
Doc. no. J16/01-0031 = WG21 N1317

Date: 11 Sep 2001

Project: Programming Language C++

Reply to: Matt Austern <austern@research.att.com>

C++ Standard Library Active Issues List (Revision 19)
Reference ISO/IEC IS 14882:1998(E)

Also see:

Table of Contents for all library issues.
Index by Section for all library issues.
Index by Status for all library issues.
Library Defect Reports List
Library Closed Issues List

The purpose of this document is to record the status of issues which have come before the Library Working Group
(LWG) of the ANSI (J16) and ISO (WG21) C++ Standards Committee. Issues represent potential defects in the
ISO/IEC IS 14882:1998(E) document. Issues are not to be used to request new features or other extensions.

This document contains only library issues which are actively being considered by the Library Working Group. That
is, issues which have a status of New, Open, Ready, and Review. See Library Defect Reports List for issues
considered defects and Library Closed Issues List for issues considered closed.

The issues in these lists are not necessarily formal ISO Defect Reports (DR’s). While some issues will eventually be
elevated to official Defect Report status, other issues will be disposed of in other ways. See Issue Status.

This document is in an experimental format designed for both viewing via a world-wide web browser and hard-copy
printing. It is available as an HTML file for browsing or PDF file for printing.

Prior to Revision 14, library issues lists existed in two slightly different versions; a Committee Version and a Public
Version. Beginning with Revision 14 the two versions were combined into a single version.

This document includes [bracketed italicized notes] as a reminder to the LWG of current progress on issues. Such
notes are strictly unofficial and should be read with caution as they may be incomplete or incorrect. Be aware that
LWG support for a particular resolution can quickly change if new viewpoints or killer examples are presented in
subsequent discussions.

For the most current official version of this document see http://www.dkuug.dk/jtc1/sc22/wg21. Requests for further
information about this document should include the document number above, reference ISO/IEC 14882:1998(E),
and be submitted to Information Technology Industry Council (ITI), 1250 Eye Street NW, Washington, DC 20005.

Public information as to how to obtain a copy of the C++ Standard, join the standards committee, submit an issue, or
comment on an issue can be found in the C++ FAQ at http://www.research.att.com/~austern/csc/faq.html. Public
discussion of C++ Standard related issues occurs on news:comp.std.c++.

For committee members, files available on the committee’s private web site include the HTML version of the
Standard itself. HTML hyperlinks from this issues list to those files will only work for committee members who
have downloaded them into the same disk directory as the issues list files.

- 1 -

C++ Standard Library Active Issues List

http://www.research.att.com/~austern/csc/faq.html
http://www.dkuug.dk/jtc1/sc22/wg21

Revision History
R19: Pre-Redmond mailing. Added new issues 323-335.
R18: Post-Copenhagen mailing; reflects actions taken in Copenhagen. Added new issues 312-317, and
discussed new issues 271-314. Changed status of issues 103 118 136 153 165 171 183 184 185 186 214 221
234 237 243 248 251 252 256 260 261 262 263 265 268 to DR. Changed status of issues 49 109 117 182 228
230 232 235 238 241 242 250 259 264 266 267 271 272 273 275 281 284 285 286 288 292 295 297 298 301
303 306 307 308 312 to Ready. Closed issues 111 277 279 287 289 293 302 313 314 as NAD.
R17: Pre-Copenhagen mailing. Converted issues list to XML. Added proposed resolutions for issues 49, 76, 91,
235, 250, 267. Added new issues 278-311.
R16: post-Toronto mailing; reflects actions taken in Toronto. Added new issues 265-277. Changed status of
issues 3, 8, 9, 19, 26, 31, 61, 63, 86, 108, 112, 114, 115, 122, 127, 129, 134, 137, 142, 144, 146, 147, 159, 164,
170, 181, 199, 208, 209, 210, 211, 212, 217, 220, 222, 223, 224, 227 to "DR". Reopened issue 23. Reopened
issue 187. Changed issues 2 and 4 to NAD. Fixed a typo in issue 17. Fixed issue 70: signature should be
changed both places it appears. Fixed issue 160: previous version didn’t fix the bug in enough places.
R15: pre-Toronto mailing. Added issues 233-264. Some small HTML formatting changes so that we pass
Weblint tests.
R14: post-Tokyo II mailing; reflects committee actions taken in Tokyo. Added issues 228 to 232.
(00-0019R1/N1242)
R13: pre-Tokyo II updated: Added issues 212 to 227.
R12: pre-Tokyo II mailing: Added issues 199 to 211. Added "and paragraph 5" to the proposed resolution of
issue 29. Add further rationale to issue 178.
R11: post-Kona mailing: Updated to reflect LWG and full committee actions in Kona (99-0048/N1224). Note
changed resolution of issues 4 and 38. Added issues 196 to 198. Closed issues list split into "defects" and
"closed" documents. Changed the proposed resolution of issue 4 to NAD, and changed the wording of proposed
resolution of issue 38.
R10: pre-Kona updated. Added proposed resolutions 83, 86, 91, 92, 109. Added issues 190 to 195.
(99-0033/D1209, 14 Oct 99)
R9: pre-Kona mailing. Added issues 140 to 189. Issues list split into separate "active" and "closed" documents.
(99-0030/N1206, 25 Aug 99)
R8: post-Dublin mailing. Updated to reflect LWG and full committee actions in Dublin. (99-0016/N1193, 21
Apr 99)
R7: pre-Dublin updated: Added issues 130, 131, 132, 133, 134, 135, 136, 137, 138, 139 (31 Mar 99)
R6: pre-Dublin mailing. Added issues 127, 128, and 129. (99-0007/N1194, 22 Feb 99)
R5: update issues 103, 112; added issues 114 to 126. Format revisions to prepare for making list public. (30
Dec 98)
R4: post-Santa Cruz II updated: Issues 110, 111, 112, 113 added, several issues corrected. (22 Oct 98)
R3: post-Santa Cruz II: Issues 94 to 109 added, many issues updated to reflect LWG consensus (12 Oct 98)
R2: pre-Santa Cruz II: Issues 73 to 93 added, issue 17 updated. (29 Sep 98)
R1: Correction to issue 55 resolution, 60 code format, 64 title. (17 Sep 98)

Issue Status
New - The issue has not yet been reviewed by the LWG. Any Proposed Resolution is purely a suggestion from the
issue submitter, and should not be construed as the view of LWG.

Open - The LWG has discussed the issue but is not yet ready to move the issue forward. There are several possible
reasons for open status:

Consensus may have not yet have been reached as to how to deal with the issue.
Informal consensus may have been reached, but the LWG awaits exact Proposed Resolution wording for
review.
The LWG wishes to consult additional technical experts before proceeding.

- 2 -

C++ Standard Library Active Issues List

The issue may require further study.

A Proposed Resolution for an open issue is still not be construed as the view of LWG. Comments on the current
state of discussions are often given at the end of open issues in an italic font. Such comments are for information
only and should not be given undue importance.

Dup - The LWG has reached consensus that the issue is a duplicate of another issue, and will not be further dealt
with. A Rationale identities the duplicated issue’s issue number.

NAD - The LWG has reached consensus that the issue is not a defect in the Standard, and the issue is ready to
forward to the full committee as a proposed record of response. A Rationale discusses the LWG’s reasoning.

Review - Exact wording of a Proposed Resolution is now available for review on an issue for which the LWG
previously reached informal consensus.

Ready - The LWG has reached consensus that the issue is a defect in the Standard, the Proposed Resolution is
correct, and the issue is ready to forward to the full committee for further action as a Defect Report (DR).

DR - (Defect Report) - The full J16 committee has voted to forward the issue to the Project Editor to be processed as
a Potential Defect Report. The Project Editor reviews the issue, and then forwards it to the WG21 Convenor, who
returns it to the full committee for final disposition. This issues list accords the status of DR to all these Defect
Reports regardless of where they are in that process.

TC - (Technical Corrigenda) - The full WG21 committee has voted to accept the Defect Report’s Proposed
Resolution as a Technical Corrigenda. Action on this issue is thus complete and no further action is possible under
ISO rules.

RR - (Record of Response) - The full WG21 committee has determined that this issue is not a defect in the
Standard. Action on this issue is thus complete and no further action is possible under ISO rules.

Future - In addition to the regular status, the LWG believes that this issue should be revisited at the next revision of
the standard. It is usually paired with NAD.

Issues are always given the status of New when they first appear on the issues list. They may progress to Open or
Review while the LWG is actively working on them. When the LWG has reached consensus on the disposition of an
issue, the status will then change to Dup, NAD, or Ready as appropriate. Once the full J16 committee votes to
forward Ready issues to the Project Editor, they are given the status of Defect Report (DR). These in turn may
become the basis for Technical Corrigenda (TC), or are closed without action other than a Record of Response (RR
). The intent of this LWG process is that only issues which are truly defects in the Standard move to the formal ISO
DR status.

Active Issues

23. Num_get overflow result

Section: 22.2.2.1.2 [lib.facet.num.get.virtuals] Status: Open Submitter: Nathan Myers Date: 6 Aug 1998

The current description of numeric input does not account for the possibility of overflow. This is an implicit result of
changing the description to rely on the definition of scanf() (which fails to report overflow), and conflicts with the
documented behavior of traditional and current implementations.

Users expect, when reading a character sequence that results in a value unrepresentable in the specified type, to have
an error reported. The standard as written does not permit this.

- 3 -

C++ Standard Library Active Issues List

Further comments from Dietmar:

I don’t feel comfortable with the proposed resolution to issue 23: It kind of simplifies the issue to much. Here is
what is going on:

Currently, the behavior of numeric overflow is rather counter intuitive and hard to trace, so I will describe it briefly:

According to 22.2.2.1.2 paragraph 11 failbit is set if scanf() would return an input error; otherwise a
value is converted to the rules of scanf .
scanf() is defined in terms of fscanf() .
fscanf() returns an input failure if during conversion no character matching the conversion specification
could be extracted before reaching EOF. This is the only reason for fscanf() to fail due to an input error and
clearly does not apply to the case of overflow.
Thus, the conversion is performed according to the rules of fscanf() which basically says that strtod ,
strtol() , etc. are to be used for the conversion.
The strtod() , strtol() , etc. functions consume as many matching characters as there are and on
overflow continue to consume matching characters but also return a value identical to the maximum (or
minimum for signed types if there was a leading minus) value of the corresponding type and set errno to
ERANGE.
Thus, according to the current wording in the standard, overflows can be detected! All what is to be done is to
check errno after reading an element and, of course, clearing errno before trying a conversion. With the
current wording, it can be detected whether the overflow was due to a positive or negative number for signed
types.

Now the proposed resolution results in not modifying the value passed as last argument if an overflow is
encountered but failbit is set. Checking errno for ERANGE still allows for detection of an overflow but not
what the sign was.

Actually, my problem is not that much with the sign but this is at least making things worse... My problem is more
that it is still necessary to check errno for the error description. Thus, I propose the following resolution:

Change paragraph 11 from

-11- Stage 3: The result of stage 2 processing can be one of

A sequence of char s has been accumulated in stage 2 that is converted (according to the rules of
scanf) to a value of the type of val . This value is stored in val and ios_base::goodbit is stored
in err .
The sequence of char s accumulated in stage 2 would have caused scanf to report an input failure.
ios_base::failbit is assigned to err.

to become

-11- Stage 3: The result of stage 2 processing can be one of

A sequence of char s has been accumulated in stage 2 that is converted (according to the rules of
scanf) to a value of the type of val . This value is stored in val . If the conversion reported an overflow
error for the type of val (ie. errno would be set to ERANGE by the used conversion function) then
ios_base::failbit is stored in err , otherwise ios_base::goodbit is stored in err .
The sequence of char s accumulated in stage 2 would have caused scanf to report an input failure.
ios_base::failbit is assigned to err.

With this definition, overflow can be detected easily by storing a value different from the maximum value in val
and checking whether this value was modified in case failbit is set: If it was, there was an overflow error,
otherwise some other input error occurred (under the conditions for the second bullet val is not changed).

- 4 -

C++ Standard Library Active Issues List

Proposed resolution:

In 22.2.2.1.2 , paragraph 11, second bullet item, change

The sequence of chars accumulated in stage 2 would have caused scanf to report an input failure.

to

The sequence of chars accumulated in stage 2 would have caused scanf to report an input failure, or the value
of the sequence cannot be represented in the type of _val_.

[post-Toronto: "cannot be represented" is probably wrong: infinity can be represented on an IEC559 platform, but
0.1 cannot be represented exactly. However, the alternate proposal may be wrong as well. It’s not clear whether
overflow (and underflow?) should always be treated as errors. This issue requires much more thought]

44. Iostreams use operator== on int_type values

Section: 27 [lib.input.output] Status: Open Submitter: Nathan Myers Date: 6 Aug 1998

Many of the specifications for iostreams specify that character values or their int_type equivalents are compared
using operators == or !=, though in other places traits::eq() or traits::eq_int_type is specified to be used throughout.
This is an inconsistency; we should change uses of == and != to use the traits members instead.

Proposed resolution:

[Kona: Nathan to supply proposed wording]

[Tokyo: the LWG reaffirmed that this is a defect, and requires careful review of clause 27 as the changes are
context sensitive.]

49. Underspecification of ios_base::sync_with_stdio

Section: 27.4.2.4 [lib.ios.members.static] Status: Ready Submitter: Matt Austern Date: 21 Jun 1998

Two problems

(1) 27.4.2.4 doesn’t say what ios_base::sync_with_stdio(f) returns. Does it return f, or does it return the previous
synchronization state? My guess is the latter, but the standard doesn’t say so.

(2) 27.4.2.4 doesn’t say what it means for streams to be synchronized with stdio. Again, of course, I can make some
guesses. (And I’m unhappy about the performance implications of those guesses, but that’s another matter.)

Proposed resolution:

Change the following sentence in 27.4.2.4 returns clause from:

true if the standard iostream objects (27.3) are synchronized and otherwise returns false .

to:

true if the previous state of the standard iostream objects (27.3) was synchronized and otherwise returns
false .

Add the following immediately after 27.4.2.4 , paragraph 2:

- 5 -

C++ Standard Library Active Issues List

When a standard iostream object str is synchronized with a standard stdio stream f, the effect of inserting a
character c by

 fputc(f, c);

is the same as the effect of

 str.rdbuf()->sputc(c);

for any sequence of characters; the effect of extracting a character c by

 c = fgetc(f);

is the same as the effect of:

 c = str.rdbuf()->sbumpc(c);

for any sequences of characters; and the effect of pushing back a character c by

 ungetc(c, f);

is the same as the effect of

 str.rdbuf()->sputbackc(c);

for any sequence of characters. [Footnote: This implies that operations on a standard iostream object can be
mixed arbitrarily with operations on the corresponding stdio stream. In practical terms, synchronization usually
means that a standard iostream object and a standard stdio object share a buffer. --End Footnote]

[pre-Copenhagen: PJP and Matt contributed the definition of "synchronization"]

[post-Copenhagen: proposed resolution was revised slightly: text was added in the non-normative footnote to say
that operations on the two streams can be mixed arbitrarily.]

76. Can a codecvt facet always convert one internal character at a
time?

Section: 22.2.1.5 [lib.locale.codecvt] Status: Review Submitter: Matt Austern Date: 25 Sep 1998

This issue concerns the requirements on classes derived from codecvt , including user-defined classes. What are
the restrictions on the conversion from external characters (e.g. char) to internal characters (e.g. wchar_t)? Or,
alternatively, what assumptions about codecvt facets can the I/O library make?

The question is whether it’s possible to convert from internal characters to external characters one internal character
at a time, and whether, given a valid sequence of external characters, it’s possible to pick off internal characters one
at a time. Or, to put it differently: given a sequence of external characters and the corresponding sequence of internal
characters, does a position in the internal sequence correspond to some position in the external sequence?

To make this concrete, suppose that [first, last) is a sequence of M external characters and that [ifirst,
ilast) is the corresponding sequence of N internal characters, where N > 1. That is, my_encoding.in() ,
applied to [first, last) , yields [ifirst, ilast) . Now the question: does there necessarily exist a
subsequence of external characters, [first, last_1) , such that the corresponding sequence of internal
characters is the single character *ifirst ?

(What a "no" answer would mean is that my_encoding translates sequences only as blocks. There’s a sequence of
M external characters that maps to a sequence of N internal characters, but that external sequence has no
subsequence that maps to N-1 internal characters.)

- 6 -

C++ Standard Library Active Issues List

Some of the wording in the standard, such as the description of codecvt::do_max_length (22.2.1.5.2 ,
paragraph 11) and basic_filebuf::underflow (27.8.1.4 , paragraph 3) suggests that it must always be
possible to pick off internal characters one at a time from a sequence of external characters. However, this is never
explicitly stated one way or the other.

This issue seems (and is) quite technical, but it is important if we expect users to provide their own encoding facets.
This is an area where the standard library calls user-supplied code, so a well-defined set of requirements for the
user-supplied code is crucial. Users must be aware of the assumptions that the library makes. This issue affects
positioning operations on basic_filebuf , unbuffered input, and several of codecvt ’s member functions.

Proposed resolution:

Add the following text as a new paragraph, following 22.2.1.5.2 paragraph 2:

A codecvt facet that is used by basic_filebuf (27.8) must have the property that if

 do_out(state, from, from_end, from_next, to, to_lim, to_next)

would succeed (return value would be ok), where from != from_end , then

 do_out(state, from, from + 1, from_next, to, to_end, to_next)

must also succeed, and that if

 do_in(state, from, from_end, from_next, to, to_lim, to_next)

would succeed, where to != to_lim , then

 do_in(state, from, from_end, from_next, to, to + 1, to_next)

must also succeed. [Footnote: Informally, this means that basic_filebuf assumes that the mapping from
internal to external characters is 1 to N: a codecvt that is used by basic_filebuf must be able to
translate characters one internal character at a time. --End Footnote]

Rationale:

The proposed resoluion says that conversions can be performed one internal character at a time. This rules out some
encodings that would otherwise be legal. The alternative answer would mean there would be some internal positions
that do not correspond to any external file position.

An example of an encoding that this rules out is one where the internT and externT are of the same type, and
where the internal sequence c1 c2 corresponds to the external sequence c2 c1 .

It was generally agreed that basic_filebuf relies on this property: it was designed under the assumption that
the external-to-internal mapping is N-to-1, and it is not clear that basic_filebuf is implementable without that
restriction.

The proposed resolution is expressed as a restriction on codecvt when used by basic_filebuf , rather than a
blanket restriction on all codecvt facets, because basic_filebuf is the only other part of the library that uses
codecvt . If a user wants to define a codecvt facet that implements a more general N-to-M mapping, there is no
reason to prohibit it, so long as the user does not expect basic_filebuf to be able to use it.

91. Description of operator>> and getline() for string<> might cause
endless loop

- 7 -

C++ Standard Library Active Issues List

Section: 21.3.7.9 [lib.string.io] Status: Review Submitter: Nico Josuttis Date: 29 Sep 1998

Operator >> and getline() for strings read until eof() in the input stream is true. However, this might never happen, if
the stream can’t read anymore without reaching EOF. So shouldn’t it be changed into that it reads until !good() ?

Proposed resolution:

In 21.3.7.9 , paragraph 1, replace:

Effects: Begins by constructing a sentry object k as if k were constructed by typename
basic_istream<charT,traits>::sentry k(is). If bool(k) is true, it calls str.erase() and then extracts characters from
is and appends them to str as if by calling str.append(1, c). If is.width() is greater than zero, the maximum
number n of characters appended is is.width(); otherwise n is str.max_size(). Characters are extracted and
appended until any of the following occurs:

with:

Effects: Behaves as an unformatted input function (27.6.1.2). After constructing a sentry object, if the sentry
converts to true, calls str.erase() and then extracts characters from is and appends them to str as if by calling
str.append(1,c). If is.width() is greater than zero, the maximum number n of characters appended is is.width();
otherwise n is str.max_size(). Characters are extracted and appended until any of the following occurs:

In 21.3.7.9 , paragraph 6, replace

Effects: Begins by constructing a sentry object k as if by typename basic_istream<charT,traits>::sentry k(is,
true). If bool(k) is true, it calls str.erase() and then extracts characters from is and appends them to str as if by
calling str.append(1, c) until any of the following occurs:

with:

Effects: Behaves as an unformatted input function (27.6.1.2). After constructing a sentry object, if the sentry
converts to true, calls str.erase() and then extracts characters from is and appends them to str as if by calling
str.append(1,c) until any of the following occurs:

Rationale:

The real issue here is whether or not these string input functions perform formatted input. If they do, then they get
their characters from a streambuf, rather than by calling an istream’s member functions, and a streambuf signals
failure either by returning eof or by throwing an exception. The proposed resolution makes it clear that these two
functions do perform formatted input.

92. Incomplete Algorithm Requirements

Section: 25 [lib.algorithms] Status: Open Submitter: Nico Josuttis Date: 29 Sep 1998

The standard does not state, how often a function object is copied, called, or the order of calls inside an algorithm.
This may lead to surprising/buggy behavior. Consider the following example:

class Nth { // function object that returns true for the nth element
 private:
 int nth; // element to return true for
 int count; // element counter
 public:
 Nth (int n) : nth(n), count(0) {
 }
 bool operator() (int) {
 return ++count == nth;

- 8 -

C++ Standard Library Active Issues List

 }
};
....
// remove third element
 list<int>::iterator pos;
 pos = remove_if(coll.begin(),coll.end(), // range
 Nth(3)), // remove criterion
 coll.erase(pos,coll.end());

This call, in fact removes the 3rd AND the 6th element. This happens because the usual implementation of the
algorithm copies the function object internally:

template <class ForwIter, class Predicate>
ForwIter std::remove_if(ForwIter beg, ForwIter end, Predicate op)
{
 beg = find_if(beg, end, op);
 if (beg == end) {
 return beg;
 }
 else {
 ForwIter next = beg;
 return remove_copy_if(++next, end, beg, op);
 }
}

The algorithm uses find_if() to find the first element that should be removed. However, it then uses a copy of the
passed function object to process the resulting elements (if any). Here, Nth is used again and removes also the sixth
element. This behavior compromises the advantage of function objects being able to have a state. Without any cost it
could be avoided (just implement it directly instead of calling find_if()).

Proposed resolution:

In [lib.function.objects] 20.3 Function objects add as new paragraph 6 (or insert after paragraph 1):

Option 1:

Predicates are functions or function objects that fulfill the following requirements:
 - They return a Boolean value (bool or a value convertible to bool)
 - It doesn’t matter for the behavior of a predicate how often it is copied or assigned and how often it is called.

Option 2:

- if it’s a function:
 - All calls with the same argument values yield the same result.
- if it’s a function object:
 - In any sequence of calls to operator () without calling any non-constant member function, all calls with the
same argument values yield the same result.
- After an assignment or copy both objects return the same result for the same values.

[Santa Cruz: The LWG believes that there may be more to this than meets the eye. It applies to all function objects,
particularly predicates. Two questions: (1) must a function object be copyable? (2) how many times is a function
object called? These are in effect questions about state. Function objects appear to require special copy semantics
to make state work, and may fail if calling alters state and calling occurs an unexpected number of times.]

[Dublin: Pete Becker felt that this may not be a defect, but rather something that programmers need to be educated
about. There was discussion of adding wording to the effect that the number and order of calls to function objects,
including predicates, not affect the behavior of the function object.]

- 9 -

C++ Standard Library Active Issues List

[Pre-Kona: Nico comments: It seems the problem is that we don’t have a clear statement of "predicate" in the
standard. People including me seemed to think "a function returning a Boolean value and being able to be called by
an STL algorithm or be used as sorting criterion or ... is a predicate". But a predicate has more requirements: It
should never change its behavior due to a call or being copied. IMHO we have to state this in the standard. If you
like, see section 8.1.4 of my library book for a detailed discussion.]

[Kona: Nico will provide wording to the effect that "unless otherwise specified, the number of copies of and calls to
function objects by algorithms is unspecified". Consider placing in 25 after paragraph 9.]

[Pre-Tokyo: Angelika Langer comments: if the resolution is that algorithms are free to copy and pass around any
function objects, then it is a valid question whether they are also allowed to change the type information from
reference type to value type.]

[Tokyo: Nico will discuss this further with Matt as there are multiple problems beyond the underlying problem of no
definition of "Predicate".]

[Post-Tokyo: Nico provided the above proposed resolutions.]

96. Vector<bool> is not a container

Section: 23.2.5 [lib.vector.bool] Status: Open Submitter: AFNOR Date: 7 Oct 1998

vector<bool> is not a container as its reference and pointer types are not references and pointers.

Also it forces everyone to have a space optimization instead of a speed one.

See also: 99-0008 == N1185 Vector<bool> is Nonconforming, Forces Optimization Choice.

Proposed resolution:

[In Santa Cruz the LWG felt that this was Not A Defect.]

[In Dublin many present felt that failure to meet Container requirements was a defect. There was disagreement as to
whether or not the optimization requirements constituted a defect.]

[The LWG looked at the following resolutions in some detail:
 * Not A Defect.
 * Add a note explaining that vector<bool> does not meet Container requirements.
 * Remove vector<bool>.
 * Add a new category of container requirements which vector<bool> would meet.
 * Rename vector<bool>.
No alternative had strong, wide-spread, support and every alternative had at least one "over my dead body"
response.
There was also mention of a transition scheme something like (1) add vector_bool and deprecate vector<bool> in
the next standard. (2) Remove vector<bool> in the following standard.]

[Modifying container requirements to permit returning proxies (thus allowing container requirements conforming
vector<bool>) was also discussed.]

[It was also noted that there is a partial but ugly workaround in that vector<bool> may be further specialized with
a customer allocator.]

[Kona: Herb Sutter presented his paper J16/99-0035==WG21/N1211, vector<bool>: More Problems, Better
Solutions. Much discussion of a two step approach: a) deprecate, b) provide replacement under a new name. LWG
straw vote on that: 1-favor, 11-could live with, 2-over my dead body. This resolution was mentioned in the LWG
report to the full committee, where several additional committee members indicated over-my-dead-body positions.]

- 10 -

C++ Standard Library Active Issues List

[Tokyo: Not discussed by the full LWG; no one claimed new insights and so time was more productively spent on
other issues. In private discussions it was asserted that requirements for any solution include 1) Increasing the full
committee’s understanding of the problem, and 2) providing compiler vendors, authors, teachers, and of course
users with specific suggestions as to how to apply the eventual solution.]

98. Input iterator requirements are badly written

Section: 24.1.1 [lib.input.iterators] Status: Open Submitter: AFNOR Date: 7 Oct 1998

Table 72 in 24.1.1 specifies semantics for *r++ of:

 { T tmp = *r; ++r; return tmp; }

This does not work for pointers and over constrains implementors.

Proposed resolution:

Add for *r++: šTo call the copy constructor for the type T is allowed but not required.Š

[Dublin: Pete Becker will attempt improved wording.]

[Tokyo: The essence of the issue seems to have escaped. Pete will email Valentin to try to recapture it.]

109. Missing binders for non-const sequence elements

Section: 20.3.6 [lib.binders] Status: Ready Submitter: Bjarne Stroustrup Date: 7 Oct 1998

There are no versions of binders that apply to non-const elements of a sequence. This makes examples like
for_each() using bind2nd() on page 521 of "The C++ Programming Language (3rd)" non-conforming. Suitable
versions of the binders need to be added.

Further discussion from Nico:

What is probably meant here is shown in the following example:

class Elem {
 public:
 void print (int i) const { }
 void modify (int i) { }
};

int main()
{
 vector<Elem> coll(2);
 for_each (coll.begin(), coll.end(), bind2nd(mem_fun_ref(&Elem::print),42)); // OK
 for_each (coll.begin(), coll.end(), bind2nd(mem_fun_ref(&Elem::modify),42)); // ERROR
}

The error results from the fact that bind2nd() passes its first argument (the argument of the sequence) as constant
reference. See the following typical implementation:

- 11 -

C++ Standard Library Active Issues List

template <class Operation>
class binder2nd
 : public unary_function<typename Operation::first_argument_type,
 typename Operation::result_type> {
protected:
 Operation op;
 typename Operation::second_argument_type value;
public:
 binder2nd(const Operation& o,
 const typename Operation::second_argument_type& v)
 : op(o), value(v) {}

 typename Operation::result_type
 operator()(const typename Operation::first_argument_type& x) const {
 return op(x, value);
 }
};

The solution is to overload operator () of bind2nd for non-constant arguments:

template <class Operation>
class binder2nd
 : public unary_function<typename Operation::first_argument_type,
 typename Operation::result_type> {
protected:
 Operation op;
 typename Operation::second_argument_type value;
public:
 binder2nd(const Operation& o,
 const typename Operation::second_argument_type& v)
 : op(o), value(v) {}

 typename Operation::result_type
 operator()(const typename Operation::first_argument_type& x) const {
 return op(x, value);
 }
 typename Operation::result_type
 operator()(typename Operation::first_argument_type& x) const {
 return op(x, value);
 }
};

Proposed resolution:

In 20.3.6.1 in the declaration of binder1st after:

typename Operation::result_type
 operator()(const typename Operation::second_argument_type& x) const;

insert:

typename Operation::result_type
 operator()(typename Operation::second_argument_type& x) const;

In 20.3.6.3 in the declaration of binder2nd after:

- 12 -

C++ Standard Library Active Issues List

typename Operation::result_type
 operator()(const typename Operation::first_argument_type& x) const;

insert:

typename Operation::result_type
 operator()(typename Operation::first_argument_type& x) const;

[Kona: The LWG discussed this at some length.It was agreed that this is a mistake in the design, but there was no
consensus on whether it was a defect in the Standard. Straw vote: NAD - 5. Accept proposed resolution - 3. Leave
open - 6.]

[Copenhagen: It was generally agreed that this was a defect. Strap poll: NAD - 0. Accept proposed resolution - 10.
Leave open - 1.]

117. basic_ostream uses nonexistent num_put member functions

Section: 27.6.2.5.2 [lib.ostream.inserters.arithmetic] Status: Ready Submitter: Matt Austern Date: 20 Nov 1998

The effects clause for numeric inserters says that insertion of a value x , whose type is either bool , short ,
unsigned short , int , unsigned int , long , unsigned long , float , double , long double , or
const void* , is delegated to num_put , and that insertion is performed as if through the following code
fragment:

bool failed = use_facet<
 num_put<charT,ostreambuf_iterator<charT,traits> >
 >(getloc()).put(*this, *this, fill(), val). failed();

This doesn’t work, because num_put<> ::put is only overloaded for the types bool , long , unsigned long ,
double , long double , and const void* . That is, the code fragment in the standard is incorrect (it is
diagnosed as ambiguous at compile time) for the types short , unsigned short , int , unsigned int , and
float .

We must either add new member functions to num_put , or else change the description in ostream so that it only
calls functions that are actually there. I prefer the latter.

Proposed resolution:

Replace 27.6.2.5.2, paragraph 1 with the following:

The classes num_get<> and num_put<> handle localedependent numeric formatting and parsing. These inserter
functions use the imbued locale value to perform numeric formatting. When val is of type bool, long, unsigned
long, double, long double, or const void*, the formatting conversion occurs as if it performed the following
code fragment:

bool failed = use_facet<
 num_put<charT,ostreambuf_iterator<charT,traits> >
 >(getloc()).put(*this, *this, fill(), val). failed();

When val is of type short the formatting conversion occurs as if it performed the following code fragment:

- 13 -

C++ Standard Library Active Issues List

ios_base::fmtflags baseflags = ios_base::flags() & ios_base::basefield;
bool failed = use_facet<
 num_put<charT,ostreambuf_iterator<charT,traits> >
 >(getloc()).put(*this, *this, fill(),
 baseflags == ios_base::oct || baseflags == ios_base::hex
 ? static_cast<long>(static_cast<unsigned short>(val))
 : static_cast<long>(val)). failed();

When val is of type int the formatting conversion occurs as if it performed the following code fragment:

ios_base::fmtflags baseflags = ios_base::flags() & ios_base::basefield;
bool failed = use_facet<
 num_put<charT,ostreambuf_iterator<charT,traits> >
 >(getloc()).put(*this, *this, fill(),
 baseflags == ios_base::oct || baseflags == ios_base::hex
 ? static_cast<long>(static_cast<unsigned int>(val))
 : static_cast<long>(val)). failed();

When val is of type unsigned short or unsigned int the formatting conversion occurs as if it performed the
following code fragment:

bool failed = use_facet<
 num_put<charT,ostreambuf_iterator<charT,traits> >
 >(getloc()).put(*this, *this, fill(), static_cast<unsigned long>(val)).
failed();

When val is of type float the formatting conversion occurs as if it performed the following code fragment:

bool failed = use_facet<
 num_put<charT,ostreambuf_iterator<charT,traits> >
 >(getloc()).put(*this, *this, fill(), static_cast<double>(val)).
failed();

[post-Toronto: This differs from the previous proposed resolution; PJP provided the new wording. The differences
are in signed short and int output.]

Rationale:

The original proposed resolution was to cast int and short to long, unsigned int and unsigned short to unsigned long,
and float to double, thus ensuring that we don’t try to use nonexistent num_put<> member functions. The current
proposed resolution is more complicated, but gives more expected results for hex and octal output of signed short
and signed int. (On a system with 16-bit short, for example, printing short(-1) in hex format should yield 0xffff.)

120. Can an implementor add specializations?

Section: 17.4.3.1 [lib.reserved.names] Status: Open Submitter: Judy Ward Date: 15 Dec 1998

Section 17.4.3.1 says:

It is undefined for a C++ program to add declarations or definitions to namespace std or namespaces within
namespace std unless otherwise specified. A program may add template specializations for any standard library
template to namespace std. Such a specialization (complete or partial) of a standard library template results in
undefined behavior unless the declaration depends on a user-defined name of external linkage and unless the
specialization meets the standard library requirements for the original template...

- 14 -

C++ Standard Library Active Issues List

This implies that it is ok for library users to add specializations, but not implementors. A user program can actually
detect this, for example, the following manual instantiation will not compile if the implementor has made
ctype<wchar_t> a specialization:

#include <locale>
#include <wchar.h>

template class std::ctype<wchar_t>; // can’t be specialization

Lib-7047 Matt Austern comments:

The status quo is unclear, and probably contradictory. This issue applies both to explicit instantiations and to
specializations, since it is not permitted to provide both a specialization and an explicit instantiation.

The specialization issue is actually more serious than the instantiation one.

In Copenhagen, core working group decided on a proposed resolution to core issue 259. Under the proposed
resolution, it will be legal for a translation unit to contain both a specialization and an explicit instantiation of the
same template, provided that the specialization comes first. In such a case, the explicit instantiation will be ignored.
Further discussion of library issue 120 assumes that the core 259 resolution will be adopted.

Proposed resolution:

Option 1.

Append to 17.4.3.1 paragraph 1:

A program may explicitly instantiate any templates in the standard library only if the declaration depends
on a user-defined name of external linkage and the instantiation meets the standard library requirements
for the original template.

Option 2.

In light of the resolution to core issue 259, no normative changes in the library clauses are necessary. Add the
following non-normative note to the end of 17.4.3.1 paragraph 1:

[Note: A program may explicitly instantiate standard library templates, even when an explicit instantiation
does not depend on a user-defined name. --end note]

[Copenhagen: LWG discussed three options. (A) Users may not explicitly instantiate standard library templates,
except on user-defined types. Consequence: library implementors may freely specialize or instantiate templates. (B)
It is implementation defined whether users may explicitly instantiate standard library templates on non-user-defined
types. Consequence: library implementors may freely specialize or instantiate templates, but must document the
templates they have explicitly instantiated. (C) Users may explicitly instantiate any standard library template.
Consequence: library implementors may freely specialize templates, but may not explicitly instantiate them. This is
a serious burden for implementors; one way they can manage it is by defining the standard template as a wrapper,
and putting all of the real work in an internal helper class/function.]

[Straw poll (first number is favor, second is strongly oppose): A - 4, 0; B - 0, 9; C - 9, 1. Proposed resolution 1,
above, is option A. (It is the original proposed resolution.) Proposed resolution 2, above, is option C. Because there
was no support for option B, no wording is provided.]

- 15 -

C++ Standard Library Active Issues List

123. Should valarray helper arrays fill functions be const?

Section: 26.3.5.4 [lib.slice.arr.fill], 26.3.7.4 [lib.gslice.array.fill], 26.3.8.4 [lib.mask.array.fill], 26.3.9.4
[lib.indirect.array.fill] Status: Open Submitter: Judy Ward Date: 15 Dec 1998

One of the operator= in the valarray helper arrays is const and one is not. For example, look at slice_array. This
operator= in Section 26.3.5.2 is const:

 void operator=(const valarray<T>&) const;

but this one in Section 26.3.5.4 is not:

 void operator=(const T&);

The description of the semantics for these two functions is similar.

Proposed resolution:

Make the operator=(const T&) versions of slice_array, gslice_array, indirect_array, and mask_array const
member functions.

[Dublin: Pete Becker spoke to Daveed Vandevoorde about this and will work on a proposed resolution.]

[Tokyo: Discussed together with the AFNOR paper 00-0023/N1246. The current helper slices now violate language
rules due to a core language change (but most compilers don’t check, so the violation has previously gone
undetected). Major surgery is being asked for in this and other valarray proposals (see issue 77Rationale), and a
complete design review is needed before making piecemeal changes. Robert Klarer will work on formulating the
issues.]

167. Improper use of traits_type::length()

Section: 27.6.2.5.4 [lib.ostream.inserters.character] Status: Review Submitter: Dietmar Kühl Date: 20 Jul 1999

Paragraph 4 states that the length is determined using traits::length(s) . Unfortunately, this function is not
defined for example if the character type is wchar_t and the type of s is char const* . Similar problems exist
if the character type is char and the type of s is either signed char const* or unsigned char const* .

Proposed resolution:

Change 27.6.2.5.4 paragraph 4 from:

Effects: Behaves like an formatted inserter (as described in lib.ostream.formatted.reqmts) of out. After a sentry
object is constructed it inserts characters. The number of characters starting at s to be inserted is
traits::length(s). Padding is determined as described in lib.facet.num.put.virtuals. The traits::length(s) characters
starting at s are widened using out.widen (lib.basic.ios.members). The widened characters and any required
padding are inserted into out. Calls width(0).

to:

Effects: Behaves like an formatted inserter (as described in lib.ostream.formatted.reqmts) of out. After a sentry
object is constructed it inserts characters. The number len of characters starting at s to be inserted is

- traits::length((const char*)s) if the second argument is of type const charT*
- char_traits<char>::length(s) if the second argument is of type const char*, const signed char*, or const
unsigned char* and and charT is not char.

- 16 -

C++ Standard Library Active Issues List

Padding is determined as described in lib.facet.num.put.virtuals. The len characters starting at s are widened
using out.widen (lib.basic.ios.members). The widened characters and any required padding are inserted into out.
Calls width(0).

[Kona: It is clear to the LWG there is a defect here. Dietmar will supply specific wording.]

[Post-Tokyo: Dietmar supplied the above wording.]

[Toronto: The original proposed resolution involved char_traits<signed char> and char_traits<unsigned char>.
There was strong opposition to requiring that library implementors provide those specializations of char_traits.]

[Copenhagen: This still isn’t quite right: proposed resolution text got garbled when the signed char/unsigned char
specializations were removed. Dietmar will provide revised wording.]

179. Comparison of const_iterators to iterators doesn’t work

Section: 23.1 [lib.container.requirements] Status: Review Submitter: Judy Ward Date: 2 Jul 1998

Currently the following will not compile on two well-known standard library implementations:

#include <set>
using namespace std;

void f(const set<int> &s)
{
 set<int>::iterator i;
 if (i==s.end()); // s.end() returns a const_iterator
}

The reason this doesn’t compile is because operator== was implemented as a member function of the nested classes
set:iterator and set::const_iterator, and there is no conversion from const_iterator to iterator. Surprisingly, (s.end()
== i) does work, though, because of the conversion from iterator to const_iterator.

I don’t see a requirement anywhere in the standard that this must work. Should there be one? If so, I think the
requirement would need to be added to the tables in section 24.1.1. I’m not sure about the wording. If this
requirement existed in the standard, I would think that implementors would have to make the comparison operators
non-member functions.

This issues was also raised on comp.std.c++ by Darin Adler. The example given was:

bool check_equal(std::deque<int>::iterator i,
std::deque<int>::const_iterator ci)
{
return i == ci;
}

Comment from John Potter:

In case nobody has noticed, accepting it will break reverse_iterator.

The fix is to make the comparison operators templated on two types.

 template <class Iterator1, class Iterator2>
 bool operator== (reverse_iterator<Iterator1> const& x,
 reverse_iterator<Iterator2> const& y);

- 17 -

C++ Standard Library Active Issues List

Obviously: return x.base() == y.base();

Currently, no reverse_iterator to const_reverse_iterator compares are valid.

BTW, I think the issue is in support of bad code. Compares should be between two iterators of the same type.
All std::algorithms require the begin and end iterators to be of the same type.

Proposed resolution:

In section 23.1 after paragraph 7 add:

It is possible to mix iterator s and const_iterator s in iterator comparison and iterator difference
operations.

[Post-Tokyo: Judy supplied the above wording at the request of the LWG.]

[post-Toronto: Judy supplied a new proposed resolution. The old version did not include the words "and iterator
difference".]

[Copenhagen: There was some concern that "it is possible to mix" might be too informal. Howard and Dave will
provide new wording, which will involve a list of expressions that are guaranteed to be valid.]

Rationale:

The LWG believes it is clear that the above wording applies only to the nested types X::iterator and
X::const_iterator , where X is a container. There is no requirement that X::reverse_iterator and
X::const_reverse_iterator can be mixed. If mixing them is considered important, that’s a separate issue.
(Issue 280.)

182. Ambiguous references to size_t

Section: 17 [lib.library] Status: Ready Submitter: Al Stevens Date: 15 Aug 1999

Many references to size_t throughout the document omit the std:: namespace qualification.

For example, 17.4.3.4 paragraph 2:

‹ operator new(size_t)
‹ operator new(size_t, const std::nothrow_t&)
‹ operator new[](size_t)
‹ operator new[](size_t, const std::nothrow_t&)

Proposed resolution:

In 17.4.3.4 paragraph 2: replace:

- operator new(size_t)
- operator new(size_t, const std::nothrow_t&)
- operator new[](size_t)
- operator new[](size_t, const std::nothrow_t&)

by:

- operator new(std::size_t)
- operator new(std::size_t, const std::nothrow_t&)
- operator new[](std::size_t)
- operator new[](std::size_t, const std::nothrow_t&)

- 18 -

C++ Standard Library Active Issues List

In [lib.allocator.requirements] 20.1.5, paragraph 4: replace:

The typedef members pointer, const_pointer, size_type, and difference_type are required to be T*, T const*,
size_t, and ptrdiff_t, respectively.

 by:

The typedef members pointer, const_pointer, size_type, and difference_type are required to be T*, T const*,
std::size_t, and std::ptrdiff_t, respectively.

In [lib.allocator.members] 20.4.1.1, paragraphs 3 and 6: replace:

3 Notes: Uses ::operator new(size_t) (18.4.1).

6 Note: the storage is obtained by calling ::operator new(size_t), but it is unspecified when or how often this
function is called. The use of hint is unspecified, but intended as an aid to locality if an implementation so
desires.

by:

3 Notes: Uses ::operator new(std::size_t) (18.4.1).

6 Note: the storage is obtained by calling ::operator new(std::size_t), but it is unspecified when or how often
this function is called. The use of hint is unspecified, but intended as an aid to locality if an implementation so
desires.

In [lib.char.traits.require] 21.1.1, paragraph 1: replace:

In Table 37, X denotes a Traits class defining types and functions for the character container type CharT; c and
d denote values of type CharT; p and q denote values of type const CharT*; s denotes a value of type CharT*;
n, i and j denote values of type size_t; e and f denote values of type X::int_type; pos denotes a value of type
X::pos_type; and state denotes a value of type X::state_type.

by:

In Table 37, X denotes a Traits class defining types and functions for the character container type CharT; c and
d denote values of type CharT; p and q denote values of type const CharT*; s denotes a value of type CharT*;
n, i and j denote values of type std::size_t; e and f denote values of type X::int_type; pos denotes a value of type
X::pos_type; and state denotes a value of type X::state_type.

In [lib.char.traits.require] 21.1.1, table 37: replace the return type of X::length(p): "size_t" by "std::size_t".

In [lib.std.iterator.tags] 24.3.3, paragraph 2: replace:
 typedef ptrdiff_t difference_type;
by:
 typedef std::ptrdiff_t difference_type;

In [lib.locale.ctype] 22.2.1.1 put namespace std { ...} around the declaration of template <class charT> class ctype.
In [lib.iterator.traits] 24.3.1, paragraph 2 put namespace std { ...} around the declaration of:
 template<class Iterator> struct iterator_traits
 template<class T> struct iterator_traits<T*>
 template<class T> struct iterator_traits<const T*>

Rationale:

The LWG believes correcting names like size_t and ptrdiff_t to std::size_t and std::ptrdiff_t
to be essentially editorial. There there can’t be another size_t or ptrdiff_t meant anyway because, according to
17.4.3.1.4 ,

- 19 -

C++ Standard Library Active Issues List

For each type T from the Standard C library, the types ::T and std::T are reserved to the implementation and,
when defined, ::T shall be identical to std::T.

The issue is treated as a Defect Report to make explicit the Project Editor’s authority to make this change.

[Post-Tokyo: Nico Josuttis provided the above wording at the request of the LWG.]

[Toronto: This is tangentially related to issue 229, but only tangentially: the intent of this issue is to address use of
the name size_t in contexts outside of namespace std, such as in the description of ::operator new. The
proposed changes should be reviewed to make sure they are correct.]

[pre-Copenhagen: Nico has reviewed the changes and believes them to be correct.]

187. iter_swap underspecified

Section: 25.2.2 [lib.alg.swap] Status: Open Submitter: Andrew Koenig Date: 14 Aug 1999

The description of iter_swap in 25.2.2 paragraph 7,says that it ‘‘exchanges the values’’ of the objects to which two
iterators refer.
What it doesn’t say is whether it does so using swap or using the assignment operator and copy constructor.
This question is an important one to answer, because swap is specialized to work efficiently for standard containers.
For example:

vector<int> v1, v2;
iter_swap(&v1, &v2);

Is this call to iter_swap equivalent to calling swap(v1, v2)? Or is it equivalent to

{
vector<int> temp = v1;
v1 = v2;
v2 = temp;
}

The first alternative is O(1); the second is O(n).

A LWG member, Dave Abrahams, comments:

Not an objection necessarily, but I want to point out the cost of that requirement:

iter_swap(list<T>::iterator, list<T>::iterator)

can currently be specialized to be more efficient than iter_swap(T*,T*) for many T (by using splicing). Your
proposal would make that optimization illegal.

[Kona: The LWG notes the original need for iter_swap was proxy iterators which are no longer permitted.]

Proposed resolution:

Change the effect clause of iter_swap in 25.2.2 paragraph 7 from:

Exchanges the values pointed to by the two iterators a and b.

to

- 20 -

C++ Standard Library Active Issues List

swap(*a, *b) .

[post-Toronto: The LWG is concerned about possible overspecification: there may be cases, such as Dave
Abrahams’s example above, and such as vector<bool>’s iterators, where it makes more sense for iter_swap to do
something other than swap. If performance is a concern, it may be better to have explicit complexity requirements
than to say how iter_swap should be implemented.]

197. max_size() underspecified

Section: 20.1.5 [lib.allocator.requirements], 23.1 [lib.container.requirements] Status: Open Submitter: Andy
Sawyer Date: 21 Oct 1999

Must the value returned by max_size() be unchanged from call to call?

Must the value returned from max_size() be meaningful?

Possible meanings identified in lib-6827:

1) The largest container the implementation can support given "best case" conditions - i.e. assume the run-time
platform is "configured to the max", and no overhead from the program itself. This may possibly be determined at
the point the library is written, but certainly no later than compile time.
2) The largest container the program could create, given "best case" conditions - i.e. same platform assumptions as
(1), but take into account any overhead for executing the program itself. (or, roughly
"storage=storage-sizeof(program)"). This does NOT include any resource allocated by the program. This may (or
may not) be determinable at compile time.
3) The largest container the current execution of the program could create, given knowledge of the actual run-time
platform, but again, not taking into account any currently allocated resource. This is probably best determined at
program start-up.
4) The largest container the current execution program could create at the point max_size() is called (or more
correctly at the point max_size() returns :-), given it’s current environment (i.e. taking into account the actual
currently available resources). This, obviously, has to be determined dynamically each time max_size() is called.

Proposed resolution:

Change 20.1.5 table 32 max_size() wording from:
 the largest value that can meaningfully be passed to X::allocate
to:
 the value of the largest constant expression (5.19) that could ever meaningfully be passed to X::allocate

Change 23.1 table 65 max_size() wording from:
 size() of the largest possible container.
to:
 the value of the largest constant expression (5.19) that could ever meaningfully be returned by X::size().

[Kona: The LWG informally discussed this and asked Andy Sawyer to submit an issue.]

[Tokyo: The LWG believes (1) above is the intended meaning.]

[Post-Tokyo: Beman Dawes supplied the above resolution at the request of the LWG. 21.3.3 was not changed
because it references max_size() in 23.1. The term "compile-time" was avoided because it is not defined anywhere in
the standard (even though it is used several places in the library clauses).]

[Copenhagen: Exactly what max_size means is still unclear. It may have a different meaning as a container
member function than as an allocator member function. For the latter, it is probably best thought of as an
architectural limit. Nathan will provide new wording.]

- 21 -

C++ Standard Library Active Issues List

198. Validity of pointers and references unspecified after iterator
destruction

Section: 24.1 [lib.iterator.requirements] Status: Review Submitter: Beman Dawes Date: 3 Nov 1999

Is a pointer or reference obtained from an iterator still valid after destruction of the iterator?

Is a pointer or reference obtained from an iterator still valid after the value of the iterator changes?

#include <iostream>
#include <vector>
#include <iterator>

int main()
{
 typedef std::vector<int> vec_t;
 vec_t v;
 v.push_back(1);

 // Is a pointer or reference obtained from an iterator still
 // valid after destruction of the iterator?
 int * p = &*v.begin();
 std::cout << *p << ’\n’; // OK?

 // Is a pointer or reference obtained from an iterator still
 // valid after the value of the iterator changes?
 vec_t::iterator iter(v.begin());
 p = &*iter++;
 std::cout << *p << ’\n’; // OK?

 return 0;
}

The standard doesn’t appear to directly address these questions. The standard needs to be clarified. At least two
real-world cases have been reported where library implementors wasted considerable effort because of the lack of
clarity in the standard. The question is important because requiring pointers and references to remain valid has the
effect for practical purposes of prohibiting iterators from pointing to cached rather than actual elements of
containers.

The standard itself assumes that pointers and references obtained from an iterator are still valid after iterator
destruction or change. The definition of reverse_iterator::operator*(), 24.4.1.3.3 , which returns a reference, defines
effects:

Iterator tmp = current;
return *--tmp;

The definition of reverse_iterator::operator->(), 24.4.1.3.4 , which returns a pointer, defines effects:

return &(operator*());

Because the standard itself assumes pointers and references remain valid after iterator destruction or change, the
standard should say so explicitly. This will also reduce the chance of user code breaking unexpectedly when porting
to a different standard library implementation.

- 22 -

C++ Standard Library Active Issues List

Proposed resolution:

Add a new paragraph to 24.1 :

Destruction of an iterator may invalidate pointers and references previously obtained from that iterator.

Replace paragraph 1 of 24.4.1.3.3 with:

Effects:

 this->tmp = current;
 --this->tmp;
 return *this->tmp;

[Note: This operation must use an auxiliary member variable, rather than a temporary variable, to avoid
returning a reference that persists beyond the lifetime of its associated iterator. (See 24.1 .) The name of this
member variable is shown for exposition only. --end note]

[Tokyo: The LWG reformulated the question purely in terms of iterators. The answer to the question is "no, pointers
and references don’t remain valid after iterator destruction." PJP explained that implementors use considerable
care to avoid such ephemeral pointers and references. Several LWG members said that they thought that the
standard did not actually specify the lifetime of pointers and references obtained from iterators, except possibly
input iterators.]

[Post-Tokyo: The issue has been reformulated purely in terms of iterators.]

[Pre-Toronto: Steve Cleary pointed out the no-invalidation assumption by reverse_iterator. The issue and proposed
resolution was reformulated yet again to reflect this reality.]

[Copenhagen: Andy Koenig pointed out that it is possible to rewrite reverse_iterator so that it no longer makes this
assumption. However, this issue is related to issue 299. If we decide it is intentional that p[n] may return by value
instead of reference when p is a Random Access Iterator, then other changes in reverse_iterator will be necessary.]

200. Forward iterator requirements don’t allow constant iterators

Section: 24.1.3 [lib.forward.iterators] Status: Open Submitter: Matt Austern Date: 19 Nov 1999

In table 74, the return type of the expression *a is given as T&, where T is the iterator’s value type. For constant
iterators, however, this is wrong. ("Value type" is never defined very precisely, but it is clear that the value type of,
say, std::list<int>::const_iterator is supposed to be int , not const int .)

Proposed resolution:

In table 74, change the return type column for *a from "T&" to "T& if X is mutable, otherwise const T&".

[Tokyo: The LWG believes this is the tip of a larger iceberg; there are multiple const problems with the STL portion
of the library and that these should be addressed as a single package. Note that issue 180 has already been
declared NAD Future for that very reason.]

201. Numeric limits terminology wrong

Section: 18.2.1 [lib.limits] Status: Open Submitter: Stephen Cleary Date: 21 Dec 1999

- 23 -

C++ Standard Library Active Issues List

In some places in this section, the terms "fundamental types" and "scalar types" are used when the term "arithmetic
types" is intended. The current usage is incorrect because void is a fundamental type and pointers are scalar types,
neither of which should have specializations of numeric_limits.

Proposed resolution:

Change 18.2 [lib.support.limits] para 1 from:

The headers <limits>, <climits>, and <cfloat> supply characteristics of implementation-dependent fundamental
types (3.9.1).

to:

The headers <limits>, <climits>, and <cfloat> supply characteristics of implementation-dependent arithmetic
types (3.9.1).

Change 18.2.1 [lib.limits] para 1 from:

The numeric_limits component provides a C++ program with information about various properties of the
implementation’s representation of the fundamental types.

to:

The numeric_limits component provides a C++ program with information about various properties of the
implementation’s representation of the arithmetic types.

Change 18.2.1 [lib.limits] para 2 from:

Specializations shall be provided for each fundamental type. . .

to:

Specializations shall be provided for each arithmetic type. . .

Change 18.2.1 [lib.limits] para 4 from:

Non-fundamental standard types. . .

to:

Non-arithmetic standard types. . .

Change 18.2.1.1 [lib.numeric.limits] para 1 from:

The member is_specialized makes it possible to distinguish between fundamental types, which have
specializations, and non-scalar types, which do not.

to:

The member is_specialized makes it possible to distinguish between arithmetic types, which have
specializations, and non-arithmetic types, which do not.

[post-Toronto: The opinion of the LWG is that the wording in the standard, as well as the wording of the proposed
resolution, is flawed. The term "arithmetic types" is well defined in C and C++, and it is not clear that the term is
being used correctly. It is also not clear that the term "implementation dependent" has any useful meaning in this
context. The biggest problem is that numeric_limits seems to be intended both for built-in types and for user-defined
types, and the standard doesn’t make it clear how numeric_limits applies to each of those cases. A wholesale review
of numeric_limits is needed. A paper would be welcome.]

- 24 -

C++ Standard Library Active Issues List

202. unique() effects unclear when predicate not an equivalence relation

Section: 25.2.8 [lib.alg.unique] Status: Open Submitter: Andrew Koenig Date: 13 Jan 2000

What should unique() do if you give it a predicate that is not an equivalence relation? There are at least two
plausible answers:

1. You can’t, because 25.2.8 says that it it "eliminates all but the first element from every consecutive group of
equal elements..." and it wouldn’t make sense to interpret "equal" as meaning anything but an equivalence
relation. [It also doesn’t make sense to interpret "equal" as meaning ==, because then there would never be any
sense in giving a predicate as an argument at all.]

2. The word "equal" should be interpreted to mean whatever the predicate says, even if it is not an equivalence
relation (and in particular, even if it is not transitive).

The example that raised this question is from Usenet:

int f[] = { 1, 3, 7, 1, 2 };
int* z = unique(f, f+5, greater<int>());

If one blindly applies the definition using the predicate greater<int>, and ignore the word "equal", you get:

Eliminates all but the first element from every consecutive group of elements referred to by the iterator i in the
range [first, last) for which *i > *(i - 1).

The first surprise is the order of the comparison. If we wanted to allow for the predicate not being an equivalence
relation, then we should surely compare elements the other way: pred(*(i - 1), *i). If we do that, then the description
would seem to say: "Break the sequence into subsequences whose elements are in strictly increasing order, and keep
only the first element of each subsequence". So the result would be 1, 1, 2. If we take the description at its word, it
would seem to call for strictly DEcreasing order, in which case the result should be 1, 3, 7, 2.
In fact, the SGI implementation of unique() does neither: It yields 1, 3, 7.

Proposed resolution:

Options:

1. Impose an explicit requirement that the predicate be an equivalence relation.

2. Drop the word "equal" from the description to make it clear that the intent is to compare pairs of adjacent
elements, and change pred(*i, *(i - 1)) to pred(*(i - 1), i).

3. Change the effects to:

Effects: Eliminates all but the first element e from every consecutive group of elements referred to by the
iterator i in the range [first, last) for which the following corresponding conditions hold: e == *i or
pred(e,*i) != false.

A LWG member, Nico Josuttis, comments:

First, I agree that the current wording is simply wrong. However, to follow all [known] current implementations I
propose [option 3 above].

[Tokyo: The issue was discussed at length without reaching consensus. Straw vote: Option 1 - preferred by 2
people. Option 2 - preferred by 0 people. Option 3 - preferred by 3 people. Many abstentions.]

- 25 -

C++ Standard Library Active Issues List

[Copenhagen: There was some support for all options. The option with the least support was 1 (one person in
favor), and the option with the most support was 2 (seven in favor). One person was strongly opposed to option 1,
and one person was strongly opposed to the variation on option 2 in which the order of arguments would remain
pred(*i, *(i - 1)).]

225. std:: algorithms use of other unqualified algorithms

Section: 17.4.4.3 [lib.global.functions] Status: Open Submitter: Dave Abrahams Date: 01 Apr 2000

Are algorithms in std:: allowed to use other algorithms without qualification, so functions in user namespaces might
be found through Koenig lookup?

For example, a popular standard library implementation includes this implementation of std::unique:

namespace std {
 template <class _ForwardIter>
 _ForwardIter unique(_ForwardIter __first, _ForwardIter __last) {
 __first = adjacent_find(__first, __last);
 return unique_copy(__first, __last, __first);
 }
 }

Imagine two users on opposite sides of town, each using unique on his own sequences bounded by my_iterators .
User1 looks at his standard library implementation and says, "I know how to implement a more efficient
unique_copy for my_iterators", and writes:

namespace user1 {
 class my_iterator;
 // faster version for my_iterator
 my_iterator unique_copy(my_iterator, my_iterator, my_iterator);
 }

user1::unique_copy() is selected by Koenig lookup, as he intended.

User2 has other needs, and writes:

namespace user2 {
 class my_iterator;
 // Returns true iff *c is a unique copy of *a and *b.
 bool unique_copy(my_iterator a, my_iterator b, my_iterator c);
 }

User2 is shocked to find later that his fully-qualified use of std::unique(user2::my_iterator, user2::my_iterator,
user2::my_iterator) fails to compile (if he’s lucky). Looking in the standard, he sees the following Effects clause for
unique():

Effects: Eliminates all but the first element from every consecutive group of equal elements referred to by the
iterator i in the range [first, last) for which the following corresponding conditions hold: *i == *(i - 1) or
pred(*i, *(i - 1)) != false

The standard gives user2 absolutely no reason to think he can interfere with std::unique by defining names in
namespace user2. His standard library has been built with the template export feature, so he is unable to inspect the
implementation. User1 eventually compiles his code with another compiler, and his version of unique_copy silently
stops being called. Eventually, he realizes that he was depending on an implementation detail of his library and had
no right to expect his unique_copy() to be called portably.

- 26 -

C++ Standard Library Active Issues List

On the face of it, and given above scenario, it may seem obvious that the implementation of unique() shown is
non-conforming because it uses unique_copy() rather than ::std::unique_copy(). Most standard library
implementations, however, seem to disagree with this notion.

[Tokyo: Steve Adamczyk from the core working group indicates that "std::" is sufficient; leading "::" qualification
is not required because any namespace qualification is sufficient to suppress Koenig lookup.]

Proposed resolution:

Add a paragraph and a note at the end of 17.4.4.3 :

Unless otherwise specified, no global or non-member function in the standard library shall use a function from
another namespace which is found through argument-dependent name lookup (3.4.2).

[Note: the phrase "unless otherwise specified" is intended to allow Koenig lookup in cases like that of
ostream_iterators:
Effects:

*out_stream << value;
if(delim != 0) *out_stream << delim;
return (*this);

--end note]

[Tokyo: The LWG agrees that this is a defect in the standard, but is as yet unsure if the proposed resolution is the
best solution. Furthermore, the LWG believes that the same problem of unqualified library names applies to
wording in the standard itself, and has opened issue 229 accordingly. Any resolution of issue 225 should be
coordinated with the resolution of issue 229.]

[Toronto: The LWG is not sure if this is a defect in the standard. Most LWG members believe that an
implementation of std::unique like the one quoted in this issue is already illegal, since, under certain
circumstances, its semantics are not those specified in the standard. The standard’s description of unique does not
say that overloading adjacent_find should have any effect.]

226. User supplied specializations or overloads of namespace std function
templates

Section: 17.4.3.1 [lib.reserved.names] Status: Open Submitter: Dave Abrahams Date: 01 Apr 2000

The issues are:

1. How can a 3rd party library implementor (lib1) write a version of a standard algorithm which is specialized to
work with his own class template?

2. How can another library implementor (lib2) write a generic algorithm which will take advantage of the
specialized algorithm in lib1?

This appears to be the only viable answer under current language rules:

namespace lib1
{
 // arbitrary-precision numbers using T as a basic unit
 template <class T>
 class big_num { //...
 };

- 27 -

C++ Standard Library Active Issues List

 // defining this in namespace std is illegal (it would be an
 // overload), so we hope users will rely on Koenig lookup
 template <class T>
 void swap(big_int<T>&, big_int<T>&);
}

#include <algorithm>
namespace lib2
{
 template <class T>
 void generic_sort(T* start, T* end)
 {
 ...
 // using-declaration required so we can work on built-in types
 using std::swap;
 // use Koenig lookup to find specialized algorithm if available
 swap(*x, *y);
 }
}

This answer has some drawbacks. First of all, it makes writing lib2 difficult and somewhat slippery. The
implementor needs to remember to write the using-declaration, or generic_sort will fail to compile when T is a
built-in type. The second drawback is that the use of this style in lib2 effectively "reserves" names in any namespace
which defines types which may eventually be used with lib2. This may seem innocuous at first when applied to
names like swap, but consider more ambiguous names like unique_copy() instead. It is easy to imagine the user
wanting to define these names differently in his own namespace. A definition with semantics incompatible with the
standard library could cause serious problems (see issue 225).

Why, you may ask, can’t we just partially specialize std::swap()? It’s because the language doesn’t allow for partial
specialization of function templates. If you write:

namespace std
{
 template <class T>
 void swap(lib1::big_int<T>&, lib1::big_int<T>&);
}

You have just overloaded std::swap, which is illegal under the current language rules. On the other hand, the
following full specialization is legal:

namespace std
{
 template <>
 void swap(lib1::other_type&, lib1::other_type&);
}

This issue reflects concerns raised by the "Namespace issue with specialized swap" thread on
comp.lang.c++.moderated. A similar set of concerns was earlier raised on the boost.org mailing list and the
ACCU-general mailing list. Also see library reflector message c++std-lib-7354.

Proposed resolution:

[Tokyo: Summary, "There is no conforming way to extend std::swap for user defined templates." The LWG agrees
that there is a problem. Would like more information before proceeding. This may be a core issue. Core issue 229
has been opened to discuss the core aspects of this problem. It was also noted that submissions regarding this issue
have been received from several sources, but too late to be integrated into the issues list.]

- 28 -

C++ Standard Library Active Issues List

[Post-Tokyo: A paper with several proposed resolutions, J16/00-0029==WG21/N1252, "Shades of namespace std
functions " by Alan Griffiths, is in the Post-Tokyo mailing. It should be considered a part of this issue.]

[Toronto: Dave Abrahams and Peter Dimov have proposed a resolution that involves core changes: it would add
partial specialization of function template. The Core Working Group is reluctant to add partial specialization of
function templates. It is viewed as a large change, CWG believes that proposal presented leaves some syntactic
issues unanswered; if the CWG does add partial specialization of function templates, it wishes to develop its own
proposal. The LWG continues to believe that there is a serious problem: there is no good way for users to force the
library to use user specializations of generic standard library functions, and in certain cases (e.g. transcendental
functions called by valarray and complex) this is important. Koenig lookup isn’t adequate, since names within
the library must be qualified with std (see issue 225), specialization doesn’t work (we don’t have partial
specialization of function templates), and users aren’t permitted to add overloads within namespace std.]

[Copenhagen: Discussed at length, with no consensus. Relevant papers in the pre-Copenhagen mailing: N1289,
N1295, N1296. Discussion focused on four options. (1) Relax restrictions on overloads within namespace std. (2)
Mandate that the standard library use unqualified calls for swap and possibly other functions. (3) Introduce helper
class templates for swap and possibly other functions. (4) Introduce partial specialization of function templates.
Every option had both support and opposition. Straw poll (first number is support, second is strongly opposed): (1)
6, 4; (2) 6, 7; (3) 3, 8; (4) 4, 4.]

228. Incorrect specification of "..._byname" facets

Section: 22.2 [lib.locale.categories] Status: Ready Submitter: Dietmar Kühl Date: 20 Apr 2000

The sections 22.2.1.2 , 22.2.1.4 , 22.2.1.6 , 22.2.3.2 , 22.2.4.2 , 22.2.5.4 , 22.2.6.4 , and 22.2.7.2 overspecify the
definitions of the "..._byname" classes by listing a bunch of virtual functions. At the same time, no semantics of
these functions are defined. Real implementations do not define these functions because the functional part of the
facets is actually implemented in the corresponding base classes and the constructor of the "..._byname" version just
provides suitable date used by these implementations. For example, the ’numpunct’ methods just return values from
a struct. The base class uses a statically initialized struct while the derived version reads the contents of this struct
from a table. However, no virtual function is defined in ’numpunct_byname’.

For most classes this does not impose a problem but specifically for ’ctype’ it does: The specialization for
’ctype_byname<char>’ is required because otherwise the semantics would change due to the virtual functions
defined in the general version for ’ctype_byname’: In ’ctype<char>’ the method ’do_is()’ is not virtual but it is made
virtual in both ’ctype<cT>’ and ’ctype_byname<cT>’. Thus, a class derived from ’ctype_byname<char>’ can tell
whether this class is specialized or not under the current specification: Without the specialization, ’do_is()’ is virtual
while with specialization it is not virtual.

Proposed resolution:

 Change section 22.2.1.2 (lib.locale.ctype.byname) to become:

 namespace std {
 template <class charT>
 class ctype_byname : public ctype<charT> {
 public:
 typedef ctype<charT>::mask mask;
 explicit ctype_byname(const char*, size_t refs = 0);
 protected:
 ~ctype_byname(); // virtual
 };
 }

- 29 -

C++ Standard Library Active Issues List

 Change section 22.2.1.6 (lib.locale.codecvt.byname) to become:

 namespace std {
 template <class internT, class externT, class stateT>
 class codecvt_byname : public codecvt<internT, externT, stateT> {
 public:
 explicit codecvt_byname(const char*, size_t refs = 0);
 protected:
 ~codecvt_byname(); // virtual
 };
 }

 Change section 22.2.3.2 (lib.locale.numpunct.byname) to become:

 namespace std {
 template <class charT>
 class numpunct_byname : public numpunct<charT> {
 // this class is specialized for char and wchar_t.
 public:
 typedef charT char_type;
 typedef basic_string<charT> string_type;
 explicit numpunct_byname(const char*, size_t refs = 0);
 protected:
 ~numpunct_byname(); // virtual
 };
 }

 Change section 22.2.4.2 (lib.locale.collate.byname) to become:

 namespace std {
 template <class charT>
 class collate_byname : public collate<charT> {
 public:
 typedef basic_string<charT> string_type;
 explicit collate_byname(const char*, size_t refs = 0);
 protected:
 ~collate_byname(); // virtual
 };
 }

 Change section 22.2.5.2 (lib.locale.time.get.byname) to become:

 namespace std {
 template <class charT, class InputIterator = istreambuf_iterator<charT> >
 class time_get_byname : public time_get<charT, InputIterator> {
 public:
 typedef time_base::dateorder dateorder;
 typedef InputIterator iter_type

 explicit time_get_byname(const char*, size_t refs = 0);
 protected:
 ~time_get_byname(); // virtual
 };
 }

- 30 -

C++ Standard Library Active Issues List

 Change section 22.2.5.4 (lib.locale.time.put.byname) to become:

 namespace std {
 template <class charT, class OutputIterator = ostreambuf_iterator<charT> >
 class time_put_byname : public time_put<charT, OutputIterator>
 {
 public:
 typedef charT char_type;
 typedef OutputIterator iter_type;

 explicit time_put_byname(const char*, size_t refs = 0);
 protected:
 ~time_put_byname(); // virtual
 };
 }"

 Change section 22.2.6.4 (lib.locale.moneypunct.byname) to become:

 namespace std {
 template <class charT, bool Intl = false>
 class moneypunct_byname : public moneypunct<charT, Intl> {
 public:
 typedef money_base::pattern pattern;
 typedef basic_string<charT> string_type;

 explicit moneypunct_byname(const char*, size_t refs = 0);
 protected:
 ~moneypunct_byname(); // virtual
 };
 }

 Change section 22.2.7.2 (lib.locale.messages.byname) to become:

 namespace std {
 template <class charT>
 class messages_byname : public messages<charT> {
 public:
 typedef messages_base::catalog catalog;
 typedef basic_string<charT> string_type;

 explicit messages_byname(const char*, size_t refs = 0);
 protected:
 ~messages_byname(); // virtual
 };
 }

Remove section 22.2.1.4 completely (because in this case only those members are defined to be virtual which are
defined to be virtual in ’ctype<cT>’.)

[Post-Tokyo: Dietmar Kühl submitted this issue at the request of the LWG to solve the underlying problems raised
by issue 138.]

[Copenhagen: proposed resolution was revised slightly, to remove three last virtual functions from
messages_byname .]

- 31 -

C++ Standard Library Active Issues List

229. Unqualified references of other library entities

Section: 17.4.1.1 [lib.contents] Status: Open Submitter: Steve Clamage Date: 19 Apr 2000

Throughout the library chapters, the descriptions of library entities refer to other library entities without necessarily
qualifying the names.

For example, section 25.2.2 "Swap" describes the effect of swap_ranges in terms of the unqualified name "swap".
This section could reasonably be interpreted to mean that the library must be implemented so as to do a lookup of
the unqualified name "swap", allowing users to override any ::std::swap function when Koenig lookup applies.

Although it would have been best to use explicit qualification with "::std::" throughout, too many lines in the
standard would have to be adjusted to make that change in a Technical Corrigendum.

Issue 182, which addresses qualification of size_t , is a special case of this.

Proposed resolution:

To section 17.4.1.1 "Library contents" Add the following paragraph:

Whenever a name x defined in the standard library is mentioned, the name x is assumed to be fully qualified as
::std::x, unless explicitly described otherwise. For example, if the Effects section for library function F is
described as calling library function G, the function ::std::G is meant.

[Post-Tokyo: Steve Clamage submitted this issue at the request of the LWG to solve a problem in the standard itself
similar to the problem within implementations of library identified by issue 225. Any resolution of issue 225 should
be coordinated with the resolution of this issue.]

[post-Toronto: Howard is undecided about whether it is appropriate for all standard library function names
referred to in other standard library functions to be explicitly qualified by std : it is common advice that users
should define global functions that operate on their class in the same namespace as the class, and this requires
argument-dependent lookup if those functions are intended to be called by library code. Several LWG members are
concerned that valarray appears to require argument-dependent lookup, but that the wording may not be clear
enough to fall under "unless explicitly described otherwise".]

230. Assignable specified without also specifying CopyConstructible

Section: 17 [lib.library] Status: Ready Submitter: Beman Dawes Date: 26 Apr 2000

Issue 227 identified an instance (std::swap) where Assignable was specified without also specifying
CopyConstructible. The LWG asked that the standard be searched to determine if the same defect existed elsewhere.

There are a number of places (see proposed resolution below) where Assignable is specified without also specifying
CopyConstructible. There are also several cases where both are specified. For example, 26.4.1 .

Proposed resolution:

In 23.1 table 65 for value_type: change "T is Assignable" to "T is CopyConstructible and Assignable"

In 23.1.2 table 69 X::key_type; change "Key is Assignable" to "Key is CopyConstructible and Assignable"

In 24.1.2 paragraph 1, change:

A class or a built-in type X satisfies the requirements of an output iterator if X is an Assignable type (23.1) and
also the following expressions are valid, as shown in Table 73:

- 32 -

C++ Standard Library Active Issues List

to:

A class or a built-in type X satisfies the requirements of an output iterator if X is a CopyConstructible (20.1.3)
and Assignable type (23.1) and also the following expressions are valid, as shown in Table 73:

[Post-Tokyo: Beman Dawes submitted this issue at the request of the LWG. He asks that the 25.2.4 and 25.2.5
changes be studied carefully, as it is not clear that CopyConstructible is really a requirement and may be
overspecification.]

Rationale:

The original proposed resolution also included changes to input iterator, fill, and replace. The LWG believes that
those changes are not necessary. The LWG considered some blanket statement, where an Assignable type was also
required to be Copy Constructible, but decided against this because fill and replace really don’t require the Copy
Constructible property.

231. Precision in iostream?

Section: 22.2.2.2.2 [lib.facet.num.put.virtuals] Status: Review Submitter: James Kanze, Stephen Clamage Date:
25 Apr 2000

What is the following program supposed to output?

#include <iostream>

 int
 main()
 {
 std::cout.setf(std::ios::scientific , std::ios::floatfield) ;
 std::cout.precision(0) ;
 std::cout << 1.23 << ’\n’ ;
 return 0 ;
 }

From my C experience, I would expect "1e+00"; this is what printf("%.0e" , 1.23); does. G++ outputs
"1.000000e+00".

The only indication I can find in the standard is 22.2.2.2.2/11, where it says "For conversion from a floating-point
type, if (flags & fixed) != 0 or if str.precision() > 0, then str.precision() is specified in the conversion specification."
This is an obvious error, however, fixed is not a mask for a field, but a value that a multi-bit field may take -- the
results of and’ing fmtflags with ios::fixed are not defined, at least not if ios::scientific has been set. G++’s behavior
corresponds to what might happen if you do use (flags & fixed) != 0 with a typical implementation (floatfield == 3
<< something, fixed == 1 << something, and scientific == 2 << something).

Presumably, the intent is either (flags & floatfield) != 0, or (flags & floatfield) == fixed; the first gives something
more or less like the effect of precision in a printf floating point conversion. Only more or less, of course. In order to
implement printf formatting correctly, you must know whether the precision was explicitly set or not. Say by
initializing it to -1, instead of 6, and stating that for floating point conversions, if precision < -1, 6 will be used, for
fixed point, if precision < -1, 1 will be used, etc. Plus, of course, if precision == 0 and flags & floatfield == 0, 1
should be = used. But it probably isn’t necessary to emulate all of the anomalies of printf:-).

Proposed resolution:

In 22.2.2.2.2 , paragraph 11, change "if (flags & fixed) != 0" to "if (flags & floatfield) ==
fixed || (flags & floatfield) == scientific "

- 33 -

C++ Standard Library Active Issues List

Rationale:

The floatfield determines whether numbers are formatted as if with %f, %e, or %g. If the fixed bit is set, it’s %f, if
scientific it’s %e, and if both bits are set, or neither, it’s %e.

Turning to the C standard, a precision of 0 is meaningful for %f and %e, but not for %g: for %g, precision 0 is taken
to be the same as precision 1.

The proposed resolution has the effect that the output of the above program will be "1e+00".

232. "depends" poorly defined in 17.4.3.1

Section: 17.4.3.1 [lib.reserved.names] Status: Ready Submitter: Peter Dimov Date: 18 Apr 2000

17.4.3.1/1 uses the term "depends" to limit the set of allowed specializations of standard templates to those that
"depend on a user-defined name of external linkage."

This term, however, is not adequately defined, making it possible to construct a specialization that is, I believe,
technically legal according to 17.4.3.1/1, but that specializes a standard template for a built-in type such as ’int’.

The following code demonstrates the problem:

#include <algorithm>

template<class T> struct X
{
 typedef T type;
};

namespace std
{
 template<> void swap(::X<int>::type& i, ::X<int>::type& j);
}

Proposed resolution:

Change "user-defined name" to "user-defined type".

Rationale:

This terminology is used in section 2.5.2 and 4.1.1 of The C++ Programming Language. It disallows the example in
the issue, since the underlying type itself is not user-defined. The only possible problem I can see is for non-type
templates, but there’s no possible way for a user to come up with a specialization for bitset, for example, that might
not have already been specialized by the implementor?

[Toronto: this may be related to issue 120.]

[post-Toronto: Judy provided the above proposed resolution and rationale.]

233. Insertion hints in associative containers

Section: 23.1.2 [lib.associative.reqmts] Status: Review Submitter: Andrew Koenig Date: 30 Apr 2000

If mm is a multimap and p is an iterator into the multimap, then mm.insert(p, x) inserts x into mm with p as a
hint as to where it should go. Table 69 claims that the execution time is amortized constant if the insert winds up
taking place adjacent to p, but does not say when, if ever, this is guaranteed to happen. All it says it that p is a hint

- 34 -

C++ Standard Library Active Issues List

as to where to insert.

The question is whether there is any guarantee about the relationship between p and the insertion point, and, if so,
what it is.

I believe the present state is that there is no guarantee: The user can supply p, and the implementation is allowed to
disregard it entirely.

Proposed resolution:

General Idea (Andrew Koenig): t is inserted at the point closest to (the point immediately ahead of) p. That would
give the user a way of controlling the order in which elements appear that have equal keys. Doing so would be
particularly easy in two cases that I suspect are common:

 mm.insert(mm.begin(), t); // inserts as first element of set of equal keys
 mm.insert(mm.end(), t); // inserts as last element of set of equal keys

These examples would allow t to be inserted at the beginning and end, respectively, of the set of elements with the
same key as t.

assertion/note/pre/postcondition in table 69
Change:

iterator p is a hint pointing to where the insert should start to search.

To:

if t is inserted, p is used as follows: insert t right before p if possible; otherwise, if p is equal to a.end(), or if the
key value of t is greater than the key value of *p, t is inserted just before a.lowerbound(the key value of t);
otherwise, t is inserted right before a.upperbound(the key value of t).

complexity:
Change:

right after p

To:

right before p

Thus making:
assertion/note/pre/postcondition:

inserts t if and only if there is no element with key equivalent to the key of t in containers with unique keys;
always inserts t in containers with equivalent keys. always returns the iterator pointing to the element with key
equivalent to the key of t. if t is inserted, p is used as follows: insert t right before p if possible; otherwise, if p
is equal to a.end(), or if the key value of t is greater than the key value of *p, t is inserted just before
a.lowerbound(the key value of t); otherwise, t is inserted right before a.upperbound(the key value of t).
NON-NORMATIVE FOOTNOTE: | This gives the user a way of controlling the order | in which elements
appear that have equal keys. Doing this is | particularly easy in two common cases:

| mm.insert(mm.begin(), t); // inserts as first element of set of equal keys
| mm.insert(mm.end(), t); // inserts as last element of set of equal keys

END-FOOTNOTE

- 35 -

C++ Standard Library Active Issues List

complexity:

logarithmic in general, but amortized constant if t is inserted right before p.

[Toronto: there was general agreement that this is a real defect: when inserting an element x into a multiset that
already contains several copies of x, there is no way to know whether the hint will be used. There was some support
for an alternative resolution: we check on both sides of the hint (both before and after, in that order). If either is the
correct location, the hint is used; otherwise it is not. This would be different from the original proposed resolution,
because in the proposed resolution the hint will be used even if it is very far from the insertion point. JC van Winkel
supplied precise wording for both options.]

[Copenhagen: the LWG looked at both options, and preferred the original. This preference is contingent on seeing a
reference implementation showing that it is possible to implement this requirement without loss of efficiency.]

235. No specification of default ctor for reverse_iterator

Section: 24.4.1.1 [lib.reverse.iterator] Status: Ready Submitter: Dietmar Kühl Date: 24 Apr 2000

The declaration of reverse_iterator lists a default constructor. However, no specification is given what this
constructor should do.

Proposed resolution:

In section 24.4.1.3.1 add the following paragraph:

reverse_iterator()

Default initializes current . Iterator operations applied to the resulting iterator have defined behavior if and
only if the corresponding operations are defined on a default constructed iterator of type Iterator .

[pre-Copenhagen: Dietmar provide wording for proposed resolution.]

238. Contradictory results of stringbuf initialization.

Section: 27.7.1.1 [lib.stringbuf.cons] Status: Ready Submitter: Dietmar Kühl Date: 11 May 2000

In 27.7.1.1 paragraph 4 the results of calling the constructor of ’basic_stringbuf’ are said to be str() == str .
This is fine that far but consider this code:

 std::basic_stringbuf<char> sbuf("hello, world", std::ios_base::openmode(0));
 std::cout << "’" << sbuf.str() << "’\n";

Paragraph 3 of 27.7.1.1 basically says that in this case neither the output sequence nor the input sequence is
initialized and paragraph 2 of 27.7.1.2 basically says that str() either returns the input or the output sequence.
None of them is initialized, ie. both are empty, in which case the return from str() is defined to be
basic_string<cT>() .

However, probably only test cases in some testsuites will detect this "problem"...

Proposed resolution:

Remove 27.7.1.1 paragraph 4.

Rationale:

- 36 -

C++ Standard Library Active Issues List

We could fix 27.7.1.1 paragraph 4, but there would be no point. If we fixed it, it would say just the same thing as
text that’s already in the standard.

239. Complexity of unique() and/or unique_copy incorrect

Section: 25.2.8 [lib.alg.unique] Status: Open Submitter: Angelika Langer Date: May 15 2000

The complexity of unique and unique_copy are inconsistent with each other and inconsistent with the
implementations. The standard specifies:

for unique():

-3- Complexity: If the range (last - first) is not empty, exactly (last - first) - 1 applications of the corresponding
predicate, otherwise no applications of the predicate.

for unique_copy():

-7- Complexity: Exactly last - first applications of the corresponding predicate.

The implementations do it the other way round: unique() applies the predicate last-first times and unique_copy()
applies it last-first-1 times.

As both algorithms use the predicate for pair-wise comparison of sequence elements I don’t see a justification for
unique_copy() applying the predicate last-first times, especially since it is not specified to which pair in the
sequence the predicate is applied twice.

Proposed resolution:

Change both complexity sections in 25.2.8 to:

Complexity: Exactly last - first - 1 applications of the corresponding predicate.

[Toronto: This is related to issue 202. We can’t specify unique ’s complexity until we decide what unique is
supposed to do.]

240. Complexity of adjacent_find() is meaningless

Section: 25.1.5 [lib.alg.adjacent.find] Status: Review Submitter: Angelika Langer Date: May 15 2000

The complexity section of adjacent_find is defective:

template <class ForwardIterator>
ForwardIterator adjacent_find(ForwardIterator first, ForwardIterator last
 BinaryPredicate pred);

-1- Returns: The first iterator i such that both i and i + 1 are in the range [first, last) for which the following
corresponding conditions hold: *i == *(i + 1), pred(*i, *(i + 1)) != false. Returns last if no such iterator is
found.

-2- Complexity: Exactly find(first, last, value) - first applications of the corresponding predicate.

In the Complexity section, it is not defined what "value" is supposed to mean. My best guess is that "value" means
an object for which one of the conditions pred(*i,value) or pred(value,*i) is true, where i is the iterator defined in the
Returns section. However, the value type of the input sequence need not be equality-comparable and for this reason
the term find(first, last, value) - first is meaningless.

- 37 -

C++ Standard Library Active Issues List

A term such as find_if(first, last, bind2nd(pred,*i)) - first or find_if(first, last, bind1st(pred,*i)) - first might come
closer to the intended specification. Binders can only be applied to function objects that have the function call
operator declared const, which is not required of predicates because they can have non-const data members. For this
reason, a specification using a binder could only be an "as-if" specification.

Proposed resolution:

Change the complexity section in 25.1.5 to:

For a nonempty range, exactly min((i - first) + 1, (last - first) - 1) applications of the
corresponding predicate, where i is adjacent_find ’s return value.

[Copenhagen: the original resolution specified an upper bound. The LWG preferred an exact count.]

241. Does unique_copy() require CopyConstructible and Assignable?

Section: 25.2.8 [lib.alg.unique] Status: Ready Submitter: Angelika Langer Date: May 15 2000

Some popular implementations of unique_copy() create temporary copies of values in the input sequence, at least if
the input iterator is a pointer. Such an implementation is built on the assumption that the value type is
CopyConstructible and Assignable.

It is common practice in the standard that algorithms explicitly specify any additional requirements that they impose
on any of the types used by the algorithm. An example of an algorithm that creates temporary copies and correctly
specifies the additional requirements is accumulate(), 26.4.1 .

Since the specifications of unique() and unique_copy() do not require CopyConstructible and Assignable of the
InputIterator’s value type the above mentioned implementations are not standard-compliant. I cannot judge whether
this is a defect in the standard or a defect in the implementations.

Proposed resolution:

In 25.2.8 change:

-4- Requires: The ranges [first, last) and [result, result+(last-first)) shall not overlap.

to:

-4- Requires: The ranges [first, last) and [result, result+(last-first)) shall not overlap. The expression *result =
*first is valid.

Rationale:

Creating temporary copies is unavoidable, since the arguments may be input iterators; this implies that the value
type must be copy constructible. However, we don’t need to say this explicitly; it’s already implied by table 72 in
24.1.1. We don’t precisely want to say that the input iterator’s value type T must be assignable, because we never
quite use that property. We assign through the output iterator. The output iterator might have a different value type,
or no value type; it might not use T’s assignment operator. If it’s an ostream_iterator , for example, then we’ll
use T’s operator<< but not its assignment operator.

242. Side effects of function objects

Section: 25.2.3 [lib.alg.transform], 26.4 [lib.numeric.ops] Status: Ready Submitter: Angelika Langer Date: May
15 2000

- 38 -

C++ Standard Library Active Issues List

The algorithms transform(), accumulate(), inner_product(), partial_sum(), and adjacent_difference() require that the
function object supplied to them shall not have any side effects.

The standard defines a side effect in 1.9 as:

-7- Accessing an object designated by a volatile lvalue (basic.lval), modifying an object, calling a library I/O
function, or calling a function that does any of those operations are all side effects, which are changes in the
state of the execution environment.

As a consequence, the function call operator of a function object supplied to any of the algorithms listed above
cannot modify data members, cannot invoke any function that has a side effect, and cannot even create and modify
temporary objects. It is difficult to imagine a function object that is still useful under these severe limitations. For
instance, any non-trivial transformator supplied to transform() might involve creation and modification of
temporaries, which is prohibited according to the current wording of the standard.

On the other hand, popular implementations of these algorithms exhibit uniform and predictable behavior when
invoked with a side-effect-producing function objects. It looks like the strong requirement is not needed for efficient
implementation of these algorithms.

The requirement of side-effect-free function objects could be replaced by a more relaxed basic requirement (which
would hold for all function objects supplied to any algorithm in the standard library):

A function objects supplied to an algorithm shall not invalidate any iterator or sequence that is used by the
algorithm. Invalidation of the sequence includes destruction of the sorting order if the algorithm relies on the
sorting order (see section 25.3 - Sorting and related operations [lib.alg.sorting]).

I can’t judge whether it is intended that the function objects supplied to transform(), accumulate(), inner_product(),
partial_sum(), or adjacent_difference() shall not modify sequence elements through dereferenced iterators.

It is debatable whether this issue is a defect or a change request. Since the consequences for user-supplied function
objects are drastic and limit the usefulness of the algorithms significantly I would consider it a defect.

Proposed resolution:

Things to notice about these changes:

1. The fully-closed ("[]" as opposed to half-closed "[)" ranges are intentional. we want to prevent side-effects
from invalidating the end iterators.

2. That has the unintentional side-effect of prohibiting modification of the end element as a side-effect. This could
conceivably be significant in some cases.

3. The wording also prevents side-effects from modifying elements of the output sequence. I can’t imagine why
anyone would want to do this, but it is arguably a restriction that implementors don’t need to place on users.

4. Lifting the restrictions imposed in #2 and #3 above is possible and simple, but would require more verbiage.

Change 25.2.3/2 from:

-2- Requires: op and binary_op shall not have any side effects.

to:

-2- Requires: in the ranges [first1, last1], [first2, first2 + (last1 - first1)] and [result, result + (last1- first1)], op
and binary_op shall neither modify elements nor invalidate iterators or subranges. [Footnote: The use of fully
closed ranges is intentional --end footnote]

Change 25.2.3/2 from:

- 39 -

C++ Standard Library Active Issues List

-2- Requires: op and binary_op shall not have any side effects.

to:

-2- Requires: op and binary_op shall not invalidate iterators or subranges, or modify elements in the ranges
[first1, last1], [first2, first2 + (last1 - first1)], and [result, result + (last1 - first1)]. [Footnote: The use of fully
closed ranges is intentional --end footnote]

Change 26.4.1/2 from:

-2- Requires: T must meet the requirements of CopyConstructible (lib.copyconstructible) and Assignable
(lib.container.requirements) types. binary_op shall not cause side effects.

to:

-2- Requires: T must meet the requirements of CopyConstructible (lib.copyconstructible) and Assignable
(lib.container.requirements) types. In the range [first, last], binary_op shall neither modify elements nor
invalidate iterators or subranges. [Footnote: The use of a fully closed range is intentional --end footnote]

Change 26.4.2/2 from:

-2- Requires: T must meet the requirements of CopyConstructible (lib.copyconstructible) and Assignable
(lib.container.requirements) types. binary_op1 and binary_op2 shall not cause side effects.

to:

-2- Requires: T must meet the requirements of CopyConstructible (lib.copyconstructible) and Assignable
(lib.container.requirements) types. In the ranges [first, last] and [first2, first2 + (last - first)], binary_op1 and
binary_op2 shall neither modify elements nor invalidate iterators or subranges. [Footnote: The use of fully
closed ranges is intentional --end footnote]

Change 26.4.3/4 from:

-4- Requires: binary_op is expected not to have any side effects.

to:

-4- Requires: In the ranges [first, last] and [result, result + (last - first)], binary_op shall neither modify
elements nor invalidate iterators or subranges. [Footnote: The use of fully closed ranges is intentional --end
footnote]

Change 26.4.4/2 from:

-2- Requires: binary_op shall not have any side effects.

to:

-2- Requires: In the ranges [first, last] and [result, result + (last - first)], binary_op shall neither modify
elements nor invalidate iterators or subranges. [Footnote: The use of fully closed ranges is intentional --end
footnote]

[Toronto: Dave Abrahams supplied wording.]

[Copenhagen: Proposed resolution was modified slightly. Matt added footnotes pointing out that the use of closed
ranges was intentional.]

- 40 -

C++ Standard Library Active Issues List

247. vector , deque::insert complexity

Section: 23.2.4.3 [lib.vector.modifiers] Status: Open Submitter: Lisa Lippincott Date: 06 June 2000

Paragraph 2 of 23.2.4.3 [lib.vector.modifiers] describes the complexity of vector::insert :

Complexity: If first and last are forward iterators, bidirectional iterators, or random access iterators, the
complexity is linear in the number of elements in the range [first, last) plus the distance to the end of the vector.
If they are input iterators, the complexity is proportional to the number of elements in the range [first, last)
times the distance to the end of the vector.

First, this fails to address the non-iterator forms of insert .

Second, the complexity for input iterators misses an edge case -- it requires that an arbitrary number of elements can
be added at the end of a vector in constant time.

At the risk of strengthening the requirement, I suggest simply

Complexity: The complexity is linear in the number of elements inserted plus the distance to the end of the
vector.

For input iterators, one may achieve this complexity by first inserting at the end of the vector , and then using
rotate .

I looked to see if deque had a similar problem, and was surprised to find that deque places no requirement on the
complexity of inserting multiple elements (23.2.1.3 , paragraph 3):

Complexity: In the worst case, inserting a single element into a deque takes time linear in the minimum of the
distance from the insertion point to the beginning of the deque and the distance from the insertion point to the
end of the deque. Inserting a single element either at the beginning or end of a deque always takes constant time
and causes a single call to the copy constructor of T.

I suggest:

Complexity: The complexity is linear in the number of elements inserted plus the shorter of the distances to the
beginning and end of the deque. Inserting a single element at either the beginning or the end of a deque causes
a single call to the copy constructor of T.

Proposed resolution:

[Toronto: It’s agreed that there is a defect in complexity of multi-element insert for vector and deque. For vector,
the complexity should probably be something along the lines of c 1 * N + c 2 * distance(i, end()) .

However, there is some concern about whether it is reasonable to amortize away the copies that we get from a
reallocation whenever we exceed the vector’s capacity. For deque, the situation is somewhat less clear. Deque is
notoriously complicated, and we may not want to impose complexity requirements that would imply any
implementation technique more complicated than a while loop whose body is a single-element insert.]

250. splicing invalidates iterators

Section: 23.2.2.4 [lib.list.ops] Status: Ready Submitter: Brian Parker Date: 14 Jul 2000

Section 23.2.2.4 [lib.list.ops] states that

 void splice(iterator position, list<T, Allocator>& x);

- 41 -

C++ Standard Library Active Issues List

invalidates all iterators and references to list x .

This is unnecessary and defeats an important feature of splice. In fact, the SGI STL guarantees that iterators to x
remain valid after splice .

Proposed resolution:

Add a footnote to 23.2.2.4 , paragraph 1:

[Footnote: As specified in 20.1.5 , paragraphs 4-5, the semantics described in this clause applies only to the
case where allocators compare equal. --end footnote]

In 23.2.2.4 , replace paragraph 4 with:

Effects: Inserts the contents of x before position and x becomes empty. Pointers and references to the moved
elements of x now refer to those same elements but as members of *this. Iterators referring to the moved
elements will continue to refer to their elements, but they now behave as iterators into *this, not into x.

In 23.2.2.4 , replace paragraph 7 with:

Effects: Inserts an element pointed to by i from list x before position and removes the element from x. The
result is unchanged if position == i or position == ++i. Pointers and references to *i continue to refer to this
same element but as a member of *this. Iterators to *i (including i itself) continue to refer to the same element,
but now behave as iterators into *this, not into x.

In 23.2.2.4 , replace paragraph 12 with:

Requires: [first, last) is a valid range in x. The result is undefined if position is an iterator in the range [first,
last). Pointers and references to the moved elements of x now refer to those same elements but as members of
*this. Iterators referring to the moved elements will continue to refer to their elements, but they now behave as
iterators into *this, not into x.

[pre-Copenhagen: Howard provided wording.]

Rationale:

The original proposed resolution said that iterators and references would remain "valid". The new proposed
resolution clarifies what that means. Note that this only applies to the case of equal allocators. From 20.1.5
paragraph 4, the behavior of list when allocators compare nonequal is outside the scope of the standard.

253. valarray helper functions are almost entirely useless

Section: 26.3.2.1 [lib.valarray.cons], 26.3.2.2 [lib.valarray.assign] Status: Open Submitter: Robert Klarer
Date: 31 Jul 2000

This discussion is adapted from message c++std-lib-7056 posted November 11, 1999. I don’t think that anyone can
reasonably claim that the problem described below is NAD.

These valarray constructors can never be called:

- 42 -

C++ Standard Library Active Issues List

 template <class T>
 valarray<T>::valarray(const slice_array<T> &);
 template <class T>
 valarray<T>::valarray(const gslice_array<T> &);
 template <class T>
 valarray<T>::valarray(const mask_array<T> &);
 template <class T>
 valarray<T>::valarray(const indirect_array<T> &);

Similarly, these valarray assignment operators cannot be called:

 template <class T>
 valarray<T> valarray<T>::operator=(const slice_array<T> &);
 template <class T>
 valarray<T> valarray<T>::operator=(const gslice_array<T> &);
 template <class T>
 valarray<T> valarray<T>::operator=(const mask_array<T> &);
 template <class T>
 valarray<T> valarray<T>::operator=(const indirect_array<T> &);

Please consider the following example:

 #include <valarray>
 using namespace std;

 int main()
 {
 valarray<double> va1(12);
 valarray<double> va2(va1[slice(1,4,3)]); // line 1
 }

Since the valarray va1 is non-const, the result of the sub-expression va1[slice(1,4,3)] at line 1 is an rvalue of type
const std::slice_array<double>. This slice_array rvalue is then used to construct va2. The constructor that is used to
construct va2 is declared like this:

 template <class T>
 valarray<T>::valarray(const slice_array<T> &);

Notice the constructor’s const reference parameter. When the constructor is called, a slice_array must be bound to
this reference. The rules for binding an rvalue to a const reference are in 8.5.3, paragraph 5 (see also 13.3.3.1.4).
Specifically, paragraph 5 indicates that a second slice_array rvalue is constructed (in this case copy-constructed)
from the first one; it is this second rvalue that is bound to the reference parameter. Paragraph 5 also requires that the
constructor that is used for this purpose be callable, regardless of whether the second rvalue is elided. The
copy-constructor in this case is not callable, however, because it is private. Therefore, the compiler should report an
error.

Since slice_arrays are always rvalues, the valarray constructor that has a parameter of type const slice_array<T> &
can never be called. The same reasoning applies to the three other constructors and the four assignment operators
that are listed at the beginning of this post. Furthermore, since these functions cannot be called, the valarray helper
classes are almost entirely useless.

Proposed resolution:

Adopt section 2 of 00-0023/N1246. Sections 1 and 5 of that paper have already been classified as "Request for
Extension". Sections 3 and 4 are reasonable generalizations of section 2, but they do not resolve an obvious
inconsistency in the standard.

- 43 -

C++ Standard Library Active Issues List

[Toronto: it is agreed that there is a defect. A full discussion, and an attempt at fixing the defect, should wait until
we can hear from valarray experts.]

254. Exception types in clause 19 are constructed from std::string

Section: 19.1 [lib.std.exceptions] Status: Open Submitter: Dave Abrahams Date: 01 Aug 2000

Many of the standard exception types which implementations are required to throw are constructed with a const
std::string& parameter. For example:

 19.1.5 Class out_of_range [lib.out.of.range]
 namespace std {
 class out_of_range : public logic_error {
 public:
 explicit out_of_range(const string& what_arg);
 };
 }

 1 The class out_of_range defines the type of objects thrown as excep-
 tions to report an argument value not in its expected range.

 out_of_range(const string& what_arg);

 Effects:
 Constructs an object of class out_of_range.
 Postcondition:
 strcmp(what(), what_arg.c_str()) == 0.

There are at least two problems with this:

1. A program which is low on memory may end up throwing std::bad_alloc instead of out_of_range because
memory runs out while constructing the exception object.

2. An obvious implementation which stores a std::string data member may end up invoking terminate() during
exception unwinding because the exception object allocates memory (or rather fails to) as it is being copied.

There may be no cure for (1) other than changing the interface to out_of_range, though one could reasonably argue
that (1) is not a defect. Personally I don’t care that much if out-of-memory is reported when I only have 20 bytes
left, in the case when out_of_range would have been reported. People who use exception-specifications might care a
lot, though.

There is a cure for (2), but it isn’t completely obvious. I think a note for implementors should be made in the
standard. Avoiding possible termination in this case shouldn’t be left up to chance. The cure is to use a
reference-counted "string" implementation in the exception object. I am not necessarily referring to a std::string
here; any simple reference-counting scheme for a NTBS would do.

Further discussion, in email:

...I’m not so concerned about (1). After all, a library implementation can add const char* constructors as an
extension, and users don’t need to avail themselves of the standard exceptions, though this is a lame position to be
forced into. FWIW, std::exception and std::bad_alloc don’t require a temporary basic_string.

...I don’t think the fixed-size buffer is a solution to the problem, strictly speaking, because you can’t satisfy the
postcondition
 strcmp(what(), what_arg.c_str()) == 0
For all values of what_arg (i.e. very long values). That means that the only truly conforming solution requires a
dynamic allocation.

- 44 -

C++ Standard Library Active Issues List

Proposed resolution:

[Toronto: some LWG members thought this was merely a QoI issue, but most believed that it was at least a
borderline defect. There was more support for nonnormative advice to implementors than for a normative change.]

258. Missing allocator requirement

Section: 20.1.5 [lib.allocator.requirements] Status: Open Submitter: Matt Austern Date: 22 Aug 2000

From lib-7752:

I’ve been assuming (and probably everyone else has been assuming) that allocator instances have a particular
property, and I don’t think that property can be deduced from anything in Table 32.

I think we have to assume that allocator type conversion is a homomorphism. That is, if x1 and x2 are of type X,
where X::value_type is T, and if type Y is X::template rebind<U>::other, then Y(x1) == Y(x2) if and only if x1 ==
x2.

Further discussion: Howard Hinnant writes, in lib-7757:

I think I can prove that this is not provable by Table 32. And I agree it needs to be true except for the "and only if".
If x1 != x2, I see no reason why it can’t be true that Y(x1) == Y(x2). Admittedly I can’t think of a practical instance
where this would happen, or be valuable. But I also don’t see a need to add that extra restriction. I think we only
need:

if (x1 == x2) then Y(x1) == Y(x2)

If we decide that == on allocators is transitive, then I think I can prove the above. But I don’t think == is necessarily
transitive on allocators. That is:

Given x1 == x2 and x2 == x3, this does not mean x1 == x3.

Example:

x1 can deallocate pointers from: x1, x2, x3
x2 can deallocate pointers from: x1, x2, x4
x3 can deallocate pointers from: x1, x3
x4 can deallocate pointers from: x2, x4

x1 == x2, and x2 == x4, but x1 != x4

Proposed resolution:

[Toronto: LWG members offered multiple opinions. One opinion is that it should not be required that x1 == x2
implies Y(x1) == Y(x2) , and that it should not even be required that X(x1) == x1 . Another opinion is that
the second line from the bottom in table 32 already implies the desired property. This issue should be considered in
light of other issues related to allocator instances.]

259. basic_string::operator[] and const correctness

Section: 21.3.4 [lib.string.access] Status: Ready Submitter: Chris Newton Date: 27 Aug 2000

Paraphrased from a message that Chris Newton posted to comp.std.c++:

- 45 -

C++ Standard Library Active Issues List

The standard’s description of basic_string<>::operator[] seems to violate const correctness.

The standard (21.3.4/1) says that "If pos < size() , returns data()[pos] ." The types don’t work. The return
value of data() is const charT* , but operator[] has a non-const version whose return type is
reference .

Proposed resolution:

In section 21.3.4, paragraph 1, change "data()[pos] " to "*(begin() + pos) ".

264. Associative container insert(i, j) complexity requirements are
not feasible.

Section: 23.1.2 [lib.associative.reqmts] Status: Ready Submitter: John Potter Date: 07 Sep 2000

Table 69 requires linear time if [i, j) is sorted. Sorted is necessary but not sufficient. Consider inserting a sorted
range of even integers into a set<int> containing the odd integers in the same range.

Related issue: 102

Proposed resolution:

In Table 69, in section 23.1.2, change the complexity clause for insertion of a range from "N log(size() + N) (N is
the distance from i to j) in general; linear if [i, j) is sorted according to value_comp()" to "N log(size() + N), where N
is the distance from i to j".

[Copenhagen: Minor fix in proposed resolution: fixed unbalanced parens in the revised wording.]

Rationale:

Testing for valid insertions could be less efficient than simply inserting the elements when the range is not both
sorted and between two adjacent existing elements; this could be a QOI issue.

The LWG considered two other options: (a) specifying that the complexity was linear if [i, j) is sorted according to
value_comp() and between two adjacent existing elements; or (b) changing to Klog(size() + N) + (N - K) (N is the
distance from i to j and K is the number of elements which do not insert immediately after the previous element
from [i, j) including the first). The LWG felt that, since we can’t guarantee linear time complexity whenever the
range to be inserted is sorted, it’s more trouble than it’s worth to say that it’s linear in some special cases.

266. bad_exception::~bad_exception() missing Effects clause

Section: 18.6.2.1 [lib.bad.exception] Status: Ready Submitter: Martin Sebor Date: 24 Sep 2000

The synopsis for std::bad_exception lists the function ~bad_exception() but there is no description of what the
function does (the Effects clause is missing).

Proposed resolution:

Remove the destructor from the class synopses of bad_alloc (18.4.2.1), bad_cast (18.5.2), bad_typeid
(18.5.3), and bad_exception (18.6.2.1).

Rationale:

- 46 -

C++ Standard Library Active Issues List

This is a general problem with the exception classes in clause 18. The proposed resolution is to remove the
destructors from the class synopses, rather than to document the destructors’ behavior, because removing them is
more consistent with how exception classes are described in clause 19.

267. interaction of strstreambuf::overflow() and seekoff()

Section: D.7.1.3 [depr.strstreambuf.virtuals] Status: Ready Submitter: Martin Sebor Date: 5 Oct 2000

It appears that the interaction of the strstreambuf members overflow() and seekoff() can lead to undefined behavior
in cases where defined behavior could reasonably be expected. The following program demonstrates this behavior:

 #include <strstream>

 int main ()
 {
 std::strstreambuf sb;
 sb.sputc (’c’);

 sb.pubseekoff (-1, std::ios::end, std::ios::in);
 return !(’c’ == sb.sgetc ());
 }

D.7.1.1, p1 initializes strstreambuf with a call to basic_streambuf<>(), which in turn sets all pointers to 0 in 27.5.2.1,
p1.

27.5.2.2.5, p1 says that basic_streambuf<>::sputc(c) calls overflow(traits::to_int_type(c)) if a write position isn’t
available (it isn’t due to the above).

D.7.1.3, p3 says that strstreambuf::overflow(off, ..., ios::in) makes at least one write position available (i.e., it allows
the function to make any positive number of write positions available).

D.7.1.3, p13 computes newoff = seekhigh - eback(). In D.7.1, p4 we see seekhigh = epptr() ? epptr() : egptr(), or
seekhigh = epptr() in this case. newoff is then epptr() - eback().

D.7.1.4, p14 sets gptr() so that gptr() == eback() + newoff + off, or gptr() == epptr() + off holds.

If strstreambuf::overflow() made exactly one write position available then gptr() will be set to just before epptr(),
and the program will return 0. Buf if the function made more than one write position available, epptr() and gptr()
will both point past pptr() and the behavior of the program is undefined.

Proposed resolution:

Change the last sentence of D.7.1 paragraph 4 from

Otherwise, seeklow equals gbeg and seekhigh is either pend, if pend is not a null pointer, or gend.

to become

Otherwise, seeklow equals gbeg and seekhigh is either gend if 0 == pptr(), or pbase() + max where max is the
maximum value of pptr() - pbase() ever reached for this stream.

[pre-Copenhagen: Dietmar provided wording for proposed resolution.]

[post-Copenhagen: Fixed a typo: proposed resolution said to fix 4.7.1, not D.7.1.]

- 47 -

C++ Standard Library Active Issues List

Rationale:

Note that this proposed resolution does not require an increase in the layout of strstreambuf to maintain max: If
overflow() is implemented to make exactly one write position available, max == epptr() - pbase() always holds.
However, if overflow() makes more than one write position available, the number of additional character (or some
equivalent) has to be stored somewhere.

270. Binary search requirements overly strict

Section: 25.3.3 [lib.alg.binary.search] Status: Review Submitter: Matt Austern Date: 18 Oct 2000

Each of the four binary search algorithms (lower_bound, upper_bound, equal_range, binary_search) has a form that
allows the user to pass a comparison function object. According to 25.3, paragraph 2, that comparison function
object has to be a strict weak ordering.

This requirement is slightly too strict. Suppose we are searching through a sequence containing objects of type X,
where X is some large record with an integer key. We might reasonably want to look up a record by key, in which
case we would want to write something like this:

 struct key_comp {
 bool operator()(const X& x, int n) const {
 return x.key() < n;
 }
 }

 std::lower_bound(first, last, 47, key_comp());

key_comp is not a strict weak ordering, but there is no reason to prohibit its use in lower_bound.

There’s no difficulty in implementing lower_bound so that it allows the use of something like key_comp. (It will
probably work unless an implementor takes special pains to forbid it.) What’s difficult is formulating language in
the standard to specify what kind of comparison function is acceptable. We need a notion that’s slightly more
general than that of a strict weak ordering, one that can encompass a comparison function that involves different
types. Expressing that notion may be complicated.

Additional questions raised at the Toronto meeting:

Do we really want to specify what ordering the implementor must use when calling the function object? The
standard gives specific expressions when describing these algorithms, but it also says that other expressions
(with different argument order) are equivalent.
If we are specifying ordering, note that the standard uses both orderings when describing equal_range .
Are we talking about requiring these algorithms to work properly when passed a binary function object whose
two argument types are not the same, or are we talking about requirements when they are passed a binary
function object with several overloaded versions of operator() ?
The definition of a strict weak ordering does not appear to give any guidance on issues of overloading; it only
discusses expressions, and all of the values in these expressions are of the same type. Some clarification would
seem to be in order.

Additional discussion from Copenhagen:

It was generally agreed that there is a real defect here: if the predicate is merely required to be a Strict Weak
Ordering, then it’s possible to pass in a function object with an overloaded operator(), where the version that’s
actually called does something completely inappropriate. (Such as returning a random value.)
An alternative formulation was presented in a paper distributed by David Abrahams at the meeting, "Binary
Search with Heterogeneous Comparison", J16-01/0027 = WG21 N1313: Instead of viewing the predicate as a
Strict Weak Ordering acting on a sorted sequence, view the predicate/value pair as something that partitions a

- 48 -

C++ Standard Library Active Issues List

sequence. This is almost equivalent to saying that we should view binary search as if we are given a unary
predicate and a sequence, such that f(*p) is true for all p below a specific point and false for all p above it. The
proposed resolution is based on that alternative formulation.

Proposed resolution:

Change 25.3 [lib.alg.sorting] paragraph 3 from:

3 For all algorithms that take Compare, there is a version that uses operator< instead. That is, comp(*i, *j) !=
false defaults to *i < *j != false. For the algorithms to work correctly, comp has to induce a strict weak ordering
on the values.

to:

3 For all algorithms that take Compare, there is a version that uses operator< instead. That is, comp(*i, *j) !=
false defaults to *i < *j != false. For algorithms not described in lib.alg.binary.search (25.3.3) to work correctly,
comp has to induce a strict weak ordering on the values.

Add the following paragraph after 25.3 [lib.alg.sorting] paragraph 5:

-6- A sequence [start, finish) is partitioned with respect to an expression f(e) if there exists a non-negative
integer n such that for all 0 <= i < distance(start, finish), f(*(begin+i)) is true if and only if i < n.

Change 25.3.3 [lib.alg.binary.search] paragraph 1 from:

-1- All of the algorithms in this section are versions of binary search and assume that the sequence being
searched is in order according to the implied or explicit comparison function. They work on non-random access
iterators minimizing the number of comparisons, which will be logarithmic for all types of iterators. They are
especially appropriate for random access iterators, because these algorithms do a logarithmic number of steps
through the data structure. For non-random access iterators they execute a linear number of steps.

to:

-1- All of the algorithms in this section are versions of binary search and assume that the sequence being
searched is partitioned with respect to an expression formed by binding the search key to an argument of the
implied or explicit comparison function. They work on non-random access iterators minimizing the number of
comparisons, which will be logarithmic for all types of iterators. They are especially appropriate for random
access iterators, because these algorithms do a logarithmic number of steps through the data structure. For
non-random access iterators they execute a linear number of steps.

Change 25.3.3.1 [lib.lower.bound] paragraph 1 from:

-1- Requires: Type T is LessThanComparable (lib.lessthancomparable).

to:

-1- Requires: The elements e of [first, last) are partitioned with respect to the expression e < value or comp(e,
value)

Remove 25.3.3.1 [lib.lower.bound] paragraph 2:

-2- Effects: Finds the first position into which value can be inserted without violating the ordering.

Change 25.3.3.2 [lib.upper.bound] paragraph 1 from:

-1- Requires: Type T is LessThanComparable (lib.lessthancomparable).

- 49 -

C++ Standard Library Active Issues List

to:

-1- Requires: The elements e of [first, last) are partitioned with respect to the expression !(value < e) or
!comp(value, e)

Remove 25.3.3.2 [lib.upper.bound] paragraph 2:

-2- Effects: Finds the furthermost position into which value can be inserted without violating the ordering.

Change 25.3.3.3 [lib.equal.range] paragraph 1 from:

-1- Requires: Type T is LessThanComparable (lib.lessthancomparable).

to:

-1- Requires: The elements e of [first, last) are partitioned with respect to the expressions e < value and !(value
< e) or comp(e, value) and !comp(value, e).

Optionally add the following to the end of the proposed text above, which allows library implementors to make a
small optimization at the cost of slightly complexifying the standard text. The idea is that we want to ensure that the
partition point which defines the upper_bound is no earlier in the sequence than the partion point which defines the
lower_bound, so that the implementor can do one of the searches over a subrange:

Also, for all elements e of [first, last), e < value implies !(value < e) or comp(e, value) implies !comp(value, e)

Note also that if we don’t add the above, the result of equal_range() might be an invalid range.

Change 25.3.3.3 [lib.equal.range] paragraph 2 from:

-2- Effects: Finds the largest subrange [i, j) such that the value can be inserted at any iterator k in it without
violating the ordering. k satisfies the corresponding conditions: !(*k < value) && !(value < *k) or comp(*k,
value) == false && comp(value, *k) == false.

to:

 -2- Returns:
 make_pair(lower_bound(first, last, value),
 upper_bound(first, last, value))
 or
 make_pair(lower_bound(first, last, value, comp),
 upper_bound(first, last, value, comp))

Note that the original text did not say whether the first element of the return value was the beginning or end of the
range, or something else altogether. The proposed text is both more precise and general enough to accomodate
heterogeneous comparisons.

Change 25.3.3.3 [lib.binary.search] paragraph 1 from:

-1- Requires: Type T is LessThanComparable (lib.lessthancomparable).

to:

-1- Requires: The elements e of [first, last) are partitioned with respect to the expressions e < value and !(value
< e) or comp(e, value) and !comp(value, e). Also, for all elements e of [first, last), e < value implies !(value < e)
or comp(e, value) implies !comp(value, e)

[Dave Abrahams provided this wording]

- 50 -

C++ Standard Library Active Issues List

271. basic_iostream missing typedefs

Section: 27.6.1.5 [lib.iostreamclass] Status: Ready Submitter: Martin Sebor Date: 02 Nov 2000

Class template basic_iostream has no typedefs. The typedefs it inherits from its base classes can’t be used, since (for
example) basic_iostream<T>::traits_type is ambiguous.

Proposed resolution:

Add the following to basic_iostream’s class synopsis in 27.6.1.5 , immediately after public :

 // types:
 typedef charT char_type;
 typedef typename traits::int_type int_type;
 typedef typename traits::pos_type pos_type;
 typedef typename traits::off_type off_type;
 typedef traits traits_type;

272. Missing parentheses around subexpression

Section: 27.4.4.3 [lib.iostate.flags] Status: Ready Submitter: Martin Sebor Date: 02 Nov 2000

27.4.4.3, p4 says about the postcondition of the function: If rdbuf()!=0 then state == rdstate(); otherwise
rdstate()==state|ios_base::badbit.

The expression on the right-hand-side of the operator==() needs to be parenthesized in order for the whole
expression to ever evaluate to anything but non-zero.

Proposed resolution:

Add parentheses like so: rdstate()==(state|ios_base::badbit).

273. Missing ios_base qualification on members of a dependent class

Section: 27 [lib.input.output] Status: Ready Submitter: Martin Sebor Date: 02 Nov 2000

27.5.2.4.2, p4, and 27.8.1.6, p2, 27.8.1.7, p3, 27.8.1.9, p2, 27.8.1.10, p3 refer to in and/or out w/o ios_base::
qualification. That’s incorrect since the names are members of a dependent base class (14.6.2 [temp.dep]) and thus
not visible.

Proposed resolution:

Qualify the names with the name of the class of which they are members, i.e., ios_base.

274. a missing/impossible allocator requirement

Section: 20.1.5 [lib.allocator.requirements] Status: Review Submitter: Martin Sebor Date: 02 Nov 2000

I see that table 31 in 20.1.5, p3 allows T in std::allocator<T> to be of any type. But the synopsis in 20.4.1 calls for
allocator<>::address() to be overloaded on reference and const_reference, which is ill-formed for all T = const U. In
other words, this won’t work:

- 51 -

C++ Standard Library Active Issues List

template class std::allocator<const int>;

The obvious solution is to disallow specializations of allocators on const types. However, while containers’ elements
are required to be assignable (which rules out specializations on const T’s), I think that allocators might perhaps be
potentially useful for const values in other contexts. So if allocators are to allow const types a partial specialization
of std::allocator<const T> would probably have to be provided.

Proposed resolution:

Change the text in row 1, column 2 of table 32 in 20.1.5, p3 from

any type

to

any non-const, non-volatile, non-reference type

Rationale:

Two resolutions were originally proposed: one that partially specialized std::allocator for const types, and one that
said an allocator’s value type may not be const. The LWG chose the second. The first wouldn’t be appropriate,
because allocators are intended for use by containers, and const value types don’t work in containers. Encouraging
the use of allocators with const value types would only lead to unsafe code.

The original text for proposed resolution 2 was modified so that it also forbids volatile types and reference types.

275. Wrong type in num_get::get() overloads

Section: 22.2.2.1.1 [lib.facet.num.get.members] Status: Ready Submitter: Matt Austern Date: 02 Nov 2000

In 22.2.2.1.1, we have a list of overloads for num_get<>::get(). There are eight overloads, all of which are identical
except for the last parameter. The overloads are:

long&
unsigned short&
unsigned int&
unsigned long&
short&
double&
long double&
void*&

There is a similar list, in 22.2.2.1.2, of overloads for num_get<>::do_get(). In this list, the last parameter has the
types:

long&
unsigned short&
unsigned int&
unsigned long&
float&
double&
long double&
void*&

- 52 -

C++ Standard Library Active Issues List

These two lists are not identical. They should be, since get is supposed to call do_get with exactly the arguments
it was given.

Proposed resolution:

In 22.2.2.1.1 , change

 iter_type get(iter_type in, iter_type end, ios_base& str,
 ios_base::iostate& err, short& val) const;

to

 iter_type get(iter_type in, iter_type end, ios_base& str,
 ios_base::iostate& err, float& val) const;

276. Assignable requirement for container value type overly strict

Section: 23.1 [lib.container.requirements] Status: Review Submitter: Peter Dimov Date: 07 Nov 2000

23.1/3 states that the objects stored in a container must be Assignable. 23.3.1 , paragraph 2, states that map satisfies
all requirements for a container, while in the same time defining value_type as pair<const Key, T> - a type that is
not Assignable.

It should be noted that there exists a valid and non-contradictory interpretation of the current text. The wording in
23.1/3 avoids mentioning value_type, referring instead to "objects stored in a container." One might argue that map
does not store objects of type map::value_type, but of map::mapped_type instead, and that the Assignable
requirement applies to map::mapped_type, not map::value_type.

However, this makes map a special case (other containers store objects of type value_type) and the Assignable
requirement is needlessly restrictive in general.

For example, the proposed resolution of active library issue 103 is to make set::iterator a constant iterator; this
means that no set operations can exploit the fact that the stored objects are Assignable.

This is related to, but slightly broader than, closed issue 140.

Proposed resolution:

23.1/3: Strike the trailing part of the sentence:

, and the additional requirements of Assignable types from 23.1/3

so that it reads:

-3- The type of objects stored in these components must meet the requirements of CopyConstructible types
(lib.copyconstructible).

23.1/4: Modify to make clear that this requirement is not for all containers. Change to:

-4- Table 64 defines the Assignable requirement. Some containers require this property of the types to be stored
in the container. T is the type used to instantiate the container. t is a value of T, and u is a value of (possibly
const) T.

23.1, Table 65: in the first row, change "T is Assignable" to "T is CopyConstructible".

- 53 -

C++ Standard Library Active Issues List

23.2.1/2: Add sentence for Assignable requirement. Change to:

-2- A deque satisfies all of the requirements of a container and of a reversible container (given in tables in
lib.container.requirements) and of a sequence, including the optional sequence requirements
(lib.sequence.reqmts). In addition to the requirements on the stored object described in
23.1[lib.container.requirements], the stored object must also meet the requirements of Assignable. Descriptions
are provided here only for operations on deque that are not described in one of these tables or for operations
where there is additional semantic information.

23.2.2/2: Add Assignable requirement to specific methods of list. Change to:

-2- A list satisfies all of the requirements of a container and of a reversible container (given in two tables in
lib.container.requirements) and of a sequence, including most of the the optional sequence requirements
(lib.sequence.reqmts). The exceptions are the operator[] and at member functions, which are not provided.
[Footnote: These member functions are only provided by containers whose iterators are random access
iterators. --- end foonote]

list does not require the stored type T to be Assignable unless the following methods are instantiated:
[Footnote: Implementors are permitted but not required to take advantage of T’s Assignable properties for these
methods. -- end foonote]

 list<T,Allocator>& operator=(const list<T,Allocator>& x);
 template <class InputIterator>
 void assign(InputIterator first, InputIterator last);
 void assign(size_type n, const T& t);

Descriptions are provided here only for operations on list that are not described in one of these tables or for
operations where there is additional semantic information.

23.2.4/2: Add sentence for Assignable requirement. Change to:

-2- A vector satisfies all of the requirements of a container and of a reversible container (given in two tables in
lib.container.requirements) and of a sequence, including most of the optional sequence requirements
(lib.sequence.reqmts). The exceptions are the push_front and pop_front member functions, which are not
provided. In addition to the requirements on the stored object described in 23.1[lib.container.requirements], the
stored object must also meet the requirements of Assignable. Descriptions are provided here only for operations
on vector that are not described in one of these tables or for operations where there is additional semantic
information.

Rationale:

list, set, multiset, map, multimap are able to store non-Assignables. However, there is some concern about
list<T> : although in general there’s no reason for T to be Assignable, some implementations of the member
functions operator= and assign do rely on that requirement. The LWG does not want to forbid such
implementations.

Note that the type stored in a standard container must still satisfy the requirements of the container’s allocator; this
rules out, for example, such types as "const int". See issue 274 for more details.

278. What does iterator validity mean?

Section: 23.2.2.4 [lib.list.ops] Status: Review Submitter: P.J. Plauger Date: 27 Nov 2000

Section 23.2.2.4 [lib.list.ops] states that

- 54 -

C++ Standard Library Active Issues List

 void splice(iterator position, list<T, Allocator>& x);

invalidates all iterators and references to list x .

But what does the C++ Standard mean by "invalidate"? You can still dereference the iterator to a spliced list
element, but you’d better not use it to delimit a range within the original list. For the latter operation, it has definitely
lost some of its validity.

If we accept the proposed resolution to issue 250, then we’d better clarify that a "valid" iterator need no longer
designate an element within the same container as it once did. We then have to clarify what we mean by invalidating
a past-the-end iterator, as when a vector or string grows by reallocation. Clearly, such an iterator has a different kind
of validity. Perhaps we should introduce separate terms for the two kinds of "validity."

Proposed resolution:

Add the following text to the end of section 24.1 , after paragraph 5:

Invalidating an iterator means modifying it such that it may have a singular value. [Footnote: This definition
applies to pointers, since pointers are iterators. The effect of dereferencing an iterator that has been invalidated
is undefined.]

[post-Copenhagen: Matt provided wording.]

280. Comparison of reverse_iterator to const reverse_iterator

Section: 24.4.1 [lib.reverse.iterators] Status: Open Submitter: Steve Cleary Date: 27 Nov 2000

This came from an email from Steve Cleary to Fergus in reference to issue 179. The library working group briefly
discussed this in Toronto and believed it should be a separate issue. There was also some reservations about whether
this was a worthwhile problem to fix.

Steve said: "Fixing reverse_iterator. std::reverse_iterator can (and should) be changed to preserve these additional
requirements." He also said in email that it can be done without breaking user’s code: "If you take a look at my
suggested solution, reverse_iterator doesn’t have to take two parameters; there is no danger of breaking existing
code, except someone taking the address of one of the reverse_iterator global operator functions, and I have to doubt
if anyone has ever done that. . . But, just in case they have, you can leave the old global functions in as well -- they
won’t interfere with the two-template-argument functions. With that, I don’t see how any user code could break."

Proposed resolution:

Section: 24.4.1.1 add/change the following declarations:

 A) Add a templated assignment operator, after the same manner
 as the templated copy constructor, i.e.:

 template < class U >
 reverse_iterator < Iterator >& operator=(const reverse_iterator< U >& u);

 B) Make all global functions (except the operator+) have
 two template parameters instead of one, that is, for
 operator ==, !=, <, >, <=, >=, - replace:

 template < class Iterator >
 typename reverse_iterator< Iterator >::difference_type operator-(
 const reverse_iterator< Iterator >& x,
 const reverse_iterator< Iterator >& y);

- 55 -

C++ Standard Library Active Issues List

 with:

 template < class Iterator1, class Iterator2 >
 typename reverse_iterator < Iterator1 >::difference_type operator-(
 const reverse_iterator < Iterator1 > & x,
 const reverse_iterator < Iterator2 > & y);

Also make the addition/changes for these signatures in 24.4.1.3 .

[Copenhagen: The LWG is concerned that the proposed resolution introduces new overloads. Experience shows
that introducing overloads is always risky, and that it would be inappropriate to make this change without
implementation experience. It may be desirable to provide this feature in a different way.]

281. std::min() and max() requirements overly restrictive

Section: 25.3.7 [lib.alg.min.max] Status: Ready Submitter: Martin Sebor Date: 02 Dec 2000

The requirements in 25.3.7, p1 and 4 call for T to satisfy the requirements of LessThanComparable (20.1.2)
and CopyConstructible (20.1.3). Since the functions take and return their arguments and result by const
reference, I believe the CopyConstructible requirement is unnecessary.

Proposed resolution:

Remove the CopyConstructible requirement. Specifically, replace 25.3.7, p1 with

-1- Requires: Type T is LessThanComparable (20.1.2).

and replace 25.3.7, p4 with

-4- Requires: Type T is LessThanComparable (20.1.2).

282. What types does numpunct grouping refer to?

Section: 22.2.2.2.2 [lib.facet.num.put.virtuals] Status: Open Submitter: Howard Hinnant Date: 5 Dec 2000

Paragraph 16 mistakenly singles out integral types for inserting thousands_sep() characters. This conflicts with the
syntax for floating point numbers described under 22.2.3.1/2.

Proposed resolution:

Change paragraph 16 from:

For integral types, punct.thousands_sep() characters are inserted into the sequence as determined by the value
returned by punct.do_grouping() using the method described in 22.2.3.1.2 .

To:

For arithmetic types, punct.thousands_sep() characters are inserted into the sequence as determined by the
value returned by punct.do_grouping() using the method described in 22.2.3.1.2 .

[Copenhagen: Opinions were divided about whether this is actually an inconsistency, but at best it seems to have
been unintentional. This is only an issue for floating-point output: The standard is unambiguous that
implementations must parse thousands_sep characters when performing floating-point. The standard is also
unambiguous that this requirement does not apply to the "C" locale.]

- 56 -

C++ Standard Library Active Issues List

[A survey of existing practice is needed; it is believed that some implementations do insert thousands_sep
characters for floating-point output and others doing.]

283. std::replace() requirement incorrect/insufficient

Section: 25.2.4 [lib.alg.replace] Status: Open Submitter: Martin Sebor Date: 15 Dec 2000

The requirements in 25.2.4 , p1 that T to be Assignable (23.1) is not necessary or sufficient for either of the
algorithms. The algorithms require that std::iterator_traits<ForwardIterator>::value_type be
Assignable and that both std::iterator_traits<ForwardIterator>::value_type and be
EqualityComparable (20.1.1) with respect to one another.

Note that a similar problem occurs in several other places in section 25 as well (e.g., 25.1.6 , or 25.2.5) so what
really needs to happen is for all those places to be identified and corrected. The proposed resolution below addresses
only 25.2.4.

Proposed resolution:

Change 25.2.4, p1 from

-1- Requires:Type T is Assignable (23.1) (and, for replace() , EqualityComparable (20.1.1)).

to

-1- Requires:Type std::iterator_traits<ForwardIterator>::value_type is Assignable
(23.1), the type T is convertible tostd::iterator_traits<ForwardIterator>::value_type ,
(and, for replace() , types std::iterator_traits<ForwardIterator>::value_type and T
are EqualityComparable (20.1.1) with respect to one another).

[The LWG agrees with the general idea of the proposed resolution, but not with the specific wording. (There is no
definition in the standard of what it means for one type to be EqualityComparable to another.) Jeremy will provide
new wording, and will review clause 25 for similar issues.]

284. unportable example in 20.3.7, p6

Section: 20.3.7 [lib.function.pointer.adaptors] Status: Ready Submitter: Martin Sebor Date: 26 Dec 2000

The example in 20.3.7 , p6 shows how to use the C library function strcmp() with the function pointer adapter
ptr_fun() . But since it’s unspecified whether the C library functions have extern "C" or extern "C++"
linkage [17.4.2.2], and since function pointers with different the language linkage specifications (7.5) are
incompatible, whether this example is well-formed is unspecified.

Proposed resolution:

Replace the code snippet in the following text

-6- [Example:

 replace_if(v.begin(), v.end(), not1(bind2nd(ptr_fun(strcmp), "C")), "C++");

with

-6- [Example:

- 57 -

C++ Standard Library Active Issues List

 int compare(const char*, const char*);
 replace_if(v.begin(), v.end(), not1(bind2nd(ptr_fun(compare), "abc")), "def");

[Copenhagen: Minor change in the proposed resolution. Since this issue deals in part with C and C++ linkage, it
was believed to be too confusing for the strings in the example to be "C" and "C++".]

285. minor editorial errors in fstream ctors

Section: 27.8.1.6 [lib.ifstream.cons] Status: Ready Submitter: Martin Sebor Date: 31 Dec 2000

27.8.1.6 , p2, 27.8.1.9 , p2, and 27.8.1.12 , p2 say about the effects of each constructor: [lib.ifstream.cons]

... If that function returns a null pointer, calls setstate(failbit) (which may throw
ios_base::failure).

The parenthetical note doesn’t apply since the ctors cannot throw an exception due to the requirement in 27.4.4.1 ,
p3 that exceptions() be initialized to ios_base::goodbit .

Proposed resolution:

Strike the parenthetical note from the Effects clause in each of the paragraphs mentioned above.

286. <cstdlib> requirements missing size_t typedef

Section: 25.4 [lib.alg.c.library] Status: Ready Submitter: Judy Ward Date: 30 Dec 2000

The <cstdlib> header file contains prototypes for bsearch and qsort (C++ Standard section 25.4 paragraphs 3 and 4)
and other prototypes (C++ Standard section 21.4 paragraph 1 table 49) that require the typedef size_t. Yet size_t is
not listed in the <cstdlib> synopsis table 78 in section 25.4.

Proposed resolution:

Add the type size_t to Table 78 (section 25.4) and add the type size_t <cstdlib> to Table 97 (section C.2).

Rationale:

Since size_t is in <stdlib.h>, it must also be in <cstdlib>.

288. <cerrno> requirements missing macro EILSEQ

Section: 19.3 [lib.errno] Status: Ready Submitter: Judy Ward Date: 30 Dec 2000

ISO/IEC 9899:1990/Amendment1:1994 Section 4.3 States: "The list of macros defined in <errno.h> is adjusted to
include a new macro, EILSEQ"

ISO/IEC 14882:1998(E) section 19.3 does not refer to the above amendment.

Proposed resolution:

Update Table 26 (section 19.3) "Header <cerrno> synopsis" and Table 95 (section C.2) "Standard Macros" to
include EILSEQ.

- 58 -

C++ Standard Library Active Issues List

290. Requirements to for_each and its function object

Section: 25.1.1 [lib.alg.foreach] Status: Open Submitter: Angelika Langer Date: 03 Jan 2001

The specification of the for_each algorithm does not have a "Requires" section, which means that there are no
restrictions imposed on the function object whatsoever. In essence it means that I can provide any function object
with arbitrary side effects and I can still expect a predictable result. In particular I can expect that the function object
is applied exactly last - first times, which is promised in the "Complexity" section.

I don’t see how any implementation can give such a guarantee without imposing requirements on the function
object.

Just as an example: consider a function object that removes elements from the input sequence. In that case, what
does the complexity guarantee (applies f exactly last - first times) mean?

One can argue that this is obviously a nonsensical application and a theoretical case, which unfortunately it isn’t. I
have seen programmers shooting themselves in the foot this way, and they did not understand that there are
restrictions even if the description of the algorithm does not say so.

Proposed resolution:

Add a "Requires" section to section 25.1.1 similar to those proposed for transform and the numeric algorithms (see
issue 242):

-2- Requires: In the range [first, last], f shall not invalidate iterators or subranges.

[Copenhagen: The LWG agrees that a function object passed to an algorithm should not invalidate iterators in the
range that the algorithm is operating on. The LWG believes that this should be a blanket statement in Clause 25, not
just a special requirement for for_each .]

291. Underspecification of set algorithms

Section: 25.3.5 [lib.alg.set.operations] Status: Open Submitter: Matt Austern Date: 03 Jan 2001

The standard library contains four algorithms that compute set operations on sorted ranges: set_union ,
set_intersection , set_difference , and set_symmetric_difference . Each of these algorithms
takes two sorted ranges as inputs, and writes the output of the appropriate set operation to an output range. The
elements in the output range are sorted.

The ordinary mathematical definitions are generalized so that they apply to ranges containing multiple copies of a
given element. Two elements are considered to be "the same" if, according to an ordering relation provided by the
user, neither one is less than the other. So, for example, if one input range contains five copies of an element and
another contains three, the output range of set_union will contain five copies, the output range of
set_intersection will contain three, the output range of set_difference will contain two, and the output
range of set_symmetric_difference will contain two.

Because two elements can be "the same" for the purposes of these set algorithms, without being identical in other
respects (consider, for example, strings under case-insensitive comparison), this raises a number of unanswered
questions:

If we’re copying an element that’s present in both of the input ranges, which one do we copy it from?
If there are n copies of an element in the relevant input range, and the output range will contain fewer copies
(say m) which ones do we choose? The first m, or the last m, or something else?
Are these operations stable? That is, does a run of equivalent elements appear in the output range in the same
order as as it appeared in the input range(s)?

- 59 -

C++ Standard Library Active Issues List

The standard should either answer these questions, or explicitly say that the answers are unspecified. I prefer the
former option, since, as far as I know, all existing implementations behave the same way.

Proposed resolution:

[The LWG agrees that the standard should answer these questions. Matt will provide wording.]

292. effects of a.copyfmt (a)

Section: 27.4.4.2 [lib.basic.ios.members] Status: Ready Submitter: Martin Sebor Date: 05 Jan 2001

The Effects clause of the member function copyfmt() in 27.4.4.2, p15 doesn’t consider the case where the
left-hand side argument is identical to the argument on the right-hand side, that is (this == &rhs) . If the two
arguments are identical there is no need to copy any of the data members or call any callbacks registered with
register_callback() . Also, as Howard Hinnant points out in message c++std-lib-8149 it appears to be
incorrect to allow the object to fire erase_event followed by copyfmt_event since the callback handling the
latter event may inadvertently attempt to access memory freed by the former.

Proposed resolution:

Change the Effects clause in 27.4.4.2, p15 from

-15- Effects:Assigns to the member objects of *this the corresponding member objects of rhs , except that...

to

-15- Effects:If (this == &rhs) does nothing. Otherwise assigns to the member objects of *this the
corresponding member objects of rhs , except that...

294. User defined macros and standard headers

Section: 17.4.3.1.1 [lib.macro.names] Status: Open Submitter: James Kanze Date: 11 Jan 2001

Paragraph 2 of 17.4.3.1.1 reads: "A translation unit that includes a header shall not contain any macros that define
names declared in that header." As I read this, it would mean that the following program is legal:

 #define npos 3.14
 #include <sstream>

since npos is not defined in <sstream>. It is, however, defined in <string>, and it is hard to imagine an
implementation in which <sstream> didn’t include <string>.

I think that this phrase was probably formulated before it was decided that a standard header may freely include
other standard headers. The phrase would be perfectly appropriate for C, for example. In light of 17.4.4.1 paragraph
1, however, it isn’t stringent enough.

Proposed resolution:

In paragraph 2 of 17.4.3.1.1 , change "A translation unit that includes a header shall not contain any macros that
define names declared in that header." to "A translation unit that includes a header shall not contain any macros that
define names declared in any standard header."

[Copenhagen: the general idea is clearly correct, but there is concern about making sure that the two paragraphs in
17.4.3.1.1 remain consistent. Nathan will provide new wording.]

- 60 -

C++ Standard Library Active Issues List

295. Is abs defined in <cmath>?

Section: 26.5 [lib.c.math] Status: Ready Submitter: Jens Maurer Date: 12 Jan 2001

Table 80 lists the contents of the <cmath> header. It does not list abs() . However, 26.5, paragraph 6, which lists
added signatures present in <cmath>, does say that several overloads of abs() should be defined in <cmath>.

Proposed resolution:

Add abs to Table 80. Also, remove the parenthetical list of functions "(abs(), div(), rand(), srand())" from 26.5 ,
paragraph 1.

[Copenhagen: Modified proposed resolution so that it also gets rid of that vestigial list of functions in paragraph 1.]

296. Missing descriptions and requirements of pair operators

Section: 20.2.2 [lib.pairs] Status: Review Submitter: Martin Sebor Date: 14 Jan 2001

The synopsis of the header <utility> in 20.2 lists the complete set of equality and relational operators for pair
but the section describing the template and the operators only describes operator==() and operator<() , and
it fails to mention any requirements on the template arguments. The remaining operators are not mentioned at all.

Proposed resolution:

Add the following after 20.2.2 , paragraph 5:

template <class T1, class T2>
bool operator!=(const pair<T1, T2>& x, const pair<T1, T2>& y);

Requires: Types T1 and T2 are EqualityComparable (20.1.1).

Returns: !(x == y) .

Add the following after 20.2.2 , paragraph 6:

template <class T1, class T2>
bool operator>(const pair<T1, T2>& x, const pair<T1, T2>& y);

Requires: Types T1 and T2 are LessThanComparable (20.1.2).

Returns: y < x .

template <class T1, class T2>
bool operator<=(const pair<T1, T2>& x, const pair<T1, T2>& y);

Requires: Types T1 and T2 are LessThanComparable (20.1.2).

Returns: !(y < x) .

template <class T1, class T2>
bool operator>=(const pair<T1, T2>& x, const pair<T1, T2>& y);

Requires: Types T1 and T2 are LessThanComparable (20.1.2).

- 61 -

C++ Standard Library Active Issues List

Returns: !(x < y) .

[post-Copenhagen: modified proposed resolution so that it does not create a new section 20.2.2.1. That would
violate ISO rules: we cannot have 20.2.2.1 unless we also have 20.2.2.2.]

297. const_mem_fun_t<>::argument_type should be const T*

Section: 20.3.8 [lib.member.pointer.adaptors] Status: Ready Submitter: Martin Sebor Date: 6 Jan 2001

The class templates const_mem_fun_t in 20.3.8, p8 and const_mem_fun1_t in 20.3.8, p9 derive from
unary_function<T*, S>, and binary_function<T*, A, S>, respectively. Consequently, their
argument_type , and first_argument_type members, respectively, are both defined to be T* (non-const).
However, their function call member operator takes a const T* argument. It is my opinion that
argument_type should be const T* instead, so that one can easily refer to it in generic code. The example
below derived from existing code fails to compile due to the discrepancy:

template <class T>
void foo (typename T::argument_type arg) // #1
{
 typename T::result_type (T::*pf) (typename T::argument_type) const = //
#2
 &T::operator();
}

struct X { /* ... */ };

int main ()
{
 const X x;
 foo<std::const_mem_fun_t<void, X> >(&x); // #3
}

#1 foo() takes a plain unqualified X* as an argument
#2 the type of the pointer is incompatible with the type of the member function
#3 the address of a constant being passed to a function taking a non-const X*

Proposed resolution:

Replace the top portion of the definition of the class template const_mem_fun_t in 20.3.8, p8

template <class S, class T> class const_mem_fun_t
 : public unary_function<T*, S> {

with

template <class S, class T> class const_mem_fun_t
 : public unary_function< const T*, S> {

Also replace the top portion of the definition of the class template const_mem_fun1_t in 20.3.8, p9

template <class S, class T, class A> class const_mem_fun1_t
 : public binary_function<T*, A, S> {

with

- 62 -

C++ Standard Library Active Issues List

template <class S, class T, class A> class const_mem_fun1_t
 : public binary_function< const T*, A, S> {

Rationale:

This is simply a contradiction: the argument_type typedef, and the argument type itself, are not the same.

298. ::operator delete[] requirement incorrect/insufficient

Section: 18.4.1.2 [lib.new.delete.array] Status: Ready Submitter: John A. Pedretti Date: 10 Jan 2001

The default behavior of operator delete[] described in 18.4.1.2, p12 - namely that for non-null value of ptr,
the operator reclaims storage allocated by the earlier call to the default operator new[] - is not correct in all
cases. Since the specified operator new[] default behavior is to call operator new (18.4.1.2, p4, p8), which
can be replaced, along with operator delete , by the user, to implement their own memory management, the
specified default behavior of operator delete[] must be to call operator delete .

Proposed resolution:

Change 18.4.1.2, p12 from

-12- Default behavior:
For a null value of ptr , does nothing.
Any other value of ptr shall be a value returned earlier by a call to the default operator
new[](std::size_t) . [Footnote: The value must not have been invalidated by an intervening call to
operator delete[](void*) (17.4.3.7). --- end footnote] For such a non-null value of ptr ,
reclaims storage allocated by the earlier call to the default operator new[] .

to

-12- Default behavior: Calls operator delete(ptr) or operator delete(ptr ,
std::nothrow) respectively.

and expunge paragraph 13.

299. Incorrect return types for iterator dereference

Section: 24.1.4 [lib.bidirectional.iterators], 24.1.5 [lib.random.access.iterators] Status: Open Submitter: John
Potter Date: 22 Jan 2001

In section 24.1.4 , Table 75 gives the return type of *r-- as convertible to T. This is not consistent with Table 74
which gives the return type of *r++ as T&. *r++ = t is valid while *r-- = t is invalid.

In section 24.1.5 , Table 76 gives the return type of a[n] as convertible to T. This is not consistent with the semantics
of *(a + n) which returns T& by Table 74. *(a + n) = t is valid while a[n] = t is invalid.

Discussion from the Copenhagen meeting: the first part is uncontroversial. The second part, operator[] for Random
Access Iterators, requires more thought. There are reasonable arguments on both sides. Return by value from
operator[] enables some potentially useful iterators, e.g. a random access "iota iterator" (a.k.a "counting iterator" or
"int iterator"). There isn’t any obvious way to do this with return-by-reference, since the reference would be to a
temporary. On the other hand, reverse_iterator takes an arbitrary Random Access Iterator as template
argument, and its operator[] returns by reference. If we decided that the return type in Table 76 was correct, we
would have to change reverse_iterator . This change would probably affect user code.

- 63 -

C++ Standard Library Active Issues List

History: the contradiction between reverse_iterator and the Random Access Iterator requirements has been
present from an early stage. In both the STL proposal adopted by the committee (N0527==94-0140) and the STL
technical report (HPL-95-11 (R.1), by Stepanov and Lee), the Random Access Iterator requirements say that
operator[]’s return value is "convertible to T". In N0527 reverse_iterator’s operator[] returns by value, but in
HPL-95-11 (R.1), and in the STL implementation that HP released to the public, reverse_iterator’s operator[] returns
by reference. In 1995, the standard was amended to reflect the contents of HPL-95-11 (R.1). The original intent for
operator[] is unclear.

In the long term it may be desirable to add more fine-grained iterator requirements, so that access method and
traversal strategy can be decoupled. (See "Improved Iterator Categories and Requirements", N1297 = 01-0011, by
Jeremy Siek.) Any decisions about issue 299 should keep this possibility in mind.

Proposed resolution:

In section 24.1.4 , change the return type in table 75 from "convertible to T" to T&.

In section 24.1.5 , change the return type in table 76 from "convertible to T" to T&.

300. list::merge() specification incomplete

Section: 23.2.2.4 [lib.list.ops] Status: Open Submitter: John Pedretti Date: 23 Jan 2001

The "Effects" clause for list::merge() (23.2.2.4, p23) appears to be incomplete: it doesn’t cover the case where the
argument list is identical to *this (i.e., this == &x). The requirement in the note in p24 (below) is that x be empty
after the merge which is surely unintended in this case.

Proposed resolution:

Change 23.2.2.4, p23 to:

Effects: If &x == this, does nothing; otherwise, merges the argument list into the list.

[Copenhagen: The proposed resolution does not fix all of the problems in 23.2.2.4 , p22-25. Three different
paragraphs (23, 24, 25) describe the effects of merge . Changing p23, without changing the other two, appears to
introduce contradictions. Additionally, "merges the argument list into the list" is excessively vague.]

301. basic_string template ctor effects clause omits allocator argument

Section: 21.3.1 [lib.string.cons] Status: Ready Submitter: Martin Sebor Date: 27 Jan 2001

The effects clause for the basic_string template ctor in 21.3.1, p15 leaves out the third argument of type Allocator. I
believe this to be a mistake.

Proposed resolution:

Replace

-15- Effects: If InputIterator is an integral type, equivalent to

basic_string(static_cast<size_type>(begin),
static_cast<value_type>(end))

with

- 64 -

C++ Standard Library Active Issues List

-15- Effects: If InputIterator is an integral type, equivalent to

basic_string(static_cast<size_type>(begin),
static_cast<value_type>(end), a)

303. Bitset input operator underspecified

Section: 23.3.5.3 [lib.bitset.operators] Status: Ready Submitter: Matt Austern Date: 5 Feb 2001

In 23.3.5.3, we are told that bitset ’s input operator "Extracts up to N (single-byte) characters from is.", where is
is a stream of type basic_istream<charT, traits> .

The standard does not say what it means to extract single byte characters from a stream whose character type,
charT , is in general not a single-byte character type. Existing implementations differ.

A reasonable solution will probably involve widen() and/or narrow() , since they are the supplied mechanism
for a single character between char and arbitrary charT .

Narrowing the input characters is not the same as widening the literals ’0’ and ’1’ , because there may be some
locales in which more than one wide character maps to the narrow character ’0’ . Narrowing means that alternate
representations may be used for bitset input, widening means that they may not be.

Note that for numeric input, num_get<> (22.2.2.1.2/8) compares input characters to widened version of narrow
character literals.

From Pete Becker, in c++std-lib-8224:

Different writing systems can have different representations for the digits that represent 0 and 1. For example,
in the Unicode representation of the Devanagari script (used in many of the Indic languages) the digit 0 is
0x0966, and the digit 1 is 0x0967. Calling narrow would translate those into ’0’ and ’1’. But Unicode also
provides the ASCII values 0x0030 and 0x0031 for for the Latin representations of ’0’ and ’1’, as well as code
points for the same numeric values in several other scripts (Tamil has no character for 0, but does have the
digits 1-9), and any of these values would also be narrowed to ’0’ and ’1’.

...

It’s fairly common to intermix both native and Latin representations of numbers in a document. So I think the
rule has to be that if a wide character represents a digit whose value is 0 then the bit should be cleared; if it
represents a digit whose value is 1 then the bit should be set; otherwise throw an exception. So in a Devanagari
locale, both 0x0966 and 0x0030 would clear the bit, and both 0x0967 and 0x0031 would set it. Widen can’t do
that. It would pick one of those two values, and exclude the other one.

From Jens Maurer, in c++std-lib-8233:

Whatever we decide, I would find it most surprising if bitset conversion worked differently from int conversion
with regard to alternate local representations of numbers.

Thus, I think the options are:

Have a new defect issue for 22.2.2.1.2/8 so that it will require the use of narrow().
Have a defect issue for bitset() which describes clearly that widen() is to be used.

Proposed resolution:

Replace the first two sentences of paragraph 5 with:

- 65 -

C++ Standard Library Active Issues List

Extracts up to N characters from is. Stores these characters in a temporary object str of type
basic_string<charT, traits> , then evaluates the expression x = bitset<N>(str) .

Replace the third bullet item in paragraph 5 with:

the next input character is neither is .widen(0) nor is .widen(1) (in which case the input character is
not extracted).

Rationale:

Input for bitset should work the same way as numeric input. Using widen does mean that alternative digit
representations will not be recognized, but this was a known consequence of the design choice.

304. Must *a return an lvalue when a is an input iterator?

Section: 24.1 [lib.iterator.requirements] Status: Open Submitter: Dave Abrahams Date: 5 Feb 2001

We all "know" that input iterators are allowed to produce values when dereferenced of which there is no other
in-memory copy.

But: Table 72, with a careful reading, seems to imply that this can only be the case if the value_type has no members
(e.g. is a built-in type).

The problem occurs in the following entry:

 a->m pre: (*a).m is well-defined
 Equivalent to (*a).m

*a.m can be well-defined if *a is not a reference type, but since operator->() must return a pointer for a->m
to be well-formed, it needs something to return a pointer to. This seems to indicate that *a must be buffered
somewhere to make a legal input iterator.

I don’t think this was intentional.

Proposed resolution:

[Copenhagen: the two obvious possibilities are to keep the operator-> requirement for Input Iterators, and put
in a non-normative note describing how it can be implemented with proxies, or else moving the operator->
requirement from Input Iterator to Forward Iterator. If we do the former we’ll also have to change
istreambuf_iterator , because it has no operator-> . A straw poll showed roughly equal support for the
two options.]

305. Default behavior of codecvt<wchar_t, char, mbstate_t>::length()

Section: 22.2.1.5.2 [lib.locale.codecvt.virtuals] Status: Review Submitter: Howard Hinnant Date: 24 Jan 2001

22.2.1.5/3 introduces codecvt in part with:

codecvt<wchar_t,char,mbstate_t> converts between the native character sets for tiny and wide characters.
Instantiations on mbstate_t perform conversion between encodings known to the library implementor.

But 22.2.1.5.2/10 describes do_length in part with:

... codecvt<wchar_t, char, mbstate_t> ... return(s) the lesser of max and (from_end-from).

- 66 -

C++ Standard Library Active Issues List

The semantics of do_in and do_length are linked. What one does must be consistent with what the other does.
22.2.1.5/3 leads me to believe that the vendor is allowed to choose the algorithm that
codecvt<wchar_t,char,mbstate_t>::do_in performs so that it makes his customers happy on a given platform. But
22.2.1.5.2/10 explicitly says what codecvt<wchar_t,char,mbstate_t>::do_length must return. And thus indirectly
specifies the algorithm that codecvt<wchar_t,char,mbstate_t>::do_in must perform. I believe that this is not what
was intended and is a defect.

Discussion from the -lib reflector:
This proposal would have the effect of making the semantics of all of the virtual functions in
codecvt<wchar_t, char, mbstate_t> implementation specified. Is that what we want, or do we want to
mandate specific behavior for the base class virtuals and leave the implementation specified behavior for the
codecvt_byname derived class? The tradeoff is that former allows implementors to write a base class that actually
does something useful, while the latter gives users a way to get known and specified---albeit useless---behavior, and
is consistent with the way the standard handles other facets. It is not clear what the original intention was.

Nathan has suggest a compromise: a character that is a widened version of the characters in the basic execution
character set must be converted to a one-byte sequence, but there is no such requirement for characters that are not
part of the basic execution character set.

Proposed resolution:

Change 22.2.1.5.2/10 from:

-10- Returns: (from_next-from) where from_next is the largest value in the range [from,from_end] such that the
sequence of values in the range [from,from_next) represents max or fewer valid complete characters of type
internT. The instantiations required in Table 51 (21.1.1.1.1), namely codecvt<wchar_t, char, mbstate_t> and
codecvt<char, char, mbstate_t>, return the lesser of max and (from_end-from).

to:

-10- Returns: (from_next-from) where from_next is the largest value in the range [from,from_end] such that the
sequence of values in the range [from,from_next) represents max or fewer valid complete characters of type
internT. The instantiation codecvt<char, char, mbstate_t> returns the lesser of max and (from_end-from).

[Copenhagen: straw poll was 3-1 in favor, with many abstentions. Nathan would like to see more guarantees than
are in the proposed resolution. He will discuss this issue with the other people who care about it.]

306. offsetof macro and non-POD types

Section: 18.1 [lib.support.types] Status: Ready Submitter: Steve Clamage Date: 21 Feb 2001

Spliced together from reflector messages c++std-lib-8294 and -8295:

18.1, paragraph 5, reads: "The macro offsetof accepts a restricted set of type arguments in this International
Standard. type shall be a POD structure or a POD union (clause 9). The result of applying the offsetof macro to a
field that is a static data member or a function member is undefined."

For the POD requirement, it doesn’t say "no diagnostic required" or "undefined behavior". I read 1.4 , paragraph 1,
to mean that a diagnostic is required. It’s not clear whether this requirement was intended. While it’s possible to
provide such a diagnostic, the extra complication doesn’t seem to add any value.

Proposed resolution:

Change 18.1, paragraph 5, to "If type is not a POD structure or a POD union the results are undefined."

- 67 -

C++ Standard Library Active Issues List

[Copenhagen: straw poll was 7-4 in favor. It was generally agreed that requiring a diagnostic was inadvertent, but
some LWG members thought that diagnostics should be required whenever possible.]

307. Lack of reference typedefs in container adaptors

Section: 23.2.3 [lib.container.adaptors] Status: Ready Submitter: Howard Hinnant Date: 13 Mar 2001

From reflector message c++std-lib-8330. See also lib-8317.

The standard is currently inconsistent in 23.2.3.2 paragraph 1 and 23.2.3.3 paragraph 1. 23.2.3.3/1, for example,
says:

-1- Any sequence supporting operations back(), push_back() and pop_back() can be used to instantiate stack. In
particular, vector (lib.vector), list (lib.list) and deque (lib.deque) can be used.

But this is false: vector<bool> can not be used, because the container adaptors return a T& rather than using the
underlying container’s reference type.

This is a contradiction that can be fixed by:

1. Modifying these paragraphs to say that vector<bool> is an exception.
2. Removing the vector<bool> specialization.
3. Changing the return types of stack and priority_queue to use reference typedef’s.

I propose 3. This does not preclude option 2 if we choose to do it later (see issue 96); the issues are independent.
Option 3 offers a small step towards support for proxied containers. This small step fixes a current contradiction, is
easy for vendors to implement, is already implemented in at least one popular lib, and does not break any code.

Proposed resolution:

Summary: Add reference and const_reference typedefs to queue, priority_queue and stack. Change return types of
"value_type&" to "reference". Change return types of "const value_type&" to "const_reference". Details:

Change 23.2.3.1/1 from:

 namespace std {
 template <class T, class Container = deque<T> >
 class queue {
 public:
 typedef typename Container::value_type value_type;
 typedef typename Container::size_type size_type;
 typedef Container container_type;
 protected:
 Container c;

 public:
 explicit queue(const Container& = Container());

 bool empty() const { return c.empty(); }
 size_type size() const { return c.size(); }
 value_type& front() { return c.front(); }
 const value_type& front() const { return c.front(); }
 value_type& back() { return c.back(); }

- 68 -

C++ Standard Library Active Issues List

 const value_type& back() const { return c.back(); }
 void push(const value_type& x) { c.push_back(x); }
 void pop() { c.pop_front(); }
 };

to:

 namespace std {
 template <class T, class Container = deque<T> >
 class queue {
 public:
 typedef typename Container::value_type value_type;
 typedef typename Container::reference reference;
 typedef typename Container::const_reference const_reference;
 typedef typename Container::value_type value_type;
 typedef typename Container::size_type size_type;
 typedef Container container_type;
 protected:
 Container c;

 public:
 explicit queue(const Container& = Container());

 bool empty() const { return c.empty(); }
 size_type size() const { return c.size(); }
 reference front() { return c.front(); }
 const_reference front() const { return c.front(); }
 reference back() { return c.back(); }
 const_reference back() const { return c.back(); }
 void push(const value_type& x) { c.push_back(x); }
 void pop() { c.pop_front(); }
 };

Change 23.2.3.2/1 from:

 namespace std {
 template <class T, class Container = vector<T>,
 class Compare = less<typename Container::value_type> >
 class priority_queue {
 public:
 typedef typename Container::value_type value_type;
 typedef typename Container::size_type size_type;
 typedef Container container_type;
 protected:
 Container c;
 Compare comp;

 public:
 explicit priority_queue(const Compare& x = Compare(),
 const Container& = Container());
 template <class InputIterator>
 priority_queue(InputIterator first, InputIterator last,
 const Compare& x = Compare(),
 const Container& = Container());

 bool empty() const { return c.empty(); }

- 69 -

C++ Standard Library Active Issues List

 size_type size() const { return c.size(); }
 const value_type& top() const { return c.front(); }
 void push(const value_type& x);
 void pop();
 };
 // no equality is provided
 }

to:

 namespace std {
 template <class T, class Container = vector<T>,
 class Compare = less<typename Container::value_type> >
 class priority_queue {
 public:
 typedef typename Container::value_type value_type;
 typedef typename Container::reference reference;
 typedef typename Container::const_reference const_reference;
 typedef typename Container::size_type size_type;
 typedef Container container_type;
 protected:
 Container c;
 Compare comp;

 public:
 explicit priority_queue(const Compare& x = Compare(),
 const Container& = Container());
 template <class InputIterator>
 priority_queue(InputIterator first, InputIterator last,
 const Compare& x = Compare(),
 const Container& = Container());

 bool empty() const { return c.empty(); }
 size_type size() const { return c.size(); }
 const_reference top() const { return c.front(); }
 void push(const value_type& x);
 void pop();
 };
 // no equality is provided
 }

And change 23.2.3.3/1 from:

 namespace std {
 template <class T, class Container = deque<T> >
 class stack {
 public:
 typedef typename Container::value_type value_type;
 typedef typename Container::size_type size_type;
 typedef Container container_type;
 protected:
 Container c;

 public:
 explicit stack(const Container& = Container());

- 70 -

C++ Standard Library Active Issues List

 bool empty() const { return c.empty(); }
 size_type size() const { return c.size(); }
 value_type& top() { return c.back(); }
 const value_type& top() const { return c.back(); }
 void push(const value_type& x) { c.push_back(x); }
 void pop() { c.pop_back(); }
 };

 template <class T, class Container>
 bool operator==(const stack<T, Container>& x,
 const stack<T, Container>& y);
 template <class T, class Container>
 bool operator< (const stack<T, Container>& x,
 const stack<T, Container>& y);
 template <class T, class Container>
 bool operator!=(const stack<T, Container>& x,
 const stack<T, Container>& y);
 template <class T, class Container>
 bool operator> (const stack<T, Container>& x,
 const stack<T, Container>& y);
 template <class T, class Container>
 bool operator>=(const stack<T, Container>& x,
 const stack<T, Container>& y);
 template <class T, class Container>
 bool operator<=(const stack<T, Container>& x,
 const stack<T, Container>& y);
 }

to:

 namespace std {
 template <class T, class Container = deque<T> >
 class stack {
 public:
 typedef typename Container::value_type value_type;
 typedef typename Container::reference reference;
 typedef typename Container::const_reference const_reference;
 typedef typename Container::size_type size_type;
 typedef Container container_type;
 protected:
 Container c;

 public:
 explicit stack(const Container& = Container());

 bool empty() const { return c.empty(); }
 size_type size() const { return c.size(); }
 reference top() { return c.back(); }
 const_reference top() const { return c.back(); }
 void push(const value_type& x) { c.push_back(x); }
 void pop() { c.pop_back(); }
 };

 template <class T, class Container>
 bool operator==(const stack<T, Container>& x,
 const stack<T, Container>& y);

- 71 -

C++ Standard Library Active Issues List

 template <class T, class Container>
 bool operator< (const stack<T, Container>& x,
 const stack<T, Container>& y);
 template <class T, class Container>
 bool operator!=(const stack<T, Container>& x,
 const stack<T, Container>& y);
 template <class T, class Container>
 bool operator> (const stack<T, Container>& x,
 const stack<T, Container>& y);
 template <class T, class Container>
 bool operator>=(const stack<T, Container>& x,
 const stack<T, Container>& y);
 template <class T, class Container>
 bool operator<=(const stack<T, Container>& x,
 const stack<T, Container>& y);
 }

[Copenhagen: This change was discussed before the IS was released and it was deliberately not adopted.
Nevertheless, the LWG believes (straw poll: 10-2) that it is a genuine defect.]

308. Table 82 mentions unrelated headers

Section: 27 [lib.input.output] Status: Ready Submitter: Martin Sebor Date: 15 Mar 2001

Table 82 in section 27 mentions the header <cstdlib> for String streams (27.7) and the headers <cstdio> and
<cwchar> for File streams (27.8). It’s not clear why these headers are mentioned in this context since they do not
define any of the library entities described by the subclauses. According to 17.4.1.1 , only such headers are to be
listed in the summary.

Proposed resolution:

Remove <cstdlib> and <cwchar> from Table 82.

[Copenhagen: changed the proposed resolution slightly. The original proposed resolution also said to remove
<cstdio> from Table 82. However, <cstdio> is mentioned several times within section 27.8 , including 27.8.2 .]

309. Does sentry catch exceptions?

Section: 27.6 [lib.iostream.format] Status: Open Submitter: Martin Sebor Date: 19 Mar 2001

The descriptions of the constructors of basic_istream<>::sentry (27.6.1.1.2) and basic_ostream<>::sentry (27.6.2.3)
do not explain what the functions do in case an exception is thrown while they execute. Some current
implementations allow all exceptions to propagate, others catch them and set ios_base::badbit instead, still others
catch some but let others propagate.

The text also mentions that the functions may call setstate(failbit) (without actually saying on what object, but
presumably the stream argument is meant). That may have been fine for basic_istream<>::sentry prior to issue 195,
since the function performs an input operation which may fail. However, issue 195 amends 27.6.1.1.2 , p2 to clarify
that the function should actually call setstate(failbit | eofbit), so the sentence in p3 is redundant or even somewhat
contradictory.

The same sentence that appears in 27.6.2.3 , p3 doesn’t seem to be very meaningful for basic_istream<>::sentry
which performs no input. It is actually rather misleading since it would appear to guide library implementers to
calling setstate(failbit) when os.tie()->flush(), the only called function, throws an exception (typically, it’s badbit
that’s set in response to such an event).

- 72 -

C++ Standard Library Active Issues List

Proposed resolution:

Add the following paragraph immediately after 27.6.1.1.2 , p5

If an exception is thrown during the preparation then ios::badbit is turned on* in is’s error state.

[Footnote: This is done without causing an ios::failure to be thrown. --- end footnote]

If (is.exceptions() & ios_base::badbit)!= 0 then the exception is rethrown.

And strike the following sentence from 27.6.1.1.2 , p5

During preparation, the constructor may call setstate(failbit) (which may throw ios_base::failure
(lib.iostate.flags))

Add the following paragraph immediately after 27.6.2.3 , p3

If an exception is thrown during the preparation then ios::badbit is turned on* in os’s error state.

[Footnote: This is done without causing an ios::failure to be thrown. --- end footnote]

If (os.exceptions() & ios_base::badbit)!= 0 then the exception is rethrown.

And strike the following sentence from 27.6.2.3 , p3

During preparation, the constructor may call setstate(failbit) (which may throw ios_base::failure
(lib.iostate.flags))

(Note that the removal of the two sentences means that the ctors will not be able to report the failure of any
implementation-dependent operations referred to in footnotes 280 and 293, unless such operations throw an
exception.)

[Copenhagen: It was agreed that there was an issue here, but there was disagreement about the resolution. Some
LWG members argued that a sentry’s constructor should not catch exceptions, because sentries should only be used
within (un)formatted input functions and that exception handling is the responsibility of those functions, not of the
sentries.]

310. Is errno a macro?

Section: 17.4.1.2 [lib.headers], 19.3 [lib.errno] Status: Review Submitter: Steve Clamage Date: 21 Mar 2001

Exactly how should errno be declared in a conforming C++ header?

The C standard says in 7.1.4 that it is unspecified whether errno is a macro or an identifier with external linkage. In
some implementations it can be either, depending on compile-time options. (E.g., on Solaris in multi-threading
mode, errno is a macro that expands to a function call, but is an extern int otherwise. "Unspecified" allows such
variability.)

The C++ standard:

17.4.1.2 says in a note that errno must be macro in C. (false)
17.4.3.1.3 footnote 166 says errno is reserved as an external name (true), and implies that it is an identifier.
19.3 simply lists errno as a macro (by what reasoning?) and goes on to say that the contents of of C++
<errno.h> are the same as in C, begging the question.
C.2, table 95 lists errno as a macro, without comment.

- 73 -

C++ Standard Library Active Issues List

I find no other references to errno.

We should either explicitly say that errno must be a macro, even though it need not be a macro in C, or else
explicitly leave it unspecified. We also need to say something about namespace std. A user who includes <cerrno>
needs to know whether to write errno , or ::errno , or std::errno , or else <cerrno> is useless.

Two acceptable fixes:

errno must be a macro. This is trivially satisfied by adding
 #define errno (::std::errno)
to the headers if errno is not already a macro. You then always write errno without any scope qualification, and
it always expands to a correct reference. Since it is always a macro, you know to avoid using errno as a local
identifer.

errno is in the global namespace. This fix is inferior, because ::errno is not guaranteed to be well-formed.

[This issue was first raised in 1999, but it slipped through the cracks.]

Proposed resolution:

Change the Note in section 17.4.1.2p5 from

Note: the names defined as macros in C include the following: assert, errno, offsetof, setjmp, va_arg, va_end,
and va_start.

to

Note: the names defined as macros in C include the following: assert, offsetof, setjmp, va_arg, va_end, and
va_start.

In section 19.3, change paragraph 2 from

The contents are the same as the Standard C library header <errno.h>.

to

The contents are the same as the Standard C library header <errno.h>, except that errno shall be defined as a
macro.

311. Incorrect wording in basic_ostream class synopsis

Section: 27.6.2.1 [lib.ostream] Status: Review Submitter: Andy Sawyer Date: 21 Mar 2001

In 27.6.2.1 , the synopsis of class basic_ostream says:

 // partial specializationss
 template<class traits>
 basic_ostream<char,traits>& operator<<(basic_ostream<char,traits>&,
 const char *);

Problems:

Too many ’s’s at the end of "specializationss"
This is an overload, not a partial specialization

- 74 -

C++ Standard Library Active Issues List

Proposed resolution:

In the synopsis in 27.6.2.1 , remove the // partial specializationss comment.

312. Table 27 is missing headers

Section: 20 [lib.utilities] Status: Ready Submitter: Martin Sebor Date: 29 Mar 2001

Table 27 in section 20 lists the header <memory> (only) for Memory (lib.memory) but neglects to mention the
headers <cstdlib> and <cstring> that are discussed in 20.4.6 .

Proposed resolution:

Add <cstdlib> and <cstring> to Table 27, in the same row as <memory>.

315. Bad "range" in list::unique complexity

Section: 23.2.2.4 [lib.list.ops] Status: New Submitter: Andy Sawyer Date: 1 May 2001

23.2.2.4 , Para 21 describes the complexity of list::unique as: "If the range (last - first) is not empty, exactly (last -
first) -1 applications of the corresponding predicate, otherwise no applications of the predicate)".

"(last - first)" is not a range.

Proposed resolution:

Change the "range" from (last - first) to [first, last). Change the complexity from "(last - first) -1 applications of the
corresponding predicate" to "distance(first,last)-1 applications of the corresponding predicate.

316. Vague text in Table 69

Section: 23.1.2 [lib.associative.reqmts] Status: New Submitter: Martin Sebor Date: 4 May 2001

Table 69 says this about a_uniq.insert(t):

inserts t if and only if there is no element in the container with key equivalent to the key of t. The bool
component of the returned pair indicates whether the insertion takes place and the iterator component of the
pair points to the element with key equivalent to the key of t.

The description should be more specific about exactly how the bool component indicates whether the insertion takes
place.

Proposed resolution:

Change the text in question to

...The bool component of the returned pair is true if and only if the insertion takes place...

317. Instantiation vs. specialization of facets

Section: 22 [lib.localization] Status: New Submitter: Martin Sebor Date: 4 May 2001

- 75 -

C++ Standard Library Active Issues List

The localization section of the standard refers to specializations of the facet templates as instantiations even though
the required facets are typically specialized rather than explicitly (or implicitly) instantiated. In the case of
ctype<char> and ctype_byname<char> (and the wchar_t versions), these facets are actually required to be
specialized. The terminology should be corrected to make it clear that the standard doesn’t mandate explicit
instantiation (the term specialization encompasses both explicit instantiations and specializations).

Proposed resolution:

In the following paragraphs, replace all occurrences of the word instantiation or instantiations with specialization or
specializations, respectively:

22.1.1.1.1, p4, Table 52, 22.2.1.1, p2, 22.2.1.5, p3, 22.2.1.5.1, p5, 22.2.1.5.2, p10, 22.2.2, p2, 22.2.3.1, p1,
22.2.3.1.2, p1, p2 and p3, 22.2.4.1, p1, 22.2.4.1.2, p1, 22,2,5, p1, 22,2,6, p2, 22.2.6.3.2, p7, and Footnote 242.

And change the text in 22.1.1.1.1, p4 from

An implementation is required to provide those instantiations for facet templates identified as members of a
category, and for those shown in Table 52:

to

An implementation is required to support those specializations...

318. Misleading comment in definition of numpunct_byname

Section: 22.2.3.2 [lib.locale.numpunct.byname] Status: New Submitter: Martin Sebor Date: 12 May 2001

The definition of the numpunct_byname template contains the following comment:

 namespace std {
 template <class charT>
 class numpunct_byname : public numpunct<charT> {
 // this class is specialized for char and wchar_t.
 ...

There is no documentation of the specializations and it seems conceivable that an implementation will not explicitly
specialize the template at all, but simply provide the primary template.

Proposed resolution:

Remove the comment from the text in 22.2.3.2 and from the proposed resolution of library issue 228.

319. Storage allocation wording confuses "Required behavior",
"Requires"

Section: 18.4.1.1 [lib.new.delete.single], 18.4.1.2 [lib.new.delete.array] Status: New Submitter: Beman Dawes
Date: 15 May 2001

The standard specifies 17.3.1.3 that "Required behavior" elements describe "the semantics of a function definition
provided by either the implementation or a C++ program."

The standard specifies 17.3.1.3 that "Requires" elements describe "the preconditions for calling the function."

- 76 -

C++ Standard Library Active Issues List

In the sections noted below, the current wording specifies "Required Behavior" for what are actually preconditions,
and thus should be specified as "Requires".

Proposed resolution:

In 18.4.1.1 Para 12 Change:

Required behavior: accept a value of ptr that is null or that was returned by an earlier call ...

to:

Requires: the value of ptr be null or the value returned by an earlier call ...

In 18.4.1.2 Para 11 Change:

Required behavior: accept a value of ptr that is null or that was returned by an earlier call ...

to:

Requires: the value of ptr be null or the value returned by an earlier call ...

320. list::assign overspecified

Section: 23.2.2.1 [lib.list.cons] Status: New Submitter: Howard Hinnant Date: 17 May 2001

Section 23.2.2.1, paragraphs 6-8 specify that list assign (both forms) have the "effects" of a call to erase followed by
a call to insert.

I would like to document that implementers have the freedom to implement assign by other methods, as long as the
end result is the same and the exception guarantee is as good or better than the basic guarantee.

The motivation for this is to use T’s assignment operator to recycle existing nodes in the list instead of erasing them
and reallocating them with new values. It is also worth noting that, with careful coding, most common cases of
assign (everything but assignment with true input iterators) can elevate the exception safety to strong if T’s
assignment has a nothrow guarantee (with no extra memory cost). Metrowerks does this. However I do not propose
that this subtlety be standardized. It is a QoI issue.

Existing practise: Metrowerks and SGI recycle nodes, Dinkumware and Rogue Wave don’t.

Proposed resolution:

Change 23.2.2.1/7 from:

Effects:

 erase(begin(), end());
 insert(begin(), first, last);

to:

Effects: Replaces the contents of the list with the range [first, last).

PostCondition: *this == list<T, Allocator>(first, last)

Notes: If an exception is thrown, the contents of the list are indeterminate.

- 77 -

C++ Standard Library Active Issues List

Change 23.2.2.1/8 from:

Effects:

 erase(begin(), end());
 insert(begin(), n, t);

to:

Effects: Replaces the contents of the list with n copies of t.

PostCondition: *this == list<T, Allocator>(n, t)

Notes: If an exception is thrown, the contents of the list are self consistent but indeterminate.

321. Typo in num_get

Section: 22.2.2.1.2 [lib.facet.num.get.virtuals] Status: New Submitter: Kevin Djang Date: 17 May 2001

Section 22.2.2.1.2 at p7 states that "A length specifier is added to the conversion function, if needed, as indicated in
Table 56." However, Table 56 uses the term "length modifier", not "length specifier".

Proposed resolution:

In 22.2.2.1.2 at p7, change the text "A length specifier is added ..." to be "A length modifier is added ..."

322. iterator and const_iterator should have the same value type

Section: 23.1 [lib.container.requirements] Status: New Submitter: Matt Austern Date: 17 May 2001

It’s widely assumed that, if X is a container, iterator_traits<X::iterator>::value_type and
iterator_traits<X::const_iterator>::value_type should both be X::value_type. However, this is nowhere stated. The
language in Table 65 is not precise about the iterators’ value types (it predates iterator_traits), and could even be
interpreted as saying that iterator_traits<X::const_iterator>::value_type should be "const X::value_type".

Related issue: 279.

Proposed resolution:

In Table 65 ("Container Requirements"), change the return type for X::iterator to "iterator type whose value type is
T". Change the return type for X::const_iterator to "constant iterator type whose value type is T".

Rationale:

This belongs as a container requirement, rather than an iterator requirement, because the whole notion of
iterator/const_iterator pairs is specific to containers’ iterator.

It is existing practice that (for example) iterator_traits<list<int>::const_iterator>::value_type is "int", rather than
"const int". This is consistent with the way that const pointers are handled: the standard already requires that
iterator_traits<const int*>::value_type is int.

- 78 -

C++ Standard Library Active Issues List

323. abs() overloads in different headers

Section: 26.5 [lib.c.math] Status: New Submitter: Dave Abrahams Date: 4 June 2001

Currently the standard mandates the following overloads of abs():

 abs(long), abs(int) in <cstdlib>

 abs(float), abs(double), abs(long double) in <cmath>

 template<class T> T abs(const complex<T>&) in <complex>

 template<class T> valarray<T> abs(const valarray<T>&); in <valarray>

The problem is that having only some overloads visible of a function that works on "implicitly inter-convertible"
types is dangerous in practice. The headers that get included at any point in a translation unit can change
unpredictably during program development/maintenance. The wrong overload might be unintentionally selected.

Currently, there is nothing that mandates the simultaneous visibility of these overloads. Indeed, some vendors have
begun fastidiously reducing dependencies among their (public) headers as a QOI issue: it helps people to write
portable code by refusing to compile unless all the correct headers are #included.

The same issue may exist for other functions in the library.

Proposed resolution:

324. Do output iterators have value types?

Section: 24.1.2 [lib.output.iterators] Status: New Submitter: Dave Abrahams Date: 7 June 2001

Table 73 suggests that output iterators have value types. It says defines the expression "*a = t". Additionally,
although Table 73 never lists "a = t" or "X(a) = t" in the "expressions" column, it contains a note saying that "a = t"
and "X(a) = t" have equivalent (but nowhere specified!) semantics.

According to 24.1/9, t is supposed to be "a value of value type T":

In the following sections, a and b denote values of X, n denotes a value of the difference type Distance, u, tmp,
and m denote identifiers, r denotes a value of X&, t denotes a value of value type T.

Two other parts of the standard that are relevant to whether output iterators have value types:

24.1/1 says "All iterators i support the expression *i, resulting in a value of some class, enumeration, or built-in
type T, called the value type of the iterator".
24.3.1/1, which says "In the case of an output iterator, the types iterator_traits<Iterator>::difference_type
iterator_traits<Iterator>::value_type are both defined as void."

The first of these passages suggests that "*i" is supposed to return a useful value, which contradicts the note in
24.1.2/2 saying that the only valid use of "*i" for output iterators is in an expression of the form "*i = t". The second
of these passages appears to contradict Table 73, because it suggests that "*i"’s return value should be void. The
second passage is also broken in the case of a an iterator type, like non-const pointers, that satisfies both the output
iterator requirements and the forward iterator requirements.

What should the standard say about "*i’s" return value when i is an output iterator, and what should it say about that
t is in the expression "*i = t"? Finally, should the standard say anything about output iterators’ pointer and reference
types?

- 79 -

C++ Standard Library Active Issues List

Proposed resolution:

A sketch of one proposed resolution, without language: Make it clear that the notion of "value type" does not apply
to output iterators.

Put an "except for output iterators" qualification in 24.1/1; remove the note in table 73 about "a = t" and "X(a)
= t"; put language in 24.1.2 paragraph 1 saying that "t" is a value of whatever type or types for which "*i = t" is
defined and that an output iterator need not have a unique value type; change 24.3.1/1 to say that an output
iterator may, but need not, define iterator_traits<Iterator>::difference_type iterator_traits<Iterator>::value_type
as void.

A sketch of an alternate proposed resolution, also without language: Require every output iterator to have a value
type, just like other kinds of iterators.

Put an "except for output iterators" qualification in 24.1/1; remove the note in table 73 about "a = t" and "X(a)
= t"; put language in 24.1.2 paragraph 1 saying that an output iterator’s value type is the type for which "*i = t"
is defined; remove the note in 24.3.1/1 saying that iterator_traits<>::value_type is void for an output iterator;
change all of the predefined output iterators (ostream_iterator, ostreambuf_iterator, back_insert_iterator,
front_insert_iterator, insert_iterator) so that they have non-void value types.

325. Misleading text in moneypunct<>::do_grouping

Section: 22.2.6.3.2 [lib.locale.moneypunct.virtuals] Status: New Submitter: Martin Sebor Date: 02 Jul 2001

The Returns clause in 22.2.6.3.2, p3 says about moneypunct<charT>::do_grouping()

Returns: A pattern defined identically as the result of numpunct<charT>::do_grouping().241)

Footnote 241 then reads

This is most commonly the value "\003" (not "3").

The returns clause seems to imply that the two member functions must return an identical value which in reality may
or may not be true, since the facets are usually implemented in terms of struct std::lconv and return the value of the
grouping and mon_grouping, respectively. The footnote also implies that the member function of the moneypunct
facet (rather than the overridden virtual functions in moneypunct_byname) most commonly return "\003", which
contradicts the C standard which specifies the value of "" for the (most common) C locale.

Proposed resolution:

Replace the text in Returns clause in 22.2.6.3.2, p3 with the following:

Returns: A pattern defined identically as, but not necessarily equal to, the result of
numpunct<charT>::do_grouping().241)

and replace the text in Footnote 241 with the following:

The moneypunct facet (or its derivative) installed in named locales other than "C" will most commonly return
the value "\003" (not "3").

Rationale:

Note that the proposed resolution is sufficiently vague to allow implementations to implement the behavior of both
moneypunct and moneypunct_byname to be implemented by the base. This may or may not be desirable depending
on whether we want the base behavior to strictly reflect the "C" locale (only) and the derived behavior to implement
the behavior specific to the named locales. This distinction would be detectable by obtaining a reference to
moneypunct_byname, say mp, and calling mp.do_grouping() or mp.moneypunct<charT>::do_grouping() to get one

- 80 -

C++ Standard Library Active Issues List

or the other.

326. Missing typedef in moneypunct_byname

Section: 22.2.6.4 [lib.locale.moneypunct.byname] Status: New Submitter: Martin Sebor Date: 05 Jul 2001

The definition of the moneypunct facet contains the typedefs char_type and string_type. Only one of these names,
string_type, is defined in the derived facet, moneypunct_byname.

Proposed resolution:

For consistency with the numpunct facet, add a typedef for char_type to the definition of the moneypunct_byname
facet in 22.2.6.4 .

327. Typo in time_get facet in table 52

Section: 22.1.1.1.1 [lib.locale.category] Status: New Submitter: Tiki Wan Date: 06 Jul 2001

The wchar_t versions of time_get and time_get_byname are listed incorrectly in table 52, required
instantiations. In both cases the second template parameter is given as OutputIterator. It should instead be
InputIterator, since these are input facets.

Proposed resolution:

In table 52, required instantiations, in 22.1.1.1.1 , change

 time_get<wchar_t, OutputIterator>
 time_get_byname<wchart, OutputIterator>

to

 time_get<wchar_t, InputIterator>
 time_get_byname<wchart, InputIterator>

328. Bad sprintf format modifier in money_put<>::do_put()

Section: 22.2.6.2.2 [lib.locale.money.put.virtuals] Status: New Submitter: Martin Sebor Date: 07 Jul 2001

The sprintf format string , "%.01f" (that’s the digit one), in the description of the do_put() member functions of the
money_put facet in 22.2.6.2.2, p1 is incorrect. First, the f format specifier is wrong for values of type long double,
and second, the precision of 01 doesn’t seem to make sense. What was most likely intended was "%.0Lf"., that is a
precision of zero followed by the L length modifier.

Proposed resolution:

Change the format string to "%.0Lf".

329. vector capacity, reserve and reallocation

Section: 23.2.4.2 [lib.vector.capacity], 23.2.4.3 [lib.vector.modifiers] Status: New Submitter: Anthony Williams
Date: 13 Jul 2001

- 81 -

C++ Standard Library Active Issues List

There is an apparent contradiction about which circumstances can cause a reallocation of a vector in Section
23.2.4.2 and section 23.2.4.3 .

23.2.4.2p5 says:

Notes: Reallocation invalidates all the references, pointers, and iterators referring to the elements in the
sequence. It is guaranteed that no reallocation takes place during insertions that happen after a call to reserve()
until the time when an insertion would make the size of the vector greater than the size specified in the most
recent call to reserve().

Which implies if I do

 std::vector<int> vec;
 vec.reserve(23);
 vec.reserve(0);
 vec.insert(vec.end(),1);

then the implementation may reallocate the vector for the insert, as the size specified in the previous call to reserve
was zero.

However, the previous paragraphs (23.2.4.2, p1-2) state:

(capacity) Returns: The total number of elements the vector can hold without requiring reallocation

...After reserve(), capacity() is greater or equal to the argument of reserve if reallocation happens; and equal to
the previous value of capacity() otherwise...

This implies that vec.capacity() is still 23, and so the insert() should not require a reallocation, as vec.size() is 0. This
is backed up by 23.2.4.3p1:

(insert) Notes: Causes reallocation if the new size is greater than the old capacity.

Though this doesn’t rule out reallocation if the new size is less than the old capacity, I think the intent is clear.

Proposed resolution:

Change the wording of 23.2.4.5p5 to:

Notes: Reallocation invalidates all the references, pointers, and iterators referring to the elements in the
sequence. It is guaranteed that no reallocation takes place during insertions that happen after a call to reserve()
until the time when an insertion would make the size of the vector greater than the value of capacity() after the
most recent call to reserve().

330. Misleading "exposition only" value in class locale definition

Section: 22.1.1 [lib.locale] Status: New Submitter: Martin Sebor Date: 15 Jul 2001

The "exposition only" value of the std::locale::none constant shown in the definition of class locale is misleading in
that it on many systems conflicts with the value assigned to one if the LC_XXX constants (specifically,
LC_COLLATE on AIX, LC_ALL on HP-UX, LC_CTYPE on Linux and SunOS). This causes incorrect behavior
when such a constant is passed to one of the locale member functions that accept a locale::category argument and
interpret it as either the C LC_XXX constant or a bitmap of locale::category values. At least three major
implementations adopt the suggested value without a change and consequently suffer from this problem.

For instance, the following code will (presumably) incorrectly copy facets belonging to the collate category from the
German locale on AIX:

- 82 -

C++ Standard Library Active Issues List

 std::locale l (std::locale ("C"), "de_DE", std::locale::none);

Proposed resolution:

Change the value from 0 to some other bit value, say 0x400, distinct from any of the other values shown.

331. bad declaration of destructor for ios_base::failure

Section: 27.4.2.1.1 [lib.ios::failure] Status: New Submitter: PremAnand M. Rao Date: 23 Aug 2001

With the change in 17.4.4.8 to state "An implementation may strengthen the exception-specification for a
non-virtual function by removing listed exceptions." (issue 119) and the following declaration of ~failure() in
ios_base::failure

 namespace std {
 class ios_base::failure : public exception {
 public:
 ...
 virtual ~failure();
 ...
 };
 }

the class failure cannot be implemented since in 18.6.1 the destructor of class exception has an empty exception
specification:

 namespace std {
 class exception {
 public:
 ...
 virtual ~exception() throw();
 ...
 };
 }

Proposed resolution:

Two alternatives:

1. Change the declaration of ~failure() to virtual ~failure() throw();
2. Remove the declaration of ~failure().

332. Consider adding increment and decrement operators to std::fpos< T
>

Section: 27.4.3 [lib.fpos] Status: New Submitter: PremAnand M. Rao Date: 27 Aug 2001

Increment and decrement operators are missing from Table 88 -- Position type requirements in 27.4.3 .

Proposed resolution:

Table 88 (section 27.4.3) -- Position type requirements be updated to include increment and decrement operators.

- 83 -

C++ Standard Library Active Issues List

expression return type operational note

++p fpos& p += O(1)
p++ fpos { P tmp = p;
 ++p;
 return tmp; }
--p fpos& p -= O(1)
p-- fpos { P tmp = p;
 --p;
 return tmp; }

333. does endl imply synchronization with the device?

Section: 27.6.2.7 [lib.ostream.manip] Status: New Submitter: PremAnand M. Rao Date: 27 Aug 2001

A footnote in 27.6.2.7 states:

[Footnote: The effect of executing cout << endl is to insert a newline character in the output sequence
controlled by cout, then synchronize it with any external file with which it might be associated. --- end foonote]

Does the term "file" here refer to the external device? This leads to some implementation ambiguity on systems with
fully buffered files where a newline does not cause a flush to the device.

Choosing to sync with the device leads to significant performance penalties for each call to endl, while not sync-ing
leads to errors under special circumstances.

I could not find any other statement that explicitly defined the behavior one way or the other.

Proposed resolution:

334. map::operator[] specification forces inefficient implementation

Section: 23.3.1.2 [lib.map.access] Status: New Submitter: Andrea Griffini Date: 02 Sep 2001

The current standard describes map::operator[] using a code example. That code example is however quite
inefficient because it requires several useless copies of both the passed key_type value and of default constructed
mapped_type instances. My opinion is that was not meant by the comitee to require all those temporary copies.

Currently map::operator[] behaviour is specified as:

 Returns:
 (*((insert(make_pair(x, T()))).first)).second.

This specification however uses make_pair that is a template function of which parameters in this case will be
deduced being of type const key_type& and const T&. This will create a pair<key_type,T> that isn’t the correct type
expected by map::insert so another copy will be required using the template conversion constructor available in pair
to build the required pair<const key_type,T> instance.

If we consider calling of key_type copy constructor and mapped_type default constructor and copy constructor as
observable behaviour (as I think we should) then the standard is in this place requiring two copies of a key_type
element plus a default construction and two copy construction of a mapped_type (supposing the addressed element
is already present in the map; otherwise at least another copy construction for each type).

- 84 -

C++ Standard Library Active Issues List

Proposed resolution:

A simple (half) solution would be replacing the description with:

 Returns:
 (*((insert(value_type(x, T()))).first)).second.

This will remove the wrong typed pair construction that requires one extra copy of both key and value.

However still the using of map::insert requires temporary objects while the operation, from a logical point of view,
doesn’t require any.

I think that a better solution would be leaving free an implementer to use a different approach than map::insert that,
because of its interface, forces default constructed temporaries and copies in this case. The best solution in my
opinion would be just requiring map::operator[] to return a reference to the mapped_type part of the contained
element creating a default element with the specified key if no such an element is already present in the container.
Also a logarithmic complexity requirement should be specified for the operation.

This would allow library implementers to write alternative implementations not using map::insert and reaching
optimal performance in both cases of the addressed element being present or absent from the map (no temporaries at
all and just the creation of a new pair inside the container if the element isn’t present). Some implementer has
already taken this option but I think that the current wording of the standard rules that as non-conforming.

Note that this is a "relaxing" of requirment and won’t make any currently conforming implementation on this point
to become non-conforming because of the change.

There is a small risk that current code may be depending on the number of temporaries created by map::operator[];
but I think that such dependencies would be present only in code that is most probably already non portable as the
number of copies of parameters isn’t guaranteed by the standard (in the current wording there’s just an implicit
minimum number of required copies).

335. minor issue with char_traits, table 37

Section: 21.1.1 [lib.char.traits.require] Status: New Submitter: Andy Sawyer Date: 06 Sep 2001

Table 37, in 21.1.1 , descibes char_traits::assign as:

 X::assign(c,d) assigns c = d.

And para 1 says:

[...] c and d denote values of type CharT [...]

Naturally, if c and d are values, then the assignment is (effectively) meaningless. It’s clearly intended that (in the
case of assign, at least), ’c’ is intended to be a reference type.

I did a quick survey of the four implementations I happened to have lying around, and sure enough they all have
signatures:

 assign(charT&, const charT&);

(or the equivalent). It’s also described this way in Nico’s book. (Not to mention the synopses of char_traits<char> in
21.1.3.1 and char_traits<wchar_t> in 21.1.3.2...)

Proposed resolution:

- 85 -

C++ Standard Library Active Issues List

Add the following to 21.1.1 para 1:

r denotes a reference to CharT

and change the description of assign in the table to:

 X::assign(r,d) assigns r = d

----- End of document -----

- 86 -

C++ Standard Library Active Issues List

	C++ Standard Library Active Issues List †Revision 19‡
	Revision History
	Issue Status
	Active Issues
	23.€Num_get overflow result
	44.€Iostreams use operator== on int_type values
	49.€Underspecification of ios_base::sync_with_stdio
	76.€Can a codecvt facet always convert one internal character at a time?
	91.€Description of operator>> and getline†‡ for string<> might cause endless loop
	92.€Incomplete Algorithm Requirements
	96.€Vector<bool> is not a container
	98.€Input iterator requirements are badly written
	109.€Missing binders for non-const sequence elements
	117.€basic_ostream uses nonexistent num_put member functions
	120.€Can an implementor add specializations?
	123.€Should valarray helper arrays fill functions be const?
	167.€Improper use of traits_type::length†‡
	179.€Comparison of const_iterators to iterators doesn't work
	182.€Ambiguous references to size_t
	187.€iter_swap underspecified
	197.€max_size†‡ underspecified
	198.€Validity of pointers and references unspecified after iterator destruction
	200.€Forward iterator requirements don't allow constant iterators
	201.€Numeric limits terminology wrong
	202.€unique†‡ effects unclear when predicate not an equivalence relation
	225.€std:: algorithms use of other unqualified algorithms
	226.€User supplied specializations or overloads of namespace std function templates
	228.€Incorrect specification of "..._byname" facets
	229.€Unqualified references of other library entities
	230.€Assignable specified without also specifying CopyConstructible
	231.€Precision in iostream?
	232.€"depends" poorly defined in 17.4.3.1
	233.€Insertion hints in associative containers
	235.€No specification of default ctor for reverse_iterator
	238.€Contradictory results of stringbuf initialization.
	239.€Complexity of unique†‡ and/or unique_copy incorrect
	240.€Complexity of adjacent_find†‡ is meaningless
	241.€Does unique_copy†‡ require CopyConstructible and Assignable?
	242.€Side effects of function objects
	247.€vector, deque::insert complexity
	250.€splicing invalidates iterators
	253.€valarray helper functions are almost entirely useless
	254.€Exception types in clause 19 are constructed from std::string
	258.€Missing allocator requirement
	259.€basic_string::operator[] and const correctness
	264.€Associative container insert†i, j‡ complexity requirements are not feasible.
	266.€bad_exception::~bad_exception†‡ missing Effects clause
	267.€interaction of strstreambuf::overflow†‡ and seekoff†‡
	270.€Binary search requirements overly strict
	271.€basic_iostream missing typedefs
	272.€Missing parentheses around subexpression
	273.€Missing ios_base qualification on members of a dependent class
	274.€a missing/impossible allocator requirement
	275.€Wrong type in num_get::get†‡ overloads
	276.€Assignable requirement for container value type overly strict
	278.€What does iterator validity mean?
	280.€Comparison of reverse_iterator to const reverse_iterator
	281.€std::min†‡ and max†‡ requirements overly restrictive
	282.€What types does numpunct grouping refer to?
	283.€std::replace†‡ requirement incorrect/insufficient
	284.€unportable example in 20.3.7, p6
	285.€minor editorial errors in fstream ctors
	286.€<cstdlib> requirements missing size_t typedef
	288.€<cerrno> requirements missing macro EILSEQ
	290.€Requirements to for_each and its function object
	291.€Underspecification of set algorithms
	292.€effects of a.copyfmt †a‡
	294.€User defined macros and standard headers
	295.€Is abs defined in <cmath>?
	296.€Missing descriptions and requirements of pair operators
	297.€const_mem_fun_t<>::argument_type should be const T*
	298.€::operator delete[] requirement incorrect/insufficient
	299.€Incorrect return types for iterator dereference
	300.€list::merge†‡ specification incomplete
	301.€basic_string template ctor effects clause omits allocator argument
	303.€Bitset input operator underspecified
	304.€Must *a return an lvalue when a is an input iterator?
	305.€Default behavior of codecvt<wchar_t, char, mbstate_t>::length†‡
	306.€offsetof macro and non-POD types
	307.€Lack of reference typedefs in container adaptors
	308.€Table 82 mentions unrelated headers
	309.€Does sentry catch exceptions?
	310.€Is errno a macro?
	311.€Incorrect wording in basic_ostream class synopsis
	312.€Table 27 is missing headers
	315.€Bad "range" in list::unique complexity
	316.€Vague text in Table 69
	317.€Instantiation vs. specialization of facets
	318.€Misleading comment in definition of numpunct_byname
	319.€Storage allocation wording confuses "Required behavior", "Requires"
	320.€list::assign overspecified
	321.€Typo in num_get
	322.€iterator and const_iterator should have the same value type
	323.€abs†‡ overloads in different headers
	324.€Do output iterators have value types?
	325.€Misleading text in moneypunct<>::do_grouping
	326.€Missing typedef in moneypunct_byname
	327.€Typo in time_get facet in table 52
	328.€Bad sprintf format modifier in money_put<>::do_put†‡
	329.€vector capacity, reserve and reallocation
	330.€Misleading "exposition only" value in class locale definition
	331.€bad declaration of destructor for ios_base::failure
	332.€Consider adding increment and decrement operators to std::fpos< T >
	333.€does endl imply synchronization with the device?
	334.€map::operator[] specification forces inefficient implementation
	335.€minor issue with char_traits, table 37

