C++ Standard Library Active Issues List

Doc.no. J16/01-0031 = WG2MN1317
Date: 11 Sep2001
Project: Programming Languagé++

Replyto: Matt Austern<austern@research.att.com>

C++ Standard Library Active Issues List (Revision19)
Reference ISO/IEC 134882:1998(E)
Also see:

Table ofContentdor all library issues.
Index bySectionfor all library issues.
Index byStatusfor all library issues.
Library Defect Reportkist

Library Closed Issuelsist

The purpose of this document is to record the status of issues which have come before the Library Working Group
(LWG) of the ANSI (J16) and ISO (WG21) C++ Standards Committee. Issues represent potential defects in the
ISO/IEC IS 14882:1998(E) document. Issues are not to be used to request new features or other extensions.

This document contains only library issues which are actively being considered by the Library Working Group. That
is, issues which have a statuf\eiw, [Opern|Ready andReview Seelibrary Defect Reportkist for issues
considered defects ahibrary Closed Issuelsist for issues consideraiosed.

The issues in these lists are not necessarily formal ISO Defect Reports (DR’s). While some issues will eventually be
elevated to official Defect Report status, other issues will be disposed of in other walgsugstatug

This document is in an experimental format designed for both viewing via a world-wide web browser and hard-copy
printing. It is available as an HTML file for browsing or PDF file fointing.

Prior to Revision 14, library issues lists existed in two slightly different versions; a Committee Version and a Public
Version. Beginning with Revision 14 the two versions were combined into a sargien.

This document includgbracketed italicizedhotes]as a reminder to the LWG of current progress on issues. Such
notes are strictly unofficial and should be read with caution as they may be incomplete or incorrect. Be aware that
LWG support for a particular resolution can quickly change if new viewpoints or killer examples are presented in
subsequendiscussions.

For the most current official version of this documenfgzs//www.dkuug.dk/|tcl/sc22/wgR Requests for further
information about this document should include the document number above, reference ISO/IEC 14882:1998(E),
and be submitted to Information Technology Industry Council (ITI), 1250 Eye Street NW, Washingte@QQs_

Public information as to how to obtain a copy of the C++ Standard, join the standards committee, submit an issue, or
comment on an issue can be found in the C++ FA@tpi//www.research.att.com/~austern/csc/faqjhBuoblic
discussion of C++ Standard related issues occurems:comp.std.c++

For committee members, files available on the committee’s private web site include the HTML version of the
Standard itself. HTML hyperlinks from this issues list to those files will only work for committee members who
have downloaded them into the same disk directory as the issues list files.

http://www.research.att.com/~austern/csc/faq.html
http://www.dkuug.dk/jtc1/sc22/wg21

C++ Standard Library Active Issues List

RevisionHistory

e R19: Pre-Redmond mailing. Added new is{823[333

e R18: Post-Copenhagen mailing; reflects actions taken in Copenhagen. Added nef@ligRiss and
discussed new issugg}314 Changed status of issub33118136153165171183184185186214221
234237243248251252256260261262263265268t0 DR. Changed status of iss{#&f109117[187229
[23q23323823924124225q25926426426 427127732 75281284285284288292295297294[307
[303304[307E309[313 to Ready. Closed issu&41277279287289293302313314as NAD.

e R17: Pre-Copenhagen mailing. Converted issues list to XML. Added proposed resolutions 9§66 &l
Added new issudz7g[31]

e RI16: post-Toronto mailing; reflects actions taken in Toronto. Added new 266&57. Changed status of
issues3, 8, 9, 19, 26, 31, 61, 63,86, 108 112 114, 115 122 127,129,134, 137, 142 144, 146, 147, 159, 164,
170,181, 199, 208, 209, 210, 211, 212 217, 220, 222, 223 224, 227t0 "DR". Reopened iss{&3 Reopened
issudl84 Changed issuésand4 to NAD. Fixed a typo in issuk?. Fixed issu&0: signature should be
changed both places it appears. Fixed id€eprevious version didn't fix the bug in enough places.

e R15: pre-Toronto mailing. Added issy@33[264 Some small HTML formatting changes so that we pass
Weblint tests.

® R14: post-Tokyo Il mailing; reflects committee actions taken in Tokyo. Added [B&86es[233
(00-0019R1/N1242)

® R13: pre-Tokyo Il updated: Added issugE?to 227.

® R12: pre-Tokyo Il mailing: Added issu&89to 211 Added "and paragraph 5" to the proposed resolution of
issue29. Add further rationale to issue’8

® R11: post-Kona mailing: Updated to reflect LWG and full committee actions in Kona (99-0048/N1224). Note
changed resolution of issuésand38. Added issue$96to[199 Closed issues list split into "defects" and
"closed" documents. Changed the proposed resolution of4d¢sudAD, and changed the wording of proposed
resolution of issu&8.

e R10: pre-Kona updated. Added proposed resolus@ng6,[03 [03 [L09 Added issue$90to 195
(99-0033/D1209, 14 Oct 99)

® R9: pre-Kona mailing. Added issu#40to 189. Issues list split into separate "active" and "closed" documents.
(99-0030/N1206, 25 Aug 99)

® R8: post-Dublin mailing. Updated to reflect LWG and full committee actions in Dublin. (99-0016/N1193, 21
Apr 99)

® R7: pre-Dublin updated: Added issu®0, 131, 132 133 134, 135 136 137, 138 139 (31 Mar 99)

® RG6: pre-Dublin mailing. Added issu@87, 128 and129 (99-0007/N1194, 22 Feb 99)
® R5: update issuek)3 112 added issuekl4to 126, Format revisions to prepare for making list public. (30
Dec 98)
® R4: post-Santa Cruz Il updated: Isst&§, 111, 112 113added, several issues corrected. (22 Oct 98)
e R3: post-Santa Cruz II: Issu@4 to[L0gadded, many issues updated to reflect LWG consensus (12 Oct 98)
® R2: pre-Santa Cruz II: Issu@8to 93 added, issu&7 updated. (29 Sep 98)
® R1: Correction to issug5 resolution,60 code formatp4 title. (17 Sef®8)
IssueStatus

New - The issue has not yet been reviewed by the LWG.PnposedResolutionis purely a suggestion from the
issue submitter, and should not be construed as the vieWGf

Open- The LWG has discussed the issue but is not yet ready to move the issue forward. There are several possible
reasons for opestatus:

e Consensus may have not yet have been reached as to how to deal with the issue.
e Informal consensus may have been reached, but the LWG await®exaasedResolutionwording for
review.

® The LWG wishes to consult additional technical experts before proceeding.

C++ Standard Library Active Issues List

® The issue may require further study.

A ProposedResolutionfor an open issue is still not be construed as the view of LWG. Comments on the current
state of discussions are often given at the end of open issues in an italic font. Such comments are for information
only and should not be given undogportance.

Dup - The LWG has reached consensus that the issue is a duplicate of another issue, and will not be further dealt
with. A Rationale identities the duplicated issue’s issue number.

NAD - The LWG has reached consensus that the issue is not a defect in the Standard, and the issue is ready to
forward to the full committee as a proposed record of responRatiénale discusses the LWGigasoning.

Review- Exact wording of #roposedResolutionis now available for review on an issue for which the LWG
previously reached informabnsensus.

Ready- The LWG has reached consensus that the issue is a defect in the Stan®aophabedResolutionis
correct, and the issue is ready to forward to the full committee for further action as a Defec{[¥@port

DR - (Defect Report) - The full 316 committee has voted to forward the issue to the Project Editor to be processed as
a Potential Defect Report. The Project Editor reviews the issue, and then forwards it to the WG21 Convenor, who
returns it to the full committee for final disposition. This issues list accords the status of DR to all these Defect
Reports regardless of where they are in phacess.

TC - (Technical Corrigenda) - The full WG21 committee has voted to accept the Defect Report’'s Proposed
Resolution as a Technical Corrigenda. Action on this issue is thus complete and no further action is possible under
ISOrules.

RR - (Record of Response) - The full WG21 committee has determined that this issue is not a defect in the
Standard. Action on this issue is thus complete and no further action is possible undgesSO

Future - In addition to the regular status, the LWG believes that this issue should be revisited at the next revision of
the standard. It is usually paired wittAD.

Issues are always given the statydle®] when they first appear on the issues list. They may progriggseifor
[Reviewywhile the LWG is actively working on them. When the LWG has reached consensus on the disposition of an
issue, the status will then changfbiad [NAD] or[Readyas appropriate. Once the full J16 committee votes to

forward Ready issues to the Project Editor, they are given the status of Defect RoiTifese in turn may

become the basis for Technical Corrige§@@), or are closed without action other than a Record of Resf@Rse

). The intent of this LWG process is that only issues which are truly defects in the Standard move to the formal ISO
DR status.

Active Issues

23. Num_getoverflow result
Section: 22.2.2.1.7lib.facet.num.get.virtuals|Status:[Operh Submitter: Nathan MyersDate: 6 Aug1998

The current description of numeric input does not account for the possibility of overflow. This is an implicit result of
changing the description to rely on the definition of scanf() (which fails to report overflow), and conflicts with the
documented behavior of traditional and current implementations.

Users expect, when reading a character sequence that results in a value unrepresentable in the specified type, to have
an error reported. The standard as written does not permit this.

C++ Standard Library Active Issues List

Further comments from Dietmatr:

| don’t feel comfortable with the proposed resolution to issue 23: It kind of simplifies the issue to much. Here is
what is goingon:

Currently, the behavior of numeric overflow is rather counter intuitive and hard to trace, so | will dedrréfy it

® According to 22.2.2.1.2 paragraph fadlbit is set ifscanf() would return an input error; otherwise a
value is converted to the rulessufanf .

e scanf() is defined in terms dbcanf()

e fscanf() returns an input failure if during conversion no character matching the conversion specification
could be extracted before reaching EOF. This is the only reaststémf() to fail due to an input error and
clearly does not apply to the case of overflow.

® Thus, the conversion is performed according to the rulescahf() which basically says thatrtod
strtol() , etc. are to be used for the conversion.

® Thestrtod() , strtol() , etc. functions consume as many matching characters as there are and on
overflow continue to consume matching characters but also return a value identical to the maximum (or
minimum for signed types if there was a leading minus) value of the corresponding typeeantbseto
ERANGE

® Thus, according to the current wording in the standard, overflows can be detected! All what is to be done is to
checkerrno after reading an element and, of course, cleaingp before trying a conversion. With the
current wording, it can be detected whether the overflow was due to a positive or negative number for signed
types.

Now the proposed resolution results in not modifying the value passed as last argument if an overflow is
encountered butilbit is set. Checkingrrno for ERANGEStill allows for detection of an overflow but not
what the sigrwas.

Actually, my problem is not that much with the sign but this is at least making things worse... My problem is more
that it is still necessary to cheekno for the error description. Thus, | propose the followiegplution:

Change paragraph frbm
-11- Stage3: The result of stage 2 processing can beafne

® A sequence ofhar s has been accumulated in stage 2 that is converted (according to the rules of

scanf) to a value of the type ofal . This value is stored mal andios_base::goodbit is stored
inerr .
® The sequence @har s accumulated in stage 2 would have caused scanf to report an input failure.
ios_base::failbit is assigned terr.
to become

-11- Stage3: The result of stage 2 processing can beafne

® A sequence ofhar s has been accumulated in stage 2 that is converted (according to the rules of
scanf) to a value of the type ofal . This value is stored wal . If the conversion reported an overflow
error for the type ofal (ie.errno would be set teRANGHy the used conversion function) then

ios_base::failbit is stored irerr , otherwisaos_base::goodbit is stored irerr .
® The sequence ahar s accumulated in stage 2 would have caused scanf to report an input failure.
ios_base::failbit is assigned terr.

With this definition, overflow can be detected easily by storing a value different from the maximum wedlie in
and checking whether this value was modified in ¢aifiait is set: If it was, there was an overflow error,
otherwise some other input error occurred (under the conditions for the secondabuligtnotchanged).

C++ Standard Library Active Issues List

Proposedresolution:
In 22.2.2.1.2 , paragraph 11, second bullet item, change

The sequence of chars accumulated in stage 2 would have caused scanf to report an input failure.
to

The sequence of chars accumulated in stage 2 would have caused scanf to report an input failure, or the value
of the sequence cannot be represented in the type of _val_.

[post-Toronto: "cannot be represented"” is probably wrong: infinity can be represented on an IEC559 platform, but
0.1 cannot be represented exactly. However, the alternate proposal may be wrong as well. It's not clear whether
overflow (and underflow?) should always be treated as errors. This issue requires muchaughd]

44. lostreamsuse operator== on int_typevalues
Section: 27 [lib.input.output] Status:[Opern Submitter: Nathan MyersDate: 6 Aug1998

Many of the specifications for iostreams specify that character values or their int_type equivalents are compared
using operators == or !=, though in other places traits::eq() or traits::eq_int_type is specified to be used throughout.
This is an inconsistency; we should change uses of == and != to use the traits members instead.

Proposedresolution:
[Kona: Nathan to supply proposeebrding]

[Tokyo: the LWG reaffirmed that this is a defect, and requires careful review of clause 27 as the changes are
context sensitivg.

49. Underspecificationof ios_base::sync_with_stdio
Section: 27.4.2.4]lib.ios.members.staticBtatus:[Ready Submitter: Matt Austern Date: 21 Jun1998
Two problems

(1) 27.4.2.4 doesn't say what ios_base::sync_with_stdio(f) returns. Does it return f, or does it return the previous
synchronization state? My guess is the latter, but the standard doesut say

(2) 27.4.2.4 doesn’t say what it means for streams to be synchronized with stdio. Again, of course, | can make some
guesses. (And I'm unhappy about the performance implications of those guesses, but that'snattether

Proposedresolution:
Change the following sentence in 27.4.2.4 returns clsiose

true if the standard iostream objects (27.3) are synchronized and otherwise fiads@ns
to:

true if the previous state of the standard iostream objects (27.3) was synchronized and otherwise returns
false

Add the following immediately after 27.4.2.4 , paragraph

C++ Standard Library Active Issues List

When a standard iostream object s8yiachronizedvith a standard stdio stream f, the effect of inserting a
character by

fputc(f, c);

is the same as the effeft
str.rdbuf()->sputc(c);

for any sequence of characters; the effect of extracting a chardster ¢
c = fgetc(f);

is the same as the effeuft
¢ = str.rdbuf()->sbumpc(c);

for any sequences of characters; and the effect of pushing back a chabbgcter c
ungetc(c, f);

is the same as the effeaft
str.rdbuf()->sputbackc(c);

for any sequence of charactgisootnote This implies that operations on a standard iostream object can be
mixed arbitrarily with operations on the corresponding stdio stream. In practical terms, synchronization usually
means that a standard iostream object and a standard stdio object share -afndfeootnoté

[pre-Copenhagen: PJP and Matt contributed the definitiotsghchronization™]

[post-Copenhagen: proposed resolution was revised slightly: text was added in the non-normative footnote to say
that operations on the two streams can be marédrarily.]

76. Canacodecvt facet always convert one internal character at a
time?

Section: 22.2.1.5lib.locale.codecvt]Status:[Review Submitter: Matt Austern Date: 25 Sepl998

This issue concerns the requirements on classes deriveddamuovt |, including user-defined classes. What are
the restrictions on the conversion from external charactersteg.) to internal characters (exgchar_t)? Or,
alternatively, what assumptions aboatlecvt facets can the I/O library make?

The question is whether it's possible to convert from internal characters to external characters one internal character

at a time, and whether, given a valid sequence of external characters, it's possible to pick off internal characters one

at a time. Or, to put it differently: given a sequence of external characters and the corresponding sequence of internal
characters, does a position in the internal sequence correspond to some position in the external sequence?

To make this concrete, suppose fffiest, last) is a sequence &l external characters and thiditst,
ilast) is the corresponding sequencéNahternal characters, whelke> 1. That ismy_encoding.in() ,
applied toffirst, last) , yieldsiifirst, ilast) . Now the question: does there necessarily exist a
subsequence of external charactfnst, last_1) , such that the corresponding sequence of internal

characters is the single charactérst ?

(What a "no" answer would mean is thaf_encoding translates sequences only as blocks. There’s a sequence of
M external characters that maps to a sequeniardérnal characters, but that external sequence has no
subsequence that mapsNel internal characters.)

C++ Standard Library Active Issues List

Some of the wording in the standard, such as the descriptamueévt::do_max_length (22.2.15.2,

paragraph 11) andasic_filebuf::underflow (27.8.1.4 , paragraph 3) suggests that it must always be
possible to pick off internal characters one at a time from a sequence of external characters. However, this is never
explicitly stated one way or the other.

This issue seems (and is) quite technical, but it is important if we expect users to provide their own encoding facets.
This is an area where the standard library calls user-supplied code, so a well-defined set of requirements for the
user-supplied code is crucial. Users must be aware of the assumptions that the library makes. This issue affects
positioning operations doasic_filebuf , unbuffered input, and severalaidecvt ’'s member functions.

Proposedresolution:
Add the following text as a new paragraph, following 22.2.1.5.2 paragraph
A codecvt facet that is used byasic_filebuf (27.8) must have the property tlifat
do_out(state, from, from_end, from_next, to, to_lim, to_next)
would succeed (return value would die), wherefrom != from_end , then
do_out(state, from, from + 1, from_next, to, to_end, to_next)
must also succeed, and that if
do_in(state, from, from_end, from_next, to, to_lim, to_next)
would succeed, whete != to_lim , then
do_in(state, from, from_end, from_next, to, to + 1, to_next)

must also succeeffFootnote:Informally, this means thétasic_filebuf assumes that the mapping from
internal to external characters is 1 to Moalecvt that is used bpasic_filebuf must be able to
translate characters one internal character at atifed Footnoté

Rationale:

The proposed resoluion says that conversions can be performed one internal character at a time. This rules out some
encodings that would otherwise be legal. The alternative answer would mean there would be some internal positions
that do not correspond to any external fifesition.

An example of an encoding that this rules out is one wheilietdr@T andexternT are of the same type, and
where the internal sequencé c2 corresponds to the external sequeritecl.

It was generally agreed thiadsic_filebuf relies on this property: it was designed under the assumption that
the external-to-internal mapping is N-to-1, and it is not clearidsit_filebuf is implementable without that
restriction.

The proposed resolution is expressed as a restrictiondstvt when used bpasic_filebuf , rather than a
blanket restriction on allodecvt facets, becaudmsic_filebuf is the only other part of the library that uses
codecvt . If a user wants to definecadecvt facet that implements a more general N-to-M mapping, there is no
reason to prohibit it, so long as the user does not ekpsitt_filebuf to be able to use it.

91. Descriptionof operator>> and getline() for string<> might cause
endlesdoop

C++ Standard Library Active Issues List

Section: 21.3.7.9]lib.string.io] Status:[Review Submitter: Nico JosuttisDate: 29 Sepl998

Operator >> and getline() for strings read until eof() in the input stream is true. However, this might never happen, if
the stream can’t read anymore without reaching EOF. So shouldn’t it be changed into that it reads until !good() ?

Proposedresolution:
In 21.3.7.9 , paragraph teplace:

Effects: Begins by constructing a sentry object k as if k were constructed by typename

basic_istream<charT ,traits>::sentry k(is). If bool(k) is true, it calls str.erase() and then extracts characters from
is and appends them to str as if by calling str.append(1, c). If is.width() is greater than zero, the maximum
number n of characters appended is is.width(); otherwise n is str.max_size(). Characters are extracted and
appended until any of the followiragcurs:

with:

Effects: Behaves as an unformatted input function (27.6.1.2). After constructing a sentry object, if the sentry
converts to true, calls str.erase() and then extracts characters from is and appends them to str as if by calling
str.append(1,c). If is.width() is greater than zero, the maximum number n of characters appended is is.width();
otherwise n is str.max_size(). Characters are extracted and appended until any of the folowrsig

In 21.3.7.9 , paragraph &place

Effects: Begins by constructing a sentry object k as if by typename basic_istream<charT traits>::sentry k(is,
true). If bool(k) is true, it calls str.erase() and then extracts characters from is and appends them to str as if by
calling str.append(1, c) until any of the followiagcurs:

with:

Effects: Behaves as an unformatted input function (27.6.1.2). After constructing a sentry object, if the sentry
converts to true, calls str.erase() and then extracts characters from is and appends them to str as if by calling
str.append(1,c) until any of the followingcurs:

Rationale:

The real issue here is whether or not these string input functions perform formatted input. If they do, then they get
their characters from a streambuf, rather than by calling an istream’s member functions, and a streambuf signals
failure either by returning eof or by throwing an exception. The proposed resolution makes it clear that these two
functions do perform formattedput.

92. IncompleteAlgorithm Requirements
Section: 25[lib.algorithms] Status:[Opefh Submitter: Nico JosuttisDate: 29 Sepl998

The standard does not state, how often a function object is copied, called, or the order of calls inside an algorithm.
This may lead to surprising/buggy behavior. Consider the following example:

class Nth { // function object that returns true for the nth element
private:
int nth; // element to return true for
int count; // element counter
public:
Nth (int n) : nth(n), count(0) {
}
bool operator() (int) {
return ++count == nth;

C++ Standard Library Active Issues List

}
3

/I remove third element
list<int>::iterator pos;
pos = remove_if(coll.begin(),coll.end(), // range
Nth(3)), /I remove criterion
coll.erase(pos,coll.end());

This call, in fact removes the 3AND the 6th element. This happens because the usual implementation of the
algorithm copies the function object internally:

template <class Forwlter, class Predicate>
Forwiter std::remove_if(Forwlter beg, Forwlter end, Predicate op)
{
beg = find_if(beg, end, op);
if (beg == end) {
return beg;
}
else {
Forwliter next = beg;
return remove_copy_if(++next, end, beg, op);
}
}

The algorithm uses find_if() to find the first element that should be removed. However, it then uses a copy of the
passed function object to process the resulting elements (if any). Here, Nth is used again and removes also the sixth
element. This behavior compromises the advantage of function objects being able to have a state. Without any cost it
could be avoided (just implement it directly instead of calling find_if()).

Proposedresolution:
In [lib.function.objects] 20.3 Function objects add as new paragraph 6 (or insert after paragraph 1):
Option 1:

Predicates are functions or function objects that fulfill the followaguirements:
- They return a Boolean value (bool or a value convertibb®d)
- It doesn’t matter for the behavior of a predicate how often it is copied or assigned and how ofdled.is

Option 2:

- if it's a function:
- All calls with the same argument values yield the saavelt.
- if it's a functionobject:
- In any sequence of calls to operator () without calling any non-constant member function, all calls with the
same argument values yield the saswmilt.
- After an assignment or copy both objects return the same result for the same values.

[Santa Cruz: The LWG believes that there may be more to this than meets the eye. It applies to all function objects,
particularly predicates. Two questions: (1) must a function object be copyable? (2) how many times is a function
object called? These are in effect questions about state. Function objects appear to require special copy semantics
to make state work, and may fail if calling alters state and calling occurs an unexpected nutintees. pf

[Dublin: Pete Becker felt that this may not be a defect, but rather something that programmers need to be educated
about. There was discussion of adding wording to the effect that the number and order of calls to function objects,
including predicates, not affect the behavior of the fundaiigject.]

C++ Standard Library Active Issues List

[Pre-Kona: Nico comments: It seems the problem is that we don’t have a clear statement of "predicate" in the
standard. People including me seemed to think "a function returning a Boolean value and being able to be called by
an STL algorithm or be used as sorting criterion or ... is a predicate". But a predicate has more requirements: It
should never change its behavior due to a call or being copied. IMHO we have to state this in the standard. If you
like, see section 8.1.4 of my library book for a detadisdussion.]

[Kona: Nico will provide wording to the effect that "unless otherwise specified, the number of copies of and calls to
function objects by algorithms is unspecified". Consider placing in 25 after paragripph

[Pre-Tokyo: Angelika Langer comments: if the resolution is that algorithms are free to copy and pass around any
function objects, then it is a valid question whether they are also allowed to change the type information from
reference type to valugpe.]

[Tokyo: Nico will discuss this further with Matt as there are multiple problems beyond the underlying problem of no
definition of'Predicate".]

[Post-Tokyo: Nico provided the above proposesblutions.]

96. Vectoxbool> is not acontainer

Section: 23.2.5[lib.vector.bool] Status:[Opef Submitter: AFNOR Date: 7 Oct1998

vector<bool> is not a container as its reference and pointer types are not references and pointers.
Also it forces everyone to have a space optimization instead of a@peed

Seealso: 99-0008 == N1185 Vector<bool> is Nonconforming, Forces Optimiz&iuice.
Proposedresolution:

[In Santa Cruz the LWG felt that this was NdDéfect.]

[In Dublin many present felt that failure to meet Container requirements was a defect. There was disagreement as to
whether or not the optimization requirements constitutddfact.]

[The LWG looked at the following resolutions in some detail:

* Not ADefect.

* Add a note explaining that vector<bool> does not meet Conta@tgrirements.

* Removeector<bool>.

* Add a new category of container requirements which vector<bool> woeit.

* Renamerector<bool>.
No alternative had strong, wide-spread, support and every alternative had at least one "over my dead body"
response.
There was also mention of a transition scheme something like (1) add vector_bool and deprecate vector<bool> in
the next standard. (2) Remove vector<bool> in the followstagdard.]

[Modifying container requirements to permit returning proxies (thus allowing container requirements conforming
vector<bool>) was alsaliscussed.]

[It was also noted that there is a partial but ugly workaround in that vector<bool> may be further specialized with
a customeaellocator.]

[Kona: Herb Sutter presented his paper J16/99-0035==WG21/N1211, vector<bool>: More Problems, Better
Solutions. Much discussion of a two step approach: a) deprecate, b) provide replacement under a new name. LWG
straw vote on that: 1-favor, 11-could live with, 2-over my dead body. This resolution was mentioned in the LWG
report to the full committee, where several additional committee members indicated over-my-dgaubitog.]

-10 -

C++ Standard Library Active Issues List

[Tokyo: Not discussed by the full LWG; no one claimed new insights and so time was more productively spent on
other issues. In private discussions it was asserted that requirements for any solution include 1) Increasing the full
committee’s understanding of the problem, and 2) providing compiler vendors, authors, teachers, and of course
users with specific suggestions as to how to apply the evesalugibn.]

98. Input iterator requirements are badly written
Section: 24.1.1[lib.input.iterators] Status:[Opeh Submitter: AFNOR Date: 7 Oct1998
Table 72 in 24.1.1 specifies semantics*fer+ of:
{ T tmp = *r; ++r; return tmp; }
This does not work for pointers and over constraimmdementors.
Proposedresolution:
Add for *r++: 8To call the copy constructor for the type T is allowed butetptired.S
[Dublin: Pete Becker will attempt improveebrding.]

[Tokyo: The essence of the issue seems to have escaped. Pete will email Valentin to try to itlcapture

109. Missingbinders for non-const sequencelements
Section: 20.3.6[lib.binders] Status:[Ready Submitter: Bjarne StroustruDate: 7 Oct1998

There are no versions of binders that apply to non-const elements of a sequence. This makes examples like
for_each() using bind2nd() on page 521 of "The C++ Programming Language (3rd)" non-conforming. Suitable
versions of the binders need todwded.

Further discussion fromico:
What is probably meant here is shown in the follovargmple:

class Elem {
public:
void print (int i) const { }
void modify (inti) { }
%

int main()

{

vector<Elem> coll(2);
for_each (coll.begin(), coll.end(), bind2nd(mem_fun_ref(&Elem::print),42)); // OK
for_each (coll.begin(), coll.end(), bind2nd(mem_fun_ref(&Elem::modify),42)); // ERROR

}

The error results from the fact that bind2nd() passes its first argument (the argument of the sequence) as constant
reference. See the following typidaiplementation:

-11 -

C++ Standard Library Active Issues List

template <class Operation>
class binder2nd
: public unary_function<typename Operation::first_argument_type,
typename Operation::result_type> {
protected:
Operation op;
typename Operation::second_argument_type value;
public:
binder2nd(const Operation& o,
const typename Operation::second_argument_type& v)
: op(0), value(v) {}

typename Operation::result_type
operator()(const typename Operation::first_argument_type& x) const {
return op(x, value);

}
h

The solution is to overload operator () of bind2nd for non-conatguniments:

template <class Operation>
class binder2nd
: public unary_function<typename Operation::first_argument_type,
typename Operation::result_type> {
protected:
Operation op;
typename Operation::second_argument_type value;
public:
binder2nd(const Operation& o,
const typename Operation::second_argument_type& v)
: op(0), value(v) {}

typename Operation::result_type
operator()(const typename Operation::first_argument_type& x) const {
return op(x, value);

}

typename Operation::result_type
operator()(typename Operation::first_argument_type& x) const {
return op(x, value);

}
h

Proposedresolution:
In 20.3.6.1 in the declaration of binderater:

typename Operation::result_type
operator()(const typename Operation::second_argument_type& x)

insert:

typename Operation::result_type
operator()(typename Operation::second_argument_type& X)

In 20.3.6.3 in the declaration of binder2aiter:

-12 -

const;

const;

C++ Standard Library Active Issues List

typename Operation::result_type
operator()(const typename Operation::first_argument_type& x) const;

insert:

typename Operation::result_type
operator()(typename Operation::first_argument_type& x) const;

[Kona: The LWG discussed this at some length.It was agreed that this is a mistake in the design, but there was no
consensus on whether it was a defect in the Standard. Straw vote: NAD - 5. Accept proposed resolution - 3. Leave
open -6.]

[Copenhagen: It was generally agreed that this was a defect. Strap poll: NAD - 0. Accept proposed resolution - 10.
Leave open 1]

117.basic_ostream uses nonexistenhum_put memberfunctions
Section: 27.6.2.5.7lib.ostream.inserters.arithmeti§tatus:[Ready Submitter: Matt AusternDate: 20 Nov1998

Theeffectsclause for numeric inserters says that insertion of a wglugose type is eithdrool , short ,
unsigned short ,int ,unsigned int ,long ,unsigned long ,float ,double ,long double , or
const void* , is delegated taum_put , and that insertion is performed as if through the following code
fragment:

bool failed = use_facet<
num_put<charT,ostreambuf_iterator<charT traits> >
>(getloc()).put(*this, *this, fill(), val). failed();

This doesn’t work, becauseim_put<> ::put is only overloaded for the typbeol , long , unsigned long ,

double ,long double , andconst void* . That is, the code fragment in the standard is incorrect (it is
diagnosed as ambiguous at compile time) for the tgped , unsigned short ,int ,unsigned int ,and
float

We must either add new member functionedm_put , or else change the descriptiorostream so that it only
calls functions that are actually there. | prefer the latter.

Proposedresolution:
Replace 27.6.2.5.2, paragraph 1 with the following:

The classes num_get<> and num_put<> halodi#ledependent numeric formatting and parsing. These inserter
functions use the imbued locale value to perform numeric formatting. When val is of type bool, long, unsigned
long, double, long double, or const void*, the formatting conversion occurs as if it performed the following
codefragment:

bool failed = use_facet<
num_put<charT,ostreambuf_iterator<charT traits> >
>(getloc()).put(*this, *this, fill(), val). failed();

When val is of type short the formatting conversion occurs as if it performed the followinfragaent:

-13-

C++ Standard Library Active Issues List

ios_base::fmtflags baseflags = ios_base::flags() & ios_base::basefield;
bool failed = use_facet<
num_put<charT,ostreambuf_iterator<charT traits> >
>(getloc()).put(*this, *this, fill(),
baseflags == ios_base::oct || baseflags == ios_base::hex
? static_cast<long>(static_cast<unsigned short>(val))
. static_cast<long>(val)). failed();

When val is of type int the formatting conversion occurs as if it performed the followindragdeent:

ios_base::fmtflags baseflags = ios_base::flags() & ios_base::basefield;
bool failed = use_facet<
num_put<charT,ostreambuf_iterator<charT traits> >
>(getloc()).put(*this, *this, fill(),
baseflags == ios_base::oct || baseflags == ios_base::hex
? static_cast<long>(static_cast<unsigned int>(val))
: static_cast<long>(val)). failed();

When val is of type unsigned short or unsigned int the formatting conversion occurs as if it performed the
following codefragment:

bool failed = use_facet<
num_put<charT,ostreambuf_iterator<charT traits> >
>(getloc()).put(*this, *this, fill(), static_cast<unsigned long>(val)).
failed();

When val is of type float the formatting conversion occurs as if it performed the followindragdeent:

bool failed = use_facet<
num_put<charT,ostreambuf_iterator<charT traits> >
>(getloc()).put(*this, *this, fill(), static_cast<double>(val)).
failed();

[post-Toronto: This differs from the previous proposed resolution; PJP provided the new wording. The differences
are in signed short and imutput.]

Rationale:

The original proposed resolution was to cast int and short to long, unsigned int and unsigned short to unsigned long,
and float to double, thus ensuring that we don’t try to use nonexistent num_put<> member functions. The current
proposed resolution is more complicated, but gives more expected results for hex and octal output of signed short
and signed int. (On a system with 16-bit short, for example, printing short(-1) in hex format shoulxfig)d

120. Canan implementor addspecializations?
Section: 17.4.3.1[lib.reserved.names$tatus:[Open Submitter: Judy WardDate: 15 Dec1998
Section 17.4.3.1 says:

It is undefined for a C++ program to add declarations or definitions to namespace std or namespaces within
namespace std unless otherwise specified. A program may add template specializations for any standard library
template to namespace std. Such a specialization (complete or partial) of a standard library template results in
undefined behavior unless the declaration depends on a user-defined name of external linkage and unless the
specialization meets the standard library requirements for the original template...

-14 -

C++ Standard Library Active Issues List

This implies that it is ok for library users to add specializations, but not implementors. A user program can actually
detect this, for example, the following manual instantiation will not compile if the implementor has made
ctype<wchar_t> a specialization:

#include <locale>
#include <wchar.h>

template class std::ctype<wchar_t>; // can’t be specialization
Lib-7047 Matt Austerrcomments:

The status quo is unclear, and probably contradictory. This issue applies both to explicit instantiations and to
specializations, since it is not permitted to provide both a specialization and an exgihditiation.

The specialization issue is actually more serious than the instantagon

In Copenhagen, core working group decided on a proposed resolution to core issue 259. Under the proposed
resolution, it will be legal for a translation unit to contain both a specialization and an explicit instantiation of the
same template, provided that the specialization comes first. In such a case, the explicit instantiation will be ignored.
Further discussion of library issue 120 assumes that the core 259 resolutionagidibed.

Proposedresolution:
Option1.
Append to 17.4.3.1 paragraph 1:

A program may explicitly instantiate any templates in the standard library only if the declaration depends
on a user-defined name of external linkage and the instantiation meets the standard library requirements
for the original template.

Option?2.

In light of the resolution to core issue 259, no normative changes in the library clauses are necessary. Add the
following non-normative note to the end of 17.4.3.1 paragtaph

[Note: A program may explicitly instantiate standard library templates, even when an explicit instantiation
does not depend on a user-defined nareadnotd

[Copenhagen: LWG discussed three options. (A) Users may not explicitly instantiate standard library templates,
except on user-defined types. Consequence: library implementors may freely specialize or instantiate templates. (B)
It is implementation defined whether users may explicitly instantiate standard library templates on non-user-defined
types. Consequence: library implementors may freely specialize or instantiate templates, but must document the
templates they have explicitly instantiated. (C) Users may explicitly instantiate any standard library template.
Consequence: library implementors may freely specialize templates, but may not explicitly instantiate them. This is
a serious burden for implementors; one way they can manage it is by defining the standard template as a wrapper,
and putting all of the real work in an internal helper class/functjon.

[Straw poll (first number is favor, second is strongly oppose): A-4,0; B -0, 9; C -9, 1. Proposed resolution 1,
above, is option A. (It is the original proposed resolution.) Proposed resolution 2, above, is option C. Because there
was no support for option B, no wordingpisvided.]

-15 -

C++ Standard Library Active Issues List

123. Shouldvalarray helper arrays fill functions be const?

Section: 26.3.5.4lib.slice.arr fill], 26.3.7.4lib.gslice.array.fill| 26.3.8.4lib.mask.array fill} 26.3.9.4
[lib.indirect.array.fill] Status:[Open Submitter: Judy WardDate: 15 Dec 1998

One of the operator= in the valarray helper arrays is const and one is not. For example, look at slice_array. This
operator= in Section 26.3.5.2 is const:

void operator=(const valarray<T>&) const;
but this one in Section 26.3.5.4 is not:

void operator=(const T&);
The description of the semantics for these two functions is similar.
Proposedresolution:

Make theoperator=(const T&) versions of slice_array, gslice_array, indirect_array, and mask camay
member functions.

[Dublin: Pete Becker spoke to Daveed Vandevoorde about this and will work on a progsaeation.]

[Tokyo: Discussed together with the AFNOR paper 00-0023/N1246. The current helper slices now violate language
rules due to a core language change (but most compilers don’t check, so the violation has previously gone
undetected). Major surgery is being asked for in this and other valarray proposals (seé7Ratienale), and a

complete design review is needed before making piecemeal changes. Robert Klarer will work on formulating the
issues.]

167. Improper use oftraits_type::length()
Section: 27.6.2.5.4lib.ostream.inserters.characteStatus:[Review Submitter: Dietmar Kiihl Date: 20 Jul1999

Paragraph 4 states that the length is determined wraitgy:length(s) . Unfortunately, this function is not
defined for example if the character typsvishar_t and the type of ischar const* . Similar problems exist
if the character type ishar and the type of is eithersigned char const* orunsigned char const*

Proposedresolution:
Change 27.6.2.5.4 paragrapfrdm:

Effects: Behaves like an formatted inserter (as described in lib.ostream.formatted.regmts) of out. After a sentry
object is constructed it inserts characters. The number of characters starting at s to be inserted is
traits::length(s). Padding is determined as described in lib.facet.num.put.virtuals. The traits::length(s) characters
starting at s are widened using out.widen (lib.basic.ios.members). The widened characters and any required
padding are inserted into out. Caliith(0).

to:

Effects: Behaves like an formatted inserter (as described in lib.ostream.formatted.regmts) of out. After a sentry
object is constructed it inserts characters. The number len of characters starting at s to béinserted

- traits::length((const char*)s) if the second argument is of type chast*
- char_traits<char>::length(s) if the second argument is of type const char*, const signed char*, or const
unsigned char* and and charT is cbér.

-16 -

C++ Standard Library Active Issues List

Padding is determined as described in lib.facet.num.put.virtuals. The len characters starting at s are widened
using out.widen (lib.basic.ios.members). The widened characters and any required padding are inserted into out.
Callswidth(0).

[Kona: It is clear to the LWG there is a defect here. Dietmar will supply spaafiding.]
[Post-Tokyo: Dietmar supplied the abowerding.]

[Toronto: The original proposed resolution involved char_traits<signed char> and char_traits<unsigned char>.
There was strong opposition to requiring that library implementors provide those specializatibias_dfaits.]

[Copenhagen: This still isn't quite right: proposed resolution text got garbled when the signed char/unsigned char
specializations were removed. Dietmar will provide revisedding.]

179. Comparisonof const_iterators to iterators doesn’twork
Section: 23.1[lib.container.requirementsptatus:[Review Submitter: Judy WardDate: 2 Jul1998
Currently the following will not compile on two well-known standard librianplementations:

#include <set>
using namespace std;

void f(const set<int> &s)

{

set<int>::iterator i;
if (i==s.end()); // s.end() returns a const_iterator

}

The reason this doesn’t compile is because operator==was implemented as a member function of the nested classes
set:iterator and set::const_iterator, and there is no conversion from const_iterator to iterator. Surprisingly, (s.end()
== i) does work, though, because of the conversion from iteratomnst_iterator.

| don’t see a requirement anywhere in the standard that this must work. Should there be one? If so, | think the
requirement would need to be added to the tables in section 24.1.1. I'm not sure about the wording. If this
requirement existed in the standard, | would think that implementors would have to make the comparison operators
non-membefunctions.

This issues was also raised on comp.std.c++ by Darin Adler. The examplevgsen

bool check_equal(std::deque<int>::iterator i,
std::deque<int>::const_iterator ci)

{

return i == ci;

}

Comment from JohRotter:
In case nobody has noticed, accepting it will break reverse_iterator.
The fix is to make the comparison operators templated on two types.

template <class Iteratorl, class Iterator2>
bool operator== (reverse_iterator<Iteratorl> const& x,
reverse_iterator<Iterator2> const& y);

-17 -

C++ Standard Library Active Issues List

Obviously: return x.base() == y.base();
Currently, no reverse_iterator to const_reverse_iterator compares are valid.

BTW, | think the issue is in support of bad code. Compares should be between two iterators of the same type.
All std::algorithms require the begin and end iterators to be of the same type.

Proposedresolution:
In section 23.1 after paragraptadd:

It is possible to mixterator s andconst_iterator s in iterator comparison and iterator difference
operations.

[Post-Tokyo: Judy supplied the above wording at the request aftti]

[post-Toronto: Judy supplied a new proposed resolution. The old version did not include the words "and iterator
difference".]

[Copenhagen: There was some concern that "it is possible to mix" might be too informal. Howard and Dave will
provide new wording, which will involve a list of expressions that are guaranteed/&didhg

Rationale:

The LWG believes it is clear that the above wording applies only to the nesteXtyyazator and
X::const_iterator , WhereX is a container. There is no requirement Xiateverse_iterator and
X::const_reverse_iterator can be mixed. If mixing them is considered important, that's a separate issue.
(Issug280)

182. Ambiguousreferences tcsize t

Section: 17[lib.library] Status:[Ready Submitter: Al StevensDate: 15 Aug1999

Many references teize_t throughout the document omit thiel:: namespacaqualification.
For example, 17.4.3.4 paragraph

< operator new(size_t)

< operator new(size_t, const std::nothrow_t&)
< operator new[](size_t)

< operator new[](size_t, const std::nothrow_t&)

Proposedresolution:

In 17.4.3.4 paragraph Beplace:

- operator new(size t)

- operator new(size_t, const std::nothrow_t&)

- operator new[](size_t)

- operator new[](size_t, const std::nothrow_t&)

by:

- operator new(std::size_t)

- operator new(std::size_t, const std::nothrow_t&)
- operator new[](std::size_t)

- operator new[](std::size_t, const std::nothrow_t&)

-18 -

C++ Standard Library Active Issues List

In [lib.allocator.requirements] 20.1.5, paragraphefpiace:

The typedef members pointer, const_pointer, size_type, and difference_type are required to be T*, T const*,
size_t, and ptrdiff_trespectively.

by:

The typedef members pointer, const_pointer, size_type, and difference_type are required to be T*, T const?*,
std::size_t, and std::ptrdiff_tespectively.

In [lib.allocator.members] 20.4.1.1, paragraphs 3 andfface:
3 Notes: Uses ::operator new(sizg1§.4.1).

6 Note: the storage is obtained by calling ::operator new(size_t), but it is unspecified when or how often this
function is called. The use of hint is unspecified, but intended as an aid to locality if an implementation so
desires.

by:
3 Notes: Uses ::operator new(std::siz€18.4.1).

6 Note: the storage is obtained by calling ::operator new(std::size_t), but it is unspecified when or how often
this function is called. The use of hint is unspecified, but intended as an aid to locality if an implementation so
desires.

In [lib.char.traits.require] 21.1.1, paragraphdplace:

In Table 37, X denotes a Traits class defining types and functions for the character container type CharT; c and
d denote values of type CharT; p and q denote values of type const CharT*; s denotes a value of type CharT*;
n, i and j denote values of type size t; e and f denote values of type X::int_type; pos denotes a value of type
X::pos_type; and state denotes a value of ¥p&tate type.

by:

In Table 37, X denotes a Traits class defining types and functions for the character container type CharT; ¢ and
d denote values of type CharT; p and g denote values of type const CharT*; s denotes a value of type CharT*;
n, i and j denote values of type std::size_t; e and f denote values of type X::int_type; pos denotes a value of type
X::pos_type; and state denotes a value of ¥p&tate type.

In [lib.char.traits.require] 21.1.1, table 37: replace the return type of X::length(p): "size'sttbgize t".

In [lib.std.iterator.tags] 24.3.3, paragraptréplace:
typedef ptrdiff_difference_type;

by:
typedef std::ptrdiff_difference_type;

In [lib.locale.ctype] 22.2.1.1 put namespace std { ...} around the declaration of template <class chactypeass
In [lib.iterator.traits] 24.3.1, paragraph 2 put namespace std { ...} around the declafation

template<class Iterator> striigrator_traits

template<class T> struigerator_traits<T*>

template<class T> struct iterator_traits<carst

Rationale:

The LWG believes correcting names lgige t andptrdiff t tostd::size t andstd::ptrdiff_t
to be essentially editorial. There there can’t be another size t or ptrdiff_t meant anyway because, according to
17.4.3.1.4

-19 -

C++ Standard Library Active Issues List

For each type T from the Standard C library, the types ::T and std::T are reserved to the implementation and,
when defined, ::T shall be identicaldt::T.

The issue is treated as a Defect Report to make explicit the Project Editor’s authority to metkentes
[Post-Tokyo: Nico Josuttis provided the above wording at the request of\t&e]

[Toronto: This is tangentially related to is§g89 but only tangentially: the intent of this issue is to address use of
the namesize_t in contexts outside of namespace std, such as in the descriptiopes&tor new. The
proposed changes should be reviewed to make sure thegraget.]

[pre-Copenhagen: Nico has reviewed the changes and believes themotodmt.]

187. iter_swapunderspecified
Section: 25.2.2[lib.alg.swap] Status:[Open Submitter: Andrew Koenig Date: 14 Aug1999

The description of iter_swap in 25.2.2 paragraph 7,says that it “exchanges the values” of the objects to which two
iteratorsrefer.

What it doesn’t say is whether it does so using swap or using the assignment operator andstopstor.

This question is an important one to answer, because swap is specialized to work efficiently for stanaiarts.
Forexample:

vector<int> v1, v2;
iter_swap(&vl, &v2);

Is this call to iter_swap equivalent to calling swap(vl, v2)? Or is it equivtalent

{

vector<int> temp = v1,
vl =v2;

V2 = temp;

}

The first alternative is O(1); the secondi).
A LWG member, Dave Abrahamspmments:
Not an objection necessarily, but | want to point out the cost oféhatrement:
iter_swap(list<T>::iterator, list<T>::iterator)

can currently be specialized to be more efficient than iter_swap(T*,T*) for many T (by using splicing). Your
proposal would make that optimizatidiegal.

[Kona: The LWG notes the original need for iter_swap was proxy iterators which are no pmrgetted.]
Proposedresolution:
Change the effect clause of iter_swap in 25.2.2 paragré&pm?

Exchanges the values pointed to by the two iterators &.and

to

-20 -

C++ Standard Library Active Issues List

swap(*a, *b) .

[post-Toronto: The LWG is concerned about possible overspecification: there may be cases, such as Dave
Abrahams’s example above, and such as vector<bool>’s iterators, where it makes more sense for iter_swap to do
something other than swap. If performance is a concern, it may be better to have explicit complexity requirements
than to say how iter_swap shouldibglemented.]

197. max_size(underspecified

Section: 20.1.5[lib.allocator.requirementsP3.1[lib.container.requirementsptatus:[Opern Submitter: Andy
Sawyer Date: 21 Oct1999

Must the value returned by max_size() be unchanged from call to call?
Must the value returned from max_size() be meaningful?
Possible meanings identified in lib-6827:

1) The largest container the implementation can support given "best case" conditions - i.e. assume the run-time
platform is "configured to the max", and no overhead from the program itself. This may possibly be determined at
the point the library is written, but certainly no later than contjite.

2) The largest container the program could create, given "best case" conditions - i.e. same platform assumptions as
(1), but take into account any overhead for executing the program itself. (or, roughly
"storage=storage-sizeof(program)"). This does NOT include any resource allocated by the program. This may (or
may not) be determinable at comgilae.

3) The largest container the current execution of the program could create, given knowledge of the actual run-time
platform, but again, not taking into account any currently allocated resource. This is probably best determined at
programstart-up.

4) The largest container the current execution program could create at the point max_size() is called (or more
correctly at the point max_size() returns :-), given it's current environment (i.e. taking into account the actual
currently available resources). This, obviously, has to be determined dynamically each time max_size() is called.

Proposedresolution:

Change 20.1.5 table 32 max_size() wordiogn:
the largest value that can meaningfully be passkdatiocate
to:
the value of the largest constant expression (5.19) that could ever meaningfully be passkactie

Change 23.1 table 65 max_size() wordiram:
size() of the largest possildentainer.
to:
the value of the largest constant expression (5.19) that could ever meaningfully be retrreaziefy.

[Kona: The LWG informally discussed this and asked Andy Sawyer to suligstiar
[Tokyo: The LWG believes (1) above is the intendedning.]

[Post-Tokyo: Beman Dawes supplied the above resolution at the request of the LWG. 21.3.3 was not changed
because it references max_size() in 23.1. The term "compile-time" was avoided because it is not defined anywhere in
the standard (even though it is used several places in the libiauges).]

[Copenhagen: Exactly whatax_size means is still unclear. It may have a different meaning as a container
member function than as an allocator member function. For the latter, it is probably best thought of as an
architectural limit. Nathan will provide newording.]

-21 -

C++ Standard Library Active Issues List

198. Validity of pointers and references unspecified after iterator
destruction

Section: 24.1[lib.iterator.requirementsBtatus:[Reviewy Submitter: Beman DawesDate: 3 Nov1999
Is a pointer or reference obtained from an iterator still valid after destructionitdrtter?
Is a pointer or reference obtained from an iterator still valid after the value of the ithrantges?

#include <iostream>
#include <vector>
#include <iterator>

int main()

{
typedef std::vector<int> vec_t;
vec_tv;
v.push_back(1);

/l'Is a pointer or reference obtained from an iterator still
/l valid after destruction of the iterator?

int * p = &*v.begin();

std::cout << *p << \n’; // OK?

/l'Is a pointer or reference obtained from an iterator still
/I valid after the value of the iterator changes?
vec_t:iterator iter(v.begin());

p = &*iter++;

std::cout << *p << \n’; // OK?

return O;

}

The standard doesn’t appear to directly address these questions. The standard needs to be clarified. At least two
real-world cases have been reported where library implementors wasted considerable effort because of the lack of
clarity in the standard. The question is important because requiring pointers and references to remain valid has the
effect for practical purposes of prohibiting iterators from pointing to cached rather than actual elements of
containers.

The standard itself assumes that pointers and references obtained from an iterator are still valid after iterator
destruction or change. The definition of reverse_iterator::operator*(), 24.4.1.3.3 , which returns a reference, defines
effects:

Iterator tmp = current;
return *--tmp;

The definition of reverse_iterator::operator->(), 24.4.1.3.4 , which returns a pointer, eéfeots
return &(operator*());

Because the standard itself assumes pointers and references remain valid after iterator destruction or change, the
standard should say so explicitly. This will also reduce the chance of user code breaking unexpectedly when porting
to a different standard libraignplementation.

-22 -

C++ Standard Library Active Issues List

Proposedresolution:
Add a new paragraph to 24.1

Destruction of an iterator may invalidate pointers and references previously obtained fribenettoat
Replace paragraph 1 of 24.4.1.@igh:

Effects:

this->tmp = current;
--this->tmp;
return *this->tmp;

[Note: This operation must use an auxiliary member variable, rather than a temporary variable, to avoid
returning a reference that persists beyond the lifetime of its associated iterator. (See 24.1 .) The name of this
member variable is shown for exposition orkendnotg

[Tokyo: The LWG reformulated the question purely in terms of iterators. The answer to the question is "no, pointers
and references don’t remain valid after iterator destruction." PJP explained that implementors use considerable
care to avoid such ephemeral pointers and references. Several LWG members said that they thought that the
standard did not actually specify the lifetime of pointers and references obtained from iterators, except possibly
inputiterators.]

[Post-Tokyo: The issue has been reformulated purely in teriterators.]

[Pre-Toronto: Steve Cleary pointed out the no-invalidation assumption by reverse_iterator. The issue and proposed
resolution was reformulated yet again to reflect tiiality.]

[Copenhagen: Andy Koenig pointed out that it is possible to rewrite reverse_iterator so that it no longer makes this
assumption. However, this issue is related to iR If we decide it is intentional thafn] may return by value
instead of reference whenis a Random Access lterator, then other changes in reverse_iterator wétchesary.]

200. Forward iterator requirements don’t allow constantiterators
Section: 24.1.3[lib.forward.iterators] Status:[Operh Submitter: Matt AusternDate: 19 Nov1999

In table 74, the return type of the expresgianis given asl&, whereT is the iterator’s value type. For constant
iterators, however, this is wrong. ("Value type" is never defined very precisely, but it is clear that the value type of,
say,std::list<int>::const_iterator is supposed to bat , notconst int .)

Proposedresolution:
In table 74, change threturn type column for*a from"T&" to "T&if X is mutable, otherwiseonst T&".

[Tokyo: The LWG believes this is the tip of a larger iceberg; there are multiple const problems with the STL portion
of the library and that these should be addressed as a single package. Note tHeGdmeealready been
declared NAD Future for that vergason.]

201. Numericlimits terminology wrong

Section: 18.2.1[lib.limits] Status:[Opern Submitter: Stephen CleanDate: 21 Dec1999

-23-

C++ Standard Library Active Issues List

In some places in this section, the terms "fundamental types" and "scalar types" are used when the term "arithmetic
types" is intended. The current usage is incorrect because void is a fundamental type and pointers are scalar types,
neither of which should have specializationsiaferic_limits.

Proposedresolution:
Change 18.2 [lib.support.limits] pardrbm:

The headers <limits>, <climits>, and <cfloat> supply characteristics of implementation-dependent fundamental
types(3.9.1).

to:

The headers <limits>, <climits>, and <cfloat> supply characteristics of implementation-dependent arithmetic
types(3.9.1).

Change 18.2.1 [lib.limits] parafiom:

The numeric_limits component provides a C++ program with information about various properties of the
implementation’s representation of the fundametytags.

to:

The numeric_limits component provides a C++ program with information about various properties of the
implementation’s representation of the arithmstjmes.

Change 18.2.1 [lib.limits] parafeom:

Specializations shall be provided for each fundamental type. .
to:

Specializations shall be provided for each arithmetic type. .
Change 18.2.1 [lib.limits] parafdom:

Non-fundamental standard types. .
to:

Non-arithmetic standard types. .
Change 18.2.1.1 [lib.numeric.limits] pardrém:

The member is_specialized makes it possible to distinguish between fundamental types, which have
specializations, and non-scalar types, whicimato

to:

The member is_specialized makes it possible to distinguish between arithmetic types, which have
specializations, and non-arithmetic types, whiclndb

[post-Toronto: The opinion of the LWG is that the wording in the standard, as well as the wording of the proposed
resolution, is flawed. The term "arithmetic types" is well defined in C and C++, and it is not clear that the term is
being used correctly. It is also not clear that the term "implementation dependent” has any useful meaning in this
context. The biggest problem is that numeric_limits seems to be intended both for built-in types and for user-defined
types, and the standard doesn’t make it clear how numeric_limits applies to each of those cases. A wholesale review
of numeric_limits is needed. A paper wouldNmcome.]

-24 -

C++ Standard Library Active Issues List

202. unique()effects unclear when predicate not an equivalencelation
Section: 25.2.8[lib.alg.unique] Status:[Open Submitter: Andrew Koenig Date: 13 Jar2000

What should unique() do if you give it a predicate that is not an equivalence relation? There are at least two
plausibleanswers:

1. You can't, because 25.2.8 says that it it "eliminates all but the first element from every consecutive group of
equal elements..." and it wouldn’t make sense to interpret "equal” as meaning anything but an equivalence
relation. [It also doesn’'t make sense to interpret "equal" as meaning ==, because then there would never be any
sense in giving a predicate as an argumeal.at

2. The word "equal" should be interpreted to mean whatever the predicate says, even if it is not an equivalence
relation (and in particular, even if it is rioansitive).

The example that raised this question is ftdsenet:

intfl={1,3,7,1,2}
int* z = unique(f, f+5, greater<int>());

If one blindly applies the definition using the predicate greater<int>, and ignore the word "equgit:you

Eliminates all but the first element from every consecutive group of elements referred to by the iterator i in the
range [first, last) for which *i > *(i 1).

The first surprise is the order of the comparison. If we wanted to allow for the predicate not being an equivalence
relation, then we should surely compare elements the other way: pred(*(i - 1), *i). If we do that, then the description
would seem to say: "Break the sequence into subsequences whose elements are in strictly increasing order, and keep
only the first element of each subsequence". So the result would be 1, 1, 2. If we take the description at its word, it
would seem to call for strictly DEcreasing order, in which case the result should be 2, 3, 7,

In fact, the SGI implementation of unique() does neither: It yields7, 3,

Proposedresolution:
Options:
1. Impose an explicit requirement that the predicate be an equivaddatien.

2. Drop the word "equal” from the description to make it clear that the intent is to compare pairs of adjacent
elements, and change pred(*i, *(i - 1)) to pred(*(i -iL),

3. Change the effects:

Effects: Eliminates all but the first element e from every consecutive group of elements referred to by the
iterator i in the range [first, last) for which the following corresponding conditions hold: e == *j or
pred(e,*) = false.

A LWG member, Nico Josuttispomments:

First, | agree that the current wording is simply wrong. However, to follow all [known] current implementations |
propose [option Above].

[Tokyo: The issue was discussed at length without reaching consensus. Straw vote: Option 1 - preferred by 2
people. Option 2 - preferred by 0 people. Option 3 - preferred by 3 people. Many abstégntions.

-25-

C++ Standard Library Active Issues List

[Copenhagen: There was some support for all options. The option with the least support was 1 (one person in
favor), and the option with the most support was 2 (seven in favor). One person was strongly opposed to option 1,
and one person was strongly opposed to the variation on option 2 in which the order of arguments would remain

pred(*i, *(i - 1)).]

225. std::algorithms use of other unqualifiedalgorithms
Section: 17.4.4.3lib.global.functions] Status:[Opern Submitter: Dave AbrahamsDate: 01 Apr2000

Are algorithms in std:: allowed to use other algorithms without qualification, so functions in user namespaces might
be found through Koenilpokup?

For example, a popular standard library implementation includes this implementattdnuiique:

namespace std {
template <class _Forwardlter>
_Forwardlter unique(_Forwardlter __ first, Forwarditer __last) {
__first = adjacent_find(__first, __last);
return unique_copy(__first, _last, _ first);
}
}

Imagine two users on opposite sides of town, each using unique on his own sequences bounded by my _iterators .
Userl looks at his standard library implementation and says, "I know how to implement a more efficient
unique_copy for my_iterators", amdites:

namespace userl {
class my_iterator;
/I faster version for my_iterator
my_iterator unique_copy(my_iterator, my_iterator, my_iterator);

}

userl::unique_copy() is selected by Koenig lookup, astbaded.
User2 has other needs, amdtes:

namespace user2 {
class my_iterator;
/I Returns true iff *c is a unique copy of *a and *b.
bool unique_copy(my_iterator a, my_iterator b, my_iterator c);

}

User2 is shocked to find later that his fully-qualified use of std::unique(user2::my_iterator, user2::my _iterator,
user2::my_iterator) fails to compile (if he’s lucky). Looking in the standard, he sees the following Effects clause for
unique():

Effects: Eliminates all but the first element from every consecutive group of equal elements referred to by the
iterator i in the range [first, last) for which the following corresponding conditions hold: *i == *(i - 1) or
pred(*i, *(i - 1)) !="false

The standard gives user2 absolutely no reason to think he can interfere with std::unique by defining names in
namespace user2. His standard library has been built with the template export feature, so he is unable to inspect the
implementation. Userl eventually compiles his code with another compiler, and his version of unique_copy silently
stops being called. Eventually, he realizes that he was depending on an implementation detail of his library and had
no right to expect his unique_copy() to be caffedtably.

-26 -

C++ Standard Library Active Issues List

On the face of it, and given above scenario, it may seem obvious that the implementation of unique() shown is
non-conforming because it uses unique_copy() rather than ::std::unique_copy(). Most standard library
implementations, however, seem to disagree withnihiion.

[Tokyo: Steve Adamczyk from the core working group indicates that "std::" is sufficient; leading "::" qualification
is not required because any namespace qualification is sufficient to suppress liokunjm]

Proposedresolution:
Add a paragraph and a note at the end of 17.4.4.3

Unless otherwise specified, no global or non-member function in the standard library shall use a function from
another namespace which is found throagfument-dependent narwkup(3.4.2).

[Note: the phrase "unless otherwise specified" is intended to allow Koenig lookup in cases like that of
ostream_iterators:
Effects:

*out_stream <walue;
if(delim !'= 0) *out_stream <<elim;
return(*this);

--endnote]

[Tokyo: The LWG agrees that this is a defect in the standard, but is as yet unsure if the proposed resolution is the
best solution. Furthermore, the LWG believes that the same problem of unqualified library names applies to
wording in the standard itself, and has opened i28accordingly. Any resolution of issg@gshould be

coordinated with the resolution of isqp2d]

[Toronto: The LWG is not sure if this is a defect in the standard. Most LWG members believe that an
implementation oftd::unique like the one quoted in this issue is already illegal, since, under certain
circumstances, its semantics are not those specified in the standard. The standard’s desctipttpreofdoes not
say that overloadingdjacent_find should have angffect.]

226. Usersupplied specializations or overloads of namespace std function
templates

Section: 17.4.3.1[lib.reserved.names$tatus:[Opern Submitter: Dave AbrahamsDate: 01 Apr2000
The issuesire:

1. How can a 3rd party library implementor (lib1) write a version of a standard algorithm which is specialized to
work with his own clastemplate?

2. How can another library implementor (lib2) write a generic algorithm which will take advantage of the
specialized algorithm itib1?

This appears to be the only viable answer under current langulage

namespace libl

/[arbitrary-precision numbers using T as a basic unit
template <class T>
class big_num {//...

h

-27 -

C++ Standard Library Active Issues List

/I defining this in namespace std is illegal (it would be an
/I overload), so we hope users will rely on Koenig lookup
template <class T>
void swap(big_int<T>&, big_int<T>&);

}

#include <algorithm>
namespace lib2
{
template <class T>
void generic_sort(T* start, T* end)

{

/I using-declaration required so we can work on built-in types
using std::swap;
/I use Koenig lookup to find specialized algorithm if available
swap(*x, *y);
}
}

This answer has some drawbacks. First of all, it makes writing lib2 difficult and somewhat slippery. The

implementor needs to remember to write the using-declaration, or generic_sort will fail to compile when T is a
built-in type. The second drawback is that the use of this style in lib2 effectively "reserves" names in any namespace
which defines types which may eventually be used with lib2. This may seem innocuous at first when applied to
names like swap, but consider more ambiguous names like unique_copy() instead. It is easy to imagine the user
wanting to define these names differently in his own namespace. A definition with semantics incompatible with the
standard library could cause serious problems (seel228ue

Why, you may ask, can't we just partially specialize std::swap()? It's because the language doesn't allow for partial
specialization of function templates. If yawite:

namespace std
{

template <class T>

void swap(libl::big_int<T>&, libl::big_int<T>&);
}

You have just overloaded std::swap, which is illegal under the current language rules. On the other hand, the
following full specialization idegal:

namespace std
{

template <>

void swap(libl::other_typeg&, libl::other_type&);
}

This issue reflects concerns raised by the "Namespace issue with specialized swap" thread on
comp.lang.c++.moderated. A similar set of concerns was earlier raised on the boost.org mailing list and the
ACCU-general mailing list. Also see library reflector messafyestd-lib-7354.

Proposedresolution:

[Tokyo: Summary, "There is no conforming way to extend std::swap for user defined templates." The LWG agrees
that there is a problem. Would like more information before proceeding. This may be a core issue. Core issue 229
has been opened to discuss the core aspects of this problem. It was also noted that submissions regarding this issue
have been received from several sources, but too late to be integrated into the isgues list.

-28 -

C++ Standard Library Active Issues List

[Post-Tokyo: A paper with several proposed resolutions, J16/00-0029==WG21/N1252, "Shades of namespace std
functions " by Alan Griffiths, is in the Post-Tokyo mailing. It should be considered a partieftiag

[Toronto: Dave Abrahams and Peter Dimov have proposed a resolution that involves core changes: it would add
partial specialization of function template. The Core Working Group is reluctant to add partial specialization of
function templates. It is viewed as a large change, CWG believes that proposal presented leaves some syntactic
issues unanswered; if the CWG does add partial specialization of function templates, it wishes to develop its own
proposal. The LWG continues to believe that there is a serious problem: there is no good way for users to force the
library to use user specializations of generic standard library functions, and in certain cases (e.g. transcendental
functions called byalarray = andcomplex) this is important. Koenig lookup isn’'t adequate, since hames within

the library must be qualified witkstd (see issue 225), specialization doesn’t work (we don’t have partial
specialization of function templates), and users aren’t permitted to add overloads within namesgpace std.

[Copenhagen: Discussed at length, with no consensus. Relevant papers in the pre-Copenhagen mailing: N1289,
N1295, N1296. Discussion focused on four options. (1) Relax restrictions on overloads within namespace std. (2)
Mandate that the standard library use unqualified callssfwap and possibly other functions. (3) Introduce helper
class templates fawap and possibly other functions. (4) Introduce partial specialization of function templates.
Every option had both support and opposition. Straw poll (first number is support, second is strongly opposed): (1)
6,4;(2)6,7,(3) 3,8, (4) 4]

228. Incorrect specification of "... _byname"facets
Section: 22.2[lib.locale.categoriesStatus:[Ready Submitter: Dietmar Kiihl Date: 20 Apr2000

The sections 22.2.1.2 ,22.2.1.4,22.2.1.6,22.2.3.2,22.2.4.2,22.25.4,22.2.6.4 , and 22.2.7.2 overspecify the
definitions of the "..._byname" classes by listing a bunch of virtual functions. At the same time, no semantics of

these functions are defined. Real implementations do not define these functions because the functional part of the
facets is actually implemented in the corresponding base classes and the constructor of the "..._byname" version just
provides suitable date used by these implementations. For example, the 'numpunct’ methods just return values from
a struct. The base class uses a statically initialized struct while the derived version reads the contents of this struct
from a table. However, no virtual function is definednumpunct_byname’.

For most classes this does not impose a problem but specifically for 'ctype’ it does: The specialization for
‘ctype_byname<char>’ is required because otherwise the semantics would change due to the virtual functions
defined in the general version for 'ctype_byname’: In 'ctype<char>’ the method 'do_is()’ is not virtual but it is made
virtual in both 'ctype<cT>" and 'ctype_byname<cT>'. Thus, a class derived from 'ctype_byname<char>’ can tell
whether this class is specialized or not under the current specification: Without the specialization, 'do_is()’ is virtual
while with specialization it is natirtual.

Proposedresolution:
Change section 22.2.1.2 (lib.locale.ctype.bynambgtmme:

namespace std {
template <class charT>
class ctype_byname : public ctype<charT> {
public:
typedef ctype<charT>::mask mask;
explicit ctype_byname(const char*, size_t refs = 0);
protected:
~ctype_byname(); /I virtual

}

-29-

C++ Standard Library Active Issues List

Change section 22.2.1.6 (lib.locale.codecvt.bynamiegtome:

namespace std {
template <class internT, class externT, class stateT>
class codecvt_byname : public codecvt<internT, externT, stateT> {
public:
explicit codecvt_byname(const char*, size_t refs = 0);
protected:
~codecvt_byname(); I virtual
h
}

Change section 22.2.3.2 (lib.locale.numpunct.bynamiegdcome:

namespace std {
template <class charT>
class numpunct_byname : public numpunct<charT> {
/I this class is specialized for char and wechar_t.
public:
typedef charT char_type;
typedef basic_string<charT> string_type;
explicit numpunct_byname(const char*, size_t refs = 0);
protected:
~numpunct_byname(); /I virtual
h
}

Change section 22.2.4.2 (lib.locale.collate.bynambgtome:

namespace std {
template <class charT>
class collate_byname : public collate<charT> {
public:
typedef basic_string<charT> string_type;
explicit collate_byname(const char*, size_t refs = 0);
protected:
~collate_byname(); /I virtual
3
}

Change section 22.2.5.2 (lib.locale.time.get.bynambgtome:

namespace std {

template <class charT, class Inputlterator = istreambuf_iterator<charT> >
class time_get_byname : public time_get<charT, Inputlterator> {
public:

typedef time_base::dateorder dateorder;

typedef Inputlterator iter_type

explicit time_get_byname(const char*, size_t refs = 0);
protected:
~time_get_byname(); /I virtual
2
}

-30-

C++ Standard Library Active Issues List

Change section 22.2.5.4 (lib.locale.time.put.bynambgtome:

namespace std {
template <class charT, class Outputlterator = ostreambuf_iterator<charT> >
class time_put_byname : public time_put<charT, Outputlterator>

{

public:
typedef charT char_type;
typedef Outputlterator iter_type;

explicit time_put_byname(const char*, size_t refs = 0);
protected:
~time_put_byname(); /I virtual
3
}Il

Change section 22.2.6.4 (lib.locale.moneypunct.bynanedome:

namespace std {
template <class charT, bool Intl = false>
class moneypunct_byname : public moneypunct<charT, Intl> {
public:
typedef money_base::pattern pattern;
typedef basic_string<charT> string_type;

explicit moneypunct_byname(const char*, size_t refs = 0);
protected:
~moneypunct_byname(); /I virtual
3
}

Change section 22.2.7.2 (lib.locale.messages.bynarhegtone:

namespace std {
template <class charT>
class messages_byname : public messages<charT> {
public:
typedef messages_base::catalog catalog;
typedef basic_string<charT> string_type;

explicit messages_byname(const char*, size_t refs = 0);
protected:
~messages_byname(); /I virtual
3
}

Remove section 22.2.1.4 completely (because in this case only those members are defined to be virtual which are
defined to be virtual ifctype<cT>’.)

[Post-Tokyo: Dietmar Kihl submitted this issue at the request of the LWG to solve the underlying problems raised
by issuel38]

[Copenhagen: proposed resolution was revised slightly, to remove three last virtual functions from
messages_byname .]

-31-

C++ Standard Library Active Issues List

229. Ungualifiedreferences of other libraryentities
Section:17.4.1.1]lib.contents] Status:[Opern Submitter: Steve Clamagéate: 19 Apr2000

Throughout the library chapters, the descriptions of library entities refer to other library entities without necessarily
qualifying thenames.

For example, section 25.2.2 "Swap" describes the effect of swap_ranges in terms of the unqualified name "swap".
This section could reasonably be interpreted to mean that the library must be implemented so as to do a lookup of
the unqualified name "swap", allowing users to override any ::std::swap function when Koenigdppkes.

Although it would have been best to use explicit qualification with "::std::" throughout, too many lines in the
standard would have to be adjusted to make that change in a Te€uoritggéndum.

Issugl83 which addresses qualificationsifze_t , is a special case tfis.
Proposedresolution:
To section 17.4.1.1 "Library contents" Add the followpeayagraph:

Whenever a name x defined in the standard library is mentioned, the name x is assumed to be fully qualified as
::std::x, unless explicitly described otherwise. For example, if the Effects section for library function F is
described as calling library function G, the function ::std::@ésnt.

[Post-Tokyo: Steve Clamage submitted this issue at the request of the LWG to solve a problem in the standard itself
similar to the problem within implementations of library identified by iR Any resolution of issy#2§should
be coordinated with the resolution of tigsue.]

[post-Toronto: Howard is undecided about whether it is appropriate for all standard library function names

referred to in other standard library functions to be explicitly qualifiedtioly: it is common advice that users

should define global functions that operate on their class in the same namespace as the class, and this requires
argument-dependent lookup if those functions are intended to be called by library code. Several LWG members are
concerned that valarray appears to require argument-dependent lookup, but that the wording may not be clear
enough to fall under "unless explicitly descrilmterwise".]

230. Assignablespecified without also specifyingCopyConstructible
Section: 17[lib.library] Status:[Ready Submitter: Beman DawesDate: 26 Apr2000

Issue227identified an instance (std::swap) where Assignable was specified without also specifying
CopyConstructible. The LWG asked that the standard be searched to determine if the same defettewistzd.

There are a number of places (see proposed resolution below) where Assignable is specified without also specifying
CopyConstructible. There are also several cases where both are specified. For example, 26.4.1

Proposedresolution:

In 23.1 table 65 for value_type: change "T is Assignable” to "T is CopyConstructibfessigthable"

In 23.1.2 table 69 X::key_type; change "Key is Assignable" to "Key is CopyConstructibfessigmable"
In 24.1.2 paragraph thange:

A class or a built-in type X satisfies the requirements of an output iterator if X is an Assignable type (23.1) and
also the following expressions are valid, as shown in Takile

-32-

C++ Standard Library Active Issues List

to:

A class or a built-in type X satisfies the requirements of an output iterator if X is a CopyConstructible (20.1.3)
and Assignable type (23.1) and also the following expressions are valid, as shown if3Table

[Post-Tokyo: Beman Dawes submitted this issue at the request of the LWG. He asks that the 25.2.4 and 25.2.5
changes be studied carefully, as it is not clear that CopyConstructible is really a requirement and may be
overspecification.]

Rationale:

The original proposed resolution also included changes to input iterator, fill, and replace. The LWG believes that
those changes are not necessary. The LWG considered some blanket statement, where an Assignable type was also
required to be Copy Constructible, but decided against this because fill and replace really don’t require the Copy
Constructibleproperty.

231. Precisionin iostream?

Section: 22.2.2.2.7lib.facet.num.put.virtualsStatus:[Review Submitter: James Kanze, Stephen Clamddate:
25 Apr2000

What is the following program supposediatput?

#include <iostream>

int
main()
{
std::cout.setf(std::ios::scientific , std::ios::floatfield) ;
std::cout.precision(0) ;
std::cout << 1.23 <<'\n’;
return O ;

}

From my C experience, | would expect "1e+00"; this is vehiatf("%.0e" , 1.23); does. G++ outputs
"1.000000e+00".

The only indication | can find in the standard is 22.2.2.2.2/11, where it says "For conversion from a floating-point
type, if (flags & fixed) != 0 or if str.precision() > 0, then str.precision() is specified in the conversion specification."
This is an obvious error, however, fixed is not a mask for a field, but a value that a multi-bit field may take -- the
results of and’ing fmtflags with ios::fixed are not defined, at least not if ios::scientific has been set. G++'s behavior
corresponds to what might happen if you do use (flags & fixed) != 0 with a typical implementation (floatfield ==

<< something, fixed == 1 << something, and scientific == Zemething).

Presumably, the intent is either (flags & floatfield) != 0, or (flags & floatfield) == fixed; the first gives something
more or less like the effect of precision in a printf floating point conversion. Only more or less, of course. In order to
implement printf formatting correctly, you must know whether the precision was explicitly set or not. Say by
initializing it to -1, instead of 6, and stating that for floating point conversions, if precision < -1, 6 will be used, for
fixed point, if precision < -1, 1 will be used, etc. Plus, of course, if precision == 0 and flags & floatfield == 0, 1
should be = used. But it probably isn’'t necessary to emulate all of the anomailiegfo).

Proposedresolution:

In 22.2.2.2.2 , paragraph 11, changdfldgs & fixed) != 0" to "if (flags & floatfield) ==
fixed || (flags & floatfield) == scientific

-33-

C++ Standard Library Active Issues List

Rationale:

The floatfield determines whether numbers are formatted as if with %f, %e, or %dfixtthe bit is set, it's %f, if
scientific it's %e, and if both bits are set, or neither, ¥6s.

Turning to the C standard, a precision of 0 is meaningful for %f and %e, but not for %g: for %g, precision 0 is taken
to be the same as precisibn

The proposed resolution has the effect that the output of the above program'té-be".

232. "depends"poorly defined in17.4.3.1
Section: 17.4.3.1[lib.reserved.namesptatus:[Ready Submitter: Peter DimovDate: 18 Apr2000

17.4.3.1/1 uses the term "depends" to limit the set of allowed specializations of standard templates to those that
"depend on a user-defined name of extelinkhge."

This term, however, is not adequately defined, making it possible to construct a specialization that is, | believe,
technically legal according to 17.4.3.1/1, but that specializes a standard template for a built-in typ&rguch as

The following code demonstrates th@blem:
#include <algorithm>

template<class T> struct X

{
typedef T type;

3

namespace std

{
template<> void swap(::X<int>::type& i, ::X<int>::type& j);
}

Proposedresolution:
Change "user-defined name" to "user-defithygue".
Rationale:

This terminology is used in section 2.5.2 and 4.1 Thef C++ Programmind-anguage It disallows the example in

the issue, since the underlying type itself is not user-defined. The only possible problem | can see is for non-type
templates, but there’s no possible way for a user to come up with a specialization for bitset, for example, that might
not have already been specialized byithelementor?

[Toronto: this may be related to is§u2q]

[post-Toronto: Judy provided the above proposed resolutiorratimhale.]

233. Insertion hints in associativecontainers
Section: 23.1.2[lib.associative.regmtsptatus:[Review Submitter: Andrew KoenigDate: 30 Apr2000
If mmis a multimap ang is an iterator into the multimap, themm.insert(p, X) insertsx intommwith p as a

hint as to where it should go. Table 69 claims that the execution time is amortized constant if the insert winds up
taking place adjacent @ but does not say when, if ever, this is guaranteed to happen. All it saygiidtahint

-34-

C++ Standard Library Active Issues List

as to where tinsert.

The question is whether there is any guarantee about the relationship bet@vekthe insertion point, and, if so,
what itis.

| believe the present state is that there is no guarantee: The user capsapgdiyhe implementation is allowed to
disregard ientirely.

Proposedresolution:

General Idea (Andrew Koenig): t is inserted at the point closest to (the point immediately ahead of) p. That would
give the user a way of controlling the order in which elements appear that have equal keys. Doing so would be
particularly easy in two cases that | suspectaremon:

mm.insert(mm.begin(), t); // inserts as first element of set of equal keys
mm.insert(mm.end(), t); // inserts as last element of set of equal keys

These examples would allow t to be inserted at the beginning and end, respectively, of the set of elements with the
same key as t.

assertion/note/pre/postcondition in tabf
Change:

iterator p is a hint pointing to where the insert should stataoch.
To:

if t is inserted, p is used as follows: insert t right before p if possible; otherwise, if p is equal to a.end(), or if the
key value of t is greater than the key value of *p, t is inserted just before a.lowerbound(the key value of t);
otherwise, t is inserted right before a.upperbound(the key vah)e of

complexity:
Change:

right afterp
To:
right beforep

Thusmaking:
assertion/note/pre/postcondition:

inserts t if and only if there is no element with key equivalent to the key of t in containers with unique keys;
always inserts t in containers with equivalent keys. always returns the iterator pointing to the element with key
equivalent to the key of t. if t is inserted, p is used as follows: insert t right before p if possible; otherwise, if p
is equal to a.end(), or if the key value of t is greater than the key value of *p, t is inserted just before
a.lowerbound(the key value of t); otherwise, t is inserted right before a.upperbound(the key value of t).
NON-NORMATIVE FOOTNOTE: | This gives the user a way of controlling the order | in which elements
appear that have equal keys. Doing this is | particularly easy in two common cases:

| mm.insert(mm.begin(), t); // inserts as first element of set of equal keys
| mm.insert(mm.end(), t); // inserts as last element of set of equal keys

END-FOOTNOTE

-35-

C++ Standard Library Active Issues List

complexity:
logarithmic in general, but amortized constant if t is inserted right bpfore

[Toronto: there was general agreement that this is a real defect: when inserting an element x into a multiset that
already contains several copies of x, there is no way to know whether the hint will be used. There was some support
for an alternative resolution: we check on both sides of the hint (both before and after, in that order). If either is the
correct location, the hint is used; otherwise it is not. This would be different from the original proposed resolution,
because in the proposed resolution the hint will be used even if it is very far from the insertion point. JC van Winkel
supplied precise wording for botiptions.]

[Copenhagen: the LWG looked at both options, and preferred the original. This preference is contingent on seeing a
reference implementation showing that it is possible to implement this requirement withoueftisenty.]

235. Nospecification of default ctor forreverse_iterator
Section: 24.4.1.1[lib.reverse.iterator]Status:[Ready Submitter: Dietmar Kiihl Date: 24 Apr2000

The declaration ofeverse_iterator lists a default constructor. However, no specification is given what this
constructor shouldo.

Proposedresolution:
In section 24.4.1.3.1 add the followipgragraph:
reverse_iterator()

Default initializescurrent . Iterator operations applied to the resulting iterator have defined behavior if and
only if the corresponding operations are defined on a default constructed iteratorlt#rigtoe

[pre-Copenhagen: Dietmar provide wording for proposesolution.]

238. Contradictory results of stringbufinitialization.
Section: 27.7.1.1lib.stringbuf.cons] Status:[Ready Submitter: Dietmar Kiihl Date: 11 May2000

In 27.7.1.1 paragraph 4 the results of calling the constructor of 'basic_stringbuf’ are sastr(p+re str .
This is fine that far but consider thisde:

std::basic_stringbuf<char> sbuf("hello, world", std::ios_base::openmode(0));
std::cout << """ << shuf.str() << "\n";

Paragraph 3 of 27.7.1.1 basically says that in this case neither the output sequence nor the input sequence is
initialized and paragraph 2 of 27.7.1.2 basically saysstn@t either returns the input or the output sequence.
None of them is initialized, ie. both are empty, in which case the returrstrQm is defined to be
basic_string<cT>()

However, probably only test cases in some testsuites will detetptbidem®...
Proposedresolution:
Remove 27.7.1.1 paragragh

Rationale:

-36 -

C++ Standard Library Active Issues List

We could fix 27.7.1.1 paragraph 4, but there would be no point. If we fixed it, it would say just the same thing as
text that's already in thetandard.

239. Complexityof unique() and/or unique_copyncorrect
Section: 25.2.8[lib.alg.unique] Status:[Open Submitter: Angelika LangerDate: May 152000

The complexity of unique and unique_copy are inconsistent with each other and inconsistent with the
implementations. The standasplecifies:

for unique():

-3- Complexity: If the range (last - first) is not empty, exactly (last - first) - 1 applications of the corresponding
predicate, otherwise no applications of phedicate.

for unique_copy():
-7- Complexity: Exactly last - first applications of the correspongiaglicate.

The implementations do it the other way round: unique() applies the predicate last-first times and unique_copy()
applies it last-first-1imes.

As both algorithms use the predicate for pair-wise comparison of sequence elements | don't see a justification for
unique_copy() applying the predicate last-first times, especially since it is not specified to which pair in the
sequence the predicate is applietite.

Proposedresolution:
Change both complexity sections in 25.@8
Complexity: Exactly last - first - 1 applications of the correspongieglicate.

[Toronto: This is related to iss{@)3 We can't specifunique ’'s complexity until we decide whanique is
supposed too.]

240. Complexityof adjacent_find() ismeaningless
Section: 25.1.5[lib.alg.adjacent.find]Status:[Reviewy Submitter: Angelika LangerDate: May 152000
The complexity section of adjacent_finddisfective:

template <class Forwardlterator>
Forwardlterator adjacent_find(Forwardlterator first, Forwardlterator last
BinaryPredicate pred);

-1- Returns: The first iterator i such that both i and i + 1 are in the range [first, last) for which the following
corresponding conditions hold: *i == *(i + 1), pred(*i, *(i + 1)) != false. Returns last if no such iterator is
found.

-2- Complexity: Exactly find(first, last, value) - first applications of the corresporpiigdjcate.

In the Complexity section, it is not defined what "value" is supposed to mean. My best guess is that "value" means
an object for which one of the conditions pred(*i,value) or pred(value,*) is true, where i is the iterator defined in the
Returns section. However, the value type of the input sequence need not be equality-comparable and for this reason
the term find(first, last, value) - first meaningless.

-37 -

C++ Standard Library Active Issues List

A term such as find_if(first, last, bind2nd(pred,*i)) - first or find_if(first, last, bind1st(pred,*i)) - first might come

closer to the intended specification. Binders can only be applied to function objects that have the function call
operator declared const, which is not required of predicates because they can have non-const data members. For this
reason, a specification using a binder could only be an "apétification.

Proposedresolution:
Change the complexity section in 25.105

For a nonempty range, exacthyn((i - first)+1, (last - first)- 1) applications of the
corresponding predicate, whers adjacent_find 's returnvalue.

[Copenhagen: the original resolution specified an upper bound. The LWG preferred acaxacl

241. Doesunique_copy() require CopyConstructible andAssignable?
Section: 25.2.8[lib.alg.unique] Status:[Ready Submitter: Angelika LangerDate: May 152000

Some popular implementations of unique_copy() create temporary copies of values in the input sequence, at least if
the input iterator is a pointer. Such an implementation is built on the assumption that the value type is
CopyConstructible andssignable.

It is common practice in the standard that algorithms explicitly specify any additional requirements that they impose
on any of the types used by the algorithm. An example of an algorithm that creates temporary copies and correctly
specifies the additional requirements is accumulate(), 26.4.1

Since the specifications of unique() and unique_copy() do not require CopyConstructible and Assignable of the
Inputlterator’s value type the above mentioned implementations are not standard-compliant. | cannot judge whether
this is a defect in the standard or a defect irirtiidementations.

Proposedresolution:
In 25.2.8change:

-4- Requires: The ranges [first, last) and [result, result+(last-first)) shalvedap.
to:

-4- Requires: The ranges [first, last) and [result, result+(last-first)) shall not overlap. The expression *result =
*first is valid.

Rationale:

Creating temporary copies is unavoidable, since the arguments may be input iterators; this implies that the value
type must be copy constructible. However, we don’t need to say this explicitly; it's already implied by table 72 in
24.1.1. We don'’t precisely want to say that the input iterator’s valueltypeast be assignable, because we never

quite use that property. We assign through the output iterator. The output iterator might have a different value type,
or no value type; it might not u3és assignment operator. If it's astream_iterator , for example, then we'll

useT’s operator<< but not its assignmemterator.

242. Sideeffects of functionobjects

Section: 25.2.3[lib.alg.transform] 26.4[lib.numeric.ops] Status:[Ready Submitter: Angelika LangerDate: May
152000

-38 -

C++ Standard Library Active Issues List

The algorithms transform(), accumulate(), inner_product(), partial_sum(), and adjacent_difference() require that the
function object supplied to them shall not have any sffits.

The standard defines a side effect inds9

-7- Accessing an object designated by a volatile Ivalue (basic.lval), modifying an object, calling a library 1/0
function, or calling a function that does any of those operations are all side effects, which are changes in the
state of the executiognvironment.

As a consequence, the function call operator of a function object supplied to any of the algorithms listed above
cannot modify data members, cannot invoke any function that has a side effect, and cannot even create and modify
temporary objects. It is difficult to imagine a function object that is still useful under these severe limitations. For
instance, any non-trivial transformator supplied to transform() might involve creation and modification of
temporaries, which is prohibited according to the current wording ctémelard.

On the other hand, popular implementations of these algorithms exhibit uniform and predictable behavior when
invoked with a side-effect-producing function objects. It looks like the strong requirement is not needed for efficient
implementation of thesalgorithms.

The requirement of side-effect-free function objects could be replaced by a more relaxed basic requirement (which
would hold for all function objects supplied to any algorithm in the starithaedly):

A function objects supplied to an algorithm shall not invalidate any iterator or sequence that is used by the
algorithm. Invalidation of the sequence includes destruction of the sorting order if the algorithm relies on the
sorting order (see section 25.3 - Sorting and related operftmaky.sorting]).

| can’t judge whether it is intended that the function objects supplied to transform(), accumulate(), inner_product(),
partial_sum(), or adjacent_difference() shall not modify sequence elements through derefenetoes]

It is debatable whether this issue is a defect or a change request. Since the consequences for user-supplied function
objects are drastic and limit the usefulness of the algorithms significantly | would considefatt

Proposedresolution:
Things to notice about theshanges:

1. The fully-closed ("[]" as opposed to half-closed "[)" ranges are intentional. we want to prevent side-effects
from invalidating the enderators.

2. That has the unintentional side-effect of prohibiting modification of the end element as a side-effect. This could
conceivably be significant in sornases.

3. The wording also prevents side-effects from modifying elements of the output sequence. | can’t imagine why
anyone would want to do this, but it is arguably a restriction that implementors don’t need to plessgon

4. Lifting the restrictions imposed in #2 and #3 above is possible and simple, but would requirerbige.

Change 25.2.3/fom:
-2- Requires: op and binary_op shall not have anyefféets.
to:

-2- Requires: in the ranges [firstl, last1], [first2, first2 + (lastl - firstl)] and [result, result + (last1- first1)], op
and binary_op shall neither modify elements nor invalidate iterators or subranges. [Footnote: The use of fully
closed ranges is intentional --efudtnote]

Change 25.2.3/ftom:

-39 -

C++ Standard Library Active Issues List

-2- Requires: op and binary_op shall not have any side effects.
to:

-2- Requires: op and binary_op shall not invalidate iterators or subranges, or modify elements in the ranges
[firstd, lastl], [first2, first2 + (lastl - first1)], and [result, result + (lastl - firstl)]. [Footnote: The use of fully
closed ranges is intentional --efotnote]

Change 26.4.1/ftom:

-2- Requires: T must meet the requirements of CopyConstructible (lib.copyconstructible) and Assignable
(lib.container.requirements) types. binary_op shall not causefaizs.

to:

-2- Requires: T must meet the requirements of CopyConstructible (lib.copyconstructible) and Assignable
(lib.container.requirements) types. In the range [first, last], binary_op shall neither modify elements nor
invalidate iterators or subranges. [Footnote: The use of a fully closed range is intentionfalotarte]

Change 26.4.2/ffom:

-2- Requires: T must meet the requirements of CopyConstructible (lib.copyconstructible) and Assignable
(lib.container.requirements) types. binary_opl and binary_op2 shall not caustesitie

to:

-2- Requires: T must meet the requirements of CopyConstructible (lib.copyconstructible) and Assignable
(lib.container.requirements) types. In the ranges [first, last] and [first2, first2 + (last - first)], binary_op1 and
binary_op2 shall neither modify elements nor invalidate iterators or subranges. [Footnote: The use of fully
closed ranges is intentional --efudtnote]

Change 26.4.3/#tom:
-4- Requires: binary_op is expected not to have anyesidets.
to:

-4- Requires: In the ranges [first, last] and [result, result + (last - first)], binary_op shall neither modify
elements nor invalidate iterators or subranges. [Footnote: The use of fully closed ranges is intentional --end
footnote]

Change 26.4.4/fom:
-2- Requires: binary_op shall not have any siffects.
to:

-2- Requires: In the ranges [first, last] and [result, result + (last - first)], binary_op shall neither modify
elements nor invalidate iterators or subranges. [Footnote: The use of fully closed ranges is intentional --end
footnote]

[Toronto: Dave Abrahams suppliedording.]

[Copenhagen: Proposed resolution was modified slightly. Matt added footnotes pointing out that the use of closed
ranges wasntentional.]

-40 -

C++ Standard Library Active Issues List

247.vector ,deque::insert complexity
Section: 23.2.4.3lib.vector.modifiers] Status:[Operf Submitter: Lisa Lippincott Date: 06 June2000
Paragraph 2 of 23.2.4.3 [lib.vector.modifiers] describes the complexigctdr::insert

Complexity: If first and last are forward iterators, bidirectional iterators, or random access iterators, the
complexity is linear in the number of elements in the range [first, last) plus the distance to the end of the vector.
If they are input iterators, the complexity is proportional to the number of elements in the range [first, last)
times the distance to the end of the vector.

First, this fails to address the non-iterator formmeért

Second, the complexity for input iterators misses an edge case -- it requires that an arbitrary number of elements can
be added at the end of/actor in constantime.

At the risk of strengthening the requirement, | suggrmsply

Complexity: The complexity is linear in the number of elements inserted plus the distance to the end of the
vector.

For input iterators, one may achieve this complexity by first inserting at the endvefctbe , and then using
rotate

I looked to see ifleque had a similar problem, and was surprised to finddegue places no requirement on the
complexity of inserting multiple elements (23.2.1.3 , parag8ph

Complexity: In the worst case, inserting a single element into a deque takes time linear in the minimum of the
distance from the insertion point to the beginning of the deque and the distance from the insertion point to the
end of the deque. Inserting a single element either at the beginning or end of a deque always takes constant time
and causes a single call to the copy constructor of T.

| suggest:

Complexity: The complexity is linear in the number of elements inserted plus the shorter of the distances to the
beginning and end of the deque. Inserting a single element at either the beginning or the end of a deque causes
a single call to the copy constructor of T.

Proposedresolution:

[Toronto: It's agreed that there is a defect in complexity of multi-element insert for vector and deque. For vector,
the complexity should probably be something along the lineg of N+ ¢, * distance(i, end())

However, there is some concern about whether it is reasonable to amortize away the copies that we get from a
reallocation whenever we exceed the vector's capacity. For deque, the situation is somewhat less clear. Deque is
notoriously complicated, and we may not want to impose complexity requirements that would imply any
implementation technique more complicated than a while loop whose body is a single-glseneht

250. splicinginvalidatesiterators
Section: 23.2.2.4]lib.list.ops] Status:[Ready Submitter: Brian Parker Date: 14 Jul2000
Section 23.2.2.4 [lib.list.ops] statdeat

void splice(iterator position, list<T, Allocator>& x);

-41 -

C++ Standard Library Active Issues List

invalidatesall iterators and references to kst

This is unnecessary and defeats an important feature of splice. In fact, the SGI STL guarantees that kerators to
remain valid aftesplice

Proposedresolution:
Add a footnote to 23.2.2.4 , paragréelph

[Footnote:As specified in 20.1.5 , paragraphs 4-5, the semantics described in this clause applies only to the
case where allocators compare equal. -fenthote]

In 23.2.2.4 , replace paragraplvith:

Effects: Inserts the contents of x before position and x becomes empty. Pointers and references to the moved
elements of x now refer to those same elements but as members of *this. Iterators referring to the moved
elements will continue to refer to their elements, but they now behave as iterators into *this,xot into

In 23.2.2.4 , replace paragraphvith:

Effects: Inserts an element pointed to by i from list x before position and removes the element from x. The
result is unchanged if position == i or position == ++i. Pointers and references to *i continue to refer to this
same element but as a member of *this. Iterators to *i (including i itself) continue to refer to the same element,
but now behave as iterators into *this, not ixnto

In 23.2.2.4 , replace paragraphwizh:

Requires: [first, last) is a valid range in x. The result is undefined if position is an iterator in the range [first,

last). Pointers and references to the moved elements of x now refer to those same elements but as members of
*this. Iterators referring to the moved elements will continue to refer to their elements, but they now behave as
iterators into *this, not inta.

[pre-Copenhagen: Howard providedording.]
Rationale:

The original proposed resolution said that iterators and references would remain "valid". The new proposed
resolution clarifies what that means. Note that this only applies to the case of equal allocators. From 20.1.5
paragraph 4, the behavior of list when allocators compare nonequal is outside the scogiodéng.

253. valarray helper functions are almost entirelyuseless

Section: 26.3.2.1[lib.valarray.cons] 26.3.2.Jlib.valarray.assign]Status:[Operh Submitter: Robert Klarer
Date: 31 Jul2000

This discussion is adapted from message c++std-lib-7056 posted November 11, 1999. | don't think that anyone can
reasonably claim that the problem described beldWAB.

These valarray constructors can nevecdiied:

- 42 -

C++ Standard Library Active Issues List

template <class T>

valarray<T>:.valarray(const slice_array<T> &);
template <class T>

valarray<T>::valarray(const gslice_array<T> &);
template <class T>

valarray<T>:.valarray(const mask_array<T> &);
template <class T>

valarray<T>::valarray(const indirect_array<T> &);

Similarly, these valarray assignment operators canncalbed:

template <class T>

valarray<T> valarray<T>:.operator=(const slice_array<T> &);
template <class T>

valarray<T> valarray<T>:.operator=(const gslice_array<T> &);
template <class T>

valarray<T> valarray<T>:.operator=(const mask_array<T> &);
template <class T>

valarray<T> valarray<T>:.operator=(const indirect_array<T> &);

Please consider the followirexample:

#include <valarray>
using namespace std;

int main()
{
valarray<double> val(12);
valarray<double> va2(val[slice(1,4,3)]); // line 1

}

Since the valarray val is non-const, the result of the sub-expression val[slice(1,4,3)] at line 1 is an rvalue of type
const std::slice_array<double>. This slice_array rvalue is then used to construct va2. The constructor that is used to
construct va2 is declared lilteis:

template <class T>
valarray<T>::valarray(const slice_array<T> &);

Notice the constructor’s const reference parameter. When the constructor is called, a slice_array must be bound to
this reference. The rules for binding an rvalue to a const reference are in 8.5.3, paragraph 5 (see also 13.3.3.1.4).
Specifically, paragraph 5 indicates that a second slice_array rvalue is constructed (in this case copy-constructed)
from the first one; it is this second rvalue that is bound to the reference parameter. Paragraph 5 also requires that the
constructor that is used for this purpose be callable, regardless of whether the second rvalue is elided. The
copy-constructor in this case is not callable, however, because it is private. Therefore, the compiler should report an
error.

Since slice_arrays are always rvalues, the valarray constructor that has a parameter of type const slice_array<T> &
can never be called. The same reasoning applies to the three other constructors and the four assignment operators
that are listed at the beginning of this post. Furthermore, since these functions cannot be called, the valarray helper
classes are almost entiralgeless.

Proposedresolution:

Adopt section 2 of 00-0023/N1246. Sections 1 and 5 of that paper have already been classified as "Request for
Extension”. Sections 3 and 4 are reasonable generalizations of section 2, but they do not resolve an obvious
inconsistency in thetandard.

-43-

C++ Standard Library Active Issues List

[Toronto: it is agreed that there is a defect. A full discussion, and an attempt at fixing the defect, should wait until
we can hear from valarragxperts.]

254. Exceptiontypes in clause 19 are constructed fromatd::string
Section: 19.1[lib.std.exceptions]Status:[Open Submitter: Dave AbrahamsDate: 01 Aug2000

Many of the standard exception types which implementations are required to throw are constructed with a const
std::string& parameter. Faxample:

19.1.5 Class out_of range [lib.out.of.range]
namespace std {

class out_of range : public logic_error {

public:

explicit out_of range(const string& what_arg);

h
}

1 The class out_of_range defines the type of objects thrown as excep-
tions to report an argument value not in its expected range.

out_of_range(const string& what_arg);

Effects:

Constructs an object of class out_of_range.
Postcondition:

stremp(what(), what_arg.c_str()) == 0.

There are at least two problems wiitis:

1. A program which is low on memory may end up throwing std::bad_alloc instead of out_of range because
memory runs out while constructing the exception object.

2. An obvious implementation which stores a std::string data member may end up invoking terminate() during
exception unwinding because the exception object allocates memory (or rather fails to) as itdspiethg

There may be no cure for (1) other than changing the interface to out_of_range, though one could reasonably argue
that (1) is not a defect. Personally | don't care that much if out-of-memory is reported when | only have 20 bytes

left, in the case when out_of range would have been reported. People who use exception-specifications might care a
lot, though.

There is a cure for (2), but it isn’t completely obvious. | think a note for implementors should be made in the
standard. Avoiding possible termination in this case shouldn’t be left up to chance. The cure is to use a
reference-counted "string" implementation in the exception object. | am not necessarily referring to a std::string
here; any simple reference-counting scheme for a NTBS vaaould

Further discussion, iemail:

...I'm not so concerned about (1). After all, a library implementation can add const char* constructors as an
extension, and users don¢edto avail themselves of the standard exceptions, though this is a lame position to be
forced into. FWIW, std::exception and std::bad_alloc don'’t require a temgmasiy string.

...I don’t think the fixed-size buffer is a solution to the problem, strictly speaking, because you can't satisfy the
postcondition

stremp(what(), what_arg.c_str()) == 0
For all values of what_arg (i.e. very long values). That means that the only truly conforming solution requires a
dynamicallocation.

- 44 -

C++ Standard Library Active Issues List

Proposedresolution:

[Toronto: some LWG members thought this was merely a Qol issue, but most believed that it was at least a
borderline defect. There was more support for nonnormative advice to implementors than for a naimatiec]

258. Missingallocator requirement
Section: 20.1.5[lib.allocator.requirementsptatus:[Opef Submitter: Matt Austern Date: 22 Aug2000
Fromlib-7752:

I've been assuming (and probably everyone else has been assuming) that allocator instances have a particular
property, and | don'’t think that property can be deduced from anything in 32able

| think we have to assume that allocator type conversion is a homomorphism. That is, if X1 and x2 are of type X,
where X::value_type is T, and if type Y is X::template rebind<U>::other, then Y(x1) == Y(x2) if and only if x1 ==
X2.

Further discussion: Howard Hinnant writes|ilm7757:

I think | can prove that this is not provable by Table 32. And | agree it needs to be true except for the "and only if".
If x1 !=x2, | see no reason why it can't be true that Y(x1) == Y(x2). Admittedly | can’t think of a practical instance
where this would happen, or be valuable. But | also don’t see a need to add that extra restriction. | think we only
need:

if (x1 == x2) then Y(x1) ==Y(x2)

If we decide that == on allocators is transitive, then I think | can prove the above. But | don't think == is necessarily
transitive on allocators. That

Given x1 == x2 and x2 == x3, this does not mean xk3=
Example:

x1 can deallocate pointers from: x1, x2, x3
x2 can deallocate pointers from: x1, x2, x4
x3 can deallocate pointers from: x1, x3
x4 can deallocate pointers from: x2, x4

x1 == x2, and x2 == x4, but x1 x4
Proposedresolution:

[Toronto: LWG members offered multiple opinions. One opinion is that it should not be requiretl #xat x2
impliesY(x1) == Y(x2) , and that it should not even be required tkgtl) == x1. Another opinion is that

the second line from the bottom in table 32 already implies the desired property. This issue should be considered in
light of other issues related to allocatimistances.]

259.basic_string::operator|] and constcorrectness
Section: 21.3.4]lib.string.access]Status:[Ready Submitter: Chris Newton Date: 27 Aug2000

Paraphrased from a message that Chris Newton posteahtp.std.c++:

- 45 -

C++ Standard Library Active Issues List

The standard’s description bésic_string<>::operator]] seems to violate consbrrectness.

The standard (21.3.4/1) says thatgtls < size() , returnsdata()[pos] ." The types don’t work. The return
value ofdata() isconst charT* , butoperator[] has a non-const version whose return type is
reference

Proposedresolution:

In section 21.3.4, paragraph 1, chahdata()] pos] " to "*(begin() + pos) ".

264. Associativecontainer insert(i,]) complexity requirements are
not feasible.

Section: 23.1.2[lib.associative.regmtsptatus:[Ready Submitter: John PotterDate: 07 Se2000

Table 69 requires linear time if [i, j) is sorted. Sorted is nhecessary but not sufficient. Consider inserting a sorted
range of even integers into a set<int> containing the odd integers in theasayae

Related issuel02
Proposedresolution:

In Table 69, in section 23.1.2, change the complexity clause for insertion of a range from "N log(size() + N) (N is
the distance from i to j) in general; linear if [i, j) is sorted according to value_comp()" to "N log(size() + N), where N
is the distance from i tg.

[Copenhagen: Minor fix in proposed resolution: fixed unbalanced parens in the rewisduhg.]
Rationale:

Testing for valid insertions could be less efficient than simply inserting the elements when the range is not both
sorted and between two adjacent existing elements; this could beiasQ€I

The LWG considered two other options: (a) specifying that the complexity was linear if [i, j) is sorted according to
value_comp() and between two adjacent existing elements; or (b) changing to Klog(size() + N) + (N - K) (N is the
distance from i to j and K is the number of elements which do not insert immediately after the previous element
from [i, j) including the first). The LWG felt that, since we can’t guarantee linear time complexity whenever the
range to be inserted is sorted, it's more trouble than it's worth to say that it’s linear in somecsggesial

266. bad_exception::~bad_exceptionfpissing Effectsclause
Section: 18.6.2.1[lib.bad.exception]Status:[Ready Submitter: Martin SeborDate: 24 Se2000

The synopsis for std::bad_exception lists the function ~bad_exception() but there is no description of what the
function does (the Effects clausemsssing).

Proposedresolution:

Remove the destructor from the class synopsbadfalloc (18.4.2.1)bad _cast (18.5.2)bad_typeid
(18.5.3), andad_exception (18.6.2.1).

Rationale:

- 46 -

C++ Standard Library Active Issues List

This is a general problem with the exception classes in clause 18. The proposed resolution is to remove the
destructors from the class synopses, rather than to document the destructors’ behavior, because removing them is
more consistent with how exception classes are described in tRuse

267. interaction of strstreambuf::overflow() and seekoff()
Section: D.7.1.3[depr.strstreambuf.virtualsptatus:[Ready Submitter: Martin SeborDate: 5 Oct2000

It appears that the interaction of the strstreambuf members overflow() and seekoff() can lead to undefined behavior
in cases where defined behavior could reasonably be expected. The following program demonsbalewibis

#include <strstream>

int main ()

{

std::strstreambuf sb;
sh.sputc ('c’);

sh.pubseekoff (-1, std::ios::end, std::ios::in);
return I('c’ == sb.sgetc ());

}

D.7.1.1, plinitializes strstreambuf with a call to basic_streambuf<>(), which in turn sets all pointers to 0 in 27.5.2.1,
pl.

27.5.2.2.5, p1 says that basic_streambuf<>::sputc(c) calls overflow(traits::to_int_type(c)) if a write position isn’t
available (it isn’t due to thabove).

D.7.1.3, p3 says that strstreambuf::overflow(off, ..., i0s::in) makes at least one write position available (i.e., it allows
the function to make any positive number of write positenrelable).

D.7.1.3, p13 computes newoff = seekhigh - eback(). In D.7.1, p4 we see seekhigh = epptr() ? epptr() : egptr(), or
seekhigh = epptr() in this case. newoff is then eppback().

D.7.1.4, pl14 sets gptr() so that gptr() == eback() + newoff + off, or gptr() == epptr(holds.

If strstreambuf::overflow() made exactly one write position available then gptr() will be set to just before epptr(),
and the program will return 0. Buf if the function made more than one write position available, epptr() and gptr()
will both point past pptr() and the behavior of the prograomdefined.

Proposedresolution:
Change the last sentence of D.7.1 paragrdpbmd

Otherwise, seeklow equals gbeg and seekhigh is either pend, if pend is not a null pointer, or gend.
to become

Otherwise, seeklow equals gbeg and seekhigh is either gend if 0 == pptr(), or pbase() + max where max is the
maximum value of pptr() - pbase() ever reached for this stream.

[pre-Copenhagen: Dietmar provided wording for proposed resolution.

[post-Copenhagen: Fixed a typo: proposed resolution said to fix 4.7.1, not P.7.1.

- 47 -

C++ Standard Library Active Issues List

Rationale:

Note that this proposed resolution does not require an increase in the layout of strstreambuf to maintain max: If
overflow() is implemented to make exactly one write position available, max == epptr() - pbase() always holds.
However, if overflow() makes more than one write position available, the number of additional character (or some
equivalent) has to be storedmewhere.

270. Binary search requirements overlystrict
Section: 25.3.3[lib.alg.binary.search]Status:[Review Submitter: Matt AusternDate: 18 Oct2000

Each of the four binary search algorithms (lower_bound, upper_bound, equal_range, binary_search) has a form that
allows the user to pass a comparison function object. According to 25.3, paragraph 2, that comparison function
object has to be a strict weakdering.

This requirement is slightly too strict. Suppose we are searching through a sequence containing objects of type X,
where X is some large record with an integer key. We might reasonably want to look up a record by key, in which
case we would want to write something lthés:

struct key_comp {
bool operator()(const X& X, int n) const {
return x.key() < n;
}
}

std::lower_bound(first, last, 47, key_comp());
key_comp is not a strict weak ordering, but there is no reason to prohibit itslowerinbound.

There’s no difficulty in implementing lower_bound so that it allows the use of something like key comp. (It will
probably work unless an implementor takes special pains to forbid it.) What's difficult is formulating language in
the standard to specify what kind of comparison function is acceptable. We need a notion that’s slightly more
general than that of a strict weak ordering, one that can encompass a comparison function that involves different
types. Expressing that notion maydmmplicated.

Additional questions raised at the Toromeeting:

® Do we really want to specify what ordering the implementor must use when calling the function object? The
standard gives specific expressions when describing these algorithms, but it also says that other expressions
(with different argument order) are equivalent.

e If we are specifying ordering, note that the standard uses both orderings when desqtiblngange

® Are we talking about requiring these algorithms to work properly when passed a binary function object whose
two argument types are not the same, or are we talking about requirements when they are passed a binary
function object with several overloaded versionsmérator() ?

® The definition of a strict weak ordering does not appear to give any guidance on issues of overloading; it only
discusses expressions, and all of the values in these expressions are of the same type. Some clarification would
seem to be iorder.

Additional discussion fror@openhagen:

® |t was generally agreed that there is a real defect here: if the predicate is merely required to be a Strict Weak
Ordering, then it's possible to pass in a function object with an overloaded operator(), where the version that's
actually called does something completely inappropriate. (Such as returning a random value.)

® An alternative formulation was presented in a paper distributed by David Abrahams at the meeting, "Binary
Search with Heterogeneous Comparison”, J16-01/0027 = WG21 N1313: Instead of viewing the predicate as a
Strict Weak Ordering acting on a sorted sequence, view the predicate/value pair as something that partitions a

- 48 -

C++ Standard Library Active Issues List

sequence. This is almost equivalent to saying that we should view binary search as if we are given a unary
predicate and a sequence, such that f(*p) is true for all p below a specific point and false for all p above it. The
proposed resolution is based on that alterndtirulation.

Proposedresolution:
Change 25.3 [lib.alg.sorting] paragrapfr@m:

3 For all algorithms that take Compare, there is a version that uses operator< instead. That is, comp(*i, *j) !=
false defaults to *i < *j = false. For the algorithms to work correctly, comp has to induce a strict weak ordering
on thevalues.

to:

3 For all algorithms that take Compare, there is a version that uses operator< instead. That is, comp(*i, *j) !=
false defaults to *i < *j = false. For algorithms not described in lib.alg.binary.search (25.3.3) to work correctly,
comp has to induce a strict weak ordering ornvtdaes.

Add the following paragraph after 25.3 [lib.alg.sorting] parag®&iph

-6- A sequence [start, finish) is partitioned with respect to an expression f(e) if there exists a non-negative
integer n such that for all 0 <= i < distance(start, finish), f(*(begin+i)) is true if and onlynrif i <

Change 25.3.3 [lib.alg.binary.search] paragrajiorh:

-1- All of the algorithms in this section are versions of binary search and assume that the sequence being
searched is in order according to the implied or explicit comparison function. They work on non-random access
iterators minimizing the number of comparisons, which will be logarithmic for all types of iterators. They are
especially appropriate for random access iterators, because these algorithms do a logarithmic number of steps
through the data structure. For non-random access iterators they execute a linear nsteper of

to:

-1- All of the algorithms in this section are versions of binary search and assume that the sequence being
searched is partitioned with respect to an expression formed by binding the search key to an argument of the
implied or explicit comparison function. They work on non-random access iterators minimizing the number of
comparisons, which will be logarithmic for all types of iterators. They are especially appropriate for random
access iterators, because these algorithms do a logarithmic number of steps through the data structure. For
non-random access iterators they execute a linear numsipst

Change 25.3.3.1 [lib.lower.bound] paragrapinoin:
-1- Requires: Type T is LessThanComparable (lib.lessthancomparable).
to:

-1- Requires: The elements e of [first, last) are partitioned with respect to the expression e < value or comp(e,
value)

Remove 25.3.3.1 [lib.lower.bound] paragréph
-2- Effects: Finds the first position into which value can be inserted without violating the ordering.
Change 25.3.3.2 [lib.upper.bound] paragraiotn:

-1- Requires: Type T is LessThanCompardlielessthancomparable).

- 49 -

C++ Standard Library Active Issues List

to:

-1- Requires: The elements e of [first, last) are partitioned with respect to the expression !(value < e) or
lcomp(valueg)

Remove 25.3.3.2 [lib.upper.bound] paragraph

-2- Effects: Finds the furthermost position into which value can be inserted without violatorglehieg.
Change 25.3.3.3 [lib.equal.range] paragrajtot:

-1- Requires: Type T is LessThanCompardlielessthancomparable).
to:

-1- Requires: The elements e of [first, last) are partitioned with respect to the expressions e < value and !(value
< e) or comp(e, value) and !comp(valeg,

Optionally add the following to the end of the proposed text above, which allows library implementors to make a
small optimization at the cost of slightly complexifying the standard text. The idea is that we want to ensure that the
partition point which defines the upper_bound is no earlier in the sequence than the partion point which defines the
lower_bound, so that the implementor can do one of the searchessoNgaage:

Also, for all elements e of [first, last), e < value implies !(value < e) or comp(e, value) implies lcompgyalue,
Note also that if we don’t add the above, the result of equal_range() might be anranvgdid
Change 25.3.3.3 [lib.equal.range] paragrafiito:

-2- Effects: Finds the largest subrange [i, j) such that the value can be inserted at any iterator k in it without
violating the ordering. k satisfies the corresponding conditions: !(*k < value) && !(value < *k) or comp(*k,
value) == false && comp(value, *k) =false.

to:

-2- Returns:
make_pair(lower_bound(first, last, value),
upper_bound(first, last, value))
or
make_pair(lower_bound(first, last, value, comp),
upper_bound(first, last, value, comp))

Note that the original text did not say whether the first element of the return value was the beginning or end of the
range, or something else altogether. The proposed text is both more precise and general enough to accomodate
heterogeneousomparisons.

Change 25.3.3.3 [lib.binary.search] paragraftoth:
-1- Requires: Type T is LessThanCompardlielessthancomparable).
to:

-1- Requires: The elements e of [first, last) are partitioned with respect to the expressions e < value and !(value
< e) or comp(e, value) and !comp(value, e). Also, for all elements e of [first, last), e < value implies !(value < e)
or comp(e, value) implies !comp(valus,

[Dave Abrahams provided thigording]

-50 -

C++ Standard Library Active Issues List

271. basic_iostreammissingtypedefs
Section: 27.6.1.5lib.iostreamclass]Status:[Ready Submitter: Martin SeborDate: 02 Nov2000

Class template basic_iostream has no typedefs. The typedefs it inherits from its base classes can't be used, since (for
example) basic_iostream<T>::traits_typaisbiguous.

Proposedresolution:
Add the following to basic_iostream’s class synopsis in 27.6.1.5 , immediatelpuatflar

/I types:

typedef charT char_type;
typedef typename traits::int_type int_type;
typedef typename traits::pos_type pos_type;
typedef typename traits::off_type off_type;
typedef traits traits_type;

272. Missingparentheses aroundsubexpression
Section: 27.4.4.3lib.iostate.flags] Status:[Ready Submitter: Martin SeborDate: 02 Nov2000

27.4.4.3, p4 says about the postcondition of the function: If rdbuf()!=0 then state == rdstate(); otherwise
rdstate()==state|ios_base::badbit.

The expression on the right-hand-side of the operator==() needs to be parenthesized in order for the whole
expression to ever evaluate to anythingrimn-zero.

Proposedresolution:

Add parentheses like saistate()==(state|ios_base::badbit).

273. Missingios_base qualification on members of a dependeciass
Section: 27 [lib.input.output] Status:[Ready Submitter: Martin SeborDate: 02 Nov2000

27.5.2.4.2, p4, and 27.8.1.6, p2, 27.8.1.7, p3, 27.8.1.9, p2, 27.8.1.10, p3 refer to in and/or out w/o ios_base::
qualification. That's incorrect since the names are members of a dependent base class (14.6.2 [temp.dep]) and thus
notvisible.

Proposedresolution:

Qualify the names with the name of the class of which they are membeissi.base.

274. amissing/impossible allocatorequirement
Section: 20.1.5[lib.allocator.requirementsptatus:[Review Submitter: Martin SeborDate: 02 Nov2000
| see that table 31 in 20.1.5, p3 allows T in std::allocator<T> to be of any type. But the synopsis in 20.4.1 calls for

allocator<>::address() to be overloaded on reference and const_reference, which is ill-formed for all T = const U. In
other words, this wonwork:

-51-

C++ Standard Library Active Issues List

template class std::allocator<coirgt;

The obvious solution is to disallow specializations of allocators on const types. However, while containers’ elements
are required to be assignable (which rules out specializations on const T's), | think that allocators might perhaps be
potentially useful for const values in other contexts. So if allocators are to allow const types a partial specialization
of std::allocator<const T> would probably have tqbevided.

Proposedresolution:
Change the text in row 1, column 2 of table 32 in 20.1.5tq8
any type
to
any non-const, non-volatile, non-reference type
Rationale:

Two resolutions were originally proposed: one that partially specialized std::allocator for const types, and one that
said an allocator’s value type may not be const. The LWG chose the second. The first wouldn’t be appropriate,
because allocators are intended for use by containers, and const value types don’t work in containers. Encouraging
the use of allocators with const value types would only lead to ucsdée

The original text for proposed resolution 2 was modified so that it also forbids volatile types and réjgence

275. Wrongtype in num_get:.get()overloads
Section: 22.2.2.1.1lib.facet.num.get.members$tatus:[Ready Submitter: Matt Austern Date: 02 Nov2000

In 22.2.2.1.1, we have a list of overloads for num_get<>::get(). There are eight overloads, all of which are identical
except for the last parameter. The overloads are:

long&

unsigned short&
unsigned int&
unsigned long&
short&

double&

long double&
void*&

There is a similar list, in 22.2.2.1.2, of overloads for num_get<>::do_get(). In this list, the last parameter has the
types:

long&

unsigned short&
unsigned int&
unsigned long&
float&

double&

long double&
void*&

-52 -

C++ Standard Library Active Issues List

These two lists are not identical. They should be, sijeteis supposed to cadlo_get with exactly the arguments
it wasgiven.

Proposedresolution:
In 22.2.2.1.1 change

iter_type get(iter_type in, iter_type end, ios_base& str,
ios_base::iostate& err, short& val) const;

to

iter_type get(iter_type in, iter_type end, ios_base& str,
ios_base::iostate& err, float& val) const;

276. Assignablaequirement for container value type overlystrict
Section: 23.1[lib.container.requirementsptatus:[Review Submitter: Peter DimovDate: 07 Nov2000

23.1/3 states that the objects stored in a container must be Assignable. 23.3.1 , paragraph 2, states that map satisfies
all requirements for a container, while in the same time defining value_type as pair<const Key, T> - a type that is
not Assignable.

It should be noted that there exists a valid and non-contradictory interpretation of the current text. The wording in
23.1/3 avoids mentioning value_type, referring instead to "objects stored in a container." One might argue that map
does not store objects of type map::value_type, but of map::mapped_type instead, and that the Assignable
requirement applies to map::mapped_typemap::value_type.

However, this makes map a special case (other containers store objects of type value_type) and the Assignable
requirement is needlessly restrictivegieneral.

For example, the proposed resolution of active library i$63és to make set::iterator a constant iterator; this
means that no set operations can exploit the fact that the stored objédsignable.

This is related to, but slightly broader than, closed idgde
Proposedresolution:
23.1/3: Strike the trailing part of tleentence:

, and the additional requirements of Assignable types from 23.1/3
so that itreads:

-3- The type of objects stored in these components must meet the requirements of CopyConstructible types
(lib.copyconstructible).

23.1/4: Modify to make clear that this requirement is not for all containers. Ctange

-4- Table 64 defines the Assignable requirement. Some containers require this property of the types to be stored
in the container. T is the type used to instantiate the container. t is a value of T, and u is a value of (possibly
const)T.

23.1, Table 65: in the first row, change "T is Assignable" to 'TapyConstructible”.

-B3-

C++ Standard Library Active Issues List

23.2.1/2: Add sentence for Assignable requirement. Chiange

-2- A deque satisfies all of the requirements of a container and of a reversible container (given in tables in
lib.container.requirements) and of a sequence, including the optional sequence requirements
(lib.sequence.regmts). In addition to the requirements on the stored object described in
23.1[lib.container.requirements], the stored object must also meet the requirements of Assignable. Descriptions
are provided here only for operations on deque that are not described in one of these tables or for operations
where there is additional semaritibormation.

23.2.2/2: Add Assignable requirement to specific methods of list. Change

-2- A list satisfies all of the requirements of a container and of a reversible container (given in two tables in
lib.container.requirements) and of a sequence, including most of the the optional sequence requirements
(lib.sequence.regmts). The exceptions are the operator[] and at member functions, which are not provided.
[Footnote: These member functions are only provided by containers whose iterators are random access
iterators. --- endoonote]

list does not require the stored type T to be Assignable unless the following methods are instantiated:
[Footnote: Implementors are permitted but not required to take advantage of T's Assignable properties for these
methods. -- enébonote]

list<T,Allocator>& operator=(const list<T,Allocator>& x);
template <class Inputlterator>

void assign(Inputlterator first, Inputlterator last);
void assign(size_type n, const T& t);

Descriptions are provided here only for operations on list that are not described in one of these tables or for
operations where there is additional semanfarmation.

23.2.4/2: Add sentence for Assignable requirement. Chiange

-2- A vector satisfies all of the requirements of a container and of a reversible container (given in two tables in
lib.container.requirements) and of a sequence, including most of the optional sequence requirements
(lib.sequence.regmts). The exceptions are the push_front and pop_front member functions, which are not
provided. In addition to the requirements on the stored object described in 23.1[lib.container.requirements], the
stored object must also meet the requirements of Assignable. Descriptions are provided here only for operations
on vector that are not described in one of these tables or for operations where there is additional semantic
information.

Rationale:

list, set, multiset, map, multimap are able to store non-Assignables. However, there is some concern about
list<T> : although in general there's no reason for T to be Assignable, some implementations of the member
functionsoperator= andassign do rely on that requirement. The LWG does not want to forbid such
implementations.

Note that the type stored in a standard container must still satisfy the requirements of the container’s allocator; this
rules out, for example, such types as "const int". See[&E&}#@r moredetails.

278. Whatdoes iterator validity mean?
Section: 23.2.2.4]lib.list.ops] Status:[Review Submitter: P.J. PlaugeDate: 27 Nov2000

Section 23.2.2.4 [lib.list.ops] stattsat

-54 -

C++ Standard Library Active Issues List

void splice(iterator position, list<T, Allocator>& x);
invalidatesall iterators and references to kst

But what does the C++ Standard mean by "invalidate"? You can still dereference the iterator to a spliced list
element, but you'd better not use it to delimit a range within the original list. For the latter operation, it has definitely
lost some of itwalidity.

If we accept the proposed resolution to i§8b@ then we'd better clarify that a "valid" iterator need no longer

designate an element within the same container as it once did. We then have to clarify what we mean by invalidating
a past-the-end iterator, as when a vector or string grows by reallocation. Clearly, such an iterator has a different kind
of validity. Perhaps we should introduce separate terms for the two kihsidity."

Proposedresolution:
Add the following text to the end of section 24.1 , after paragsaph

Invalidatingan iterator means modifying it such that it may have a singular value. [Footnote: This definition
applies to pointers, since pointers are iterators. The effect of dereferencing an iterator that has been invalidated
is undefined.]

[post-Copenhagen: Matt providedording.]

280. Comparisonof reverse _iterator to constreverse _iterator
Section: 24.4.1[lib.reverse.iteratorsStatus:[Opei Submitter: Steve ClearyDate: 27 Nov2000

This came from an email from Steve Cleary to Fergus in reference t{Li&$kne library working group briefly
discussed this in Toronto and believed it should be a separate issue. There was also some reservations about whether
this was a worthwhile problem fix.

Steve said: "Fixing reverse_iterator. std::reverse_iterator can (and should) be changed to preserve these additional
requirements." He also said in email that it can be done without breaking user’s code: "If you take a look at my
suggested solution, reverse_iterator doesn’'t have to take two parameters; there is no danger of breaking existing
code, except someone taking the address of one of the reverse_iterator global operator functions, and | have to doubt
if anyone has ever done thatBut, just in case they have, you can leave the old global functions in as well -- they

won't interfere with the two-template-argument functions. With that, | don’t seeahgwser code coullreak.”

Proposedresolution:
Section:24.4.1.1 add/change the followidgclarations:

A) Add a templated assignment operator, after the same manner
as the templated copy constructor, i.e.:

template < class U >
reverse_iterator < Iterator >& operator=(const reverse_iterator< U >& u);

B) Make all global functions (except the operator+) have
two template parameters instead of one, that is, for
operator ==, I=, <, >, <=, >=, - replace:

template < class Iterator >

typename reverse_iterator< Iterator >::difference_type operator-(
const reverse_iterator< Iterator >& X,
const reverse_iterator< Iterator >& y);

-B55 -

C++ Standard Library Active Issues List

with:

template < class Iteratorl, class Iterator2 >

typename reverse_iterator < Iteratorl >::difference_type operator-(
const reverse_iterator < Iteratorl > & X,
const reverse_iterator < Iterator2 > & y);

Also make the addition/changes for these signatures in 24.4.1.3

[Copenhagen: The LWG is concerned that the proposed resolution introduces new overloads. Experience shows
that introducing overloads is always risky, and that it would be inappropriate to make this change without
implementation experience. It may be desirable to provide this feature in a differet way.

281. std::min() and max() requirements overlyrestrictive
Section: 25.3.7[lib.alg.min.max] Status:[Read} Submitter: Martin SeborDate: 02 Dec2000

The requirements in 25.3.7, p1 and 4 call for T to satisfy the requiremdmssithanComparable (20.1.2)
andCopyConstructible (20.1.3). Since the functions take and return their arguments and result by const
reference, | believe théopyConstructible requirement isinnecessary.

Proposedresolution:

Remove th&CopyConstructible requirement. Specifically, replace 25.3.7 vth
-1- Requires: Type T isLessThanComparable (20.1.2).

and replace 25.3.7, pdith

-4- Requires: Type T isLessThanComparable (20.1.2).

282. Whattypes does numpunct grouping refeto?
Section: 22.2.2.2 Jlib.facet.num.put.virtuals]Status:[Oper Submitter: Howard HinnantDate: 5 Dec2000

Paragraph 16 mistakenly singles out integral types for inserting thousands_sep() characters. This conflicts with the
syntax for floating point numbers described ur2izf.3.1/2.

Proposedresolution:
Change paragraph I®m:

For integral types, punct.thousands_sep() characters are inserted into the sequence as determined by the value
returned by punct.do_grouping() using the method described in 22.2.3.1.2

To:

For arithmetic types, punct.thousands_sep() characters are inserted into the sequence as determined by the
value returned by punct.do_grouping() using the method described in 22.2.3.1.2

[Copenhagen: Opinions were divided about whether this is actually an inconsistency, but at best it seems to have
been unintentional. This is only an issue for floating-point output: The standard is unambiguous that
implementations must parse thousands_sep characters when performing floating-point. The standard is also
unambiguous that this requirement does not apply to the "C" Idcale.

-56 -

C++ Standard Library Active Issues List

[A survey of existing practice is needed; it is believed that some implementations do insert thousands_sep
characters for floating-point output and others doihg.

283. std::replace()requirement incorrect/insufficient
Section: 25.2.4[lib.alg.replace] Status:[Opei Submitter: Martin SeborDate: 15 Dec2000

The requirements in 25.2.4 , p1 tiato beAssignable (23.1) is not necessary or sufficient for either of the
algorithms. The algorithms require tisdi::iterator_traits<Forwardlterator>::value_type be
Assignable and that botlstd::iterator_traits<Forwardlterator>::value_type and be
EqualityComparable (20.1.1) with respect to ommother.

Note that a similar problem occurs in several other places in section 25 as well (e.g., 25.1.6 , or 25.2.5) so what
really needs to happen is for all those places to be identified and corrected. The proposed resolution below addresses
only 25.2.4.

Proposedresolution:
Change 25.2.4, pftom

-1- RequiresTypeT is Assignable (23.1) (and, foreplace() , EqualityComparable (20.1.2)).

to
-1- Requires:Typestd::iterator_traits<Forwardlterator>::value_type is Assignable
(23.1), the typd is convertiblgostd::iterator_traits<Forwardlterator>::value_type ,
(and, forreplace() , typesstd::iterator_traits<Forwardlterator>::value_type andT

areEqualityComparable (20.1.1) with respect to oramother).

[The LWG agrees with the general idea of the proposed resolution, but not with the specific wording. (There is no
definition in the standard of what it means for one type to be EqualityComparable to another.) Jeremy will provide
new wording, and will review clause 25 for similar issyjes.

284. unportableexample in 20.3.7p6
Section: 20.3.7[lib.function.pointer.adaptorsbtatus:[Ready Submitter: Martin SeborDate: 26 Dec2000

The example in 20.3.7 , p6 shows how to use the C library fursttiomp() with the function pointer adapter
ptr_fun() . But since it's unspecified whether the C library functions lextern "C" orextern "C++"
linkage [17.4.2.2], and since function pointers with different the language linkage specifications (7.5) are
incompatible, whether this example is well-formednspecified.

Proposedresolution:
Replace the code snippet in the followtegt
-6-[Example:
replace_if(v.begin(), v.end(), notl(bind2nd(ptr_fun(strcmp), "C")), "C++");
with

-6- [Example:

-57 -

C++ Standard Library Active Issues List

int compare(const char*, const char*);
replace_if(v.begin(), v.end(), notl(bind2nd(ptr_fun(compare), "abc")), "def");

[Copenhagen: Minor change in the proposed resolution. Since this issue deals in part with C and C++ linkage, it
was believed to be too confusing for the strings in the example to be "C" and "IC++".

285. minor editorial errors in fstream ctors
Section: 27.8.1.g]lib.ifstream.cons] Status:[Ready Submitter: Martin SeborDate: 31 Dec2000
27.8.1.6,p2,27.8.1.9, p2, and 27.8.1.12 , p2 say about the effects of each conitrifstseam.cons]

... If that function returns a null pointer, caliststate(failbit) (which may throw
ios_base::failure).

The parenthetical note doesn’t apply since the ctors cannot throw an exception due to the requirement in 27.4.4.1 ,
p3 thatexceptions() be initialized tdos_base::goodbit

Proposedresolution:

Strike the parenthetical note from the Effects clause in each of the paragraphs maiimweed

286.<cstdlib> requirements missing size_typedef
Section: 25.4[lib.alg.c.library] Status:[Ready Submitter: Judy WardDate: 30 Dec2000

The <cstdlib> header file contains prototypes for bsearch and gsort (C++ Standard section 25.4 paragraphs 3 and 4)
and other prototypes (C++ Standard section 21.4 paragraph 1 table 49) that require the typedef size_t. Yet size tis
not listed in the <cstdlib> synopsis table 78 in secziod.

Proposedresolution:
Add the type size_t to Table 78 (section 25.4) and add the type size_t <cstdlib> to Table 97Gs&ction
Rationale:

Since size_tis in <stdlib.h>, it must also beastdlib>.

288.<cerrno> requirements missing macrcelLSEQ
Section: 19.3[lib.errno] Status:[Ready Submitter: Judy WardDate: 30 Dec2000

ISO/IEC 9899:1990/Amendment1:1994 Section 4.3 States: "The list of macros defined in <errno.h> is adjusted to
include a new macrdILSEQ"

ISO/IEC 14882:1998(E) section 19.3 does not refer to the abvoeadment.
Proposedresolution:

Update Table 26 (section 19.3) "Header <cerrno> synopsis" and Table 95 (section C.2) "Standard Macros" to
includeEILSEQ.

- 58 -

C++ Standard Library Active Issues List

290. Requirementdo for_each and its functionobject
Section: 25.1.1[lib.alg.foreach] Status:[Opeih Submitter: Angelika LangerDate: 03 Jar2001

The specification of the for_each algorithm does not have a "Requires" section, which means that there are no
restrictions imposed on the function object whatsoever. In essence it means that | can provide any function object
with arbitrary side effects and | can still expect a predictable result. In particular | can expect that the function object
is applied exactly last - first times, which is promised in the "Complezégtion.

| don’t see how any implementation can give such a guarantee without imposing requirements on the function
object.

Just as an example: consider a function object that removes elements from the input sequence. In that case, what
does the complexity guarantee (applies f exactly last - first timeah?

One can argue that this is obviously a nonsensical application and a theoretical case, which unfortunately it isn’t. |
have seen programmers shooting themselves in the foot this way, and they did not understand that there are
restrictions even if the description of the algorithm does nossay

Proposedresolution:

Add a "Requires" section to section 25.1.1 similar to those proposed for transform and the numeric algorithms (see
issud242):

-2- Requires In the range ([first, last], f shall not invalidate iteratorsworanges.

[Copenhagen: The LWG agrees that a function object passed to an algorithm should not invalidate iterators in the
range that the algorithm is operating on. The LWG believes that this should be a blanket statement in Clause 25, not
just a special requirement féor_each .]

291. Underspecificationof setalgorithms
Section: 25.3.5[lib.alg.set.operationsBtatus:[Opef Submitter: Matt Austern Date: 03 Jar001

The standard library contains four algorithms that compute set operations on sortedsetngasn
set_intersection , set_difference , andset_symmetric_difference . Each of these algorithms

takes two sorted ranges as inputs, and writes the output of the appropriate set operation to an output range. The
elements in the output range aated.

The ordinary mathematical definitions are generalized so that they apply to ranges containing multiple copies of a
given element. Two elements are considered to be "the same" if, according to an ordering relation provided by the
user, neither one is less than the other. So, for example, if one input range contains five copies of an element and
another contains three, the output rangsedfunion will contain five copies, the output range of

set_intersection will contain three, the output rangesdt_difference will contain two, and the output
range ofset_symmetric_difference will containtwo.

Because two elements can be "the same" for the purposes of these set algorithms, without being identical in other
respects (consider, for example, strings under case-insensitive comparison), this raises a number of unanswered
guestions:

e If we're copying an element that's present in both of the input ranges, which one do we copy it from?

e If there aren copies of an element in the relevant input range, and the output range will contain fewer copies
(saym) which ones do we choose? The firstor the lastn, or something else?

® Are these operations stable? That is, does a run of equivalent elements appear in the output range in the same
order as as it appeared in the infarge(s)?

-59 -

C++ Standard Library Active Issues List

The standard should either answer these questions, or explicitly say that the answers are unspecified. | prefer the
former option, since, as far as | know, all existing implementations behave thevagme

Proposedresolution:

[The LWG agrees that the standard should answer these questions. Matt will pvovitiieg.]

292. effectsof a.copyfmt(a)
Section: 27.4.4.2lib.basic.ios.membersptatus:[Ready Submitter: Martin SeborDate: 05 Jar2001

The Effects clause of the member functampyfmt() in 27.4.4.2, p15 doesn’t consider the case where the
left-hand side argument is identical to the argument on the right-hand side (thiatis &rhs) . If the two
arguments are identical there is no need to copy any of the data members or call any callbacks registered with
register_callback() . Also, as Howard Hinnant points out in message c++std-lib-8149 it appears to be
incorrect to allow the object to fierase_event followed bycopyfmt _event since the callback handling the
latter event may inadvertently attempt to access memory freed fiyriner.

Proposedresolution:
Change the Effects clause in 27.4.4.2, fsaf

-15- Effects:Assigns to the member objects*tfis the corresponding member objectstg , excepthat...
to

-15- Effects:If (this == &rhs) does nothing. Otherwise assigns to the member objettisi®f the
corresponding member objectsrbé , excepthat...

294. Userdefined macros and standardheaders
Section: 17.4.3.1.1lib.macro.names]Status:[Opef Submitter: James Kanzéate: 11 Jar2001

Paragraph 2 of 17.4.3.1.1 reads: "A translation unit that includes a header shall not contain any macros that define
names declared in that header." As | read this, it would mean that the following protggat: is

#define npos 3.14
#include <sstream>

since npos is not defined in <sstream>. It is, however, defined in <string>, and it is hard to imagine an
implementation in which <sstream> didn’t includstring>.

| think that this phrase was probably formulated before it was decided that a standard header may freely include
other standard headers. The phrase would be perfectly appropriate for C, for example. In light of 17.4.4.1 paragraph
1, however, it isn't stringergnough.

Proposedresolution:

In paragraph 2 of 17.4.3.1.1 , change "A translation unit that includes a header shall not contain any macros that
define names declared in that header." to "A translation unit that includes a header shall not contain any macros that
define names declared in any standsedder."

[Copenhagen: the general idea is clearly correct, but there is concern about making sure that the two paragraphs in
17.4.3.1.1 remain consistent. Nathan will provide mewding.]

-60 -

C++ Standard Library Active Issues List

295. Isabs defined in<kcmath>?
Section: 26.5[lib.c.math] Status:[Ready Submitter: Jens MaureDate: 12 Jar2001

Table 80 lists the contents of the <cmath> header. It does rabdi§t . However, 26.5, paragraph 6, which lists
added signatures present in <cmath>, does say that several overlabsl§ ofshould be defined ircmath>.

Proposedresolution:

Add abs to Table 80. Also, remove the parenthetical list of functions "(abs(), div(), rand(), srand())" from 26.5,
paragrapt.

[Copenhagen: Modified proposed resolution so that it also gets rid of that vestigial list of functions in para§iraph

296. Missingdescriptions and requirements of pairoperators
Section: 20.2.2[lib.pairs] Status:[Review Submitter: Martin SeborDate: 14 Jar2001

The synopsis of the headautility> in 20.2 lists the complete set of equality and relational operatopsifor
but the section describing the template and the operators only despébator==() andoperator<() , and
it fails to mention any requirements on the template arguments. The remaining operators are not mealiioned at

Proposedresolution:
Add the following after 20.2.2 , paragraph

template <class T1, class T2>
bool operator!=(const pair<T1, T2>& X, const pair<Tl, T2>& y);

Requires: TypesT1 andT2 areEqualityComparable (20.1.2).
Returns: I(x == vy) .
Add the following after 20.2.2 , paragraph

template <class T1, class T2>
bool operator>(const pair<T1, T2>& X, const pair<Tl, T2>& y);

Requires: TypesT1 andT2 areLessThanComparable (20.1.2).
Returns:y < X.

template <class T1, class T2>
bool operator<=(const pair<T1, T2>& X, const pair<Tl, T2>& y);

Requires: TypesT1 andT2 areLessThanComparable (20.1.2).
Returns: Iy < X) .

template <class T1, class T2>
bool operator>=(const pair<T1, T2>& X, const pair<Tl, T2>& y);

Requires: TypesT1 andT2 areLessThanComparable (20.1.2).

-61-

C++ Standard Library Active Issues List

Returns: I(x < vy).

[post-Copenhagen: modified proposed resolution so that it does not create a new section 20.2.2.1. That would
violate ISO rules: we cannot have 20.2.2.1 unless we also2@a®e.2.]

297. const_mem_fun ¢>::argument_type should be const*
Section: 20.3.8[lib.member.pointer.adaptors$tatus:[Ready Submitter: Martin SeborDate: 6 Jan2001

The class templateonst_mem_fun_t in 20.3.8, p8 andonst_mem_funl_t in 20.3.8, p9 derive from
unary_function<T*, S>, andbinary_function<T*, A, S>, respectively. Consequently, their
argument_type , andfirst_argument_type members, respectively, are both defined tdb¢non-const).
However, their function call member operator takesr@sst T* argument. It is my opinion that

argument_type should beconst T* instead, so that one can easily refer to it in generic code. The example
below derived from existing code fails to compile due todikerepancy:

template <class ™
void foo (typename T::argument_type arg) // #1

typename T::result_type (T::*pf) (typename T::argument_type) const = //

#2
&T::operator();

}
struct X {/* ... */ h
int main 0
{

const X X;

foo<std::const_mem_fun_t<void, X> >(&x); // #3
}

#1foo() takes a plain unqualified* as an argument
#2 the type of the pointer is incompatible with the type of the member function
#3 the address of a constant being passed to a function taking a noX*const

Proposedresolution:

Replace the top portion of the definition of the class template const_mem_fun_t in[28.3.8,

template <class S, class T> class const_mem_fun_t
: public unary_function<T*, S> {

with

template <class S, class T> class const_mem_fun_t
: public unary_function< const T* S> {

Also replace the top portion of the definition of the class template const_ mem_funl ting#®.3.8,

template <class S, class T, class A> class const_mem_funl_t
: public binary_function<T*, A, S> {

with

-62 -

C++ Standard Library Active Issues List

template <class S, class T, class A> class const_mem_funl_t
: public binary_function< const T* A, S> {
Rationale:

This is simply a contradiction: ttegument_type typedef, and the argument type itself, are nostme.

298. :.operator delete[] requirementincorrect/insufficient
Section: 18.4.1.2lib.new.delete.arrayStatus:[Ready Submitter: John A. PedrettDate: 10 Jar2001

The default behavior afperator delete][] described in 18.4.1.2, p12 - namely that for non-null valysrof
the operator reclaims storage allocated by the earlier call to the dgfatdtor new[] - is not correct in all
cases. Since the specifieferator new|[] default behavior is to catiperator new (18.4.1.2, p4, p8), which
can be replaced, along witiperator delete , by the user, to implement their own memory management, the
specified default behaviaf operator delete[] must be to calbperator delete

Proposedresolution:
Change 18.4.1.2, pXfom

-12- Default behavior:
® For a null value optr , does nothing.
® Any other value optr shall be a value returned earlier by a call to the def@eltator
new[](std::size_t) . [Footnote: The value must not have been invalidated by an intervening call to
operator delete[](void*) (17.4.3.7). --- end footnote] For such a non-null valugtiof ,
reclaims storage allocated by the earlier call to the defpelator new[] .

to

-12- Default behavior: Callsoperator delete(ptr) oroperator delete(ptr ,
std::nothrow) respectively.

and expunge paragragB.

299. Incorrectreturn types for iterator dereference

Section: 24.1.4[lib.bidirectional.iterators]24.1.5[lib.random.access.iterator§tatus:[Opeih Submitter: John
Potter Date: 22 Jar2001

In section 24.1.4 , Table 75 gives the return type of *r-- as convertible to T. This is not consistent with Table 74
which gives the return type of *r++ as T&. *r++ =t is valid while *r-- = irigalid.

In section 24.1.5, Table 76 gives the return type of a[n] as convertible to T. This is not consistent with the semantics
of *(a + n) which returns T& by Table 74. *(a + n) = tis valid while a[n] =ibialid.

Discussion from the Copenhagen meeting: the first part is uncontroversial. The second part, operator[] for Random
Access lterators, requires more thought. There are reasonable arguments on both sides. Return by value from
operator[] enables some potentially useful iterators, e.g. a random access "iota iterator" (a.k.a "counting iterator" or
"int iterator"). There isn’t any obvious way to do this with return-by-reference, since the reference would be to a
temporary. On the other harrdyerse_iterator takes an arbitrary Random Access lterator as template
argument, and its operator[] returns by reference. If we decided that the return type in Table 76 was correct, we
would have to changeverse_iterator . This change would probably affect usede.

-63 -

C++ Standard Library Active Issues List

History: the contradiction betweeeaverse_iterator and the Random Access Iterator requirements has been
present from an early stage. In both the STL proposal adopted by the committee (N0527==94-0140) and the STL
technical report (HPL-95-11 (R.1), by Stepanov and Lee), the Random Access lIterator requirements say that
operator[]'s return value is "convertible to T". In NO527 reverse_iterator’'s operator[] returns by value, but in
HPL-95-11 (R.1), and in the STL implementation that HP released to the public, reverse_iterator’s operator[] returns
by reference. In 1995, the standard was amended to reflect the contents of HPL-95-11 (R.1). The original intent for
operator[] isunclear.

In the long term it may be desirable to add more fine-grained iterator requirements, so that access method and
traversal strategy can be decoupled. (See "Improved Iterator Categories and Requirements", N1297 = 01-0011, by
Jeremy Siek.) Any decisions about issue 299 should keep this possihitilgdn

Proposedresolution:
In section 24.1.4 , change the return type in table 75 from "convertible toT&:. to

In section 24.1.5 , change the return type in table 76 from "convertible tol&:. to

300. list::merge()specificationincomplete
Section: 23.2.2.4]lib.list.ops] Status:[Opeih Submitter: John PedrettDate: 23 Jar2001

The "Effects" clause for list::merge() (23.2.2.4, p23) appears to be incomplete: it doesn’t cover the case where the
argument list is identical to *this (i.e., this == &x). The requirement in the note in p24 (below) is that x be empty
after the merge which is surely unintended in taise.

Proposedresolution:
Change 23.2.2.4, p28:
Effects: If & == this, does nothing; otherwise, merges the argument list intissthe

[Copenhagen: The proposed resolution does not fix all of the problems in 23.2.2.4 , p22-25. Three different
paragraphs (23, 24, 25) describe the effectmefge . Changing p23, without changing the other two, appears to
introduce contradictions. Additionally, "merges the argument list into the list" is excessigely.]

301. basic_stringtemplate ctor effects clause omits allocatargument
Section: 21.3.1[lib.string.cons] Status:[Ready Submitter: Martin SeborDate: 27 Jar2001

The effects clause for the basic_string template ctor in 21.3.1, p15 leaves out the third argument of type Allocator. |
believe this to be mistake.

Proposedresolution:
Replace
-15- Effects: If Inputlterator is an integral type, equivaletat

basic_string(static_cast<size_type>(begin),
static_cast<value_type>(end))

with

-64 -

C++ Standard Library Active Issues List

-15- Effects: If Inputlterator is an integral type, equivaletat

basic_string(static_cast<size_type>(begin),
static_cast<value_type>(end), a)

303. Bitsetinput operator underspecified
Section: 23.3.5.3lib.bitset.operators]Status:[Ready Submitter: Matt AusternDate: 5 Feb2001

In 23.3.5.3, we are told thhitset s input operator "Extracts up ¥ (single-byte) characters froim", whereis
is a stream of typbasic_istream<charT, traits>

The standard does not say what it means to extract single byte characters from a stream whose character type,
charT , is in general not a single-byte character type. Existing implementdiftars

A reasonable solution will probably involvdden() and/omarrow() , since they are the supplied mechanism
for a single character betweehar and arbitrarcharT .

Narrowing the input characters is not the same as widening the li@raland’'l’ , because there may be some
locales in which more than one wide character maps to the narrow ché&ract®arrowing means that alternate
representations may be used for bitset input, widening means that they rbay not

Note that for numeric inpubum_get<> (22.2.2.1.2/8) compares input characters to widened version of narrow
characteliterals.

From Pete Becker, ict+std-lib-8224:

Different writing systems can have different representations for the digits that represent 0 and 1. For example,
in the Unicode representation of the Devanagari script (used in many of the Indic languages) the digit O is
0x0966, and the digit 1 is 0x0967. Calling narrow would translate those into '0’ and '1’. But Unicode also
provides the ASCII values 0x0030 and 0x0031 for for the Latin representations of '0’ and '1’, as well as code
points for the same numeric values in several other scripts (Tamil has no character for 0, but does have the
digits 1-9), and any of these values would also be narrowed to '0land

It's fairly common to intermix both native and Latin representations of numbers in a document. So | think the
rule has to be that if a wide character represents a digit whose value is 0 then the bit should be cleared; if it
represents a digit whose value is 1 then the bit should be set; otherwise throw an exception. So in a Devanagari
locale, both 0x0966 and 0x0030 would clear the bit, and both 0x0967 and 0x0031 would set it. Widen can’t do
that. It would pick one of those two values, and exclude the otteer

From Jens Maurer, ict-+std-lib-8233:

Whatever we decide, | would find it most surprising if bitset conversion worked differently from int conversion
with regard to alternate local representationsuwhbers.

Thus, | think the optionare:

® Have a new defect issue for 22.2.2.1.2/8 so that it will require the use of narrow().
® Have a defect issue for bitset() which describes clearly that widen() isisete

Proposedresolution:

Replace the first two sentences of paragrapfits:

- 65 -

C++ Standard Library Active Issues List

Extracts up tdN characters frons. Stores these characters in a temporary obfeof type
basic_string<charT, traits> | then evaluates the expressior bitset<N>(str).

Replace the third bullet item in paragrapiigh:

e the next input character is neither.widen(0) noris .widen(1) (in which case the input character is
not extracted).

Rationale:

Input forbitset should work the same way as numeric input. Usiitien does mean that alternative digit
representations will not be recognized, but this was a known consequence of thetussign

304. Must*a return an lvalue whena is an inputiterator?
Section: 24.1[lib.iterator.requirementsBtatus:[Opei) Submitter: Dave AbrahamsDate: 5 Feb2001

We all "know" that input iterators are allowed to produce values when dereferenced of which there is no other
in-memorycopy.

But: Table 72, with a careful reading, seems to imply that this can only be the case if the value_type has no members
(e.g. is a built-irtype).

The problem occurs in the followirentry:

a->m pre: (*a).m is well-defined
Equivalent to (*a).m

*a.m can be well-defined fa is not a reference type, but siragerator->() must return a pointer f@a->m
to be well-formed, it needs something to return a pototerhis seems to indicate th@ must be buffered
somewhere to make a legal infterator.

| don’t think this wasntentional.
Proposedresolution:

[Copenhagen: the two obvious possibilities are to keeppleeator-> requirement for Input Iterators, and put
in a non-normative note describing how it can be implemented with proxies, or else mooipertter->
requirement from Input Iterator to Forward Iterator. If we do the former we’ll also have to change
istreambuf_iterator , because it has naperator-> . A straw poll showed roughly equal support for the
two options.]

305. Defaultbehavior of codecvt<wchar_t, charmbstate_t>::length()
Section: 22.2.1.5.7lib.locale.codecvt.virtualsjStatus:[Review Submitter: Howard HinnantDate: 24 Jar2001
22.2.1.5/3 introduces codecvt in paith:

codecvt<wchar_t,char,mbstate _t> converts between the native character sets for tiny and wide characters.
Instantiations on mbstate_t perform conversion between encodings known to therilptargentor.

But 22.2.1.5.2/10 describes do_length in patt:

... codecvt<wchar_t, char, mbstate_t> ... return(s) the lesser of méxandend-from).

- 66 -

C++ Standard Library Active Issues List

The semantics of do_in and do_length are linked. What one does must be consistent with what the other does.
22.2.1.5/3 leads me to believe that the vendor is allowed to choose the algorithm that
codecvt<wchar_t,char,mbstate_t>::do_in performs so that it makes his customers happy on a given platform. But
22.2.1.5.2/10 explicitly says what codecvt<wchar_t,char,mbstate_t>::do_length must return. And thus indirectly
specifies the algorithm that codecvt<wchar_t,char,mbstate_t>::do_in must perform. | believe that this is not what
was intended and isdefect.

Discussion from the -lib reflector:

This proposal would have the effect of making the semantics of all of the virtual functions in

codecvt<wchar _t, char, mbstate_t> implementation specified. Is that what we want, or do we want to
mandate specific behavior for the base class virtuals and leave the implementation specified behavior for the
codecvt_byname derived class? The tradeoff is that former allows implementors to write a base class that actually
does something useful, while the latter gives users a way to get known and specified---albeit useless---behavior, and
is consistent with the way the standard handles other facets. It is not clear what the original iméantion

Nathan has suggest a compromise: a character that is a widened version of the characters in the basic execution
character set must be converted to a one-byte sequence, but there is no such requirement for characters that are not
part of the basic execution characet.

Proposedresolution:
Change 22.2.1.5.2/1om:

-10- Returns: (from_next-from) where from_next is the largest value in the range [from,from_end] such that the
sequence of values in the range [from,from_next) represents max or fewer valid complete characters of type
internT. The instantiations required in Table 51 (21.1.1.1.1), namely codecvt<wchar _t, char, mbstate_t> and
codecvt<char, char, mbstate_t>, return the lesser of maftrand end-from).

to:

-10- Returns: (from_next-from) where from_next is the largest value in the range [from,from_end] such that the
sequence of values in the range [from,from_next) represents max or fewer valid complete characters of type
internT. The instantiation codecvt<char, char, mbstate t> returns the lesser of max and (from_end-from).

[Copenhagen: straw poll was 3-1 in favor, with many abstentions. Nathan would like to see more guarantees than
are in the proposed resolution. He will discuss this issue with the other people who cangbout

306. offsetofmacro and non-PODtypes
Section: 18.1[lib.support.types]Status:[Ready Submitter: Steve Clamagéate: 21 Feb2001
Spliced together from reflector messages c++std-lib-82948#85:

18.1, paragraph 5, reads: "The maaffsetof = accepts a restricted settgpearguments in this International
Standardtypeshall be a POD structure or a POD union (clause 9). The result of applying the offsetof macro to a
field that is a static data member or a function membandefined."

For the POD requirement, it doesn’t say "no diagnostic required" or "undefined behavior". | read 1.4 , paragraph 1,
to mean that a diagnostic is required. It's not clear whether this requirement was intended. While it's possible to
provide such a diagnostic, the extra complication doesn’t seem to asldlaay

Proposedresolution:

Change 18.1, paragraph 5, totiipeis not a POD structure or a POD union the resultsirdefined."

-67 -

C++ Standard Library Active Issues List

[Copenhagen: straw poll was 7-4 in favor. It was generally agreed that requiring a diagnostic was inadvertent, but
some LWG members thought that diagnostics should be required whpossiéie.]

307. Lackof reference typedefs in containeadaptors
Section: 23.2.3[lib.container.adaptorsptatus:[Ready Submitter: Howard HinnantDate: 13 Mar2001
From reflector message c++std-lib-8330. See l#s8317.

The standard is currently inconsistent in 23.2.3.2 paragraph 1 and 23.2.3.3 paragraph 1. 23.2.3.3/1, for example,
says:

-1- Any sequence supporting operations back(), push_back() and pop_back() can be used to instantiate stack. In
particular, vector (lib.vector), list (lib.list) and deque (lib.deque) can be used.

But this is false: vector<bool> can not be used, because the container adaptors return a T& rather than using the
underlying container’s referentgpe.

This is a contradiction that can be fixegt

1. Modifying these paragraphs to say that vector<bool> is an exception.
2. Removing the vector<bool> specialization.
3. Changing the return types of stack and priority_queue to use reféypeadef's.

| propose 3. This does not preclude option 2 if we choose to do it later (sg@@sgbe issues are independent.
Option 3 offers a small step towards support for proxied containers. This small step fixes a current contradiction, is
easy for vendors to implement, is already implemented in at least one popular lib, and does not lomaik any

Proposedresolution:

Summary: Add reference and const_reference typedefs to queue, priority_queue and stack. Change return types of
"value_type&" to "reference". Change return types of "const value_type&" to "const_refeif@atasls:

Change 23.2.3.1/ftom:

namespace std {
template <class T, class Container = deque<T> >
class queue {

public:
typedef typename Container::value_type value_type;
typedef typename Container::size_type size_type;
typedef Container container_type;
protected:
Container c;
public:
explicit queue(const Container& = Container());
bool empty() const { return c.empty(); }
size_type size() const { return c.size(); }
value_type& front() { return c.front(); }
const value_type& front() const { return c.front(); }
value_type& back() { return c.back(); }

- 68 -

C++ Standard Library Active Issues List

const value_type& back() const { return c.back(); }
void push(const value_type& x) { c.push_back(x); }
void pop() { c.pop_front(); }

to:

namespace std {
template <class T, class Container = deque<T> >
class queue {

public:
typedef typename Container::value_type value_type;
typedef typename Container::reference reference;
typedef typename Container::const_reference const_reference;
typedef typename Container::value_type value_type;
typedef typename Container::size_type size_type;
typedef Container container_type;
protected:
Container c;
public:
explicit queue(const Container& = Container());
bool empty() const { return c.empty(); }
size_type size() const { return c.size(); }
reference front() { return c.front(); }
const_reference front() const { return c.front(); }
reference back() { return c.back(); }

const_reference back() const {return c.back(); }
void push(const value_type& x) { c.push_back(x); }
void pop() { c.pop_front(); }
h
Change 23.2.3.2/ftom:
namespace std {
template <class T, class Container = vector<T>,

class Compare = less<typename Container::value_type> >
class priority_queue {

public:
typedef typename Container::value_type value_type;
typedef typename Container::size_type size_type;
typedef Container container_type;
protected:
Container c;

Compare comp;

public:
explicit priority_queue(const Compare& x = Compare(),
const Container& = Container());
template <class Inputlterator>
priority_queue(Inputlterator first, Inputlterator last,
const Compare& x = Compare(),
const Container& = Container());

bool empty() const { return c.empty(); }

-69 -

C++ Standard Library Active Issues List

size_type size() const {return c.size(); }
const value_type& top() const { return c.front(); }
void push(const value_type& x);

void pop();

h

}

to:

/I no equality is provided

namespace std {
template <class T, class Container = vector<T>,
class Compare = less<typename Container::value_type> >
class priority_queue {

public:
typedef typename Container::value_type value_type;
typedef typename Container::reference reference;
typedef typename Container::const_reference const_reference;
typedef typename Container::size_type size_type;
typedef Container container_type;

protected:
Container c;

Compare comp;

public:
explicit priority_queue(const Compare& x = Compare(),
const Container& = Container());
template <class Inputlterator>
priority_queue(Inputlterator first, Inputlterator last,
const Compare& x = Compare(),
const Container& = Container());

bool empty() const { return c.empty(); }
size_type size() const { return c.size(); }
const_reference top() const { return c.front(); }
void push(const value_type& x);
void pop();

3

}
And change 23.2.3.3ftom:

/I no equality is provided

namespace std {

template <class T, class Container = deque<T> >

class stack {

public:
typedef typename Container::value_type value_type;
typedef typename Container::size_type size_type;
typedef Container container_type;

protected:
Container c;

public:
explicit stack(const Container& = Container());

-70 -

C++ Standard Library Active Issues List

bool empty() const { return c.empty(); }
size_type size() const { return c.size(); }
value_type& top() { return c.back(); }

const value_type& top() const { return c.back(); }
void push(const value_type& x) { c.push_back(x); }
void pop() { c.pop_back(); }

h

template <class T, class Container>
bool operator==(const stack<T, Container>& X,
const stack<T, Container>& y);
template <class T, class Container>
bool operator< (const stack<T, Container>& x,
const stack<T, Container>& y);
template <class T, class Container>
bool operator!=(const stack<T, Container>& x,
const stack<T, Container>& y);
template <class T, class Container>
bool operator> (const stack<T, Container>& x,
const stack<T, Container>& y);
template <class T, class Container>
bool operator>=(const stack<T, Container>& X,
const stack<T, Container>& y);
template <class T, class Container>
bool operator<=(const stack<T, Container>& X,
const stack<T, Container>& y);

}
to:

namespace std {
template <class T, class Container = deque<T> >
class stack {

public:
typedef typename Container::value_type value_type;
typedef typename Container::reference reference;
typedef typename Container::const_reference const_reference;
typedef typename Container::size_type size_type;
typedef Container container_type;
protected:
Container c;
public:
explicit stack(const Container& = Container());
bool empty() const { return c.empty(); }
size_type size() const { return c.size(); }
reference top() { return c.back(); }

const_reference top() const { return c.back(); }
void push(const value_type& x) { c.push_back(x); }
void pop() { c.pop_back(); }

3

template <class T, class Container>

bool operator==(const stack<T, Container>& X,
const stack<T, Container>& y);

-71 -

C++ Standard Library Active Issues List

template <class T, class Container>
bool operator< (const stack<T, Container>& X,
const stack<T, Container>& y);
template <class T, class Container>
bool operator!=(const stack<T, Container>& x,
const stack<T, Container>& y);
template <class T, class Container>
bool operator> (const stack<T, Container>& x,
const stack<T, Container>& y);
template <class T, class Container>
bool operator>=(const stack<T, Container>& X,
const stack<T, Container>& y);
template <class T, class Container>
bool operator<=(const stack<T, Container>& X,
const stack<T, Container>& y);

}

[Copenhagen: This change was discussed before the IS was released and it was deliberately not adopted.
Nevertheless, the LWG believes (straw poll: 10-2) that it is a gedaieet.]

308. Table82 mentions unrelatecheaders
Section: 27 [lib.input.output] Status:[Ready Submitter: Martin SeborDate: 15 Mar2001

Table 82 in section 27 mentions the header <cstdlib> for String streams (27.7) and the headers <cstdio> and
<cwchar> for File streams (27.8). It's not clear why these headers are mentioned in this context since they do not
define any of the library entities described by the subclauses. According to 17.4.1.1 , only such headers are to be
listed in thesummary.

Proposedresolution:
Remove <cstdlib> and <cwchar> from TaB2

[Copenhagen: changed the proposed resolution slightly. The original proposed resolution also said to remove
<cstdio> from Table 82. However, <cstdio> is mentioned several times within section 27.8 , including]27.8.2

309. Doessentry catchexceptions?
Section: 27.6[lib.iostream.format] Status:[Oper Submitter: Martin SeborDate: 19 Mar2001

The descriptions of the constructors of basic_istream<>::sentry (27.6.1.1.2) and basic_ostream<>::sentry (27.6.2.3)
do not explain what the functions do in case an exception is thrown while they execute. Some current
implementations allow all exceptions to propagate, others catch them and set ios_base::badbit instead, still others
catch some but let othegpsopagate.

The text also mentions that the functions may call setstate(failbit) (without actually saying on what object, but
presumably the stream argument is meant). That may have been fine for basic_istream<>::sentry prid®® issue
since the function performs an input operation which may fail. However, 18&8@mmends 27.6.1.1.2 , p2 to clarify

that the function should actually call setstate(failbit | eofbit), so the sentence in p3 is redundant or even somewhat
contradictory.

The same sentence that appears in 27.6.2.3 , p3 doesn’t seem to be very meaningful for basic_istream<>::sentry
which performs no input. It is actually rather misleading since it would appear to guide library implementers to
calling setstate(failbit) when os.tie()->flush(), the only called function, throws an exception (typically, it's badbit
that's set in response to sucheaent).

-72 -

C++ Standard Library Active Issues List

Proposedresolution:

Add the following paragraph immediately after 27.6.1.132 ,
If an exception is thrown during the preparation then ios::badbit is turned on* in is’s error state.
[Footnote: This is done without causing an ios::failure to be thrown. --- end footnote]
If (is.exceptions() & ios_base::badbit)!= 0 then the exception is rethrown.

And strike the following sentence from 27.6.1.1p5,

During preparation, the constructor may call setstate(failbit) (which may throw ios_base::failure
(lib.iostate.flags))

Add the following paragraph immediately after 27.6.23 ,
If an exception is thrown during the preparation then ios::badbit is turned on* in 0s’s error state.
[Footnote: This is done without causing an ios::failure to be thrown. --- end footnote]
If (0s.exceptions() & ios_base::badbit)!= 0 then the exception is rethrown.

And strike the following sentence from 27.6.2(3,

During preparation, the constructor may call setstate(failbit) (which may throw ios_base::failure
(lib.iostate.flags))

(Note that the removal of the two sentences means that the ctors will not be able to report the failure of any
implementation-dependent operations referred to in footnotes 280 and 293, unless such operations throw an
exception.)

[Copenhagen: It was agreed that there was an issue here, but there was disagreement about the resolution. Some
LWG members argued that a sentry’s constructor should not catch exceptions, because sentries should only be used
within (un)formatted input functions and that exception handling is the responsibility of those functions, not of the
sentries]

310. Iserrno a macro?
Section:17.4.1.2lib.headers] 19.3[lib.errno] Status:[Review Submitter: Steve Clamagéate: 21 Mar2001
Exactly how should errno be declared in a conforming C++ header?

The C standard says in 7.1.4 that it is unspecified whether errno is a macro or an identifier with external linkage. In
some implementations it can be either, depending on compile-time options. (E.g., on Solaris in multi-threading
mode, errno is a macro that expands to a function call, but is an extern int otherwise. "Unspecified" allows such
variability.)

The C++standard:

® 17.4.1.2 says in a note that errno must be macro in C. (false)

® 17.4.3.1.3 footnote 166 says errno is reserved as an external name (true), and implies that it is an identifier.

® 19.3 simply lists errno as a macro (by what reasoning?) and goes on to say that the contents of of C++
<errno.h> are the same as in C, begging the question.

® C.2, table 95 lists errno as a macro, without comment.

-73 -

C++ Standard Library Active Issues List

| find no other references @rno.

We should either explicitly say that errno must be a macro, even though it need not be a macro in C, or else
explicitly leave it unspecified. We also need to say something about namespace std. A user who includes <cerrno>
needs to know whether to wrigerno , or::errno , orstd::errno , Or else <cerrno> igseless.

Two acceptabléixes:

® errno must be a macro. This is trivially satisfiedslolging
#define errnd::std::errno)
to the headers if errno is not already a macro. You then always write errno without any scope qualification, and
it always expands to a correct reference. Since it is always a macro, you know to avoid using errno as a local
identifer.

® errno is in the global namespace. This fix is inferior, because ::errno is not guaranteegltefdrened.
[This issue was first raised in 1999, but it slipped through the cracks.
Proposedresolution:
Change the Note in section 17.4.1.2qfn

Note: the names defined as macros in C include the following: assert, errno, offsetof, setjmp, va_arg, va_end,
and va_start.

to

Note: the names defined as macros in C include the following: assert, offsetof, setjmp, va_arg, va_end, and
va_start.

In section 19.3, change paragrapindzn
The contents are the same as the Standard C library header <errno.h>.
to

The contents are the same as the Standard C library header <errno.h>, except that errno shall be defined as a
macro.

311. Incorrectwording in basic_ostream classynopsis
Section: 27.6.2.1[lib.ostream] Status:[Review Submitter: Andy SawyerDate: 21 Mar2001
In 27.6.2.1 , the synopsis of class basic_ostremys:

/I partial specializationss
template<class traits>
basic_ostream<char,traits>& operator<<(basic_ostream<char,traits>&,
const char *);

Problems:

® Too many ’s’s at the end of "specializationss"
® This is an overload, not a partidecialization

-74 -

C++ Standard Library Active Issues List

Proposedresolution:

In the synopsis in 27.6.2.1 , remove thpartial specializationssomment.

312. Table27 is missingheaders
Section: 20[lib.utilities] Status:[Ready Submitter: Martin SeborDate: 29 Mar2001

Table 27 in section 20 lists the header <memory> (only) for Memory (lib.memory) but neglects to mention the
headers <cstdlib> and <cstring> that are discussed in 20.4.6

Proposedresolution:

Add <cstdlib> and <cstring> to Table 27, in the same rownasmory>.

315. Bad"range" in list::unique complexity
Section: 23.2.2.4]lib.list.ops] Status:[New Submitter: Andy SawyerDate: 1 May 2001

23.2.2.4 , Para 21 describes the complexity of list::unique as: "If the range (last - first) is not empty, exactly (last -
first) -1 applications of the corresponding predicate, otherwise no applicationspoétheate)".

"(last - first)" is not aange.
Proposedresolution:

Change the "range" from (last - first) to [first, last). Change the complexity from "(last - first) -1 applications of the
corresponding predicate" to "distance(first,last)-1 applications of the corresppneliticate.

316. Vaguetext in Table 69
Section: 23.1.2[lib.associative.reqgmtsptatus:[New Submitter: Martin SeborDate: 4 May 2001
Table 69 says this aboat unig.insert(t):

inserts t if and only if there is no element in the container with key equivalent to the key of t. The bool
component of the returned pair indicates whether the insertion takes place and the iterator component of the
pair points to the element with key equivalent to the key of

The description should be more specific about exactly how the bool component indicates whether the insertion takes
place.

Proposedresolution:
Change the text in questiom

...The bool component of the returned pair is true if and only if the insertionpiakes..

317. Instantiation vs. specialization ofacets

Section: 22[lib.localization] Status:[New Submitter: Martin SeborDate: 4 May2001

-75 -

C++ Standard Library Active Issues List

The localization section of the standard refers to specializations of the facet templates as instantiations even though
the required facets are typically specialized rather than explicitly (or implicitly) instantiated. In the case of
ctype<char> and ctype_byname<char> (and the wchar_t versions), these facets are actually required to be
specialized. The terminology should be corrected to make it clear that the standard doesn’t mandate explicit
instantiation (the term specialization encompasses both explicit instantiatiosiseanalizations).

Proposedresolution:

In the following paragraphs, replace all occurrences of the word instantiation or instantiations with specialization or
specializationsiespectively:

22.1.1.1.1, p4, Table 52, 22.2.1.1, p2, 22.2.1.5, p3, 22.2.1.5.1, p5, 22.2.1.5.2, p10, 22.2.2, p2, 22.2.3.1, p1,
22.2.3.1.2, p1, p2 and p3, 22.2.4.1, p1, 22.2.4.1.2, p1, 22,25, pl, 22,2,6, p2, 22.2.6.3.2, p7, an@&FDotnote

And change the text in 22.1.1.1.1, fpdm

An implementation is required to provide those instantiations for facet templates identified as members of a
category, and for those shown in Tabk

to

An implementation is required to support thepecializations...

318. Misleadingcomment in definition of numpunct_byname
Section: 22.2.3.2lib.locale.numpunct.byname$tatus:[New Submitter: Martin SeborDate: 12 May2001
The definition of the numpunct_byname template contains the follovangnent:

namespace std {

template <class charT>

class numpunct_byname : public numpunct<charT> {
/I this class is specialized for char and wchar _t.

There is no documentation of the specializations and it seems conceivable that an implementation will not explicitly
specialize the template at all, but simply provide the prirtemplate.

Proposedresolution:

Remove the comment from the text in 22.2.3.2 and from the proposed resolution of librdB2&sue

319. Storageallocation wording confuses "Required behavior",
"Requires"

Section: 18.4.1.1[lib.new.delete.single]18.4.1.4lib.new.delete.arraylStatus:[New Submitter: Beman Dawes
Date: 15 May2001

The standard specifies 17.3.1.3 that "Required behavior" elements describe "the semantics of a function definition
provided by either the implementation or a Garégram.”

The standard specifies 17.3.1.3 that "Requires" elements describe "the preconditions for céllimgitime"

-76 -

C++ Standard Library Active Issues List

In the sections noted below, the current wording specifies "Required Behavior" for what are actually preconditions,
and thus should be specified"&equires".

Proposedresolution:
In 18.4.1.1 Para 12hange:

Required behavior: accept a value of ptr that is null or that was returned by an earlier call
to:

Requires: the value of ptr be null or the value returned by an earlier. call
In 18.4.1.2 Para 1Change:

Required behavior: accept a value of ptr that is null or that was returned by an earlier call
to:

Requires: the value of ptr be null or the value returned by an earlier call

320. list::assignoverspecified
Section: 23.2.2.1lib.list.cons] Status:[New Submitter: Howard HinnantDate: 17 May2001

Section 23.2.2.1, paragraphs 6-8 specify that list assign (both forms) have the "effects" of a call to erase followed by
a call toinsert.

| would like to document that implementers have the freedom to implement assign by other methods, as long as the
end result is the same and the exception guarantee is as good or better than goalsades.

The motivation for this is to use T's assignment operator to recycle existing nodes in the list instead of erasing them
and reallocating them with new values. It is also worth noting that, with careful coding, most common cases of
assign (everything but assignment with true input iterators) can elevate the exception safety to strong if T's
assignment has a nothrow guarantee (with no extra memory cost). Metrowerks does this. However | do not propose
that this subtlety be standardized. It is a Qol issue.

Existing practise: Metrowerks and SGI recycle nodes, Dinkumware and Roguedd/etve
Proposedresolution:
Change 23.2.2.1/fom:

Effects:

erase(begin(), end());
insert(begin(), first, last);

to:
Effects: Replaces the contents of the list with the range [fst),
PostCondition: *this == list<T, Allocator>(firskast)

Notes: If an exception is thrown, the contents of the lisiraleterminate.

-77 -

C++ Standard Library Active Issues List

Change 23.2.2.1/8om:
Effects:

erase(begin(), end());
insert(begin(), n, t);

to:
Effects: Replaces the contents of the list with n copigs of
PostCondition: *this == list<T, Allocator>(t)

Notes: If an exception is thrown, the contents of the list are self consistémd&tgrminate.

321. Typoin num_get
Section: 22.2.2.1.7lib.facet.num.get.virtuals|Status:[New Submitter: Kevin Djang Date: 17 May2001

Section 22.2.2.1.2 at p7 states that "A length specifier is added to the conversion function, if needed, as indicated in
Table 56." However, Table 56 uses the term "length modifier”, not "lemegtifier”.

Proposedresolution:

In 22.2.2.1.2 at p7, change the text "A length specifier is added ..." to be "A length modifier is.addded

322. iterator and const_iterator should have the same valugpe
Section: 23.1[lib.container.requirementsptatus:[New Submitter: Matt AusternDate: 17 May2001

It's widely assumed that, if X is a container, iterator_traits<X::iterator>::value_type and
iterator_traits<X::const_iterator>::value_type should both be X::value_type. However, this is nowhere stated. The
language in Table 65 is not precise about the iterators’ value types (it predates iterator_traits), and could even be
interpreted as saying that iterator_traits<X::const_iterator>::value_type should beX'ceaiste type".

Related issue279,
Proposedresolution:

In Table 65 ("Container Requirements"), change the return type for X::iterator to "iterator type whose value type is
T". Change the return type for X::const_iterator to "constant iterator type whose valueTtype is

Rationale:

This belongs as a container requirement, rather than an iterator requirement, because the whole notion of
iterator/const_iterator pairs is specific to containgesator.

It is existing practice that (for example) iterator_traits<list<int>::const_iterator>::value_type is "int", rather than
"const int". This is consistent with the way that const pointers are handled: the standard already requires that
iterator_traits<const int*>::value_typeir.

-78 -

C++ Standard Library Active Issues List

323. abs(Joverloads in differentheaders
Section: 26.5[lib.c.math] Status:[New Submitter: Dave AbrahamsDate: 4 June2001
Currently the standard mandates the following overloadbsf):

abs(long), abs(int) in <cstdlib>

abs(float), abs(double), abs(long double) in <cmath>

template<class T> T abs(const complex<T>&) in <complex>

template<class T> valarray<T> abs(const valarray<T>&); in <valarray>

The problem is that having only some overloads visible of a function that works on "implicitly inter-convertible"
types is dangerous in practice. The headers that get included at any point in a translation unit can change
unpredictably during program development/maintenance. The wrong overload might be unintersitectibyl.

Currently, there is nothing that mandates the simultaneous visibility of these overloads. Indeed, some vendors have
begun fastidiously reducing dependencies among their (public) headers as a QOI issue: it helps people to write
portable code by refusing to compile unless all the correct headéfincraled.

The same issue may exist for other functions irfitmary.

Proposedresolution:

324. Dooutput iterators have valuetypes?
Section: 24.1.2[lib.output.iterators] Status:[New Submitter: Dave AbrahamsDate: 7 June2001

Table 73 suggests that output iterators have value types. It says defines the expression "*a = t". Additionally,
although Table 73 never lists "a = t" or "X(a) = t" in the "expressions" column, it contains a note saying that "a = t"
and "X(a) = t" have equivalent (but nowhere specifisdhantics.

According to 24.1/9, t is supposed to be "a value of valueType

In the following sections, a and b denote values of X, n denotes a value of the difference type Distance, u, tmp,
and m denote identifiers, r denotes a value of X&, t denotes a value of value type T.

Two other parts of the standard that are relevant to whether output iterators havgpesiue

e 24.1/1 says "All iterators i support the expression *i, resulting in a value of some class, enumeration, or built-in
type T, called the value type of the iterator".

® 24.3.1/1, which says "In the case of an output iterator, the types iterator_traits<Iterator>::difference_type
iterator_traits<Iterator>::value_type are both defined as void."

The first of these passages suggests that "*i" is supposed to return a useful value, which contradicts the note in
24.1.2/2 saying that the only valid use of "*i" for output iterators is in an expression of the form "*i = t". The second
of these passages appears to contradict Table 73, because it suggests that "*i"’s return value should be void. The
second passage is also broken in the case of a an iterator type, like non-const pointers, that satisfies both the output
iterator requirements and the forward iteraauirements.

What should the standard say about "*i's" return value when i is an output iterator, and what should it say about that
tis in the expression "*i = t"? Finally, should the standard say anything about output iterators’ pointer and reference
types?

-79 -

C++ Standard Library Active Issues List

Proposedresolution:

A sketch of one proposed resolution, without language: Make it clear that the notion of "value type" does not apply
to outputiterators.

Put an "except for output iterators" qualification in 24.1/1; remove the note in table 73 about "a = t" and "X(a)
=1"; put language in 24.1.2 paragraph 1 saying that "t" is a value of whatever type or types for which "*i = t" is
defined and that an output iterator need not have a unique value type; change 24.3.1/1 to say that an output
iterator may, but need not, define iterator_traits<Iterator>::difference_type iterator_traits<Iterator>::value_type
asvoid.

A sketch of an alternate proposed resolution, also without language: Require every output iterator to have a value
type, just like other kinds dferators.

Put an "except for output iterators" qualification in 24.1/1; remove the note in table 73 about "a = t" and "X(a)
=1"; put language in 24.1.2 paragraph 1 saying that an output iterator’s value type is the type for which "*i = t"
is defined; remove the note in 24.3.1/1 saying that iterator_traits<>::value_type is void for an output iterator;
change all of the predefined output iterators (ostream_iterator, ostreambuf_iterator, back_insert_iterator,
front_insert_iterator, insert_iterator) so that they have non-void #ghes.

325. Misleadingtext in moneypunct<>::do_grouping
Section: 22.2.6.3.7lib.locale.moneypunct.virtualsbtatus:[New Submitter: Martin SeborDate: 02 Jul2001
The Returns clause in 22.2.6.3.2, p3 says atoueypunct<charT>::do_grouping()
Returns: A pattern defined identically as the resuttwhpunct<charT>::do_grouping().241)
Footnote 241 thereads
This is most commonly the value "\003" (1i8t).

The returns clause seems to imply that the two member functions must return an identical value which in reality may
or may not be true, since the facets are usually implemented in terms of struct std::lconv and return the value of the
grouping and mon_grouping, respectively. The footnote also implies that the member function of the moneypunct
facet (rather than the overridden virtual functions in moneypunct_byname) most commonly return "\003", which
contradicts the C standard which specifies the value of "™ for the (most comnmrgl€

Proposedresolution:
Replace the text in Returns clause in 22.2.6.3.2, p3 witfollogving:

Returns: A pattern defined identically as, but not necessarily equal to, the result of
numpunct<charT>::do_grouping().241)

and replace the text in Footnote 241 withftilwing:

The moneypunct facet (or its derivative) installed in named locales other than "C" will most commonly return
the value "\003" (not3").

Rationale:

Note that the proposed resolution is sufficiently vague to allow implementations to implement the behavior of both
moneypunct and moneypunct_byname to be implemented by the base. This may or may not be desirable depending
on whether we want the base behavior to strictly reflect the "C" locale (only) and the derived behavior to implement
the behavior specific to the named locales. This distinction would be detectable by obtaining a reference to
moneypunct_byname, say mp, and calling mp.do_grouping() or mp.moneypunct<charT>::do_grouping() to get one

-80 -

C++ Standard Library Active Issues List

or theother.

326. Missingtypedef inmoneypunct_byname
Section: 22.2.6.4]lib.locale.moneypunct.bynametatus:[New Submitter: Martin SeborDate: 05 Jul2001

The definition of the moneypunct facet contains the typedefs char_type and string_type. Only one of these names,
string_type, is defined in the derived facagneypunct_byname.

Proposedresolution:

For consistency with the numpunct facet, add a typedef for char_type to the definition of the moneypunct_byname
facetin 22.2.6.4

327. Typoin time_get facet in table52
Section: 22.1.1.1.lib.locale.category]Status:[New Submitter: Tiki Wan Date: 06 Jul2001

Thewchar_t versions otime_get andtime_get byname are listed incorrectly in table 52, required
instantiations. In both cases the second template parameter is given as Outputlterator. It should instead be
Inputlterator, since these are infactets.

Proposedresolution:
In table 52, required instantiations, in 22.1.1.khange

time_get<wchar_t, Outputlterator>
time_get_byname<wchart, Outputlterator>

to

time_get<wchar_t, Inputlterator>
time_get_byname<wchart, Inputlterator>

328. Badsprintf format modifier in money_put<>::do_put()
Section: 22.2.6.2.7lib.locale.money.put.virtualsBtatus:[New Submitter: Martin SeborDate: 07 Jul2001

The sprintf format string , "%.01f" (that's the digit one), in the description of the do_put() member functions of the
money_put facet in 22.2.6.2.2, pl is incorrect. First, the f format specifier is wrong for values of type long double,
and second, the precision of 01 doesn’t seem to make sense. What was most likely intended was "%.0Lf"., that is a
precision of zero followed by the L lengtiodifier.

Proposedresolution:

Change the format string t&6.0Lf".

329. vectorcapacity, reserve andeallocation

Section: 23.2.4.2lib.vector.capacity] 23.2.4.3lib.vector.modifiers] Status:[New] Submitter: Anthony Williams
Date: 13 Jul2001

-81-

C++ Standard Library Active Issues List

There is an apparent contradiction about which circumstances can cause a reallocation of a vector in Section
23.2.4.2 and section 23.2.4.3

23.2.4.2p%says:

Notes: Reallocation invalidates all the references, pointers, and iterators referring to the elements in the
sequence. It is guaranteed that no reallocation takes place during insertions that happen after a call to reserve()
until the time when an insertion would make the size of the vector greater than the size specified in the most
recent call toeserve().

Which implies if 1do

std::vector<int> vec;
vec.reserve(23);
vec.reserve(0);
vec.insert(vec.end(),1);

then the implementation may reallocate the vector for the insert, as the size specified in the previous call to reserve
waszero.

However, the previous paragraphs (23.2.4.2, pdtetg:
(capacity) Returns: The total number of elements the vector can hold without receatingation

...After reserve(), capacity() is greater or equal to the argument of reserve if reallocation happens; and equal to
the previous value of capacity@dherwise...

This implies that vec.capacity() is still 23, and so the insert() should not require a reallocation, as vec.size() is 0. This
is backed up bg3.2.4.3p1:

(insert) Notes: Causes reallocation if the new size is greater than tregpaltity.
Though this doesn’t rule out reallocation if the new size is less than the old capacity, | think the atant is
Proposedresolution:
Change the wording of 23.2.4.5@15

Notes: Reallocation invalidates all the references, pointers, and iterators referring to the elements in the
sequence. It is guaranteed that no reallocation takes place during insertions that happen after a call to reserve()
until the time when an insertion would make the size of the vector greater than the value of capacity() after the
most recent call toeserve().

330. Misleading"exposition only" value in class localedefinition
Section: 22.1.1[lib.locale] Status:[New Submitter: Martin SeborDate: 15 Jul2001

The "exposition only" value of the std::locale::none constant shown in the definition of class locale is misleading in
that it on many systems conflicts with the value assigned to one if the LC_XXX constants (specifically,
LC_COLLATE on AIX, LC_ALL on HP-UX, LC_CTYPE on Linux and SunOS). This causes incorrect behavior
when such a constant is passed to one of the locale member functions that accept a locale::category argument and
interpret it as either the C LC_XXX constant or a bitmap of locale::category values. At least three major
implementations adopt the suggested value without a change and consequently suffer fnaléns

For instance, the following code will (presumably) incorrectly copy facets belonging to the collate category from the
German locale oAIX:

-82 -

C++ Standard Library Active Issues List

std::locale | (std::locale ("C"), "de_DE", std::locale::none);
Proposedresolution:

Change the value from 0 to some other bit value, say 0x400, distinct from any of the othesh@res

331. baddeclaration of destructor forios_base::failure
Section: 27.4.2.1.1lib.ios::failure] Status:[New Submitter: PremAnand M. Radate: 23 Aug2001

With the change in 17.4.4.8 to state "An implementation may strengthen the exception-specification for a
non-virtual function by removing listed exceptions." (is&d6) and the following declaration of ~failure() in
ios_base::failure

namespace std {
class ios_base::failure : public exception {
public:

virtual ~failure();

-
}

the class failure cannot be implemented since in 18.6.1 the destructor of class exception has an empty exception
specification:

namespace std {
class exception {
public:

virtual ~exception() throw();

.
}

Proposedresolution:
Two alternatives:

1. Change the declaration of ~failure() to virtual ~failure() throw();
2. Remove the declaration efailure().

332. Consideradding increment and decrement operators to std::fpos< T
>

Section: 27.4.3[lib.fpos] Status:[New Submitter: PremAnand M. Radate: 27 Aug2001
Increment and decrement operators are missing from Table 88 -- Position type requirements.in 27.4.3
Proposedresolution:

Table 88 (section 27.4.3) -- Position type requirements be updated to include increment and depezaters.

-83-

C++ Standard Library Active Issues List

expression return type operational note
++p fpos& p +=0(1)
pt+ fpos {Ptmp =p;
+p;
return tmp; }
--p fpos& p-=0()
p-- fpos {Ptmp=np;
-ps

return tmp; }

333. doe=nd! imply synchronization with the device?
Section: 27.6.2.7[lib.ostream.manip]Status:[New Submitter: PremAnand M. Radate: 27 Aug2001
A footnote in 27.6.2.8tates:

[Footnote: The effect of executing cout << endl is to insert a newline character in the output sequence
controlled by cout, then synchronize it with any external file with which it might be associated.feorott]

Does the term "file" here refer to the external device? This leads to some implementation ambiguity on systems with
fully buffered files where a newline does not cause a flush tdetiee.

Choosing to sync with the device leads to significant performance penalties for each call to endl, while not sync-ing
leads to errors under spect@icumstances.

| could not find any other statement that explicitly defined the behavior one wayathéne

Proposedresolution:

334. map::operator[] specification forces inefficienimplementation
Section: 23.3.1.2lib.map.accessStatus:[New Submitter: Andrea Griffini Date: 02 Se2001

The current standard describes map::operator[] using a code example. That code example is however quite
inefficient because it requires several useless copies of both the passed key_type value and of default constructed
mapped_type instances. My opinion is that was not meant by the comitee to require all those temporary copies.

Currently map::operator[] behaviour is specified as:

Returns:
(*((insert(make_pair(x, T()))).first)).second.

This specification however uses make_pair that is a template function of which parameters in this case will be
deduced being of type const key_type& and const T&. This will create a pair<key_type, T> that isn’t the correct type
expected by map::insert so another copy will be required using the template conversion constructor available in pair
to build the required pair<const key_type,fstance.

If we consider calling of key_type copy constructor and mapped_type default constructor and copy constructor as
observable behaviour (as | think we should) then the standard is in this place requiring two copies of a key_type
element plus a default construction and two copy construction of a mapped_type (supposing the addressed element
is already present in the map; otherwise at least another copy construction for each type).

-84 -

C++ Standard Library Active Issues List

Proposedresolution:
A simple (half) solution would be replacing the descriptigth:

Returns:
(*((insert(value_type(x, T()))).first)).second.

This will remove the wrong typed pair construction that requires one extra copy of both keyend

However still the using of map::insert requires temporary objects while the operation, from a logical point of view,
doesn’t require any.

| think that a better solution would be leaving free an implementer to use a different approach than map::insert that,
because of its interface, forces default constructed temporaries and copies in this case. The best solution in my
opinion would be just requiring map::operator(] to return a reference to the mapped_type part of the contained
element creating a default element with the specified key if no such an element is already present in the container.
Also a logarithmic complexity requirement should be specified foopleeation.

This would allow library implementers to write alternative implementations not using map::insert and reaching

optimal performance in both cases of the addressed element being present or absent from the map (no temporaries at
all and just the creation of a new pair inside the container if the element isn’t present). Some implementer has

already taken this option but | think that the current wording of the standard rules that as non-conforming.

Note that this is a "relaxing" of requirment and won’t make any currently conforming implementation on this point
to become non-conforming because of¢hange.

There is a small risk that current code may be depending on the number of temporaries created by map::operator(];
but I think that such dependencies would be present only in code that is most probably already non portable as the
number of copies of parameters isn't guaranteed by the standard (in the current wording there’s just an implicit
minimum number of requiredopies).

335. minorissue with char_traits, table37
Section: 21.1.1[lib.char.traits.require]Status:[New Submitter: Andy SawyerDate: 06 Se2001
Table 37,in 21.1.1, descibes char_traits::assfgn
X::assign(c,d) assigns c =d.
And para Isays:
[...] c and d denote values of type Char]

Naturally, if c and d arealues then the assignment is (effectively) meaningless. It's clearly intended that (in the
case of assign, at least), 'c’ is intended to be a refetgpee

| did a quick survey of the four implementations | happened to have lying around, and sure enough they all have
signatures:

assign(charT&, const charT&);

(or the equivalent). It's also described this way in Nico’s book. (Not to mention the synopses of char_traits<char> in
21.1.3.1 and char_traits<wchar_t>2h.1.3.2...)

Proposedresolution:

-85 -

C++ Standard Library Active Issues List

Add the following to 21.1.1 park
r denotes a reference @harT
and change the description of assign in the table
X::assign(r,d) assignsr=d

----- End of document---

- 86 -

	C++ Standard Library Active Issues List †Revision 19‡
	Revision History
	Issue Status
	Active Issues
	23.€Num_get overflow result
	44.€Iostreams use operator== on int_type values
	49.€Underspecification of ios_base::sync_with_stdio
	76.€Can a codecvt facet always convert one internal character at a time?
	91.€Description of operator>> and getline†‡ for string<> might cause endless loop
	92.€Incomplete Algorithm Requirements
	96.€Vector<bool> is not a container
	98.€Input iterator requirements are badly written
	109.€Missing binders for non-const sequence elements
	117.€basic_ostream uses nonexistent num_put member functions
	120.€Can an implementor add specializations?
	123.€Should valarray helper arrays fill functions be const?
	167.€Improper use of traits_type::length†‡
	179.€Comparison of const_iterators to iterators doesn't work
	182.€Ambiguous references to size_t
	187.€iter_swap underspecified
	197.€max_size†‡ underspecified
	198.€Validity of pointers and references unspecified after iterator destruction
	200.€Forward iterator requirements don't allow constant iterators
	201.€Numeric limits terminology wrong
	202.€unique†‡ effects unclear when predicate not an equivalence relation
	225.€std:: algorithms use of other unqualified algorithms
	226.€User supplied specializations or overloads of namespace std function templates
	228.€Incorrect specification of "..._byname" facets
	229.€Unqualified references of other library entities
	230.€Assignable specified without also specifying CopyConstructible
	231.€Precision in iostream?
	232.€"depends" poorly defined in 17.4.3.1
	233.€Insertion hints in associative containers
	235.€No specification of default ctor for reverse_iterator
	238.€Contradictory results of stringbuf initialization.
	239.€Complexity of unique†‡ and/or unique_copy incorrect
	240.€Complexity of adjacent_find†‡ is meaningless
	241.€Does unique_copy†‡ require CopyConstructible and Assignable?
	242.€Side effects of function objects
	247.€vector, deque::insert complexity
	250.€splicing invalidates iterators
	253.€valarray helper functions are almost entirely useless
	254.€Exception types in clause 19 are constructed from std::string
	258.€Missing allocator requirement
	259.€basic_string::operator[] and const correctness
	264.€Associative container insert†i, j‡ complexity requirements are not feasible.
	266.€bad_exception::~bad_exception†‡ missing Effects clause
	267.€interaction of strstreambuf::overflow†‡ and seekoff†‡
	270.€Binary search requirements overly strict
	271.€basic_iostream missing typedefs
	272.€Missing parentheses around subexpression
	273.€Missing ios_base qualification on members of a dependent class
	274.€a missing/impossible allocator requirement
	275.€Wrong type in num_get::get†‡ overloads
	276.€Assignable requirement for container value type overly strict
	278.€What does iterator validity mean?
	280.€Comparison of reverse_iterator to const reverse_iterator
	281.€std::min†‡ and max†‡ requirements overly restrictive
	282.€What types does numpunct grouping refer to?
	283.€std::replace†‡ requirement incorrect/insufficient
	284.€unportable example in 20.3.7, p6
	285.€minor editorial errors in fstream ctors
	286.€<cstdlib> requirements missing size_t typedef
	288.€<cerrno> requirements missing macro EILSEQ
	290.€Requirements to for_each and its function object
	291.€Underspecification of set algorithms
	292.€effects of a.copyfmt †a‡
	294.€User defined macros and standard headers
	295.€Is abs defined in <cmath>?
	296.€Missing descriptions and requirements of pair operators
	297.€const_mem_fun_t<>::argument_type should be const T*
	298.€::operator delete[] requirement incorrect/insufficient
	299.€Incorrect return types for iterator dereference
	300.€list::merge†‡ specification incomplete
	301.€basic_string template ctor effects clause omits allocator argument
	303.€Bitset input operator underspecified
	304.€Must *a return an lvalue when a is an input iterator?
	305.€Default behavior of codecvt<wchar_t, char, mbstate_t>::length†‡
	306.€offsetof macro and non-POD types
	307.€Lack of reference typedefs in container adaptors
	308.€Table 82 mentions unrelated headers
	309.€Does sentry catch exceptions?
	310.€Is errno a macro?
	311.€Incorrect wording in basic_ostream class synopsis
	312.€Table 27 is missing headers
	315.€Bad "range" in list::unique complexity
	316.€Vague text in Table 69
	317.€Instantiation vs. specialization of facets
	318.€Misleading comment in definition of numpunct_byname
	319.€Storage allocation wording confuses "Required behavior", "Requires"
	320.€list::assign overspecified
	321.€Typo in num_get
	322.€iterator and const_iterator should have the same value type
	323.€abs†‡ overloads in different headers
	324.€Do output iterators have value types?
	325.€Misleading text in moneypunct<>::do_grouping
	326.€Missing typedef in moneypunct_byname
	327.€Typo in time_get facet in table 52
	328.€Bad sprintf format modifier in money_put<>::do_put†‡
	329.€vector capacity, reserve and reallocation
	330.€Misleading "exposition only" value in class locale definition
	331.€bad declaration of destructor for ios_base::failure
	332.€Consider adding increment and decrement operators to std::fpos< T >
	333.€does endl imply synchronization with the device?
	334.€map::operator[] specification forces inefficient implementation
	335.€minor issue with char_traits, table 37

