel.

The motivation for this is that | did not want to require streambufs to behave consistently if their virtuals are
called after they have signaledf.

The classic case is a streambuf reading from a UNIX file. EOF isn't really a state for UNIX file descriptors.
The convention is that a read on UNIX returns O bytes to indicate "EOF", but the file descriptor isn’'t shut down
in any way and future reads do not necessarily also return 0 bytes. In particular, you can read from tty’s on
UNIX even after they have signaled "EOF". (It isn't always understood that a *D on UNIX is not an EOF
indicator, but an EOL indicator. By typing a "line" consisting solely of ~D you cause a read to return O bytes,
and by convention this is interpreted as enfil®f)

Proposedresolution:
Add a sentence to the end of 27.6.1.1.2 paragzaph

If is.rdbuf()->sbumpc() oris.rdbuf()->sgetc() returnstraits::eof() , the function calls
setstate(failbit | eofbit) (which may throwios_base::failure).

199. Whatdoesallocate(0) return?

Section: 20.1.5[lib.allocator.requirementsbtatus: DR Submitter: Matt AusternDate: 19 Nov1999

-63 -

C++ Standard Library Defect Report List

Suppose thaA is a class that conforms to the Allocator requirements of Table 32, iareh object of clasa What
should be the return value afallocate(0) ? Three reasonable possibilities: forbid the argu@ergturn a
null pointer, or require that the return value be a unique norpatiter.

Proposedresolution:
Add a note to thallocate row of Table 32![Note:If n == 0, the return value is unspecifiedendnotd"
Rationale:

A key to understanding this issue is that the ultimate use of allocate() is to construct an iterator, and that iterator for
zero length sequences must be the container’s past-the-end representation. Since this already implies special case
code, it would be over-specification to mandate the retaiure.

208. Unnecessaryestriction on past-the-enditerators
Section: 24.1[lib.iterator.requirementsptatus: DR Submitter: Stephen CleanDate: 02 Feb2000
In 24.1 paragraph 5, it is stated ". . . Dereferenceable and past-the-end values amecalvsaygular.”

This places an unnecessary restriction on past-the-end iterators for containers with forward iterators (for example, a
singly-linked list). If the past-the-end value on such a container was a well-known singular value, it would still
satisfy all forward iteratarequirements.

Removing this restriction would allow, for example, a singly-linked list without a "foatate.

This would have an impact on existing code that expects past-the-end iterators obtained from different (generic)
containers being na&qual.

Proposedresolution:
Change 24.1 paragraph 5, the last sentdrmm;
Dereferenceable and past-the-end values are alwaysingular.
to:
Dereferenceable values are alwags-singular.
Rationale:

For some kinds of containers, including singly linked lists and zero-length vectors, null pointers are perfectly
reasonable past-the-end iterators. Null pointersiagglar.

209. basic_stringdeclarationsinconsistent
Section: 21.3[lib.basic.string] Status: DR Submitter: Igor StauderDate: 11 Feb2000

In Section 21.3 the basic_string member function declarations use a consistent style except for the following
functions:

void push_back(const charT);

basic_string& assign(const basic_string&);
void swap(basic_string<charT traits,Allocator>&);

-64 -

C++ Standard Library Defect Report List

- push_back, assign, swap: missing argumante

- push_back: use of const with charT (i.e. POD type passed by value not by reference - should be charT or const
charT&)

- swap: redundant use of template parameters in argurasict string<charT ,traits,Allocator>&

Proposedresolution:
In Section 21.3 change the basic_string member function declarations push_back, assign, tnd swap

void push_back(charT c);

basic_string& assign(const basic_string& str);
void swap(basic_string& str);

Rationale:

Although the standard is in general not consistent in declaration style, the basic_string declarations are consistent
other than the above. The LWG felt that this was sufficient reason to metitahge.

210. distancdirst and last confused
Section: 25[lib.algorithms] Status: DR Submitter: Lisa Lippincott Date: 15 Feb2000
In paragraph 9 of section 25, itvisitten:

In the description of the algorithms operators + and - are used for some of the iterator categories for which they
do not have to be defined. In these cases the semantics of [...] a-b is the shme as
return distance(a, b);

Proposedresolution:
On the last line of paragraph 9 of section 25 chdag®' to"b-a".
Rationale:

There are two ways to fix the defect; change the description to b-a or change the return to distance(b,a). The LWG
preferred the former faronsistency.

211. operator>>(istream&, string&) doesn't setfailbit
Section: 21.3.7.9lib.string.io] Status: DR Submitter: Scott SnyderDate: 4 Feb2000

The description of the stream extraction operator for std::string (section 21.3.7.9 [lib.string.io]) does not contain a
requirement that failbit be set in the case that the operator fails to extract any characters fromdtreanput

This implies that the typicaonstruction

std::istream is;
std::string str;

while (is >> str) ... ;

(which tests failbit) is not required to terminat&=@iF.

-65 -

C++ Standard Library Defect Report List

Furthermore, this is inconsistent with other extraction operators, which do include this requirement. (See sections
27.6.1.2 and 27.6.1.3), where this requirement is present, either explicitly or implicitly, for the extraction operators.
It is also present explicitly in the description of getline (istream&, string&, charT) in section 21.3.7.9 papraph

Proposedresolution:
Insert new paragraph after paragraph 2 in section 21:3.7.9

If the function extracts no characters, it calls is.setstate(ios::failbit) which may throw ios_base::failure
(27.4.4.3).

212. Emptyrange behavior unclear for severahlgorithms
Section; 25.3.7[lib.alg.min.max] Status: DR Submitter: Nico JosuttisDate: 26 Feb2000

The standard doesn’t specify what min_element() and max_element() shall return if the range is empty (first equals
last). The usual implementations return last. This problem seems also apply to partition(), stable_partition(),
next_permutation(), angrev_permutation().

Proposedresolution:
In 25.3.7 - Minimum and maximum, paragraphs 7 and 9, append: Returnditast#ast.
Rationale:

The LWG looked in some detail at all of the above mentioned algorithms, but believes that except for min_element()
and max_element() it is already clear that last is returned if firkst=

214. set::find() missing consioverload
Section: 23.3.3[lib.set], 23.3.4[lib.multiset] Status: DR Submitter: Judy WardDate: 28 Fek2000

The specification for the associative container requirements in Table 69 state that the find member function should
“"return iterator; const_iterator for constant a". The map and multimap container descriptions have two overloaded
versions of find, but set and multiset do not, all they lhsve

iterator find(const key_type & X) const;
Proposedresolution:

Change the prototypes for find(), lower_bound(), upper_bound(), and equal_range() in section 23.3.3 and section
23.3.4 to each have tvaverloads:

iterator find(const key_type & x);
const_iterator find(const key_type & x) const;

iterator lower_bound(const key_type & x);
const_iterator lower_bound(const key type & x) const;

iterator upper_bound(const key_type & x);
const_iterator upper_bound(const key_type & x) const;

pair<iterator, iterator> equal_range(const key_type & X);
pair<const_iterator, const_iterator> equal_range(const key_type & x) const;

- 66 -

C++ Standard Library Defect Report List

[Tokyo: At the request of the LWG, Judy Ward provided wording extending the proposed resolution to lower_bound,
upper_bound, andqual_range.]

217. Faceteexample (Classifying Japanese characters) contaiesrors
Section; 22.2.8[lib.facets.examplesBtatus: DR Submitter: Martin SeborDate: 29 Feb2000
The example in 22.2.8, paragraph 11 contains the followirays:

1) The member function ‘My::JCtype::is_kanji()’ is non-const; the function must be const in order for it to be
callable on a const object (a reference to which which is what std::use_facetar(}).

2) In file filt.C, the definition of ‘JCtype::id’ must be qualified with the name of the nameddgte

3) In the definition of ‘loc’ and subsequently in the call to use_facet<>() in main(), the name of the facet is
misspelled: it should read ‘My::JCtype’ rather thisly::JCType'.

Proposedresolution:
Replace the "Classifying Japanese characters" example in 22.2.8, paragraph 11falltwiing:
#include <locale>

namespace My {
using namespace std;
class JCtype : public locale::facet {
public:
static locale::id id; // required for use as a new locale facet
bool is_kanji (wchar_t c) const;
JCtype() {}
protected:
~JCtype() {}
¥
}

/I file: filt.C

#include <iostream>

#include <locale>

#include "jctype" /I above

std::locale::id My::JCtype::id; // the static JCtype member
declared above.

int main()
{
using namespace std;
typedef ctype<wchar_t> wctype;
locale loc(locale("), I/l the user’s preferred locale...
new My::JCtype); /I and a new feature ...
wchar_t ¢ = use_facet<wctype>(loc).widen('!);
if (luse_facet<My::JCtype>(loc).is_kanji(c))
cout << "no it isn't!" << endl;
return O;

-67 -

C++ Standard Library Defect Report List

220. ~ios_base(ysagevalid?

Section: 27.4.2.7lib.ios.base.constatus: DR Submitter: Jonathan Schilling, Howard Hinnaitate: 13 Mar
2000

The pre-conditions for the ios_base destructor are described in 27.4.2.7 paagraph

Effects: Destroys an object of class ios_base. Calls each registered callback pair (fn,index) (27.4.2.6) as
(*fn)(erase_event,*this,index) at such time that any ios_base member function called from within fn has well
definedresults.

But what is not clear is: If no callback functions were ever registered, does it matter whether the ios_base members
were eveinitialized?

For instance, does this program have definetthvior:
#include <ios>
class D : public std::ios_base { };
intmain){Dd;}

It seems that registration of a callback function would surely affect the state of an ios_base. That is, when you
register a callback function with an ios_base, the ios_base must record thatrfahbw.

But if after construction the ios_base is in an indeterminate state, and that state is not made determinate before the
destructor is called, then how would the destructor know if any callbacks had indeed been registered? And if the
number of callbacks that had been registered is indeterminate, then is not the behavior of the desteficted?

By comparison, the basic_ios class description in 27.4.4.1 paragraph 2 makes it explicit that destruction before
initialization results in undefinelehavior.

Proposedresolution:
Modify 27.4.2.7 paragraphftom

Effects: Each ios_base member has an indeterminate valueaafstruction.
to

Effects: Each ios_base member has an indeterminate value after construction. These members must be
initialized by calling basic_ios::init. If an ios_base object is destroyed before these initializations have taken
place, the behavior isndefined.

221. num_get>::.do_get stage 2 processinigroken
Section: 22.2.2.1.7lib.facet.num.get.virtuals)Status: DR Submitter: Matt AusternDate: 14 Mar2000
Stage 2 processing of numeric conversidoraken.

Table 55 in 22.2.2.1.2 says that when basefield is 0 the integral conversion specifier is %i. A %i specifier determines
a number’s base by its prefix (0 for octal, Ox for hex), so the intention is clearly that a Ox prefix is allowed.

Paragraph 8 in the same section, however, describes very precisely how characters are processed. (It must be done
"as if" by a specified code fragment.) That description does not allow a 0x prefixeodgmized.

- 68 -

C++ Standard Library Defect Report List

Very roughly, stage 2 processing reads a char_type ct. It converts ct to a char, not by using narrow but by looking it
up in a translation table that was created by widening the string literal "0123456789abcdefABCDEF+-". The
character "x" is not found in that table, so it can’t be recognized by stagpe&ssing.

Proposedresolution:
In 22.2.2.1.2 paragraph 8, replace lihe:

static const char src[] = "0123456789abcdefABCDEF+-";
with theline:

static const char src[] = "0123456789abcdefxABCDEFX+-";
Rationale:

If we're using the technique of widening a string literal, the string literal must contain every character we wish to
recognize. This technique has the consequence that alternate representations of digits will not be recognized. This
design decision was made deliberately, with full knowledge ofithaation.

222. Arethrow clauses necessary if a throw is already implied by the
effectsclause?

Section: 17.3.1.3lib.structure.specificationsptatus: DR Submitter: Judy WardDate: 17 Mar2000
Section 21.3.6.8 describes the basic_string::compare functionaiis
21.3.6.8 - basic_string::compare [lib.string::compare]
int compare(size_type posl, size_type nl,
const basic_string<charT,traits,Allocator>& str,
size_type pos2, size _type n2) const;

-4- Returns:

basic_string<charT,traits,Allocator>(*this,pos1,nl).compare(
basic_string<charT,traits,Allocator>(str,pos2,n2)) .

and the constructor that's implicitly called by the above is defined to throw an out-of-range exception if pos >
str.size(). See section 21.3.1 paragréph

On the other hand, the compare function descriptions themselves don’'t have "Throws: " clauses and according to
17.3.1.3, paragraph 3, elements that do not apply to a functiomited.

So it seems there is an inconsistency in the standard -- are the "Effects" clauses correct, or are the "Throws" clauses
missing?

Proposedresolution:

In 17.3.1.3 paragraph 3, the footnote 148 attached to the sentence "Descriptions of function semantics contain the
following elements (as appropriate):", insert the word "further" so that the footazate:

To save space, items that do not apply to a function are omitted. For example, if a function does not specify any
further preconditions, there will be no "Requirestagraph.

-69 -

C++ Standard Library Defect Report List

Rationale:

The standard is somewhat inconsistent, but a failure to note a throw condition in a throws clause does not grant
permission not to throw. The inconsistent wording is in a footnote, and thus non-normative. The proposed resolution
from the LWG clarifies théootnote.

223. reversealgorithm should use iter_swap rather thanswap
Section: 25.2.9[lib.alg.reverse]Status: DR Submitter: Dave Abrahamdate: 21 Mar2000
Shouldn’t the effects say "applies iter_swap tpalfs..."?

Proposedresolution:

In 25.2.9 replace:

Effects: For each non-negative integer i <= (last - first)/2, applies swap to all pairs of iterators first + i, (last - i)
-1

with:

Effects: For each non-negative integer i <= (last - first)/2, applies iter_swap to all pairs of iterators first + i, (last
-i)- 1.

224. clear()complexity for associative containers refers to undefine
Section: 23.1.2[lib.associative.regmtsptatus: DR Submitter: Ed Brey Date: 23 Mar2000

In the associative container requirements table in 23.1.2 paragraph 7, a.clear() has complexity "log(size()) + N".
However, the meaning of N is nd¢fined.

Proposedresolution:

In the associative container requirements table in 23.1.2 paragraph 7, the complexity of a.clear(), change "log(size())
+ N" to "linear insize()

Rationale:

It's the "log(size())", not the "N", that is in error: there’s no difference betvédh) andO(N + log(N)). The text in
the standard is probably an incorrect cut-and-paste from the range versiageof.

227. std::swap()should require CopyConstructible or
DefaultConstructible arguments

Section: 25.2.2[lib.alg.swap] Status: DR Submitter: Dave Abrahamdate: 09 Apr2000
25.2.2reads:

template<class T> void swap(T& a, T& b);
Requires: Type T is Assignahelib.container.requirements).
Effects: Exchanges values stored in tacations.

-70 -

C++ Standard Library Defect Report List

The only reasonable** generic implementation of swap requires construction of a new temporary copy of one of its
arguments:

template<class T> void swap(T& a, T& b);

{
T tmp(a);
a=b;
b = tmp;
}

But a type which is only Assignable cannot be swapped byntipiementation.

**Yes, there’s also an unreasonable implementation which would require T to be DefaultConstructible instead of
CopyConstructible. | don't think this is worthy cénsideration:

template<class T> void swap(T& a, T& b);

{
T tmp;
tmp = a;
a=b;
b =tmp;
}

Proposedresolution:

Change 25.2.2 paragrapliram:
Requires: Type T is Assignah(23.1).

to:

Requires: Type T is CopyConstructible (20.1.3) and Assigr(@Bl&)

234. Typosin allocator definition
Section: 20.4.1.1]lib.allocator.members]Status: DR Submitter: Dietmar Kuhl Date: 24 Apr2000

In paragraphs 12 and 13 the effectsafistruct() anddestruct() are described as returns but the functions
actually returrvoid .

Proposedresolution:

Substitute "Returns” bYEffect".

237. Undefinedexpression in complexityspecification

Section: 23.2.2.1lib.list.cons] Status: DR Submitter: Dietmar Kihl Date: 24 Apr2000

The complexity specification in paragraph 6 says that the complexity is linfat in last . Even if
operator-() is defined on iterators this term is in general undefined because it would havagb-be
first

Proposedresolution:

-71 -

C++ Standard Library Defect Report List

Change paragraphfom
Linear infirst - last
to become

Linear indistance(firstjast).

243.get andgetline when sentry reportsfailure
Section:; 27.6.1.3lib.istream.unformattedStatus: DR Submitter: Martin SeborDate: May 152000

basic_istream<>::get(), and basic_istream<>::getline(), are unclear with respect to the behavior and side-effects of
the named functions in case ofemnor.

27.6.1.3, p1 states that "... If the sentry object returns true, when converted to a value of type bool, the function
endeavors to obtain the requested input..." It is not clear from this (or the rest of the paragraph) what precisely the
behavior should be when the sentry ctor exits by throwing an exception or when the sentry object returns false. In
particular, what is the number of characters extracted that gcount() returns supjesed to

27.6.1.3 p8 and p19 say about the effects of get() and getline(): "... In any case, it then stores a null character (using
charT()) into the next successive location of the array." Is not clear whether this sentence applies if either of the
conditions above holds (i.e., when seritiys).

Proposedresolution:
Add to 27.6.1.3, p1 after tteentence

"... If the sentry object returns true, when converted to a value of type bool, the function endeavors to obtain the
requestednput.”

thefollowing

"Otherwise, if the sentry constructor exits by throwing an exception or if the sentry object returns false, when
converted to a value of type bool, the function returns without attempting to obtain any input. In either case the
number of extracted characters is set to 0; unformatted input functions taking a character array of non-zero size
as an argument shall also store a null character (using charT()) in the first locatioarcdytie

Rationale:

Although the general philosophy of the input functions is that the argument should not be modified upon failure,
getline historically added a terminating null unconditionally. Most implementations still do that. Earlier versions

of the draft standard had language that made this an unambiguous requirement; those words were moved to a place
where their context made them less clear. See Jerry Schwarz's messsigklib-7618.

248. time_geffails to seteofbit
Section; 22.2.5[lib.category.time] Status: DR Submitter: Martin SeborDate: 22 June2000

There is no requirement that any of time_get member functions set ios::eofbit when they reach the end iterator while
parsing their input. Since members of both the num_get and money_get facets are required to do so (22.2.2.1.2, and
22.2.6.1.2, respectively), time_get members should follow the same requirentntdistency.

-72 -

C++ Standard Library Defect Report List

Proposedresolution:
Add paragraph 2 to section 22.2.5.1 with the followtizg:

If the end iterator is reached during parsing by any of the get() member functions, the member sets
ios_base::eofbit ierr.

Rationale:

Two alternative resolutions were proposed. The LWG chose this one because it was more consistent with the way
eof is described for other inpigcets.

251. basic_stringbufmissingallocator_type
Section: 27.7.1]lib.stringbuf] Status: DR Submitter: Martin SeborDate: 28 Jul2000

The synopsis for the template cléssic_stringbuf doesn't list a typedef for the template parameter
Allocator . This makes it impossible to determine the type of the allocator at compile time. It's also inconsistent
with all other template classes in the library that do provide a typedef fafititator ~ parameter.

Proposedresolution:

Add to the synopses of the class templates basic_stringbuf (27.7.1), basic_istringstream (27.7.2),
basic_ostringstream (27.7.3), and basic_stringstream (27.7 @ptuef:

typedef Allocator allocator_type;

252. missingcasts/C-style casts used iostreams
Section: 27.7[lib.string.streams]Status: DR Submitter: Martin SeborDate: 28 Jul2000

27.7.2.2, p1 uses a C-style cast rather than the more appropriate const_cast<> in the Returns clause for
basic_istringstream<>::rdbuf(). The same C-style cast is being used in 27.7.3.2, p1, D.7.2.2, p1, and D.7.3.2, p1, and
perhaps elsewhere. 27.7.6, p1 and D.7.2.2, p1 are missing tla¢t@agether.

C-style casts have not been deprecated, so the first part of this issue is stylistic rather than acorageiness.
Proposedresolution:
In 27.7.2.2, pl replace
-1- Returns: (basic_stringbuf<charT traits,Allocator>*)&sb.
with
-1- Returns: const_cast<basic_stringbuf<charT,traits,Allocator>*>(&sb).
In 27.7.3.2, pkeplace
-1- Returns: (basic_stringbuf<charT traits,Allocator>*)&sb.
with

-1- Returns: const_cast<basic_stringbuf<charT,traits,Allocator>*>(&sb).

-73 -

C++ Standard Library Defect Report List

In 27.7.6, plreplace
-1- Returns: &sb
with
-1- Returns: const_cast<basic_stringbuf<charT,traits,Allocator>*>(&sb).
In D.7.2.2, plreplace
-2- Returns: &sb.
with

-2- Returns: const_cast<strstreambuf*>(&sb).

256. typoin 27.4.4.2, p17: copy_event does nexist
Section: 27.4.4.7lib.basic.ios.membersBtatus: DR Submitter: Martin SeborDate: 21 Aug2000
27.4.4.2, plsays

-17- Before copying any parts of rhs, calls each registered callback pair (fn,index) as
(*fn)(erase_event,*this,index). After all parts but exceptions() have been replaced, calls each callback pair that
was copied from rhs as (*fn)(copy_event,*this,index).

The name copy_event isn't defined anywhere. The intended nanmpdmt_event.
Proposedresolution:

Replace copy_event with copyfmt_event in the napadgraph.

260. Inconsistentreturn type of
Istream_iterator::operator++(int)

Section: 24.5.1.7lib.istream.iterator.opsfstatus: DR Submitter: Martin SeborDate: 27 Aug2000

The synopsis of istream_iterator::operator++(int) in 24.5.1 shows it as returning the iterator by value. 24.5.1.2, p5
shows the same operator as returning the iterator by reference. That's incorrect given the Effects clause below (since
a temporary is returned). The ‘&’ is probably jusypo.

Proposedresolution:

Change the declaration in 24.5.1.2 fgn
istream_iterator<T,charT traits,Distance>& operator++(int);
to

istream_iterator<T,charT traits,Distance> operator++(int);

(that is, remove th&).

-74 -

C++ Standard Library Defect Report List

261. Missingdescription ofistream_iterator::operator!=
Section: 24.5.1.7lib.istream.iterator.opsfstatus: DR Submitter: Martin SeborDate: 27 Aug2000
24.5.1, p3 lists the synopdi

template <class T, class charT, class traits, class Distance>
bool operator!=(const istream_iterator<T,charT,traits,Distance>& X,
const istream_iterator<T,charT,traits,Distance>& y);

but there is no description of what the operator does (i.e., no Effects or Returns cladsg)lia.
Proposedresolution:
Add paragraph 7 to the end of section 24.5.1.2 with the folloteixiy

template <class T, class charT, class traits, class Distance>
bool operator!=(const istream_iterator<T,charT,traits,Distance>& X,
const istream_iterator<T,charT,traits,Distance>& y);

-7- Returns: (X ==).

262. Bitmaskoperator ~ specifiedncorrectly

Section: 17.3.2.1.7lib.bitmask.types]Status: DR Submitter: Beman Dawedate: 03 Se @000
The ~ operation should be applied after the casittdype.

Proposedresolution:

Change 17.3.2.1.2 [lib.bitmask.types] operatioom:

bitmask operator~ (bitmask X)
{ return static_cast< bitmask>(static_cast<int_type>(~ X)); }

to:

bitmask operator~ (bitmask X)
{ return static_cast< bitmask>(~static_cast<int_type>(X)); }

263. Severgestriction on basic_string referencecounting
Section: 21.3[lib.basic.string] Status: DR Submitter: Kevlin Henney Date: 04 Se000

The note in paragraph 6 suggests that the invalidation rules for references, pointers, and iterators in paragraph 5
permit a reference- counted implementation (actually, according to paragraph 6, they permit a "reference counted
implementation”, but this is a minor editorfid).

However, the last sub-bullet is so worded as to make a reference-counted implementation unviable. In the following
example none of the conditions for iterator invalidationsatesfied:

-75 -

C++ Standard Library Defect Report List

/I first example; "**xxxkkkkraakat should be printed twice
string original = "some arbitrary text", copy = original,
const string & alias = original;

string::const_iterator i = alias.begin(), e = alias.end();
for(string::iterator j = original.begin(); j != original.end(); ++j)
j = ’’;
while(i 1= e)
cout << *j++;
cout << endl;
cout << original << endl;

Similarly, in the followingexample:

/I second example: "some arbitrary text" should be printed out
string original = "some arbitrary text", copy = original,
const string & alias = original;

string::const_iterator i = alias.begin();
original.begin();
while(i != alias.end())

cout << *j++;

| have tested this on three string implementations, two of which were reference counted. The reference-counted
implementations gave "surprising behavior" because they invalidated iterators on the first call to non-const begin
since construction. The current wording does not permit such invalidation because it does not take into account the
first call since construction, only the first call since various member and non-member fgatton

Proposedresolution:
Change the following sentence in 21.3 paragrafrbrh

Subsequent to any of the above uses except the forms of insert() and erase() which return iterators, the first call
to non-const member functions operator(](), at(), begin(), rbegin(), enaénaox).

to

Following construction or any of the above uses, except the forms of insert() and erase() that return iterators,
the first call to non- const member functions operator[](), at(), begin(), rbegin(), endidgy.

265. std::pair::pair() effects overlyrestrictive
Section: 20.2.2[lib.pairs] Status:DR Submitter: Martin SeborDate: 11 Se@000

| don’t see any requirements on the types of the elements of the std::pair container in 20.2.2. From the descriptions
of the member functions it appears that they must at least satisfy the requirements of 20.1.3 [lib.copyconstructible]
and 20.1.4 [lib.default.con.req], and in the case of the [in]equality operators also the requirements of 20.1.1
[lib.equalitycomparable] and 20.1lib.lessthancomparable].

| believe that the the CopyConstructible requirement is unnecessary in the case 0p20.2.2,
Proposedresolution:

Change the Effects clause in 20.2.2fo2n

-76 -

C++ Standard Library Defect Report List

-2- Effects: Initializes its members as if implementeeir() : first(T1()), second(T2()) {}
to

-2- Effects: Initializes its members as if implementeair() : first(), second() {}
Rationale:

The existing specification of pair's constructor appears to be a historical artifact: there was concern that pair’s
members be properly zero-initialized when they are built-in types. At one time there was uncertainty about whether
they would be zero-initialized if the default constructor was written the obvious way. This has been clarified by core
issue 178, and there is no longer any doubt that the straightforward implementebioads

268. Typoin localesynopsis
Section: 22.1.1]lib.locale] Status:DR Submitter: Martin SeborDate: 5 Oct2000

The synopsis of the class std::locale in 22.1.1 contains two typos: the semicolons after the declarations of the default
ctor locale::locale() and the copy ctor locale::locale(const locale&hasng.

Proposedresolution:
Add the missing semicolons, i.ehange

/I construct/copy/destroy:
locale() throw()
locale(const locale& other) throw()

in the synopsis in 22.1tb

Il construct/copy/destroy:
locale() throw();
locale(const locale& other) throw();

----- End of document---

-77 -

	C++ Standard Library Defect Report List †Revision 19‡
	Revision History
	Defect Reports
	1.€C library linkage editing oversight
	3.€Atexit registration during atexit†‡ call is not described
	5.€String::compare specification questionable
	7.€String clause minor problems
	8.€Locale::global lacks guarantee
	9.€Operator new†0‡ calls should not yield the same pointer
	11.€Bitset minor problems
	13.€Eos refuses to die
	14.€Locale::combine should be const
	15.€Locale::name requirement inconsistent
	16.€Bad ctype_byname<char> decl
	17.€Bad bool parsing
	18.€Get†...bool&‡ omitted
	19.€"Noconv" definition too vague
	20.€Thousands_sep returns wrong type
	21.€Codecvt_byname<> instantiations
	22.€Member open vs. flags
	24.€"do_convert" doesn't exist
	25.€String operator<< uses width†‡ value wrong
	26.€Bad sentry example
	27.€String::erase†range‡ yields wrong iterator
	28.€Ctype<char>is ambiguous
	29.€Ios_base::init doesn't exist
	30.€Wrong header for LC_*
	31.€Immutable locale values
	32.€Pbackfail description inconsistent
	33.€Codecvt<> mentions from_type
	34.€True/falsename†‡ not in ctype<>
	35.€No manipulator unitbuf in synopsis
	36.€Iword & pword storage lifetime omitted
	37.€Leftover "global" reference
	38.€Facet definition incomplete
	39.€istreambuf_iterator<>::operator++†int‡ definition garbled
	40.€Meaningless normative paragraph in examples
	41.€Ios_base needs clear†‡, exceptions†‡
	42.€String ctors specify wrong default allocator
	46.€Minor Annex D errors
	47.€Imbue†‡ and getloc†‡ Returns clauses swapped
	48.€Use of non-existent exception constructor
	50.€Copy constructor and assignment operator of ios_base
	51.€Requirement to not invalidate iterators missing
	52.€Small I/O problems
	53.€Basic_ios destructor unspecified
	54.€Basic_streambuf's destructor
	55.€Invalid stream position is undefined
	56.€Showmanyc's return type
	57.€Mistake in char_traits
	59.€Ambiguity in specification of gbump
	60.€What is a formatted input function?
	61.€Ambiguity in iostreams exception policy
	62.€Sync's return value
	63.€Exception-handling policy for unformatted output
	64.€Exception handling in basic_istream::operator>>†basic_streambuf*‡
	66.€Strstreambuf::setbuf
	68.€Extractors for char* should store null at end
	69.€Must elements of a vector be contiguous?
	70.€Uncaught_exception†‡ missing throw†‡ specification
	71.€Do_get_monthname synopsis missing argument
	74.€Garbled text for codecvt::do_max_length
	75.€Contradiction in codecvt::length's argument types
	78.€Typo: event_call_back
	79.€Inconsistent declaration of polar†‡
	80.€Global Operators of complex declared twice
	83.€String::npos vs. string::max_size†‡
	86.€String constructors don't describe exceptions
	90.€Incorrect description of operator >> for strings
	103.€set::iterator is required to be modifiable, but this allows modification of keys
	106.€Numeric library private members are implementation defined
	108.€Lifetime of exception::what†‡ return unspecified
	110.€istreambuf_iterator::equal not const
	112.€Minor typo in ostreambuf_iterator constructor
	114.€Placement forms example in error twice
	115.€Typo in strstream constructors
	118.€basic_istream uses nonexistent num_get member functions
	119.€Should virtual functions be allowed to strengthen the exception specification?
	122.€streambuf/wstreambuf description should not say they are specializations
	124.€ctype_byname<charT>::do_scan_is & do_scan_not return type should be const charT*
	125.€valarray<T>::operator!†‡ return type is inconsistent
	126.€typos in Effects clause of ctype::do_narrow†‡
	127.€auto_ptr<> conversion issues
	129.€Need error indication from seekp†‡ and seekg†‡
	132.€list::resize description uses random access iterators
	133.€map missing get_allocator†‡
	134.€vector constructors over specified
	136.€seekp, seekg setting wrong streams?
	137.€Do use_facet and has_facet look in the global locale?
	139.€Optional sequence operation table description unclear
	141.€basic_string::find_last_of, find_last_not_of say pos instead of xpos
	142.€lexicographical_compare complexity wrong
	144.€Deque constructor complexity wrong
	146.€complex<T> Inserter and Extractor need sentries
	147.€Library Intro refers to global functions that aren't global
	148.€Functions in the example facet BoolNames should be const
	150.€Find_first_of says integer instead of iterator
	151.€Can't currently clear†‡ empty container
	152.€Typo in scan_is†‡ semantics
	153.€Typo in narrow†‡ semantics
	154.€Missing double specifier for do_get†‡
	155.€Typo in naming the class defining the class Init
	156.€Typo in imbue†‡ description
	158.€Underspecified semantics for setbuf†‡
	159.€Strange use of underflow†‡
	160.€Typo: Use of non-existing function exception†‡
	161.€Typo: istream_iterator vs. istreambuf_iterator
	164.€do_put†‡ has apparently unused fill argument
	165.€xsputn†‡, pubsync†‡ never called by basic_ostream members?
	168.€Typo: formatted vs. unformatted
	169.€Bad efficiency of overflow†‡ mandated
	170.€Inconsistent definition of traits_type
	171.€Strange seekpos†‡ semantics due to joint position
	172.€Inconsistent types for basic_istream::ignore†‡
	173.€Inconsistent types for basic_filebuf::setbuf†‡
	174.€Typo: OFF_T vs. POS_T
	175.€Ambiguity for basic_streambuf::pubseekpos†‡ and a few other functions.
	176.€exceptions†‡ in ios_base...?
	181.€make_pair†‡ unintended behavior
	183.€I/O stream manipulators don't work for wide character streams
	184.€numeric_limits<bool> wording problems
	185.€Questionable use of term "inline"
	186.€bitset::set†‡ second parameter should be bool
	189.€setprecision†‡ not specified correctly
	193.€Heap operations description incorrect
	195.€Should basic_istream::sentry's constructor ever set eofbit?
	199.€What does allocate†0‡ return?
	208.€Unnecessary restriction on past-the-end iterators
	209.€basic_string declarations inconsistent
	210.€distance first and last confused
	211.€operator>>†istream&, string&‡ doesn't set failbit
	212.€Empty range behavior unclear for several algorithms
	214.€set::find†‡ missing const overload
	217.€Facets example †Classifying Japanese characters‡ contains errors
	220.€~ios_base†‡ usage valid?
	221.€num_get<>::do_get stage 2 processing broken
	222.€Are throw clauses necessary if a throw is already implied by the effects clause?
	223.€reverse algorithm should use iter_swap rather than swap
	224.€clear†‡ complexity for associative containers refers to undefined N
	227.€std::swap†‡ should require CopyConstructible or DefaultConstructible arguments
	234.€Typos in allocator definition
	237.€Undefined expression in complexity specification
	243.€get and getline when sentry reports failure
	248.€time_get fails to set eofbit
	251.€basic_stringbuf missing allocator_type
	252.€missing casts/C-style casts used in iostreams
	256.€typo in 27.4.4.2, p17: copy_event does not exist
	260.€Inconsistent return type of istream_iterator::operator++†int‡
	261.€Missing description of istream_iterator::operator!=
	262.€Bitmask operator ~ specified incorrectly
	263.€Severe restriction on basic_string reference counting
	265.€std::pair::pair†‡ effects overly restrictive
	268.€Typo in locale synopsis

